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Nonlinear Differential Equations
and Applications NoDEA

On the supercritical KdV equation
with time-oscillating nonlinearity

M. Panthee and M. Scialom

Abstract. For the initial value problem (IVP) associated to the generalized
Korteweg–de Vries (gKdV) equation with supercritical nonlinearity,

ut + ∂3
xu + ∂x(uk+1) = 0, k ≥ 5,

numerical evidence [3] shows that, there are initial data φ ∈ H1(R) such
that the corresponding solution may blow-up in finite time. Also, with
the evidence from numerical simulation [1,18], it has been claimed that
a periodic time dependent coefficient in the nonlinearity would disturb
the blow-up solution, either accelerating or delaying it. In this work, we
investigate the IVP associated to the gKdV equation

ut + ∂3
xu + g(ωt)∂x(uk+1) = 0,

where g is a periodic function and k ≥ 5 is an integer. We prove that, for
given initial data φ ∈ H1(R), as |ω| → ∞, the solution uω converges to
the solution U of the initial value problem associated to

Ut + ∂3
xU + m(g)∂x(Uk+1) = 0,

with the same initial data, where m(g) is the average of the periodic func-
tion g. Moreover, if the solution U is global and satisfies ‖U‖L5

xL10
t

< ∞,

then we prove that the solution uω is also global provided |ω| is sufficiently
large.
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1. Introduction

Motivated from an earlier work in [5] for the critical KdV equation, we consider
the initial value problem (IVP)

{
ut + ∂3

xu + g(ωt)∂x(uk+1) = 0,
u(x, t0) = φ(x), (1.1)

where x, t, t0, ω ∈ R and u = u(x, t) is a real valued function, k ≥ 5 is an
integer and g ∈ C(R, R) is a periodic function with period L > 0. To make the
analysis simple, we translate the initial time t0 to 0 and consider the following
IVP {

ut + ∂3
xu + g(ω(t + t0))∂x(uk+1) = 0,

u(x, 0) = φ(x). (1.2)

Before analyzing the IVP (1.1) with time oscillating nonlinearity, we dis-
cuss some aspects of the supercritical Korteweg–de Vries (KdV) equation,

{
ut + ∂3

xu + ∂x(uk+1) = 0, k ≥ 5,
u(x, 0) = φ(x), x, t ∈ R.

(1.3)

For k = 4 the IVP (1.3) is called critical in the literature for three dif-
ferent reasons, see [4,14] and references therein. As described in [14], the first
reason is that, for k = 1, 2, 3 the solution exists globally for all data in H1(R),
while for k = 4 the global existence holds only for small data (i.e., data with
small H1(R)-norm). Second reason is that the index k = 4 is critical for the
orbital stability of the solitary wave solutions, see [4]. More precisely, using the
arguments from Grillakis et al. [9], Bona et al. [4] prove that the solitary wave
solutions of the gKdV equation (1.3) are H1-stable if and only if k < 4 and
instable if k > 4. However, this argument does not apply for the case k = 4, see
also [19]. Finally, the third reason is that the case k = 4 is the only power for
which a solitary wave solution cannot have arbitrarily small L2-norm, see [14].
In the light of this observation, the equation (1.3) is known as the supercritical
KdV equation in the literature.

Well-posedness issues for the IVP (1.3) have been extensively studied in
the literature, see for example [10,14,15] and references therein. A detailed
account of the recent well-posedness results can be found in Kenig et al. [14],
where they proved that, there exists δk > 0 such that the IVP (1.3) is globally
well-posed for any data φ ∈ Hs(R), s ≥ sk := 1

2 − k
2 satisfying ‖Dsk

x φ‖L2
x

< δk.
They were also able to relax the smallness condition on the given data to
obtain local well-posedness result, but paying price that the existence time
now depends on the shape of the data φ as well, and not just on its size. These
are the best well-posedness results in the sense that s = sk is the critical expo-
nent given by the scaling argument. However, for data in Hs(R), s > sk, they
were able to remove the size and shape restriction and got local-well posed-
ness for arbitrary data with life span T of the solution depending on ‖φ‖Hs(R).
Quite recently, Farah et al. [8] considered the IVP (1.3) to address the global
well-posedness for the data with low Sobolev regularity. In this context, they
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proved the following local well-posedness result in the function space slightly
different from the one used in [14].

Theorem 1.1. [8] Let k > 4 and s > sk := 1
2 − k

2 . Then for any φ ∈ Hs(R)
there exist T = T (‖φ‖Hs(R)) > 0 (with T (s, ρ) → ∞ as ρ → 0) and a unique
strong solution u to the IVP (1.3) satisfying:

u ∈ C([0, T ];Hs(R)), (1.4)
‖∂xu‖L∞

x L2
T

+ ‖Ds
x∂xu‖L∞

x L2
T

< ∞, (1.5)

‖u‖L5
xL10

T
+ ‖Ds

xu‖L5
xL10

T
< ∞, (1.6)

‖Dγk
t Dαk

x Dβk
t u‖L

pk
x L

qk
T

< ∞, (1.7)

where

αk =
1
10

− 25k, βk =
3
10

− 6
5k

, γk = γk(s) =
s − sk

3
(1.8)

1
pk

=
2
5k

+
1
10

,
1
qk

=
3
10

− 4
5k

. (1.9)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in
Hs(R) such that the map φ̃ �→ ũ from V into the class defined by (1.4) to (1.7)
with T ′ in place of T is Lipschitz.

