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Abstract. The d-dimensional thermo-visco-elasticity system for Kelvin–
Voigt-type materials at small strains with a general nonlinear coupling is
considered. Thermodynamical consistency leads to a heat capacity depen-
dent both on temperature and on the strain. Using higher-gradient theory,
namely the concept of so-called second-grade non-simple materials (or of
hyper-stresses), existence of a weak solution to a system arising after an
enthalpy-type transformation is proved by a suitably regularized Rothe
method, fine a-priori estimates for the temperature gradient performed
for the coupled system, and a subsequent limit passage.
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1. Introduction

Thermodynamical systems governed by specific free energy are treated in
mathematical literature with only few exception only under partly linearized
thermo-coupling. More specifically, considering this free energy as ψ = ψ(z, θ)
with z some mechanical-like variable and θ temperature, it means the sim-
plifying assumption ψ′′′

zθθ = 0. This admits only a partly linearized ansatz
of the type ψ(z, θ) = φ0(z) + θφ1(z) + φ2(θ), cf. Remark 2.1 and Exam-
ple 5.4 below, and leads to the heat capacity −θψ′′

θθ that is independent of
z. Such partial linearization is well acceptable because also a lot of physical
studies use such a linearization, usually meant around some reference temper-
ature. Anyhow, this special form has surely some limitations in application
and it is certainly an ultimate challenge to allow for ψ′′′

zθθ �= 0. This is just the
goal of this article, which is demonstrated on a quite canonical example from
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1244 T. Roub́ıček NoDEA

solid mechanics, namely the thermo-visco-elastic system for materials without
internal parameters in Kelvin–Voigt rheology at small strains. Then z = e with
e the small-strain tensor, yet the results apply more generally for cases where
z is not necessarily e and even not necessarily a mechanical variable at all, cf.
Remark 5.7 below.

It seems to be an ultimate need to use a gradient theory for the mechan-
ical part, namely the concept of so-called second-grade nonsimple materials
(also called multipolar solids), cf. e.g. [18,20,33,46], alternatively also referred
as the concept of hyper-stresses [35] or also of microforces or capillarity. This
concept has already been used even for the linearly coupled problems (where
some results are available even without higher-order terms, cf. Remark 2.1
below) rather for the reason to allow for possibly nonconvex free energies
ψ(·, θ), see [7, Chap.5] or [40, Sect. 3.4] for a survey of broad references in the
context of smart materials. Energies which are nonconvex in terms of e are
also broadly used also in rock mechanics, accompanied by experimental data
but not accompanied by any mathematical analysis even in isothermal case,
cf. e.g. [21,27,28].

A general nonlinear coupling leading to the heat capacity depending on
both θ and the mechanical variables occurred in mathematical literature in
a particular context: Colli and Sprekels [11,12] handled a special mechanical
system with internal parameters and, of course, involving also gradients of
this parameters, similarly as also in [10,22], then Krejč́ı and Sprekels [23,24]
investigated coupling through a certain hysteresis operator in one dimen-
sion. Besides, Krejč́ı and Stefanelli [25] have investigated a special prob-
lem with thermodynamical coupling through an internal parameter in one
dimension.

Recently, Paw�low and Zajaçkowski [36,37] have used regularity in the 2-
or 3-dimensional situations under the assumption of a smooth domain with
zero Dirichlet boundary conditions, a regular external loading, and a special
form of the higher-gradient term, i.e. a special H, allowing however for zero
higher viscosity, i.e. for G = 0 in our notation below.

The novelty of the presented article is in using the enthalpy transforma-
tion suitably modified to cope with the heat capacity dependent also on the
mechanical variables, which creates additional nonlinear terms in the trans-
formed system; this is in some sense similar to the transformation devised
by Niezgódka and Paw�low [32] where dependence on space/time variables has
been treated in an analogous way. Another novelty is also the usage of the
fully implicit time discretisation (= Rothe’s method) combined with a cer-
tain monotone-type regularization which guarantees existence of the discrete
solution but requires a particularly careful limit passage (just because of this
regularization). The definite advantage (comparing e.g. to a Galerkin proce-
dure) is that the comparison principle (yielding here the ultimately needed
non-negativity of temperature) is at disposal already for the discrete solution
and the limit passage thus may depend just on one parameter. Also, careful
and repeated usage of Gagliardo–Nirenberg’s interpolation gives estimates for
a natural qualification of the external loading without any regularity. This
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seems to be quite universally applicable approach, cf. [44,45] for applications
to some problems with internal parameters.

The paper is organised as follows: Sect. 2 formulates the problem and
relates it to the standard thermodynamical scheme. In Sect. 3, the problem
is transformed by introducing another variable replacing temperature and the
definition of a weak solution is devised. In Sect. 4 the existence of such weak
solutions is proved by the Rothe method, exploiting also fine a-priori esti-
mates of the (transformed) temperature gradient. Eventually, some aspects
of the used data qualification and the hyper-stress concept are discussed in
Sect. 5.

2. Problem formulation and underlying thermodynamics

Let Ω ⊂ R
d be a bounded domain with a boundary Γ := ∂Ω which is assumed

smooth for the purpose of the derivation of the model in this section. We con-
sider a fixed time horizon T > 0, and abbreviate I := (0, T ), Q := I × Ω, and
Σ := I × Γ. Let us list the basic notation we will use:

u : Ω → R
d the displacement,

θ : Ω → R temperature,
e = e(u) = 1

2 (∇u)� + 1
2∇u the small-strain tensor,

ψ specific free energy,
ξ specific dissipation rate,
σ stress, σ = σ(e(u), e(∂u

∂t ), θ),
h hyper-stress, h = h(∇e(u),∇e(∂u

∂t )),
� mass density,
c is heat capacity, c = c(e, θ),
K a 2nd-order heat-conduction tensor, K = K(e, θ),
D a 4th-order viscous-like dissipation tensor,
H a 6th-order tensor of “hyper” elastic response,
G a 6th-order tensor of “hyper” viscous response,
g the prescribed specific bulk force,
h the prescribed surface force,
f the external prescribed heat flux through the boundary Γ.

The fully nonlinearly-coupled Helmholtz free energy ψ will need also to use a
gradient theory for e, cf. (3.5) below, which leads us to postulating an enhanced
free energy ψ̂ in the form

ψ̂(e, θ,∇e) := ψ(e, θ) +
1
2

H(∇e)2. (2.1)

Further we postulate the dissipation rate

ξ(ė,∇ė) := D(ė)2 + G(∇ė)2. (2.2)

In (2.1)–(2.2) we abbreviated

H(∇e)2 =
d∑

i,j,k,l,m,n=1

Hijklmn
∂eij

∂xk

∂elm

∂xn
, (2.3a)
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D(ė)2 =
d∑

i,j,k,l=1

Dijklėij ėkl , and G(∇ė)2 =
d∑

i,j,k,l,m,n=1

Gijklmn
∂ėij

∂xk

∂ėlm

∂xn
.

(2.3b)

The gradient term 1
2H(∇e)2 is often used in the static variational problems

(either generalized non-quadratic as e.g. in [2, Sect. 6] or even in a simplified
variant as Hijklmn = εδklδmn or εδkmδln with δ the Kronecker symbol to yield
respectively terms of the type ε|Δu|2 or ε|∇2u|2, cf. e.g. [26,29]) without scru-
tinizing explicitly any natural boundary conditions as (2.7b,c) and (3.10a,b)
below. The quadratic form of (2.2) is related to linear viscosity, which is rel-
evant for relatively slow (and not activated) mechanical processes. Up to the
factor 1

2 , this form is simultaneously a (pseudo)potential of the dissipative
forces, cf. (2.4b,c) below. One can think about G = τrelaxH with a (presum-
ably only small) relaxation time τrelax > 0 in the Kelvin–Voigt rheological
model.

We define the entropy classically by Gibbs’ formula

s = −ψ̂′
θ(e, θ,∇e) = −ψ′

θ(e, θ), (2.4a)

and, postulating the Kelvin–Voigt rheology, we further define the stress σ by

σ=σ(e, ė,∇e,∇ė, θ) := ψ̂′
e(e, θ,∇e)+

1
2
ξ′
ė(ė,∇ė)=ψ′

e(e, θ)+Dė, (2.4b)

and the so-called hyperstress h by

h=h(e, ė,∇e,∇ė, θ) := ψ̂′
∇e(e, θ,∇e)+

1
2
ξ′
∇ė(ė,∇ė)=H∇e+ G∇ė, (2.4c)

where the ansatz (2.1)–(2.2) has been taken into account. Standardly, the
entropy equation reads as

θ
∂s

∂t
= ξ1

(
e
(∂u
∂t

)
,∇e

(∂u
∂t

))
+ div j, (2.5a)

where j is the heat flux, and the force balance reads as

�
∂2u

∂t2
− div (σ − div h) = g. (2.5b)

Thus, in view of (2.4b,c), the equation (2.5b) takes the form

�
∂2u

∂t2
−div

(
De

(∂u
∂t

)
+ψ′

e(e(u), θ)−div
(
G∇e

(∂u
∂t

)
+H∇e(u)

))
=g.

(2.6a)

Considering an anisotropic nonlinear Fourier law for the heat flux j =
−K(e(u), θ)∇θ, from (2.5a) we obtain the heat equation

c(e(u), θ)
∂θ

∂t
− div(K(e(u), θ)∇θ) = D

(
e
(∂u
∂t

))2

+ G

(
∇e

(∂u
∂t

))2

+ θψ′′
eθ (e(u), θ) :e

(∂u
∂t

)
with c(e, θ) = −θψ′′

θθ(e, θ). (2.6b)
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We complete the system (2.6) by the initial conditions

u(0, ·) = u0,
∂u

∂t
(0, ·) = v0, θ(0, ·) = θ0 on Ω, (2.7a)

and by the natural boundary conditions of Robin (or sometimes called New-
ton) type, i.e. we prescribe the traction stress h and the heat flux f , which
means here

(
De

(∂u
∂t

)
+ψ′

e(e(u), θ) − div h
)
· ν−divS

(
h · ν

)
=h and (2.7b)

h:(ν⊗ν) = 0with h = G∇e
(∂u
∂t

)
+ H∇e(u), and (2.7c)

K(e(u), θ)
∂θ

∂ν
= f on Σ. (2.7d)

In (2.7b), divS denotes the (d−1)-dimensional “surface divergence” defined by
divS := tr(∇S) with “tr” as the trace (here of a (d−1)×(d−1)-matrix) and with
∇S denoting the tangential derivative, i.e. being defined by ∇Sv = ∇v − ∂v

∂ν ν.
For justification of (2.7b,c) (in the form (3.10a,b) below) as indeed natural
boundary conditions see (3.13)–(3.15), cf. also e.g. [35].