In what follows, we will modify the statement of this result to suit in our
context for given data in H1(R) (see Theorem 1.2 below).

We recall that, the L2
x(R) norm and energy are conserved by the flow of

(1.3). More precisely, ∫
R

|u(x, t)|2dx =
∫

R

|φ(x)|2dx, (1.10)

and

E(u(·, t)) :=
1
2

∫
R

{(ux(x, t))2 − ckuk+2(x, t)}dx = E(φ), (1.11)

are time independent quantities.
The conserved quantities (1.10) and (1.11) yield an a priori estimate

for ‖∂xu(t)‖L2(R) if the initial data φ is sufficiently small in H1(R). For a
detailed work-out of this fact we refer readers to [8]. This a priori estimate
allows one to iterate the local solution to get the global one for small data in
H1(R). Recently, a numerical study carried out by Bona et al. [3] (see also
[2,4]) reveled the existence of H1-data for which the corresponding solution to
the supercritical KdV equation may blow-up in finite time. This is the point
that motivated us to carry on this work in the light of the recent work of
Abdullaev et al. [1] and Konotop and Pacciani [18]. In the case of the critical
KdV equation (k = 4), there is an extensive series of works carried out by
Martel and Merle [19–21] about the finite time blow-up solutions and their
stability/instability analysis. For the most resent work in this series, see [22].
As far as we know, for the supercritical case such analytical study does not
exist.
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The authors in [1,18] investigate the effect of a time oscillating coeffi-
cient in the nonlinearity of the Bose–Einstein condensates. An investigation of
solutions which are global for large frequencies is carried out in [1], while in
[18], a study of solutions which blow-up in finite time is done. Their results
are numerical. Roughly speaking, they claim that the periodic time depen-
dent coefficient in the nonlinearity would disturb the blow-up solution, either
by accelerating or delaying it. Recently, Cazenave and Scialom [6] considered
the nonlinear Schrödinger (NLS) equation and got an analytical insight to
understand the problem by showing that the solution really depends on the
frequency of the oscillating term. They proved that the solution u to the IVP
associated to the NLS equation

iut + Δu + θ(ωt)|u|αu = 0, x ∈ R
N , (1.12)

where 0 < α < 4
(N−2)+ is an H1 sub-critical exponent and θ is a periodic

function, with initial data φ ∈ H1(RN ) converges as |ω| → ∞ to the solution
U of the limiting equation

iUt + ΔU + I(θ)|U |αU = 0, x ∈ R
N , (1.13)

with the same initial data, where I(θ) is the average of θ. Moreover, they
also showed that, if the limiting solution U is global and has a certain decay
property as t → ∞, then u is also global if |ω| is sufficiently large. A similar
result has been proved for the critical KdV equation in our earlier work [5]. In
this work, we are interested in addressing the supercritical KdV equation in
the same spirit. The numerical evidences for the existence of blow-up solution
to (1.3) in H1(R) due to Bona et al. [3] (see also [2,4]) and the discussion
made above strengthen our motivation of studying (1.1) with time oscillating
nonlinearity.

As discussed above, our interest here is to investigate the behavior of the
solution for given data in H1(R) to the IVP (1.1) as |ω| → ∞. The natural
limiting candidate to think of is the solution to the following IVP{

Ut + ∂3
xU + m(g)∂x(Uk+1) = 0, k ≥ 5,

U(x, 0) = φ(x), x, t ∈ R,
(1.14)

where m(g) := 1
L

∫ L

0
g(t)dt is the mean value of g and is a real number. To this

end, we need an appropriate well-posedness result for the supercritical KdV
equation in H1(R). We recall the local well-posedness result from [8] for arbi-
trary data in Hs(R), s > sk, stated in Theorem 1.1 (See also [14]). The function
space used in Theorem 1.1 has an additional norm ‖Dγk

t Dαk
x Dβk

t u‖L
pk
x L

qk
T

that
involves time derivatives of the solution. The presence of this norm creates an
extra difficulty to handle the time-oscillating nonlinearity. Therefore, to deal
with our case, we need to avoid the presence of the norm that involves time
derivatives. Also, it is very important to have an explicit expression that pro-
vides the local existence time of the solution. In the literature, we did not
find an explicitly written proof of the H1(R) well-posedness for the IVP (1.3)
that fulfills our requirement. Therefore, we will provide a new proof for the
well-posedness of the IVP (1.3) in H1(R). Our proof allows us to extend the
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well-posedness result to the IVP (1.2) and as a consequence to have an estimate
of the local existence time.