To see the energetics of this model, let us define the internal energy as

w = ψ̂ + θs. (2.8)

Using (2.4a) and (2.5a), we have

∂w

∂t
=ψ′

e(e(u), θ):e
(∂u
∂t

)
+H∇e(u)

...∇e
(∂u
∂t

)
+ψ′

θ(e(u), θ)
∂θ

∂t
+θ

∂s

∂t
+
∂θ

∂t
s

=ψ′
e(e(u), θ):e

(∂u
∂t

)
+H∇e(u)

...∇e
(∂u
∂t

)
+θ

∂s

∂t

=ψ′
e(e(u), θ):e

(∂u
∂t

)
+H∇e(u)

...∇e
(∂u
∂t

)

+ ξ1

(
e
(∂u
∂t

)
,∇e

(∂u
∂t

))
+div j. (2.9)

To complete the energy balance, we test (2.6a) together with the boundary
conditions (2.7b,c) by ∂u

∂t and use (2.9) to obtain:

d
dt

∫

Ω

(�
2

∣∣∣
∂u

∂t

∣∣∣
2

+ w
)

dx
︸ ︷︷ ︸
kinetic + internal energy

=total energy

=
∫

Ω

g·∂u
∂t

dx+
∫

Γ

h·∂u
∂t

+ f dS
︸ ︷︷ ︸
power of external load and heat

. (2.10)

Integrating (2.5a) divided by θ and using Green’s formula and the boundary
condition (2.7d) yield formally the Clausius–Duhem inequality (the 2nd law of
thermodynamics):
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d
dt

∫

Ω

sdx=
∫

Ω

ξ1
θ

− div(K∇θ)
θ

dx=
∫

Ω

ξ1
θ

+
K(∇θ)2
θ2

dx
︸ ︷︷ ︸

entropy production rate

+
∫

Γ

f

θ
dS

︸ ︷︷ ︸
entropy flux

≥0

(2.11)

provided f ≥ 0, K ≥ 0, and θ > 0. The last requirement about the positivity
of temperature is indeed guaranteed if temperature is positive at t = 0, cf. [19,
Sect. 4.2.1].

Remark 2.1 (Conventional model). As already mentioned in Sect. 1, most of
literature about thermo-visco-elasticity considers the partly linearized ansatz

ψ(e, θ) = ϕ(e) + θφ1(e) + φ2(θ), (2.12)

thus c(e, θ) = c(θ) = −θφ′′
2(θ). In this case, often also H = 0 and G = 0 is

considered, i.e. no hyperstresses: h = 0. The system (2.6) then reduces to

�
∂2u

∂t2
− div

(
De

(∂u
∂t

)
+ ϕ′(e(u)

)
+ θφ′

1

(
e(u)

))
= g, (2.13a)

c(θ)
∂θ

∂t
−div

(
K(e(u), θ)∇θ)=D

(
e
(∂u
∂t

))2

+θφ′
1

(
e(u)

)
:e
(∂u
∂t

)
. (2.13b)

A special case ϕ quadratic and φ1 linear represents a classical problem of
thermodynamically consistent linear thermo-visco-elasticity. Existence of its
solution was proved already in [13,14] in 1982 for d = 1 and c and K constant,
while the multidimensional case remained open many decades in spite of great
effort, and it was recognised that some natural modifications help. One option
involving a non-constant heat capacity c depending on temperature θ with
a growth at least θ1/2+ε, ε > 0, was considered in [3] where existence of a
solution has been proved by a Schauder fixed point, cf. also [42] for the proof
by the Galerkin method and [43] for c growing only like θ6/5+ε. Temperature-
dependent heat conductivity K was also considered in [16], requiring a growth
bigger than 1 − 2/d if c is constant, see also [17, Sect. 5.4.2.1]. Alternatively,
also dependence of K on ∇θ pronouncing entropy production for bigger tem-
perature gradient may help, cf. [17, Sect. 5.4.2.2] and [30,31]. Yet, making
heat flux depending nonlinearly on ∇θ does not seem relevant in most appli-
cations, which is why we consider only a linear Fourier law thorough the whole
article.

3. Enthalpy-like transformation and weak solution

The peculiarity of the system (2.6) is that the heat capacity c depends also
on the mechanical variable e so that one cannot perform the conventional
enthalpy transformation by using just a primitive function of c. Anyhow, one
can make an enhanced enthalpy transformation, which is to some extent sim-
ilar as in [32] where c depends on (t, x) instead of e. This procedure is based
on the following elementary calculus:
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c(e, θ)
∂θ

∂t
=
∂C(e, θ)
∂t

− C′
e(e, θ):

∂e

∂t
(3.1)

where

C(e, θ) :=
∫ θ

0

c(e, θ̂) dθ̂ , and thus C′
e(e, θ) =

∫ θ

0

c′
e(e, θ̂) dθ̂. (3.2)

We introduce the substitution

ϑ = C(e(u), θ). (3.3)

It is physically natural to assume the heat capacity c positive, which makes
C(e, ·) increasing and thus also invertible. Thus allows us to define

Θ(e, ϑ) :=
[
C(e, ·)]−1(ϑ), (3.4a)

K0(e, ϑ) := K(e,Θ(e, ϑ))Θ′
ϑ(e, ϑ), (3.4b)

K1(e, ϑ) := K(e,Θ(e, ϑ))Θ′
e(e, ϑ), (3.4c)

A(e, ϑ) := Θ(e, ϑ)ψ′′
θe(e,Θ(e, ϑ)) + C′

e(e,Θ(e, ϑ)). (3.4d)

Since θ = Θ(e(u), ϑ), one can express the heat flux in terms of ϑ as

K(e(u), θ)∇θ = K(e(u),Θ(e(u), ϑ))∇Θ(e(u), ϑ)
= K0(e(u), ϑ)∇ϑ+ K1(e(u), ϑ)∇e(u). (3.5)

Let us notice that the last term in (3.5) involves ∇e(u), from which the neces-
sity of using a gradient theory for e(u) clearly arises. Also, we have A(e, ϑ) =
A(e, θ) := θψ′′

eθ(e, θ) +
∫ θ

0
c′
e(e, θ̂) dθ̂ for θ = Θ(e, ϑ) so that, since c′

e(e, θ) =
−θψ′′′

eθθ(e, θ), we have

[
A−ψ′

e◦Θ
]
(e, ϑ) =

[
A−ψ′

e

]
(e, θ) = θψ′′

eθ(e, θ) −
∫ θ

0

tψ′′′
eθθ(e, t) dt− ψ′

e(e, θ).

(3.6)

Furthermore,

[
A−ψ′

e

]′
θ
(e, θ) = θψ′′′

eθθ(e, θ) + ψ′′
eθ(e, θ) − θψ′′′

eθθ(e, θ) − ψ′′
eθ(e, θ) = 0,

so that A−ψ′
e◦Θ is independent of ϑ. Moreover, from (3.6), one can see that

[A−ψ′
e](e, 0) = −ψ′

e(e, 0). Therefore, abbreviating

ϕ(·) := ψ(·, 0), (3.7)

we can deduce that

[
ψ′

e◦Θ − A
]
(e, ϑ) = ψ′

e(e, 0) = ϕ′(e). (3.8)
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This transforms the system (2.6) into the form

�
∂2u

∂t2
− div

(
De

(∂u
∂t

)
+ϕ′(e(u))+A(e(u), ϑ)

− div
(
G∇e

(∂u
∂t

)
+H∇e(u)

))
=g, (3.9a)

∂ϑ

∂t
− div

(
K0(e(u), ϑ)∇ϑ

)
= D

(
e
(∂u
∂t

))2

+ G

(
∇e

(∂u
∂t

))2

+A
(
e(u), ϑ

)
:e
(∂u
∂t

)
+ div

(
K1(e(u), ϑ)∇e(u)

)
, (3.9b)

with the boundary conditions
(
De

(∂u
∂t

)
+ϕ′(e(u))+A(e(u), ϑ)−div h

)
· ν−divS

(
h·ν)=h, (3.10a)

h:(ν⊗ν) = 0 with h again from (2.7c), and (3.10b)

K0(e(u), ϑ)
∂ϑ

∂ν
+ K1(e(u), ϑ)

∂e(u)
∂ν

= f on Σ, (3.10c)

and the initial conditions

u(0, ·)=u0,
∂u

∂t
(0, ·)=v0, ϑ(0, ·)=C(e(u0), θ0) in Ω.

(3.10d)

One can observe that the internal energy (2.8) now takes the form

w = ψ̂ + θs = ϕ(e) + ϑ+
1
2

H(∇e)2. (3.11)

Indeed, denoting the residuum in (3.11) by r(e, θ) := ψ(e, θ) + θs − ϕ(e) − ϑ
with s = −ψ′

θ(e, θ) and ϑ = C(e, θ), we can see that r(e, 0) = ψ(e, 0) − ϕ(e) −
C(e, 0) = 0 and that r′

θ(e, θ) = ψ′
θ(e, θ) − θψ′′

θθ(e, θ) − ψ′
θ(e, θ) − c(e, θ) = 0,

hence r ≡ 0. Thus, in view of (3.11), the energy balance (2.10) written in
terms of ϑ takes the form

d
dt

∫

Ω

�

2

∣∣∣
∂u

∂t

∣∣∣
2

+ϕ
(
e(u)

)
+ϑ+

1
2

H
(∇e(u)

)2 dx=
∫

Ω

g·∂u
∂t

dx+
∫

Γ

h·∂u
∂t

+f dS.

(3.12)

For the balance of mere mechanical energy see (4.54) below.
The weak formulation of the initial-boundary-value problem (3.9)–(3.10)

can be designed by using by-part integration for both equations in (3.9), and
Green formula twice for (3.9a) and once for (3.9b), and by incorporating both
the initial and the boundary conditions (3.10). For this, in case of (3.9a), one
must use still another Green formula along the boundary, namely, written for
a matrix-valued field w and a scalar function v,

∫

Γ

w:
(
(∇Sv)⊗ν) dS =

∫

Γ

(
(divSν)

(
w:(ν⊗ν) − divS(w·ν)

)
v dS, (3.13)
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where divSν is (up to a factor − 1
2 ) the mean curvature of the surface Γ; cf.

[20,34,35,47]. Just for illustration, (3.13) is a compact form for what can be
written more in detail as

∫

Γ

d∑

i,j=1

wij

(
∂v

∂xi
−

d∑

k=1

∂v

∂xk
νkνi

)
νj dS

=
∫

Γ

( d∑

l=1

(
∂νl

∂xl
−

d∑

k=1

∂νk

∂xk
νkνl

) d∑

i,j=1

wijνiνj

−
d∑

l=1

(
∂

∂xl

d∑

m=1

wlmνm −
d∑

k=1

νkνl
∂

∂xk

d∑

m=1

wkmνm

))
v dS; (3.14)

in fact, the expressions for ∇S and divS has a component corresponding to the
normal direction zero, so the summation can use only d−1 indices if expressed
in suitable local coordinates.

Then, using the vectorial variant of (3.13) for h and z in place of w and
v, and using also the decomposition ∇z = ∂z

∂ν ν+∇Sz, we have
∫

Ω

(
div2h

)·z dx =
∫

Γ

(
div h

)
:(z⊗ν) dS −

∫

Ω

(
div h

)
:∇z dx

=
∫

Ω

h
...∇2z dx+

∫

Γ

(
div h

)
:(z⊗ν) − h

...(∇z⊗ν) dS

=
∫

Ω

h
...∇2z dx+

∫

Γ

(
div h

)
:(z⊗ν) − h

...
((∂z

∂ν
ν+∇Sz

)
⊗ν

)
dS

=
∫

Ω

h
...∇2z dx+

∫

Γ

((
div h

)·ν + divS(h·ν) − (divSν)
(
h:(ν⊗ν)

))·z

−(
h:(ν⊗ν)

)·∂z
∂ν

dS (3.15)

where “
... ” abbreviates summation over 3 indices, consistently with “ : ” and

“ · ” meaning summation over 2 or 1 indices, respectively. It reveals that one of
the natural boundary conditions is to prescribe h:(ν⊗ν). Our (quite natural)
choice (2.7c) simplifies the situation because the term containing the mean
curvature divSν vanishes and we can see that h in (2.7b) indeed means the
true (prescribed) boundary force.