Other than the recent works [5,6], there are very less works in the litera-
ture that address the well-posedness issues for the equations of the KdV and
NLS family with time dependent nonlinearity (see [7,23,24]). The authors in [7]
deal with the NLS equation in R

2 with nonlinearity of the form cos2(Ωt)|u|p−1u
in the critical and supercritical cases. The author in [23] considered the tran-
sitional KdV equation with nonlinearity of the form f(t)u∂xu, where f is a
continuous function such that f ′ ∈ L1

loc(R), and proved the global well-posed-
ness in Hs(R), s ≥ 1. The transitional KdV arises in the study of long solitary
waves propagating on the thermocline separating two layers of fluids of almost
equal densities in which the effect of the change in the depth of the bottom
layer, which the wave feels as it approaches the shore, results in the coefficient
of the nonlinear term, for details see [17]. In [24], transitional Benjamin-Ono
equation with time dependent coefficient in the nonlinearity has been consid-
ered and the main result is the global existence of the solution for data in
Hs(R), s ≥ 3

2 .
Before stating the main results of this work, we define notations that will

be used throughout this work.
Notation: We use f̂ to denote the Fourier transform of f and is defined

as,

f̂(ξ) =
1

(2π)1/2

∫
R

e−ixξf(x) dx.

The L2-based Sobolev space of order s will be denoted by Hs with norm

‖f‖Hs(R) =
(∫

R

(1 + ξ2)s|f̂(ξ)|2 dξ

)1/2

.

The Riesz potential of order −s is denoted by Ds
x = (−∂2

x)s/2. For f :
R × [0, T ] → R we define the mixed Lp

xLq
T -norm by

‖f‖Lp
xLq

T
=

⎛
⎝∫

R

(∫ T

0

|f(x, t)|q dt

)p/q

dx

⎞
⎠

1/p

,

with usual modifications when p = ∞. We replace T by t if [0, T ] is the whole
real line R. We use the notation f ∈ Hα+ if f ∈ Hα+ε for ε > 0.

We define two more spaces XT and YT with norms

‖f‖XT
:= ‖f‖L∞

T H1 + ‖∂xf‖L∞
x L2

T
+ ‖∂2

xf‖L∞
x L2

T

+‖f‖L5
xL10

T
+ ‖∂xf‖L5

xL10
T

+ ‖∂xf‖
L20

x L
5/2
T

+ ‖f‖L4
xL∞

T
, (1.15)

and

‖f‖YT
:= ‖∂xf‖L2

xL2
T

+ ‖f‖L2
xL2

T
, (1.16)

respectively. We replace XT by Xt or X(T,∞), if the time integral is taken in
the interval (0,∞) or (T,∞) respectively, and similarly for YT .
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We use the letter C to denote various constants whose exact values are
immaterial and which may vary from one line to the next.

First, let us state the H1-local well-posedness result for the IVP (1.3)
in a function space that does not use norms involving time derivatives of the
solution.

Theorem 1.2. Suppose φ ∈ H1(R). Then there exist T = T (‖φ‖H1(R)) > 0 and
a unique solution u to the IVP (1.3) satisfying

u ∈ C([0, T ];H1(R)), (1.17)
‖∂xu‖L∞

x L2
T

+ ‖∂2
xu‖L∞

x L2
T

< ∞, (1.18)

‖u‖L5
xL10

T
+ ‖∂xu‖L5

xL10
T

+ ‖∂xu‖
L20

x L
5/2
T

< ∞, (1.19)

‖u‖L4
xL∞

T
< ∞. (1.20)

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in
H1(R) such that the map φ̃ �→ ũ from V into the class defined by (1.17) to
(1.20) with T ′ in place of T is Lipschitz.

Using Duhamel’s principle, we prove Theorem 1.2 by considering the
integral equation associated to the IVP (1.3),

u(t) = S(t)φ −
∫ t

0

S(t − t′)∂x(uk+1)(t′) dt′, (1.21)

where S(t) is the unitary group generated by the operator ∂3
x that describes

the solution to the linear problem. Our interest is to solve (1.21) using the
contraction mapping principle in an appropriate metric space.

Remark 1.3. Since the average m(g) of g is a constant, the proof of Theorem
1.2 can be adapted line by line to obtain a similar well-posedness result for the
IVP (1.14). The only difference in this case is that, to complete the contraction
argument we need to choose T > 0 in such a way that C|m(g)|T 1/2‖φ‖k

H1(R) <
1
2 . So the existence time T depends on |m(g)| and ‖φ‖H1(R). We also have the
following bound

‖U‖XT
≤ C‖φ‖H1(R), ∀ t ∈ [0, T ]. (1.22)

Regarding the well-posedness results for the IVP (1.2), we have the fol-
lowing theorem.

Theorem 1.4. Suppose φ ∈ H1(R). Then there exist T =T (‖φ‖H1(R), ‖g‖L∞) >

0 and a unique solution uω,t0 ∈ C([0, T ];H1(R)) to the IVP (1.2) satisfying
(1.18)–(1.20).

Moreover, for any T ′ ∈ (0, T ), there exists a neighborhood V of φ in
H1(R) such that the map φ̃ �→ ũω,t0 from V into the class defined by (1.17) to
(1.20) with T ′ in place of T is Lipschitz.