If both G and H are symmetric, so is h, and we have h
...∇2z = h

...∇e(z).
This leads to the weak formulation of the mechanical part (3.9a)-(3.10a,b) in
the form (3.16a) below:

Definition 3.1 (Weak solution.) We call the pair (u, ϑ) ∈ W 1,2(I;W 2,2

(Ω; R
d)) ×L1(I;W 1,1(Ω)) a weak solution to the initial-boundary-value prob-

lem (3.9)–(3.10) if



1252 T. Roub́ıček NoDEA

∫

Q

(
De

(∂u
∂t

)
+ ϕ′(e(u)) + A(e(u), ϑ)

)
:e(v)

+
(
G∇e

(∂u
∂t

)
+ H∇e(u)

)...∇e(v) − �
∂u

∂t
·∂v
∂t

dxdt+
∫

Ω

�
∂u

∂t
(T )·v(T ) dx

=
∫

Ω

�v0·v(T ) dx+
∫

Q

g·v dxdt+
∫

Σ

h·v dSdt (3.16a)

for any v ∈ W 1,2(I;L2(Ω; R
d)) ∩ L2(I;W 2,2(Ω; R

d)), and

∫

Q

(
K0(e(u), ϑ)∇ϑ+ K1(e(u), ϑ)∇e(u)

)
· ∇z − ϑ

∂z

∂t

−
(
D

(
e
(∂u
∂t

))2

+ G

(
∇e

(∂u
∂t

))2

+ A
(
e(u), ϑ

)
:e
(
∂u

∂t

))
v dxdt

=
∫

Ω

C(e(u0), θ0)z(0) dx+
∫

Σ

fz dSdt (3.16b)

for any z ∈ C1(Q̄) with z(T, ·) = 0, and if the remaining initial condition not
involved in (3.16a,b) also holds:

u(0) = u0. (3.16c)

We first state our main existence result. For this, we first summarize
the assumptions. We use the notation of p′ being the conjugate exponent
p/(p−1) and of p∗ being the critical Sobolev exponent defined here (just with
a slight loss of generality) as dp/(d−p) if p < d, or we choose arbitrary large
p∗ < ∞ but fixed if p ≥ d. Thus, e.g., we have the compact embedding
W 2,2(Ω) ⊂ W 1,2∗−ε(Ω) with ε arbitrarily small positive number. We then
impose the following assumptions formulated in terms of the transformed data:

ϕ(·) = ψ(·, 0) : R
d×d
sym → R

+ is continuously differentiable, and
∃Cϕ ∈ R ε > 0 ∀e ∈ R

d×d
sym :

e �→ ϕ(e) + Cϕ|e|2 is convex, ϕ(e) ≤ Cϕ(1+|e|2∗
), (3.17a)

ϕ′(e):e+ Cφ ≥ 0,
∣∣ϕ′(e)

∣∣ ≤ Cϕ

(
1+|e|2∗−1−ε

)
, (3.17b)

∃CK0 , CK1 ∈ R, κ0, ε > 0 ∀ (e, ϑ) ∈ R
d×d
sym×R, ξ ∈ R

d :

K0(e, ϑ)ξ·ξ ≥ κ0|ξ|2, (3.17c)

∣∣K0(e, ϑ)
∣∣ ≤ CK0

(
1+|e|2∗/(d+2)−ε+|ϑ|1/d−ε

)
, (3.17d)

∣∣K1(e, ϑ)
∣∣ ≤ CK1

√
1+|ϑ|, (3.17e)
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∃CA < ∞, q > (2d+8)/(d+6), s < q :

∀ (e, ϑ) ∈ R
d×d
sym×R :

∣∣A(e, ϑ)
∣∣ ≤ CA

(
1+|e|2∗/q+|ϑ|s/q

)
, (3.17f)

� > 0, D,G,H symmetric positive definite, H having a potential, (3.17g)

g ∈ L1(I;L2(Ω; R
d)), h ∈ W 1,1(I;Lph(Γ; R

d)), (3.17h)

u0 ∈ W 2,2(Ω; R
d), v0 ∈ L2(Ω; R

d), (3.17i)
θ0 ≥ 0, f ≥ 0, C(θ0, e(u0)) ∈ L1(Ω), f ∈ L1(Σ), (3.17j)

with ph = 2−2/d if d > 2, or ph > 1 for d ≤ 2 (or even ph = 1 if d = 1). In fact,
we will need (3.17) only for ϑ ≥ 0 in what follows. Note that (3.17d) ensures
integrability of K0(e(u), ϑ)∇ϑ if e(u) ∈ L2∗

(Q; R
d×d), ϑ ∈ L(d+2)/d−ε(Q),

and ∇ϑ ∈ L(d+2)/(d+1)−ε(Q; R
d). The weakened convexity of ϕ in (3.17a) is

called semiconvexity. The symmetry in (3.17g) means that D : R
d×d
sym → R

d×d
sym ,

i.e. Dijkl = Djikl, and similarly Gijklmn = Gikjlmn, while for H we need
Hijklmn = Hikjlmn = Hlmnijk. The assumption ϕ′(e):e+ Cφ ≥ 0 in (3.17b) is
not restrictive in applications and simplifies some considerations below, but,
in fact, can be relaxed.

The following main result is a consequence of Lemma 4.1 together with
Proposition 4.5 below when taking into account that, due to the qualification
(3.17i) of u0, the regularization u0τ with all properties required in Proposi-
tion 4.5 always exist.

Theorem 3.2. (Existence of a weak solution). Let (3.17) hold and d ≤ 3.
Then the transformed system (3.9) with the initial/boundary conditions (3.10)
possesses a weak solution (u, ϑ) according to the Definition 3.1 such that, in
addition,

∂2u

∂t2
∈ L2(I;W 2,2(Ω; R

d)∗), (3.18a)

ϑ ∈ Lr(I;W 1,r(Ω)) ∩ L∞(I;L1(Ω)) ∩W 1,1(I;W 3,2(Ω)∗), r <
d+2
d+1

.

(3.18b)

Remark 3.1 (Internal energy balance). The formula (3.11) says that ϑ =
w−ϕ(e) − 1

2H(∇e)2, which suggests to subtract from the internal-energy bal-
ance (2.9) the balance of the stored-energy rate versus the power of conserva-
tive parts of (hyper)stresses, i.e. ∂

∂t (ϕ(e(u)) + 1
2H(∇e(u))2 = ϕ′(e(u)):e(∂u

∂t ) +

H∇e(u)...∇e(∂u
∂t ). In this way, we obtain ∂ϑ

∂t + div j = (σ−ϕ′(e(u))):e
(

∂u
∂t

)
+

(h−H∇e(u))...∇e
(

∂u
∂t

)
which, after eliminating temperature as we did by the

substitution (3.3), would again result to the transformed heat equation (3.9b).
This reveals the physical character of the transformed system (3.9) and a cer-
tain conceptual similarity with thermodynamics of fluid where internal energy
is sometimes used instead of temperature for analysis, cf. e.g. [8,9].
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4. Analysis by time discretisation

We analyse the system (3.9) by Rothe’s method with a suitable regularization
to compensate the growth of the non-monotone terms on the right-hand side
of the heat equation (3.9b). More specifically, for τ ≤ 4 and a suitable η > 0
specified later, we consider

�
uk

τ−2uk−1
τ +uk−2

τ

τ2
−div

(
De

(uk
τ−uk−1

τ

τ

)
+ϕ′(e(uk

τ )
)

+ A(e(uk
τ ), ϑk

τ )+τ
∣∣e(uk

τ )
∣∣η−2

e(uk
τ )−div hk

τ

)
=gk

τ

with hk
τ =G∇e

(uk
τ−uk−1

τ

τ

)
+H∇e(uk

τ )+τ
∣∣∇e(uk

τ )
∣∣η−2∇e(uk

τ ), (4.1a)

ϑk
τ−ϑk−1

τ

τ
− div

(
K0(e(uk

τ ), ϑk
τ )∇ϑk

τ

)

=
(

1−
√
τ

2

)
D

(
e
(uk

τ−uk−1
τ

τ

))2

+ G

(
∇e

(uk
τ−uk−1

τ

τ

))2

+ A
(
e(uk

τ ), ϑk
τ

)
:e
(uk

τ−uk−1
τ

τ

)
+ div

(
K1(e(uk

τ ), ϑk
τ )∇e(uk

τ )
)

(4.1b)

completed with the boundary conditions
(
De

(uk
τ−uk−1

τ

τ

)
+ ϕ′(e(uk

τ )) + A(e(uk
τ ), ϑk

τ ))

−div hk
τ + τ |e(uk

τ )|η−2e(uk
τ )
)
· ν − divS

(
hk

τ ·ν) = hk
τ , (4.2a)

hk
τ :(ν⊗ν) = 0 and (4.2b)

K0(e(uk
τ ), ϑk

τ )
∂ϑk

τ

∂ν
+ K1(e(uk

τ ), ϑk
τ )
∂e(uk

τ )
∂ν

= fk
τ on Γ. (4.2c)

This recursive scheme for k = 1 is started by considering the initial conditions

u0
τ = u0τ , u−1

τ = u0
τ − τv0, ϑ0

τ = C(e(u0τ ), θ0) in Ω (4.2d)

involving a suitably regularized initial displacement u0τ . In (4.1)–(4.2), we
used a suitable approximation of the right-hand sides; to be more specific, for
k = 1, . . . , T/τ , we consider

gk
τ =

1
τ

∫ kτ

(k−1)τ

g(t, ·) dt, fk
τ =

1
τ

∫ kτ

(k−1)τ

f(t, ·) dt, hk
τ =

1
τ

∫ kτ

(k−1)τ

h(t, ·) dt.

(4.3)

Lemma 4.1 (Existence of Rothe’s solution). Let (3.17) hold, let u0τ ∈
W 2,η(Ω; R

d) with η sufficiently large, namely η>max(4, 2(2∗+q)/q, 2q/(q−s)).
Then the recursive boundary-value problem (4.1)–(4.2) has a weak solution
(uk

τ , ϑ
k
τ ) ∈ W 2,η(Ω; R

d) ×W 1,2(Ω) such that ϑk
τ ≥ 0 for any k = 1, . . . , T/τ .

Proof. In contrast to isothermal situation, the system (4.1)–(4.2) does not
seem to have a structure of a variational problem and thus existence of its
solution is to be proved only in a nonconstructive way by using the very clas-
sical Brézis theorem [4] based on the concept of coercive pseudomonotone
operators and using Brouwer fixed-point argument. More specifically, here we
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apply this theorem to an abstract equation A(u, ϑ) = F with the nonlinear
mapping A = (A1, A2) : W 2,η(Ω; R

d)×W 1,2(Ω) → W 2,η(Ω; R
d)∗×W 1,2(Ω)∗

given, at the k level, by

〈A1(u, ϑ), v〉 :=

∫

Ω
�

u

τ2
·v+

(
De

(
u

τ

)
+ϕ′(e(u)

)
+A(e(u), ϑ)+τ

∣∣e(u)
∣∣η−2

e(u)

)
:e(v)

+

(
G∇e

(
u

τ

)
+H∇e(u)+τ

∣∣∇e(u)
∣∣η−2∇e(u)

)
...∇e(v) dx (4.4a)

〈A2(u, ϑ), z〉 :=

∫

Ω

(
ϑ

τ
+

(
1−

√
τ

2

)(
D

(
e

(
u

τ

))2

+ 2De

(
u

τ

)
:e

(
uk−1

τ

τ

))

+ G

(
∇e

(
u

τ

))2

+ 2G∇e

(
u

τ

) ...∇e

(
uk−1

τ

τ

)
+ A

(
e(u), ϑ

)
:e

(
u−uk−1

τ

τ

))
z

+
(
K0(e(u), ϑ)∇ϑ

)
+ K1(e(u), ϑ)∇e(u) · ∇z dx (4.4b)

and the functional F = (F1, F2) ∈ W 2,η(Ω; R
d)∗×W 1,2(Ω)∗ given by

〈F1, v〉 :=
∫

Ω

(
�

2uk−1
τ −uk−2

τ

τ2
+ gk

τ

)
·v + De

(
uk−1

τ

τ

)
:e(v)

+ G∇e
(
uk−1

τ

τ

)
...∇e(v) dx+

∫

Γ

hk
τ ·v dS, (4.5a)

〈F2, z〉 :=
∫

Ω

(
ϑk−1

τ

τ
+

(
1−

√
τ

2

)
D

(
e

(
uk−1

τ

τ

))2

+ G

(
∇e

(
uk−1

τ

τ

))2
)
z dz +

∫

Γ

fk
τ z dS. (4.5b)

To prove the coercivity of A, we plug v = u and = ϑ into (4.4). This
results to

〈A1(u, ϑ), u〉 ≥ �

τ2

∥∥u
∥∥2

L2(Ω;Rd)
+

min|e|=1 D(e)2

τ

∥∥e(u)
∥∥2

L2(Ω;Rd×d)

+ τ
∥∥e(u)

∥∥η

W 1,η(Ω;Rd×d)
+
∫

Ω

A(e(u), ϑ):e(u) dx− Cϕ|Ω|, (4.6)

〈A2(u, ϑ), ϑ〉 ≥ 1
τ

∥∥ϑ
∥∥2

L2(Ω)
+ κ0

∥∥∇ϑ∥∥2

L2(Ω;Rd)

+
∫

Ω

(
2−√

τ

2τ2

(
D
(
e(u)

)2+ 2De(u):e(uk−1
τ )

)
+ G

(∇e(u)
)2

+ 2G∇e(u)
...∇e(uk−1

τ ) + A
(
e(u), ϑ

)
:e
(
u−uk−1

τ

τ

))
ϑ

+
(
K1(e(u), ϑ)∇e(u)

) · ∇ϑ dx. (4.7)

Note that ϕ′(e):e ≥ −Cϕ from (3.17b) has already been used in (4.6). Let us
briefly discuss the estimation of the possibly non-negative terms under this
test.