Now, we state the main results of this work.

Theorem 1.5. Fix φ ∈ H1(R). For given ω, t0 ∈ R, let uω,t0 be the maximal
solution of the IVP (1.2) and U be the solution of the limiting IVP (1.14)
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defined on the maximal time of existence [0, Smax). Then, for given any 0 <
T < Smax, the solution uω,t0 exists on [0, T ] for all t0 ∈ R and |ω| large. More-
over, ‖uω,t0 − U‖XT

→ 0, as |ω| → ∞, uniformly in t0 ∈ R. In particular, the
convergence holds in C([0, T ];H1(R)) for all T ∈ (0, Smax).

Theorem 1.6. Let φ ∈ H1(R) and uω,t0 be the maximal solution of the
IVP (1.1). Suppose U be the maximal solution of the IVP (1.14) defined on
[0, Smax). If Smax = ∞ and

‖U‖L5
xL10

t
< ∞, (1.23)

then it follows that uω,t0 is global for all t0 ∈ R if |w| is sufficiently large.
Moreover,

‖uω,t0 − U‖Xt
→ 0, when |w| → ∞, (1.24)

uniformly in t0. In particular, convergence holds in L∞((0,∞);H1(R)).

In view of the numerical prediction in [3] of the existence of blow-up
solution for the supercritical KdV equation in H1(R), the Theorem 1.6 is very
interesting in the sense that when m(g) ≤ 0 and k is even the solution U to
the IVP (1.14) will be global for all H1-data (see [8]) and the solution uω,t0 to
the nonlinear problem (1.2) will be global too, for |ω| large enough.

Before leaving this section, we discuss the example constructed in [6] in
the context of the NLS equation with time oscillating nonlinearity. The authors
in [6] showed that for small frequency |ω|, the solution uω,t0 blows-up in finite
time or is global depending on t0, while for the large frequency |ω|, the solu-
tion uω,t0 is global for all t0 ∈ R. The same example can be utilized with small
modification in the context of the supercritical KdV equation. We present it
here for the convenience of the readers.

Example 1.7. Let L > 1, 0 < ε < L−1
2 and consider a periodic function g

defined by

m(g) = 0, and g(s) =
{

1, |s| ≤ ε,
0, 1 ≤ s ≤ 1 + ε,

(1.25)

with period L.
Fix φ ∈ H1(R) and assume that the solution v of the IVP{

vt + vxxx + vk+1∂xv = 0, k ≥ 5,
v(x, 0) = φ(x), (1.26)

blows-up in finite time, say T ∗. In the light of the numerical evidences
presented in [2,3] (see also [4]) we can suppose that such a solution v(x, t) of
(1.26) with t ∈ [0, T ∗), exists.

From Theorem 1.5, for this particular φ and the periodic function g, we
have that the solution uω,t0 to the IVP (1.2) converges, as |ω| → ∞, to the
solution U of the linear KdV equation with same initial data φ. So, in view of
Theorem 1.6, uω,t0 is global as |ω| → ∞ for all t0 ∈ R.

Now we move to analyze the behavior of the solution for |ω| small. Note
that g(ωs) = 1 when |ωs| ≤ ε. Therefore, if we consider |ω| < ε

T ∗ , then we
see that the solution v to the IVP (1.26) satisfies (1.2) for t0 = 0 on [0, T ∗).
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By uniqueness, uω,0 = v. Hence the solution uω,0 of the IVP (1.2) blows-up in
finite time, provided |ω| < ε

T ∗ .
Let ε = ε(A) be as in Corollary 3.5 with A = ‖g‖L∞

t
. From the linear

estimate (2.6) we have that S(·)φ ∈ L5
xL10

t , so there exists T > 0 such that

‖S(·)[S(T )φ]‖L5
xL10

t
= ‖S(·)φ‖L5

xL10
(T,∞)

≤ ε. (1.27)

For ω > 0, if we consider t0 = 1
ω , we have that g(ω(s + t0)) = 0 for all

1 ≤ ω(s + t0) ≤ 1 + ε, i.e., for all 0 ≤ s ≤ ε
ω . Therefore, if we let ω > 0

satisfying ω ≤ ε
T (i.e., T ≤ ε

ω ), and choose t0 = 1
ω , then g(ω(s + t0)) = 0 for

all 0 ≤ s ≤ T . So, with this choice, uω,t0 solves the linear KdV equation if
0 ≤ t ≤ T . Therefore, for ω ≤ ε

T , uω,t0 exists on [0, T ] and is given by S(t)φ,
in particular uω,t0(T ) = S(T )φ. From (1.27), ‖S(·)uω,t0(T )‖L5

xL10
t

≤ ε. Hence,
from Corollary 3.5 we conclude that uω,t0 is global.

This paper is organized as follows. In Sect. 2 we record some preliminary
estimates associated to the linear problem and other relevant results. In Sect.
3 we give a proof of the local well-posedness result for the supercritical KdV
equation in H1(R) and some other results that will be used in the proof of
the main Theorems. Finally, the proof of the main results will be given in
Sect. 4.