The last term
∫
Ω

A(e(u), ϑ):e(u) dx in (4.6) can be estimated as (4.10)
below but even easier because the factor ϑ is not here. As for (4.7), one can
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estimate the K1-term by using Hölder’s inequality for 3 factors with exponents
4, η, and 2 and by using (3.17e)

∫

Ω

K1(e(u), ϑ)∇e(u)·∇ϑdx ≥ −
∫

Ω

CK1

√
1+|ϑ|∣∣∇e(u)

∣∣ ∣∣∇ϑ∣∣ dx

≥ −
∫

Ω

CK1

(
1+

√
|ϑ|

)∣∣∇e(u)
∣∣ ∣∣∇ϑ∣∣ dx

≥ Cδ,η − δ
∥∥ϑ

∥∥2

L2(Ω)
− δ

∥∥∇e(u)
∥∥η

Lη(Ω;Rd×d×d)
− δ

∥∥∇ϑ∥∥2

L2(Ω;Rd)
(4.8)

with δ > 0 arbitrarily small and again some Cδ,η depending on η and δ; here we
needed that η > 4. The heat sources with quadratic growth can be estimated as

∫

Ω

(
D(e(u))2+G|∇e(u)|2)ϑ dx ≥ Cδ,η − δ

∥∥e(u)
∥∥η

Lη(Ω;Rd×d)

−δ∥∥∇e(u)
∥∥η

Lη(Ω;Rd×d×d)
− δ

∥∥ϑ
∥∥2

L2(Ω)
; (4.9)

here we used that η > 4. By (3.17f), the A-term in (4.1b) can be estimated as

∫

Ω

A(e(u), ϑ):e(u)ϑ dx ≥ −CA

∫

Ω

(
1 + |e(u)|2∗/q + |ϑ|s/q

)∣∣e(u)
∣∣ ∣∣ϑ

∣∣dx

≥ Cδ,q,s − δ
∥∥e(u)

∥∥η

Lη(Ω;Rd×d)
− δ‖ϑ‖2

L2(Ω) (4.10)

with Cδ,q,s dependent on q and s from (3.17f); here we used that η >
2 max(2∗+q/q, q/(q−s)) and needed s < q as used in (3.17f). The term∫
Ω

A(e(u), ϑ):e(uk−1
τ )ϑ dx is even easier. The remaining terms involving uk−1

τ

have at most linear decay and can be handled easily by the Young inequality.
Altogether, when choosing δ > 0 sufficiently small so that the correspond-
ing terms are dominated by the coercive terms and when using still Korn’s
inequality, we proved the coercivity of the whole operator A in the sense
〈A(u, ϑ), (u, ϑ)〉 ≥ ε‖u‖2

W 2,η(Ω;Rd) + ε‖ϑ‖2
W 1,2(Ω) − C with some small ε > 0

depending also on τ .
The pseudomonotonicity of the operator A is obvious because all non-

linear terms are either of the highest-order but monotone, which concerns
especially the term div2(τ |∇e(uk

τ )|η−2∇e(uk
τ )), or of a lower order with the

exception of the K1-term in (4.1b) but this term is linear in ∇e(uk
τ ), hence

weakly continuous. Then the claimed existence of a solution to A(u, ϑ) = F
follows by the mentioned Brézis theorem and, of course, we put uk

τ = u and
ϑk

τ = ϑ.
Eventually, one can test (4.1b) by (ϑk

τ )−, which reveals ϑk
τ ≥ 0. For this,

we can realize that, for a moment in the proof before, we can define A(e, ϑ) = 0
for ϑ ≤ 0, and then find that this possible re-definition is, in fact, irrelevant
for this particular solution. �
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Let us define the piecewise affine interpolants uτ and ϑτ by
[
uτ , ϑτ

]
(t) := t−(k−1)τ

τ

(
uk

τ , ϑ
k
τ

)
+ kτ−t

τ

(
uk−1

τ , ϑk−1
τ

)
for t ∈ [(k−1)τ, kτ ]

(4.11)

with k = 0, . . . ,Kτ := T/τ . Besides, we define also the backward piecewise
constant interpolant ūτ and ϑ̄τ by

[
ūτ , ϑ̄τ

]
(t) :=

(
uk

τ , ϑ
k
τ

)
for t ∈ ((k−1)τ, kτ ], k = 1, . . . ,Kτ .

(4.12)

We will also need the piecewise affine interpolant of the (piecewise constant)
velocity ∂uτ

∂t , which we denote by
[

∂uτ

∂t

]i, i.e.
[

∂uτ

∂t

]i

(t) := t−(k−1)τ
τ

∂uτ

∂t (kτ) + kτ−t
τ

∂uτ

∂t (kτ−τ) for t ∈ ((k−1)τ, kτ ].

(4.13)

Note that ∂
∂t

[
∂uτ

∂t

]i is piecewise constant with the values uk
τ −2uk−1

τ +uk−2
τ

τ2 on the
particular intervals ((k−1)τ, kτ).

Lemma 4.2 (Energy estimates). Let the assumptions of Lemma 4.1 hold, and
let ‖u0τ‖W 2,η(Ω;Rd) = O(τ−1/η). Let also be sufficiently small τ , namely τ ≤
min(4, (min|e|=1 D(e)2/(4Cϕ))2) with Cϕ from (3.17b) if Cϕ > 0, otherwise
0 < τ ≤ min(4, T ) can be arbitrary if ϕ is convex. Then, with some C0 inde-
pendent on τ , it holds:

∥∥uτ

∥∥
W 1,∞(I;L2(Ω;Rd))∩L∞(I;W 2,2(Ω;Rd))

≤ C0, (4.14a)
∥∥ϑ̄τ

∥∥
L∞(I;L1(Ω))

≤ C0, (4.14b)
∥∥e(ūτ )

∥∥
L∞(I;W 1,η(Ω;Rd×d))

≤ C0τ
−1/η. (4.14c)

Sketch of the proof. We test the mechanical part (4.1a) by (uk
τ−uk−1

τ )/τ . We
use the semiconvexity of ϕ, and hence the convexity of the functional e �→
ϕ(e) + 1

2τ
−1/2

D(e)2 + τ
η |e|η for sufficiently small τ as assumed. Then we have

a discrete chain rule at disposal:
(
ϕ′(e(uk

τ )) + De

(
uk

τ − uk−1
τ

τ

)
+ τ |e(uk

τ )|η−2e(uk
τ )
)

:e
(
uk

τ − uk−1
τ

τ

)

=
(
ϕ′(e(uk

τ )) +
1√
τ

De(uk
τ ) + τ |e(uk

τ )|η−2e(uk
τ )
)

:e
(
uk

τ − uk−1
τ

τ

)

− 1√
τ

De(uk−1
τ ):e

(
uk

τ − uk−1
τ

τ

)
+ (1 − √

τ)D
(
e

(
uk

τ − uk−1
τ

τ

))2

≥ 1
τ

(
ϕ(e(uk

τ )) +
1

2
√
τ

D
(
e(uk

τ )
)2 +

τ

η
|e(uk

τ )|η

−ϕ(e(uk−1
τ )) − 1

2
√
τ

D
(
e(uk−1

τ )
)2 − τ

η
|e(uk−1

τ )|η
)

− 1√
τ

De(uk−1
τ ):e

(
uk

τ − uk−1
τ

τ

)
+ (1 − √

τ)D
(
e

(
uk

τ − uk−1
τ

τ

))2
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=
ϕ(e(uk

τ )) − ϕ(e(uk−1
τ ))

τ
+

|e(uk
τ )|η − |e(uk−1

τ |η
η

+
(

1 −
√
τ

2

)
D

(
e
(uk

τ − uk−1
τ

τ

))2

(4.15)

provided τ is sufficiently small as already specified; here we also used that
1−

√
τ

2 ≥ 0. Similarly, and even more simply, we use also the convexity of the
kinetic energy 

2 | · |2 and also of E �→ 1
2H(E)2 + τ

η |E|η. Thus, summing up
over the time levels l = 1, . . . , k, we arrive at the following estimate for the
mechanical energy

�

2

∥∥∥uk
τ−uk−1

τ

τ

∥∥∥
2

L2(Ω;Rd)
+

k∑

l=1

∫

Ω

(
1−

√
τ

2

)
D

(
e

(
ul

τ−ul−1
τ

τ

))2

+ G

(
∇e

(
ul

τ−ul−1
τ

τ

))2

dx +

∫

Ω

ϕ(uk
τ ) +

1

2
H
(∇e(uk

τ )
)2

+
τ

η
|e(uk

τ )|η +
τ

η
|∇e(uk

τ )|ηdx

≤ τ
k∑

l=1

(∫

Ω

gl
τ ·u

l
τ−ul−1

τ

τ
− A(e(ul

τ ), ϑl
τ ):e

(
ul

τ−ul−1
τ

τ

)
dx +

∫

Γ

hl
τ ·u

l
τ−ul−1

τ

τ
dS

)

+

∫

Ω

�

2
|v0|2 + ϕ(u0τ ) +

1

2
H
(∇e(u0τ )

)2
+

τ

η
|e(u0τ )|η +

τ

η
|∇e(u0τ )|η dx.

(4.16)

Adding also the heat part (4.1b) tested by 1 and summed up over the time
levels l = 1, . . . , k, we arrive at the the following estimate for the total energy

�

2

∥∥∥uk
τ−uk−1

τ

τ

∥∥∥
2

L2(Ω;Rd)
+

∥∥ϑk
τ

∥∥
L1(Ω)

+

∫

Ω

ϕ(uk
τ ) +

1

2
H
(∇e(uk

τ )
)2

+
τ

η
|e(uk

τ )|η +
τ

η
|∇e(uk

τ )|ηdx

≤ τ
k∑

l=1

(∫

Ω

gl
τ ·u

l
τ−ul−1

τ

τ
dx +

∫

Γ

hl
τ ·u

l
τ−ul−1

τ

τ
+ f l

τ dS

)
+

∥∥C(e(u0τ ), θ0)
∥∥

L1(Ω)

+

∫

Ω

�

2
|v0|2 + ϕ(u0τ ) +

1

2
H
(∇e(u0τ )

)2
+

τ

η
|e(u0τ )|η +

τ

η
|∇e(u0τ )|η dx. (4.17)

This imitates the energy balance (3.12) with the regularizing terms added and
again we can see cancellation of the dissipative and the A-adiabatic terms.
Note that here we benefit from having carefully designed (4.1b) with suitable
coefficients 1−√

τ/2 in the D-term. Eventually, using the by-part summation
of the boundary term

τ

k∑

l=1

hl
τ ·u

l
τ−ul−1

τ

τ
= hk

τ ·uk
τ − h1

τ ·u0τ − τ

k∑

l=1

hl−1
τ −hl−2

τ

τ
·ul

τ (4.18)

and the qualification (3.17h), from (4.17), the a-priori estimates (4.14) follow
from the discrete Gronwall inequality. �
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Proposition 4.3 (Further estimates). Under the assumption of Lemma 4.2, for
some constants C, Cr, Cs independent of τ ≤ 1, it also holds:

∥∥uτ

∥∥
W 1,2(I;W 2,2(Ω;Rd))

≤ C, (4.19a)

∥∥∇ϑ̄τ

∥∥
Lr(Q;Rd)

≤ Cr with r <
d+2
d+1

, (4.19b)

∥∥ϑ̄τ

∥∥
Ls(Q)

≤ Cs with s <
d+2
d
. (4.19c)

Proof. We test (4.1b) by a special nonlinearity χ(ϑk
τ ) := 1 − (1+ϑk

τ )−ε as
suggested in [19], which has simplified the original technique from [5,6]. After
summation for k = 1, . . . , T/τ , we obtain

κ0ε

∫

Q

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt = κ0

∫

Q

χ′(ϑ̄τ )|∇ϑ̄τ |2 dxdt

≤
∫

Q

χ′(ϑ̄τ )K0(e(ūτ ), ϑ̄τ )∇ϑ̄τ ·∇ϑ̄τ dxdt=

∫

Q

K0(e(ūτ ), ϑ̄τ )∇ϑ̄τ ·∇χ(ϑ̄τ ) dxdt

≤
∫

Q

K0(e(ūτ ), ϑ̄τ )∇ϑ̄τ ·∇χ(ϑ̄τ ) dxdt +

∫

Ω

χ̂(ϑ̄τ (T, ·)) dx

≤
∫

Ω

χ̂(ϑ0) dx +

∫

Σ

f̄τχ(ϑ̄τ ) dSdt +

∫

Q

r̄τχ(ϑ̄τ )

−K1(e(ūτ ), ϑ̄τ )∇e(ūτ ) · ∇χ(ϑ̄τ ) dxdt

≤ ∥∥C(e(u0τ ), θ0)
∥∥

L1(Ω)
+

∥∥f̄τ

∥∥
L1(Σ)

+
∥∥r̄τ

∥∥
L1(Q)

+
εTC2

0

4δ
+ εδCK1

∫

Q

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt (4.20)

where κ0 is from (3.17c), and where χ̂ is a primitive of χ such that χ̂(0) = 0,
and where we abbreviated the heat sources r̄τ := (1−√

τ/2)D(e(∂uτ

∂t ))2 +
G(∇e(∂uτ

∂t ))2 + A(e(ūτ ), ϑ̄τ ):e(∂uτ

∂t ). The inequality in the 4th line of (4.20)
arises just from the mentioned test of (4.1b) by χ(ϑk

τ ) when one uses
monotonicity of χ, hence convexity of χ̂, so that the “discrete chain rule”
holds:

χ̂(ϑk
τ ) − χ̂(ϑk−1

τ )
τ

≤ ϑk
τ − ϑk−1

τ

τ
χ(ϑk

τ ).

In the last line of (4.20), C0 is from the already proved estimate (4.14a) and
we have used that χ̂(ϑ0) ≤ ϑ0 =: C(e(u0τ ), θ0), and that always 0 ≤ χ ≤ 1, as
well as∫

Q

K1(e(ūτ ), ϑ̄τ )∇e(ūτ ) · ∇χ(ϑ̄τ ) dxdt=ε

∫

Q

∇e(ūτ )
...
K1(e(ūτ ), ϑ̄τ )⊗∇ϑ̄τ

(1+ϑ̄τ )1+ε
dxdt

≤ ε

∫

Q

1
4δ

|∇e(ūτ )|2 + δ
|K1(e(ūτ ), ϑ̄τ )|2

1+ϑ̄τ

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt
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≤ ε

∫

Q

1
4δ

|∇e(ūτ )|2 + δCK1

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt

≤ εT

4δ
‖ūτ‖2

L∞(I;W 2,2(Ω;Rd)) + εδCK1

∫

Q

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt

(4.21)

with CK1 from (3.17e). Choosing δ small enough, namely δ = κ0/(2CK1), from
(4.20) we obtain after a little algebra an estimate

L :=
∫

Q

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt ≤ 2Eτ

κ0ε
+
εTC2

0CK1

κ2
0

+
2
κ0ε

∫

Q

|r̄τ | dxdt

≤C1 + C1

∫

Q

∣∣∣D
(
e
(∂uτ

∂t

))2

+ G

(
∇e

(∂uτ

∂t

))2

+ A
(
e(ūτ ), ϑ̄τ

)
:e
(
∂uτ

∂t

) ∣∣∣dxdt

(4.22)

with Eτ :=
∥∥C(e(u0τ ), θ0)

∥∥
L1(Ω)

+
∥∥f̄τ

∥∥
L1(Σ)

and with a suitable constant C1

depending on maxτ>0Eτ , i.e. on ‖C(e(u0), θ0)‖L1(Ω) and ‖f‖L1(Σ), as well as
on ε, κ0, CK1 , T , and C0 from (4.14a), namely C1 = max(2E/ε+εTC2

0CK1/κ0,
2/ε)/κ0.

Further, we test (4.1a) by uk
τ−uk−1

τ and handle it as in (4.16), sum it for
k = 1, . . . , T/τ , and add this to (4.22) with a sufficiently big weight, namely
2C1, to see the dissipation ξ(e(∂uτ

∂t ),∇e(∂uτ

∂t )) on the left-hand side. Thus, after
making still the discrete by-part integration

∫ T

0
h̄τ ·∂uτ

∂t dt = hτ (T )·uτ (T ) −
hτ (τ)·u0τ − ∫ T

τ
∂hτ

∂t ·ūτ dt, cf. (4.18), we obtain

∫

Q

D

(
e
(∂uτ

∂t

))2

+ G

(
∇e

(∂uτ

∂t

))2

dxdt+ L

≤ 4C1

min(C1, 1)(2−√
τ)

(
Eη,τ +

∣∣∣
∫

Q

ḡτ ·∂uτ

∂t
dxdt+

∫

Σ

h̄τ ·∂uτ

∂t
dSdt

∣∣∣
)

+
2+4C1

min(C1, 1)(2−√
τ)

∫

Q

∣∣∣A(e(ūτ ), ϑ̄τ ):e
(∂uτ

∂t

)∣∣∣ dxdt

≤ 4C1

min(C1, 1)(2−√
τ)

(
Eη,τ +

∥∥ḡτ

∥∥
L1(I;L2(Ω;Rd))

∥∥∥
∂uτ

∂t

∥∥∥
L∞(I;L2(Ω;Rd))

+
∥∥∥
∂hτ

∂t

∥∥∥
L1(I;Lph (Γ;Rd))

∥∥ūτ

∥∥
L∞(I;Lp′

h (Γ;Rd))

+
∥∥hτ (τ)

∥∥
L∞(I;Lph (Γ;Rd))

(∥∥uτ (T )
∥∥

Lp′
h (Γ;Rd)

+
∥∥u0τ

∥∥
Lp′

h (Γ;Rd)

)

+
2+4C1

min(C1, 1)(2−√
τ)

∫

Q

∣∣∣A(e(ūτ ), ϑ̄τ ):e
(∂uτ

∂t

)∣∣∣ dxdt

≤ C2 + C2

∥∥∥A(e(ūτ ), ϑ̄τ ):e
(∂uτ

∂t

)∥∥∥
L1(Q)

(4.23)
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with Eη,τ :=
∫
Ω


2 |v0|2 +ϕ(u0τ )+ 1

2H
(∇e(u0τ )

)2+ τ
η |e(u0τ )|η + τ

η |∇e(u0τ )|η dx
and, counting the already obtained estimate (4.14a) and the assumption
‖u0τ‖W 2,η(Ω;Rd) = O(τ−1/η), with some C2 depending on C1, maxτ>0Eη,τ ,
‖g‖L1(I;L2(Ω;Rd)), ‖h‖W 1,1(I;Lph (Γ;Rd)), and on C0 from (4.14a). Here we used
that 2−√

τ ≥ 1 > 0. Furthermore, for 1 ≤ r < 2, by Hölder’s inequality, we
have∫

Q

∣∣∇ϑ̄τ

∣∣rdxdt =
∫

Q

∣∣∇ϑ̄τ

∣∣r∣∣1+ϑ̄τ

∣∣−(1+ε)r/2∣∣1+ϑ̄τ

∣∣(1+ε)r/2dxdt

≤
(∫

Q

∣∣∇ϑ̄τ

∣∣2∣∣1+ϑ̄τ

∣∣−1−εdxdt

)r/2(∫

Q

∣∣1+ϑ̄τ

∣∣(1+ε)r/(2−r)dxdt

)(2−r)/2

= Lr/2

(∫ T

0

∥∥1+ϑ̄τ (t, ·)∥∥(1+ε)r/(2−r)

L(1+ε)r/(2−r)(Ω)
dt

)(2−r)/2

. (4.24)

Then we use the Gagliardo–Nirenberg inequality to interpolate L(1+ε)r/(2−r)

(Ω) between L1(Ω) and W 1,r(Ω) equipped with the equivalent norm ‖ ·
‖W 1,r(Ω)

∼= ‖ · ‖L1(Ω) + ‖∇ · ‖Lr(Ω;Rd), i.e.
∥∥ϑ̄τ

∥∥
L

(1+ε)r
2−r (Ω)

≤ Gr,λ,ε

∥∥ϑ̄τ

∥∥1−λ

L1(Ω)

(∥∥ϑ̄τ

∥∥
L1(Ω)

+
∥∥∇ϑ̄τ

∥∥
Lr(Ω;Rd)

)λ

. (4.25)

We obtain:
∥∥1+ϑ̄τ (t, ·)∥∥

L
(1+ε)r
2−r (Ω)

≤ Gr,λ,ε

(∥∥1+ϑ̄τ (t, ·)∥∥
L1(Ω)

+
∥∥∇ϑ̄τ (t, ·)∥∥

Lr(Ω;Rd)

)λ∥∥1+ϑ̄τ (t, ·)∥∥1−λ

L1(Ω)

≤ Gr,λ,ε

(
|Ω|+C+

∥∥∇ϑ̄τ (t, ·)∥∥
Lr(Ω;Rd)

)λ(|Ω|+C0

)1−λ (4.26)

with C0 from (4.14b). The Gagliardo–Nirenberg inequality (4.25) holds pro-
vided

2 − r

(1+ε)r
≥ λ

(1
r

− 1
d

)
+ 1 − λ with 0 < λ ≤ 1. (4.27)

We raise (4.26) to the power (1+ε)r/(2−r), integrate it over [0, T ], use it in
(4.24), and choose λ := (2−r)/(1+ε). Thus we obtain
(∫ T

0

∥∥1+ϑ̄τ (t, ·)∥∥(1+ε)r/(2−r)