2. Preliminary estimates

In this section we record some linear estimates associated to the IVP (1.1).
These estimates are not new and can be found in the literature. For the sake of
clearness we sketch the ideas involved and provide references where a detailed
proof can be found.

Lemma 2.1. If u0 ∈ L2(R), then

‖∂xS(t)u0‖L∞
x L2

t
≤ C‖u0‖L2

x
. (2.1)

If f ∈ L1
xL2

t , then∥∥∥∥∂x

∫ t

0

S(t − t′)f(·, t′)dt′
∥∥∥∥

L∞
t L2

x

≤ C‖f‖L1
xL2

t
, (2.2)

and ∥∥∥∥∂2
x

∫ t

0

S(t − t′)f(·, t′)dt′
∥∥∥∥

L∞
x L2

t

≤ C‖f‖L1
xL2

t
. (2.3)

Proof. For the proof of the homogeneous smoothing effect (2.1) and the double
smoothing effect (2.3), see Theorem 3.5 in [14] (see also Section 4 in [13]). The
inequality (2.2) is the dual version of (2.1). �

Now we give the maximal function estimate.

Lemma 2.2. If u0 ∈ Ḣ1/4(R), then

‖S(t)u0‖L4
xL∞

T
≤ C‖D1/4

x u0‖L2(R). (2.4)
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Also, we have

‖S(t)u0‖L∞
x L∞

T
≤ C‖u0‖

H
1
2 +(R)

. (2.5)

Proof. For the proof of the estimate (2.4) we refer to Theorem 3.7 in [14] (see
also [12] and [16]). The estimate (2.5) follows from Sobolev embedding. �

In what follows, we state some more estimates that will be used in our
analysis.

Lemma 2.3. If u0 ∈ L2(R), then

‖S(t)u0‖L5
xL10

t
≤ C‖u0‖L2

x
. (2.6)

Also we have

‖∂xS(t)u0‖L20
x L

5/2
t

≤ C‖D1/4
x u0‖L2

x
. (2.7)

Proof. The proof of the estimates (2.6) and (2.7) can be found in Corollary
3.8 and Proposition 3.17 in [14] respectively. �

Lemma 2.4. Let u0 ∈ L2
x, then for any (θ, α) ∈ [0, 1] × [0, 1

2 ], we have

‖Dθα/2
x S(t)u0‖Lq

T Lp
x

≤ C‖u0‖L2
x
, (2.8)

where (q, p) = ( 6
θ(α+1) ,

2
1−θ ).

Proof. See Lemma 2.4 in [11]. �

We state next the Leibniz’s rule for fractional derivatives whose proof is
given in [14], Theorem A.8.

Lemma 2.5. Let α ∈ (0, 1), α1, α2 ∈ [0, α], α1 +α2 = α. Let p, p1, p2, q, q1, q2 ∈
(1,∞) be such that 1

p = 1
p1

+ 1
p2

, 1
q = 1

q1
+ 1

q2
. Then

‖Dα
x (fg) − fDα

x g − gDα
x f‖Lp

xLq
T

≤ C‖Dα1
x f‖L

p1
x L

q1
T

‖Dα2
x g‖L

p2
x L

q2
T

. (2.9)

Moreover, for α1 = 0 the value q1 = ∞ is allowed.

Definition 2.6. Let 1 ≤ p, q ≤ ∞,− 1
4 ≤ α ≤ 1. We say that a triple (p, q, α)

is an admissible triple if
1
p

+
1
2q

=
1
4

and α =
2
q

− 1
p
. (2.10)

Proposition 2.7. For any admissible triples (pj , qj , αj), j = 1, 2, the following
estimate holds∥∥∥Dα1

x

∫ t

0

S(t − t′)f(·, t′)dt′
∥∥∥

L
p1
x L

q1
t

≤ C‖D−α2
x f‖

L
p′
2

x L
q′
2

t

, (2.11)

where p′
2, q

′
2 are the conjugate exponents of p2, q2.

Proof. For the proof we refer to Proposition 2.3 in [15]. �

The following results will be used to complete the contraction mapping
argument.
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Lemma 2.8. Let XT and YT be the spaces defined earlier and S be the unitary
group associated to the operator ∂3

x, then we have

‖S(t)u0‖XT
≤ C0‖u0‖H1(R), (2.12)

∥∥∥
∫ t

0

S(t − t′)f(t′)dt′
∥∥∥

XT

≤ CT 1/2‖f‖YT
. (2.13)

Proof. The estimate (2.12) follows from the linear estimates in Lemmas 2.1,
2.2 and 2.3. For the proof of the estimate (2.13), we refer to our earlier work
in [5]. �

Lemma 2.9. The following estimate holds,

‖∂x(uk+1)‖YT
≤ C‖u‖k+1

XT
. (2.14)

Proof. The idea of the proof is similar to the one we used in [5] for the critical
KdV equation. Using Hölder’s inequality and the fact that H1(R) ↪→ L∞(R),
we get

‖∂x(uk+1)‖L2
xL2

T
≤ C‖uk−2‖L∞

x L∞
T

‖u2∂xu‖L2
xL2

T

≤ C‖u‖k−2
L∞

T H1(R)‖u‖2
L4

xL∞
T

‖∂xu‖L∞
x L2

T
. (2.15)

Similarly

‖∂2
x(uk+1)‖L2

xL2
T

≤C
[‖uk−1(∂xu)2‖L2

xL2
T

+ ‖uk∂2
xu‖L2

xL2
T

]
≤C

[‖uk−2‖L∞
x L∞

T
‖u(∂xu)2‖L2

xL2
T

+ ‖uk−2‖L∞
x L∞

T
‖u2∂2

xu‖L2
xL2

T

]
≤C‖u‖k−2

L∞
T H1(R)

[‖u‖L4
xL∞

T
‖∂xu‖L5

xL10
T

‖∂xu‖
L20

x L
5/2
T

+‖u‖k−2
L4

xL∞
T

‖∂2
xu‖L∞

x L2
T

]
. (2.16)

In view of definitions of XT -norm and YT -norm, the estimates (2.15) and
(2.16) yield the required result (2.14). �

The following result from [6] will also be useful in our analysis.

Lemma 2.10. Let T > 0, 1 ≤ p < q ≤ ∞ and A,B ≥ 0. If f ∈ Lq(0, T ) satisfies

‖f‖Lq
(0,t)

≤ A + B‖f‖Lp
(0,t)

, (2.17)

for all t ∈ (0, T ), then there exists a constant K = K(B, p, q, T ) such that

‖f‖Lq
(0,T )

≤ KA. (2.18)

3. Proof of the well-posedness results

We start this section by proving the well-posedness results for the IVP (1.3)
announced in Theorem 1.2.
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Proof of Theorem 1.2. For a > 0, consider a ball in XT defined by

BT
a = {u ∈ C([0, T ] : XT (R)) : ‖u‖XT

< a}.

Our aim is to show that, there exist a > 0 and T > 0, such that the
application Φ defined by

Φ(u) := S(t)φ −
∫ t

0

S(t − t′)∂x(uk+1)(t′)dt′, (3.1)

maps BT
a into BT

a and is a contraction.
Using the estimates (2.13) and (2.14), we obtain

‖Φ‖XT
≤ C0‖φ‖H1 + CT 1/2‖∂x(uk+1)‖YT

≤ C0‖φ‖H1 + CT 1/2‖u‖k+1
XT

. (3.2)

Hence, for u ∈ BT
a ,

‖Φ‖XT
≤ C0‖φ‖H1 + CT 1/2ak+1. (3.3)

Now, choose a = 2C0‖φ‖H1 and T such that CT 1/2ak < 1/2. With these
choices we get, from (3.3),

‖Φ‖XT
≤ a

2
+

a

2
.

Therefore, Φ maps BT
a into BT

a .
With the similar argument, one can prove that Φ is a contraction. The

rest of the proof follows standard argument. �

Remark 3.1. From the choice of a and T in the proof of Theorem 1.2 it is clear
that the local existence time is given by

T ≤ C‖φ‖−2k
H1(R). (3.4)

Moreover, we have the following bound,

‖u‖XT
≤ C‖φ‖H1(R). (3.5)

In what follows, we sketch a proof for the local well-posedness result for
the IVP (1.2).

Proof of Theorem 1.4. As in the proof of Theorem 1.2, this theorem will also
be proved by considering the integral equation associated to the IVP (1.2),

u(t) = S(t)φ −
∫ t

0

S(t − t′)g(ω(t′ + t0))∂x(uk+1)(t′) dt′, (3.6)

and using the contraction mapping principle.
First of all, notice that the periodic function g is bounded, say ‖g‖L∞

t
≤

A, for some positive constant A. Since the norms involved in the space Y
permit us to take out ‖g‖L∞

t
-norm as a coefficient, the proof of this theorem

follows exactly the same argument as in the proof of Theorem 1.2. Moreover,
as the initial data φ is the same, the choice of the radius a of the ball is exactly
the same. However, to complete the contraction mapping argument, we must
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select T > 0 such that C‖g‖L∞
t

T 1/2a4 < 1
2 , which implies that the existence

T is given by

T = T (‖g‖L∞
t

, ‖φ‖H1(R)) =
C

‖g‖2
L∞

t
‖φ‖2k

H1(R)

. (3.7)

Furthermore, in this case too, from the proof, one can get

‖u‖XT
≤ C‖φ‖H1(R). (3.8)

�
In sequel, we present some results that play a central role in the proof

of the main theorems of this work. We begin with the following lemma whose
proof can be found in [5].

Lemma 3.2. Let XT and YT be spaces as defined in (1.15) and (1.16). Let
f ∈ YT , then we have the following convergence∫ t

0

g(ω(t′ + t0))S(t − t′)f(t′)dt′ → m(g)
∫ t

0

S(t − t′)f(t′)dt′, (3.9)

whenever |ω| → ∞, in the XT -norm.

With the similar argument as in the case of the critical KdV equation
(see [5]), we have the following convergence result.