L(1+ε)r/(2−r)(Ω)
dt

) 2−r
2

≤
(∫ T

0

G
(1+ε)r

2−r

r,λ,ε

(|Ω|+C0

) (1−λ)(1+ε)r

2−r

(
|Ω|+C0+‖∇ϑ̄τ (t, ·)‖Lr(Ω;Rd)

) λ(1+ε)r

2−r
dt

)2−r
2

≤
(∫ T

0

G
(1+ε)r

2−r

r,λ,ε

(|Ω|+C0

) (1−λ)(1+ε)r

2−r

(
|Ω|+C0+‖∇ϑ̄τ (t, ·)‖Lr(Ω;Rd)

)r
dt

) 2−r
2

≤ C4 + C4

(∫

Q

|∇ϑ̄τ |rdxdt

) 2−r
2

(4.28)
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with C4 depending on C0, |Ω|, and Gr,λ,ε from (4.25). Merging (4.24)
with (4.28) gives ‖∇ϑ̄τ‖r

Lr(Q;Rd) ≤ Lr/2
(
C4 + C4‖∇ϑ̄τ‖r(1−r/2)

Lr(Q;Rd)

)
. Fur-

ther, using (4.22) gives ‖∇ϑ̄τ‖r
Lr(Q;Rd) ≤ (C1 + C1‖r̄τ‖L1(Ω))r/2

(
C4 +

C4‖∇ϑ̄τ‖r(1−r/2)

Lr(Q;Rd)

)
, i.e. the estimate ‖∇ϑ̄τ‖r

Lr(Q;Rd)/
(
1 + ‖∇ϑ̄τ‖r(1−r/2)

Lr(Q;Rd)

) ≤
C1C4

(
1 + ‖r̄τ‖L1(Q)

)r/2. Altogether,

C
2/r
1 C

2/r
4

(
1 + ‖r̄τ‖L1(Q)

)≥
⎛

⎝ ‖∇ϑ̄τ‖r
Lr(Q;Rd)

1 + ‖∇ϑ̄τ‖r(1−r/2)

Lr(Q;Rd)

⎞

⎠
2/r

≥ ‖∇ϑ̄τ‖r
Lr(Q;Rd) − C5.

(4.29)

The latter inequality in (4.29) holds for C5 large enough because, obviously,
the function ξ �→ (

ξr

1+ξr(1−r/2)

)2/r has the growth (r − r(1−r/2))(2/r) = r for
ξ → ∞. Substituting our choice of λ := (2−r)/(1+ε) into (4.27), one gets after
some algebra the conditions

r ≤ 2 + d− εd

1 + d
. (4.30)

Note that 0<λ<1 needed in (4.27) is automatically ensured by 1≤r<2 and
ε>0.

Let us perform another interpolation:
∥∥∥e

(∂uτ

∂t

)∥∥∥
Lq′ (Q;Rd×d)

≤
∥∥∥∇∂uτ

∂t

∥∥∥
Lq′ (Q;Rd×d)

≤ Gq,μ

∥∥∥
∂uτ

∂t

∥∥∥
1−μ

L2(Q;Rd)

(∥∥∥
∂uτ

∂t

∥∥∥
L2(Q;Rd)

+
∥∥∥∇e

(∂uτ

∂t

)∥∥∥
L2(Q;Rd×d×d)

)μ

,

(4.31)

where the last inequality is based on the Korn and the Gagliardo–Niren-
berg inequalities interpolating W 1,q′

(Ω) in between L2(Ω) and W 2,2(Ω), which
needs

1
q′ =

1
d

+ μ
(1

2
− 2
d

)
+ (1−μ)

1
2

and
1
2

≤ μ ≤ 1. (4.32)

Relying on the uniform-in-time bound of ‖∂uτ

∂t ‖L2(Ω;Rd), cf. (4.14a), we can
further estimate∫

Q

∣∣∣A(e(ūτ ), ϑ̄τ ):e
(∂uτ

∂t

)∣∣∣dxdt

≤ ∥∥A(e(ūτ ), ϑ̄τ )
∥∥

Lq(Q;Rd×d)

∥∥∥e
(∂uτ

∂t

)∥∥∥
Lq′ (Q;Rd×d)

≤ Gq,μT
1−μ

2 C1−μ
0

∥∥A(e(ūτ ), ϑ̄τ )
∥∥

Lq(Q;Rd×d)

×
(√

TC0+
∥∥∥∇e

(∂uτ

∂t

)∥∥∥
Lq′ (Q;Rd×d×d)

)μ

≤ C6 + C6

∥∥A(e(ūτ ), ϑ̄τ )
∥∥q

Lq(Q;Rd×d)
+ δ

∥∥∥∇e
(∂uτ

∂t

)∥∥∥
μq′

L2(Q;Rd×d×d)
(4.33)
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with C6 depending on μ, q, T , Gq,μ from (4.31), C0 from (4.14a), and on δ > 0
to be choosen. It leads to the choice μq′ = 2, which allows for absorbing the
last term of (4.33) on the left-hand side of (4.23) when choosing δ sufficiently
small, e.g. δ = 1/(2C2cG) with cG > 0 the positive-definitness constant of the
tensor G. Substituting μ = 2/q′ into the former condition in (4.32) gives, after
some algebra q′ = (2d+8)/(d+2) so that q = q′/(q′−1) results as

q =
2d+ 8
d+ 6

. (4.34)

By Hölder inequality using (3.17f), we can further estimate
∥∥A(e(ūτ ), ϑ̄τ )

∥∥q

Lq(Q;Rd×d)
≤ 3q−1Cq

A

∫

Q

1 + |e|2∗
+ |ϑ|s dxdt

≤ C7 + C7

∥∥e(ūτ )
∥∥2∗

L2∗ (Q;Rd×d)
+ C7

∥∥ϑ̄τ

∥∥s

Ls(Q)
;

(4.35)

with C7 depending on q, |Ω|, and CA from (3.17f). Further, we estimate the
last term (4.35) by using once more the Gagliardo–Nirenberg inequality to
interpolate Ls(Ω) in between L1(Ω) and W 1,r(Ω):

∥∥ϑ̄τ

∥∥
Ls(Ω)

≤ Ns,r,ζ

∥∥ϑ̄τ

∥∥1−ζ

L1(Ω)

(∥∥ϑ̄τ

∥∥
L1(Ω)

+
∥∥∇ϑ̄τ

∥∥
Lr(Ω;Rd)

)ζ

(4.36)

for
1
s

≥ ζ
(1
r

− 1
d

)
+ 1 − ζ, 0 ≤ ζ < 1, (4.37)

and by (4.24), (4.28), and the last estimate in (4.29), we have ‖∇ϑ̄τ‖Lr(Ω;Rd) ≤
C

2/r
4 L+ C5 so that we can estimate

C7

∥∥ϑ̄τ

∥∥s

Ls(Ω)
≤ C7N

s
s,r,ζC

(1−ζ)s
3

(
C3 +

∥∥∇ϑ̄τ

∥∥
Lr(Ω;Rd)

)ζs

≤ C8 +
1

2C2/r
4

∥∥∇ϑ̄τ

∥∥r

Lr(Ω;Rd)
≤ C5 + C8 +

L

2
(4.38)

with L from (4.22) and with C8 depending on Ns,r,ζ , C3, C4, C7, s, and ζ.
Here we needed ζs < r, i.e.

1
s
>
ζ

r
. (4.39)

The last term in (4.38) is to be absorbed in the left-hand side of (4.23). Opti-
mal ζ makes the right-hand sides of (4.37) and (4.39) mutually equal, which
gives ζ = d/(d+1). Note that always 0 < ζ < 1, as required for (4.36). Taking
into account r < (d+2)/(d+1), from (4.37) (or, equally, from (4.39)) we obtain

s <
d+ 2
d

. (4.40)

This is indeed satisfied if s < q as used in (3.17f) provided d ≤ 3, which was
also needed in the proof of Lemma 4.1. It eventually gives the estimate (4.19b)
and, from the first and the second terms in (4.23), also the estimate (4.19a).
By interpolation with (4.14b), we then obtain also (4.41a). �
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Proposition 4.4 (Further estimates II). Under the assumption of
Lemma 4.2, for some constant C independent of τ , it also holds:

∥∥∥�
∂

∂t

[
∂uτ

∂t

]i ∥∥∥
L2(I;W 2,2(Ω;Rd)∗)+Lη′ (I;W 2,η(Ω;Rd)∗)

≤ C, (4.41a)

∥∥∥�
∂

∂t

[
∂uτ

∂t

]i

− τdiv
(|e(ūτ )|η−2e(ūτ )

)

+τdiv2
(|∇e(ūτ )|η−2∇e(ūτ )

)∥∥∥
L2(I;W 2,2(Ω;Rd)∗)

≤ C, (4.41b)
∥∥∥
∂ϑτ

∂t

∥∥∥
L1(I;W 3,2(Ω)∗)

≤ C. (4.41c)

It is to explain that the “dual” norm in (4.41a) and (4.41b) of expressions
like a− div σ + div2h refers to the linear functional

z �→
∫

Q

a·z + σ:e(z) + h
...∇e(z) dxdt

+
∫

Σ

((
σ+div h

)·ν + divS(h · ν) − (divSν)
(
h:(ν⊗ν)

)) · z

−(
h:(ν⊗ν)

) · ∂z
∂ν

dSdt, (4.42)

cf. also (3.15).
Proof of Proposition 4.4. These “dual” estimates can be obtained rou-

tinely as a consequence of the previously derived ones; note that (4.41b) relies
on the growth restriction used in (3.17f) so that A(e(ūτ ), ϑ̄τ ) is bounded in
Lq(Q; R

d×d). �

Proposition 4.5 (Convergence for τ → 0). Let (3.17) hold and η used in
(4.1) be sufficiently large as specified in Lemma 4.1, and let also u0τ → u0

in W 2,2(Ω; R
d) and even ‖u0τ‖W 2,η(Ω;Rd) = o(τ−1/η). Then there is a subse-

quence such that

uτ → u strongly in W 1,2(I;W 2,2(Ω; R
d)), (4.43a)

ϑ̄τ → ϑ strongly in Ls(Q) with any s < (d+2)/d, (4.43b)

and any (u, ϑ) obtained in this way is a weak solution to the initial-boundary-
value problem (3.9)–(3.10).