Lemma 3.3. Let the initial data φ ∈ H1(R). Let uω,t0 be the maximal solution
of the IVP (1.1). Suppose U be the maximal solution of the IVP (1.14) defined
in [0, Smax). Let 0 < T < Smax and let uω,t0 exists in [0, T ] for |ω| large and
that

lim sup
|ω|→∞

sup
t0∈R

‖uω,t0‖L∞
T H1(R) < ∞, (3.10)

and

lim sup
|ω|→∞

sup
t0∈R

‖uω,t0‖L4
xL∞

T
< ∞. (3.11)

Then, for all t ∈ [0, T ],

sup
t0∈R

‖uω,t0 − U‖XT
→ 0, as |ω| → ∞. (3.12)

In particular, uω,t0 → U as |ω| → ∞, in H1(R).

Proof. Since uω,t0 and U have the same initial data φ, from Duhamel’s formula,
we have

uω,t0 − U =

∫ t

0

g(ω(t′+t0))S(t−t′)∂x(uk+1
ω,t0)dt′−m(g)

∫ t

0

S(t − t′)∂x(Uk+1)dt′

=

∫ t

0

g(ω(t′ + t0))S(t − t′)∂x(uk+1
ω,t0 − Uk+1)dt′

+

∫ t

0

[g(ω(t′ + t0)) − m(g)]S(t − t′)∂x(Uk+1)dt′

=: I1 + I2. (3.13)
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We note that

|uk+1 − vk+1| ≤ C(|u|k + |v|k)|u − v| (3.14)

and

|∂x(uk+1 − vk+1)| ≤ C
[
(|u|k + |v|k)|∂x(u − v)|

+(|∂xu| + |∂xv|)(|u|k−1 + |v|k−1)|u − v|]. (3.15)

Let ‖g‖L∞
T

≤ A. Use of (2.2), (3.14), Hölder’s inequality and the assump-
tions (3.10) and (3.11), yield

‖I1‖L∞
T

L2
x

≤ C‖g‖L∞
T

‖uk+1
ω,t0

− Uk+1‖L1
x
L2

T

≤ CA‖uk
ω,t0

(uω,t0 − U)‖L1
x
L2

T
+ ‖Uk(uω,t0 − U)‖L1

x
L2

T

≤ CA‖uk
ω,t0

‖L2
x
L∞

T
‖uω,t0 − U‖L2

x
L2

T
+ ‖Uk‖L2

x
L∞

T
‖uω,t0 − U‖L2

x
L2

T

≤ CA
[
‖uk−2

ω,t0
‖L∞

x
L∞

T
‖u2

ω,t0
‖L2

x
L∞

T
+‖Uk−2‖L∞

x
L∞

T
‖U2‖L2

x
L∞

T

]
‖uω,t0 −U‖L2

T
L2

x

≤ CA
[
‖uω,t0‖k−2

L∞
T

H1(R)‖uω,t0‖2
L4

x
L∞

T
+‖U‖k−2

L∞
T

H1(R)‖U‖2
L4

x
L∞

T

]
‖uω,t0 −U‖L2

T
L2

x

≤ CA‖uω,t0 − U‖L2
T

L2
x
. (3.16)

Again, using (2.2) and (3.15), one can obtain

‖∂xI1‖L∞
T L2

x
≤ CA‖∂x(uk+1

ω,t0 − Uk+1)‖L1
xL2

T

≤ CA
[
‖(|uω,t0 |k + |U |k)∂x(uω,t0 − U)‖L1

xL2
T

+‖(|∂xuω,t0 | + |∂xU |)(|uω,t0 |k−1 + |U |k−1)(uω,t0 − U)‖L1
xL2

T

]
=: CA[J1 + J2]. (3.17)

With the same argument as in (3.16)

J1 ≤ C‖∂x(uω,t0 − U)‖L2
T L2

x
. (3.18)

Now we move to estimate the first term, ‖uk−1
ω,t0∂xuω,t0(uω,t0 − U)‖L1

xL2
T

in J2, the estimates for the other terms are similar. We have,

‖uk−1
ω,t0∂xuω,t0(uω,t0 − U)‖L1

xL2
T

≤ C‖u2
ω,t0‖L2

xL∞
T

‖uk−3
ω,t0∂xuω,t0(uω,t0 − U)‖L2

xL2
T

≤ C‖uω,t0‖2
L4

xL∞
T

‖uk−3
ω,t0‖L∞

T L∞
x

‖∂xuω,t0‖L∞
T L2

x
‖(uω,t0 − U)‖L2

T L∞
x

≤ C‖uω,t0‖2
L4

xL∞
T

‖uω,t0‖k−2
L∞

T H1(R)‖(uω,t0 − U)‖L2
T H1(R)

≤ C‖(uω,t0 − U)‖L2
T H1(R). (3.19)

Inserting (3.18) and (3.19) in (3.17), we get

‖∂xI1‖L∞
T L2

x
≤ CA‖(uω,t0 − U)‖L2

T H1(R). (3.20)