Proof. Choose a weakly* converging subsequence {(uτ , ϑ̄τ )}τ>0 in the topol-
ogy of the estimates (4.14a)–(4.19a-c). We now use (and modify) some tricks
from [41, Formulas (3.61)–(3.67)]: By (4.41b), we can choose this subsequence
so that also

�
∂

∂t

[
∂uτ

∂t

]i

−τdiv
(|e(ūτ )|η−2e(ūτ )

)
+τdiv2

(|∇e(ūτ )|η−2∇e(ūτ )
) → ζ (4.44)

weakly in L2(I;W 2,2(Ω; R
d)∗) for some ζ ∈ L2(I;W 2,2(Ω; R

d)∗). For any w
smooth in space with a compact support in Q and piecewise affine in time on
the partition of [0, T ] with some time-step τ0 > 0, it holds
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〈
ζ, w

〉
= lim

τ→0

〈
�
∂

∂t

[
∂uτ

∂t

]i

− τdiv
(|e(ūτ )|η−2e(ūτ )

)

+τdiv2
(|∇e(ūτ )|η−2∇e(ūτ )

)
, w

〉

= − lim
τ→0

∫

Q

�

[
∂uτ

∂t

]i

·∂w
∂t

− τ
∣∣e(ūτ )

∣∣η−2
e(ūτ ):e(w)

+τ |∇e(ūτ )|η−2∇e(ūτ )
...∇e(w) dxdt = −

∫

Q

�
∂u

∂t
·∂w
∂t

dxdt; (4.45)

note that w simply vanishes on [0, τ ] for τ small enough. The second equal-
ity in (4.45) is due to the Green formula and the by-part-summation formula
(see (4.51) below for a full version with nonvanishing end points) while the
last equality in (4.45) is based on the convergence [∂uτ

∂t ]i → ∂u
∂t weakly in

L2(I;W 2,2(Ω; R
d)) and on the estimates

∣∣∣
∫

Q

τ |e(ūτ )|η−2e(ūτ ):e(w)dxdt
∣∣∣

≤ τ
∥∥e(ūτ )

∥∥η−1

Lη(Q;Rd×d)

∥∥e(w)
∥∥

Lη(Q;Rd×d)
= O(τ1/η) → 0, (4.46)

∣∣∣
∫

Q

τ |∇e(ūτ )|η−2∇e(ūτ )
...∇e(v)dxdt

∣∣∣

≤ τ
∥∥∇e(ūτ )

∥∥η−1

Lη(Q;Rd×d×d)

∥∥∇e(v)
∥∥

Lη(Q;Rd×d×d)
= O(τ1/η) → 0 (4.47)

based on (4.14c). Extending 〈ζ, w〉 = − ∫
Q
�∂u

∂t ·∂w
∂t dxdt obtained in (4.45) for

all w smooth with a compact support, this shows that ζ is, in the sense of
distributions, equal to �∂2u

∂t2 . In particular, we have shown that

�
∂2u

∂t2
= ü ∈ L2(I;W 2,2(Ω; R

d)∗). (4.48)

Combining (4.44) with (4.48) allows also for

�
∂uτ

∂t
(T ) = �v0 +

∫ T

0

�
∂

∂t

[
∂uτ

∂t

]i

dt

= �v0 +
∫ T

0

�
∂

∂t

[
∂uτ

∂t

]i

− τdiv
(|e(ūτ )|η−2e(ūτ )

)

+τdiv2
(|∇e(ūτ )|η−2∇e(ūτ )

)
dt

+
∫ T

0

τdiv
(|e(ūτ )|η−2e(ūτ )

) − τdiv2
(|∇e(ūτ )|η−2∇e(ūτ )

)
dt

→ �v0 +
∫ T

0

ζ dt = �v0 +
∫ T

0

�
∂2u

∂t2
dt = �

∂u

∂t
(T ) weakly in W 2,2(Ω; R

d)∗.

(4.49)

Due to the estimate (4.14a), ∂uτ

∂t (T ) is bounded also in L2(Ω; R
d) and thus we

obtain also
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∂uτ

∂t
(T ) → ∂u

∂t
(T ) weakly in L2(Ω; R

d). (4.50)

Furthermore, by the (suitably interpolated) Aubin-Lions’ lemma, combining
(4.14b), (4.19b) and (4.41c), one obtains (4.43b).

Now we test the boundary-value problem (4.1a)–(4.2a,b) by a smooth vk
τ ,

sum it for k = 1, . . . T/τ , and use the by-part summation

T/τ∑

k=1

(
uk−2uk−1+uk−2

) · zk =
(
uT/τ−uT/τ−1

) · zT/τ

−(
u0−u−1

) · v1 −
T/τ∑

k=2

(
uk−1−uk−2

)·(zk−zk−1
)

(4.51)

to obtain the identity
∫

Ω

�
∂uτ

∂t
(T )·vτ (T ) dx−

∫ T

τ

∫

Ω

�
∂uτ

∂t
(· − τ) · ∂vτ

∂t
dxdt

+
∫

Q

(
De

(∂uτ

∂t

)
+ ϕ′(e(ūτ ))

+A(e(ūτ ), ϑ̄τ ) + τ
∣∣e(ūτ )

∣∣η−2
e(ūτ )

)
:e(v̄τ ) + h̄τ

...∇e(v̄τ ) dxdt

=
∫

Ω

v0 · vτ (τ) dx+
∫

Q

ḡτ · v̄τ dxdt+
∫

Σ

h̄τ · v̄τ dSdt, (4.52)

where h̄τ = G∇e(∂uτ

∂t ) + H∇e(ūτ ) + τ |∇e(ūτ )|η−2∇e(ūτ ) and v̄τ and vτ is
respectively the piecewise constant and the piecewise affine interpolant in time
of (vk

τ )T/τ
k=0.

We know that
∂uτ

∂t
(· − τ) → ∂u

∂t
strongly in L2(Q; R

d), (4.53a)

ϕ′(e(ūτ )) → ϕ′(e(u)) strongly in L2∗′
(Q; R

d×d), (4.53b)

A(e(ūτ ), ϑ̄τ ) → A(e(u), ϑ) strongly in Lq(Q; R
d×d), (4.53c)

De
(∂uτ

∂t

)
→ De

(∂u
∂t

)
weakly in L2(Q; R

d×d), (4.53d)

G∇e
(∂uτ

∂t

)
→ G∇e

(∂u
∂t

)
weakly in L2(Q; R

d×d×d); (4.53e)

for the above strong convergences, we used Aubin-Lions’ theorem (possibly
with an interpolation). In particular, we employed the growth reserve due to
strict inequalities in (3.17b) and (3.17f). Eventually, using again (4.46)–(4.47),
we can see that the nonlinear regularizing η-terms disappear in the limit for
τ → 0.

It is now essential that we can legally substitute v = ∂u
∂t into (3.16a). For

this, it is important that �∂2u
∂t2 in duality with ∂u

∂t , and also that A(e(u), ϑ) ∈
Lq(Q; R

d×d) as well as ϕ′(e(u)) ∈ L∞(I;L2∗′
(Ω; R

d×d)) are in duality with
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e(∂u
∂t ) ∈ Lq′

(Q; R
d×d)∩L2(I;L2∗

(Ω; R
d×d)). By this substitution, after by-part

integration in time, we obtain the mechanical-energy equality

∫

Ω

�

2

∣∣∣
∂u

∂t
(T )

∣∣∣
2

+ ϕ
(
e(u(T ))

)
+

1
2

H
(∇e(u(T ))

)2dx

+
∫

Q

D

(
e
(∂u
∂t

))2

+ G

(
∇e

(∂u
∂t

))2

dxdt

=
∫

Ω

�

2
|v0|2+ ϕ(e(u0)) +

1
2

H
(∇e(u0)

)2dx

+
∫

Q

g · ∂u
∂t

− A(e(u), ϑ):e
(∂u
∂t

)
dxdt+

∫

Σ

h · ∂u
∂t

dxdS (4.54)

with ϕ(e) = ψ(e, 0) from (3.7).
For the limit passage in the heat equation, we need to prove the strong

L2-convergence of e(∂uτ

∂t ) and of ∇e(∂uτ

∂t ). We use

∫

Q

D

(∂e(u)
∂t

)2

+ G

(
∇e

(∂u
∂t

))2

dxdt

≤ lim inf
τ→0

∫

Q

D

(∂e(uτ )
∂t

)2

+ G

(
∇e

(∂uτ

∂t

))2

dxdt

≤ lim sup
τ→0

∫

Q

(
1−

√
τ

2

)
D

(∂e(uτ )
∂t

)2

+ G

(
∇e

(∂uτ

∂t

))2

dxdt

≤ lim sup
τ→0

∫

Ω

�

2
|v0|2 + ϕ(e(u0τ )) +

1
2

H
(∇e(u0τ )

)2 − �

2

∣∣∣
∂uτ

∂t
(T )

∣∣∣
2

−ϕ(e(uτ (T ))
) − 1

2
H
(∇e(uτ (T ))

)2 +
τ

η

∣∣e(u0τ )
∣∣η +

τ

η

∣∣∇e(u0τ )
∣∣ηdx

+
∫

Q

ḡτ · ∂uτ

∂t
−A(e(ūτ ), ϑ̄τ ):e

(∂uτ

∂t

)
dxdt+

∫

Σ

h̄τ · ∂uτ

∂t
dxdS

≤
∫

Ω

�

2
|v0|2 + ϕ(e(u0)) +

1
2

H
(∇e(u0)

)2

−�

2

∣∣∣
∂u

∂t
(T )

∣∣∣
2

− ϕ
(
e(u(T ))

) − 1
2

H
(∇e(uτ (T ))

)2 dx

+
∫

Q

g · ∂u
∂t

− A(e(u), ϑ):e
(∂u
∂t

)
dxdt+

∫

Σ

h · ∂u
∂t

dxdS

=
∫

Q

D

(∂e(u)
∂t

)2

+ G

(
∇e

(∂uτ

∂t

))2

dxdt. (4.55)

Note that the third inequality is due to (4.16) while the last equality is
exactly (4.54). Thus limτ→0

∫
Q

D(e(∂uτ

∂t ))2 dxdt =
∫

Q
D(e(∂u

∂t ))2 dxdt and also
limτ→0

∫
Q

G(∇e(∂uτ

∂t ))2 dxdt =
∫

Q
G(∇e(∂u

∂t ))2 dxdt. By (3.17g), the qua-
dratic forms D(·)2 and G(·)2 are coercive and thus we obtain both e(∂uτ

∂t ) →
e(∂u

∂t ) strongly in L2(Q; R
d×d) and also ∇e(∂uτ

∂t ) → ∇e(∂u
∂t ) strongly in
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L2(Q; R
d×d×d). Then the limit passage in the semi-linear heat equation is

immediate. �

Note that the information (3.18a)–(3.18b) does not exactly follow from
the estimates (4.41), partly also because W 1,1 is not weakly* compact. Any-
how (3.18a) has been obtained in (4.48), while the fact W 1,1(I;W 3,2(Ω)∗) in
(3.18b) can be recovered from the limit heat equation itself.

5. Final discussion

Finally we outline some generalizations or modifications and some little more
specific examples.

Remark 5.1 (Higher-dimensional case). In fact, Theorem 3.2 would hold for
d ≥ 4 provided the growth restriction (3.17f) would be strengthened by con-
sidering (4.40).

Remark 5.2 (Weakening of uniform positive-definiteness (3.17c) of K0). The
condition (3.17c) might sometimes be found restrictive. Hencefore, it is worth
realizing that

K0(e, ϑ)ξ · ξ ≥ κ0
|ξ|2

(1+ϑ)a
(5.1)

with some a > 0 is possible: the exponent ε in the formulas (4.20)–(4.28)
replaces by ε+a and the integrability of ∇ϑ ∈ Lr(Q; R

d) obtained in (4.30) is
then worse, namely r ≤ 2+d−εd−ad

1+d . It gives a restriction a < 1/d not to be in
conflict with r ≥ 1. Of course, then also s calculated from (4.39) is modified.

Remark 5.3 (Weakening the growth restriction (3.17f) of A). The restriction
s < q in (3.17f), i.e. the sub-linear growth of A(e, ·), was needed only in the
estimate (4.10) to guarantee coercivity of the nonlinear operator arising in
the time-discretisation. A finer treatment relying only on a weaker condition
(4.40) might be executed: first approximate A so that the growth (3.17f) is
satisfied, prove existence of a solution as above, then pass to the limit with
this approximation using all the above a-priori estimates, in particular also
the interpolation relying only on the weaker restriction (4.40).

Example 5.4 (Conventional model). One can re-consider the partly linear an-
satz (2.12), yielding the conventional model from Remark 2.1, and check the
assumptions for

K(e, θ) =
I∑

i=1

κi(e)θai and φ2(θ) =
{
c0θ

c/(c2−c) if c �= 1,
c0θln(θ−1) if c = 1, (5.2)

considered for c0 > 0 and some exponent c > 0. Now c(e, θ) = c(θ) =
−θ[φ2]′′θθ(θ) = c0θ

c−1 so that C(θ) = c0θ
c/c, and thus we would have sim-

ply Θ(e, ϑ) = k0ϑ
1/c with k0 = (c/c0)1/c. In particular, we can observe that
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Θ′
e = 0, K1 = 0, and, by using Θ′

ϑ = k0ϑ
(1−c)/c/c,

K0(e, ϑ) =
k0

c
K(e, k0ϑ

1/c)ϑ(1−c)/c =
I∑

i=1

kai+1
0

c
κi(e)ϑ(ai+1−c)/c, (5.3)

A(e, ϑ) = φ′
1(e)Θ(ϑ) = k0φ

′
1(e)ϑ1/c (5.4)

with φ1 from (2.12). Let us verify the assumptions (3.17) for the physically rel-
evant dimension d = 3: The growth condition (3.17d) needs 0 ≤ (ai+1−c)/c <
1/3, i.e. c ≤ ai+1 < 4

3c while the uniform positive-definiteness (3.17c) of K0

needs ai+1−c = 0 for at least some i, say, for i = 1. In fact, this restriction
might be avoided when applying Remark 5.2. Of course, (3.17e) is now trivial
since K1 = 0. Counting q > 14/9, s < 5/3, and 2∗ = 6, the growth condition
(3.17f), i.e. |A(e, ϑ)| = |k0φ

′
1(e)ϑ1/c| ≤ (1 + |e|27/7−ε + ϑ1−ε), which will work

for c > 1. If Remark 5.3 would be adopted, then even c > 14/15 could be
allowed. Altogether, we can see quite a big freedom in this case. In fact, in [42,
Remark 6] this bound was improved for c > 15/18 by allowing higher-order
terms similar to ours. In general, a comparison with Remark 2.1 reveals that
the data qualification here was weakened but this is obviously a not surprising
effect of considering the higher-order terms.

Example 5.5 (Nonlinear coupling). In a general coupling, it is not entirely easy
to reveal what the restrictions (3.17) really imposes on the original data ψ
and K. Anyhow, one can relatively easily check a perturbation of the previous
Example 5.4 by augmenting (2.12) by adding a general smooth compactly sup-
ported coupling term. In particular, this term vanishes for θ ≥ θmax with some
θmax > 0, which causes the heat capacity c(e, θ) to be independent of e at least
for θ ≥ θmax. Due to the formula (3.2), this perturbation influences C also for
θ ≥ θmax but we can at least rely on the splitting C(e, θ) = C0(e) + C1(θ) with
C0(e) = C(e, θmax) for θ ≥ θmax. Then Θ(e, ϑ) = C−1

1 (ϑ−C0(e)). Now K1 does
not vanish. Checking at least the asymptotics for large θ, one can see that noth-
ing is changed for K0 and also the additional term which occurs in A defined
in (3.4d), i.e. C′

e(e,Θ(e, ϑ)), does not change the asymptotics because C′
e is

bounded for high ϑ. Since Θ(e, ϑ) = C−1
1 (ϑ−C0(e)), the asymptotics of Θ′

e(e, ·)
is the same as Θ′

ϑ(e, ·), and thus the asymptotics of K1 defined by (3.4c), is
again as (5.3) for large ϑ, and (3.17e) gives the restriction (ai+1−c)/c < 1/2
which, however, has anyhow to be satisfied due to (3.17d) if d ≥ 2.

Remark 5.6 (Macroscopical response). In macroscopical bodies, the highest-
gradient G- and H-terms are very small and represent rather a singular pertur-
bation only, without influencing essentially the macroscopical response. This
phenomenon is well known from variational calculus. In evolution problems,
it is more difficult to prove it rigorously. In the isothermal case, the vanishing
influence of the viscous hyperstress if G → 0 was shown in [39] if d = 1 and,
under higher-order hyperstresses, if d ≥ 2 too. The anisothermal case does not
seem study from this viewpoint yet, although recent regularity results from
[38] indicates the same effect at least for the heat capacity c growing line-
arly. Anyhow, here it is reflected by the fact that, under the external loading
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qualified as (3.17)g,i, some a-priori estimates survive even if G ↘ 0 and H ↘ 0.
After inspecting the above proofs, one can see that it concerns only the first
part of the estimate (4.14a) and the estimate (4.14b) and, if restricting the
growth of A so that the A-term in (4.23) can be interpolated with the help
of the D-term instead of the G-term in the left-hand side of (4.23), also the
weakened estimate (4.19a), namely

∥∥u
∥∥

W 1,∞(I;L2(Ω;Rd)) ∩ W 1,2(I;W 1,2(Ω;Rd))
≤ C, (5.5a)

∥∥ϑ
∥∥

L∞(I;L1(Ω))
≤ C. (5.5b)

All other estimates rely essentially on G > 0 and H > 0. Yet, if ψ′′′
eθθ = 0 as

discussed in Sect. 1 and in Example 5.4, then K1 = 0 and C1 in (4.22) would
be independent of G and H, and then also (4.19b,c) would hold uniformly.

Remark 5.7 (No inertia allows for G = 0). If � = 0 (=the so-called quasistatic
case), we can execute the modified interpolation as outlined in Remark 5.6
and consider G = 0. This scenario is a physically natural case especially if,
instead of the strain e, we would consider about other physical variable as,
e.g., magnetization, dielectric polarization, or various phase fields.

Remark 5.8 (Finite strains). A general nonlinear ansatz (2.1) allows for con-
sidering the full gradient ∇u in place of e(u) in ψ(·, θ) and thus a modification
to frame-indifferent free energies at finite strains. This requires to admit that
ψ(·, θ) and thus also ϕ = ψ(·, 0) are nonconvex. Also the corresponding cap-
illarity-like term H∇2u can be made frame indifferent. The dissipation rate
(2.2) can be interpreted as locally-in-time frame-indifferent. The mathemat-
ical analysis is then basically unchanged. Yet, it should be emphasized that
realistic large-strain models would require still a non-polynomial growth of
ψ(·, θ) to capture the phenomenon of local nonpenetration, i.e. the blow-up
of the free energy when det(I+∇u)↘ 0. Moreover, it is well recognized that
a fully frame-indifferent dissipation rate would have to bear a very nonlinear
form [1,15] not allowing for a (simple) mathematical analysis.

Remark 5.9 (Nonlocal hyperstress). To avoid still higher gradients and more
complicated boundary conditions, one may consider rather nonlocal hyper-
stress. This leads to a modification of the free energy (2.1) to

ψ̂(e, θ,∇e) := ψ(e, θ) + H(∇e) where
[
H(∇e)](x) =

1
4

∫

Ω

H(x, x̃)
(∇e(x)−∇e(x̃)

)2 dx̃ with H(x, x̃) =
H

|x−x̃|d+2ρ

(5.6)

with some 0 < ρ < 1. Note that this special choice of the kernel H yields
E �→ (

∫
Ω

[H(E)](x) dx)1/2 = (
∫
Ω×Ω

H(E(x)−E(x̃))2

4|x−x̃|d+2ρ dx̃dx)1/2 the standard semi-
norm in the Sobolev–Slobodetskĭı space W ρ,2(Ω; R

d×d×d). The hyperstress h
would now take the form

h = h(e, ė,∇e,∇ė, θ) := ψ̂′
∇e(e, θ,∇e) +

1
2
ξ′
∇ė(ė,∇ė) = H′∇e+ G∇ė, (5.7)
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where the ansatz (2.1)–(2.2) has been taken into account. Assuming H sym-
metric, the term H′∇e in (5.7) means

[
H′∇e](x) = H

∫

Ω

∇e(x)−∇e(x̃)
|x− x̃|d+2ρ

dx̃. (5.8)

The somewhat restrictive assumptions (3.17c-e) on K0, K1, and A can then
be weakened as follows:

∃CK0 , CK1 ∈ R, ε > 0 ∀ (e, ϑ) ∈ R
d×d
sym×R :

∣∣K0(e, ϑ)
∣∣ ≤ CK0

(
1+|e|p∗/(d+2)−ε+|ϑ|1/d−ε

)
, (5.9a)

∣∣K1(e, ϑ)
∣∣ ≤ CK1

√
1+|ϑ|(1+|e|p∗)(p−2)/(2p)

, p =
2d
d−2ρ

, (5.9b)

∃CA < ∞, for q > (2d+8)/(d+6), s < q :

∀ (e, ϑ) ∈ R
d×d
sym×R :

∣∣A(e, ϑ)
∣∣ ≤ CA

(
1+|e|p∗/q+|ϑ|s/q

)
, (5.9c)

or possibly only s < (d+2)/d in (5.9c) if the two-stage limit passage devised in
Remark 5.3 would be implemented. The analysis can be performed in the same
lines provided we invent also the corresponding nonlocal term in the viscous hy-
perstress. The estimates (4.14a), (4.19a) and (4.41), and also (4.43a) and (4.48)
use the Sobolev–Slobodetskĭı space W 2+ρ,2(Ω; R

d) instead of W 2,2(Ω; R
d).

One can modify the estimate (4.8) by using Hölder’s inequality for 4
factors with exponents 4, 2pη

p∗(p−2) , η, and 2 and by using (5.9b)
∣∣∣∣
∫

Ω

K1(e(uk
τ ), ϑk

τ )∇e(uk
τ ) · ∇ϑk

τ dx
∣∣∣∣

≤
∫

Ω

CK1

√
1+|ϑk

τ |(1+|ek
τ |p∗) p−2

2p
∣∣∇e(uk

τ )
∣∣ ∣∣∇ϑk

τ

∣∣dx

≤
∫

Ω

CK1

(
1+

√
|ϑk

τ |
)(

1+|ek
τ |p∗) p−2

2p
∣∣∇e(uk

τ )
∣∣ ∣∣∇ϑk

τ

∣∣ dx

≤ Cδ,η + δ
∥∥ϑk

τ

∥∥2

L2(Ω)
+ δ‖e(uk

τ )
∥∥η

Lη(Ω;Rd×d)

+δ
∥∥∇e(uk

τ )
∥∥η

Lη(Ω;Rd×d×d)
+ δ

∥∥∇ϑk
τ

∥∥2

L2(Ω;Rd)
(5.10)

with δ > 0 arbitrarily small and some Cδ,η depending on η and δ. Again η
should be big enough, i.e. here η > 4 + 2p∗(p−2)/p which guarantees that the
sum of the inverse of the mentioned 4 exponents in (5.10) is less than 1.

Further, one can modify (4.21) as
∫

Q

K1(e(ūτ ), ϑ̄τ )∇e(ūτ ) · ∇χ(ϑ̄τ ) dxdt=ε

∫

Q

∇e(ūτ )
...
K1(e(ūτ ), ϑ̄τ )⊗∇ϑ̄τ

(1+ϑ̄τ )1+ε
dxdt

≤ ε

∫

Q

Cδ,p|∇e(ūτ )|p + Cδ,p
|K1(e(ūτ ), ϑ̄τ )|2p/(p−2)

(1+ϑ̄τ )p/(p−2)
+ δ

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt

≤ εTCp

Cδ,p
+

∫

Q

Cδ,pCK1

(
1+|e(ūτ )|p∗)

dxdt+ εδ

∫

Q

|∇ϑ̄τ |2
(1+ϑ̄τ )1+ε

dxdt (5.11)
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with CK1 from (5.9b), using also the embedding

W 2+ρ,2(Ω) ⊂ W 2,p(Ω) ⊂ W 1,p∗
(Ω) provided p ≥ 2d

d−2ρ
, (5.12)

which is just where the choice of p in (5.9b) came from.
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Doleǰskova 5
182 00 Praha 8
Czech Republic
e-mail: tomas.roubicek@mff.cuni.cz

Received: 20 February 2012.

Accepted: 24 October 2012.


	Nonlinearly coupled thermo-visco-elasticity
	Abstract
	1. Introduction
	2. Problem formulation and underlying thermodynamics
	3. Enthalpy-like transformation and weak solution
	4. Analysis by time discretisation
	5. Final discussion
	Acknowledgments
	References