Combining (3.16) and (3.20), we obtain

‖I1‖L∞
T H1(R) ≤ CA‖(uω,t0 − U)‖L2

T H1(R). (3.21)

From Lemma 3.2, we have

‖I2‖L∞
T H1(R) ≤ Cω → 0, as |ω| → ∞. (3.22)



1204 M. Panthee and M. Scialom NoDEA

Therefore, we have

‖uω,t0 − U‖L∞
T H1(R) ≤ CA‖(uω,t0 − U)‖L2

T H1(R) + Cω. (3.23)

Applying Lemma 2.10 in (3.23), we get

‖uω,t0 − U‖L∞
T H1(R) ≤ KCω → 0, as |ω| → ∞. (3.24)

From (3.23) and (3.24), it is easy to conclude that

‖(uω,t0 − U)‖L2
T H1(R) → 0, as |ω| → ∞. (3.25)

Now, we move to estimate the other norms involved in the definition of
XT . Let,

L1 := ‖∂x(uω,t0 − U)‖L∞
x L2

T
+ ‖∂2

x(uω,t0 − U)‖L∞
x L2

T

+‖uω,t0 − U‖L5
xL10

T
+ ‖Dx(uω,t0 − U)‖L5

xL10
T

and

L2 := ‖∂x(uω,t0 − U)‖
L20

x L
5/2
T

+ ‖uω,t0 − U‖L4
xL∞

T
.

Use of (2.2), (2.3), the estimate (2.11) from Proposition 2.7 with admis-
sible triples (p1, q1, α1) = (5, 10, 0), and (p2, q2, α2) = (∞, 2, 1) in (3.13), yields

L1 ≤ CA‖∂x(uk+1
ω,t0 − Uk+1)‖L1

xL2
T

+ CA‖uk+1
ω,t0 − Uk+1‖L1

xL2
T

+ ‖I2‖XT
.

(3.26)

Therefore, with the same argument as in (3.16)–(3.20), we can obtain

L1 ≤ CA‖uω,t0 − U‖L2
T H1 + Cω. (3.27)

Hence, using Lemma 3.2 and (3.25) we get from (3.27) that

L1
|ω|→∞→ 0. (3.28)

Finally, to estimate L2 we use Proposition 2.7 with admissible triples
(p1, q1, α1) = (20, 5/2, 3/4) and (p2, q2, α2) = (20/3, 5, 1/4), to get

∥∥∥∂x

∫ t

0

S(t − t′)f(·, t′)dt′
∥∥∥

L20
x L

5/2
T

≤ C‖f‖
L

20/17
x L

5/4
T

, (3.29)

and with admissible triples (p1, q1, α1) = (4,∞,−1/4), and (p2, q2, α2) =
(20/3, 5, 1/4), to have

∥∥∥
∫ t

0

S(t − t′)f(·, t′)dt′
∥∥∥

L4
xL∞

T

≤ C‖f‖
L

20/17
x L

5/4
T

. (3.30)

Using (3.29), (3.30), and the definition of XT , we get from (3.13) that

L2 ≤ CA‖∂x(uk+1
ω,t0 − Uk+1)‖

L
20/17
x L

5/4
T

+ ‖I2‖XT
(3.31)
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Using (3.15), we can obtain

‖∂x(uk+1
ω,t0 − Uk+1)‖

L
20/17
x L

5/4
T

≤ C
[
‖(|uω,t0 |k + |U |k)∂x(uω,t0 − U)‖

L
20/17
x L

5/4
T

+‖(|∂xuω,t0 | + |∂xU |)(|uω,t0 |k−1

+|U |k−1)(uω,t0 − U)‖
L

20/17
x L

5/4
T

]

=: C[J̃1 + J̃2]. (3.32)

Hölder’s inequality, the fact that 20/13 > 10/7, Sobolev immersion and the
assumption (3.10), imply that

J̃1 ≤ C‖∂x(uω,t0 − U)‖L5
xL10

T
{‖uk

ω,t0‖L
20/13
x L

10/7
T

+ ‖Uk‖
L

20/13
x L

10/7
T

}
≤ C‖∂x(uω,t0 − U)‖L5

xL10
T

{‖uk
ω,t0‖L

10/7
T L

20/13
x

+ ‖Uk‖
L

10/7
T L

20/13
x

}
≤ C‖∂x(uω,t0 − U)‖L5

xL10
T

T 7/10{‖uω,t0‖k
L∞

T H1 + ‖U‖k
L∞

T H1}
≤ C T 7/10‖∂x(uω,t0 − U)‖L5

xL10
T

. (3.33)

As in (3.17), we give details in estimating the first term, ‖uk−1
ω,t0∂xuω,t0

(uω,t0 −U)‖
L

20/17
x L

5/4
T

in J̃2, the estimates for the other terms are similar. Here
too, Hölder’s inequality, the fact that 20/3 > 5, Sobolev immersion and the
assumption (3.10), yield

‖uk−1
ω,t0∂xuω,t0(uω,t0 − U)‖

L
20/17
x L

5/4
T

≤ C‖uk−1
ω,t0‖L

20/3
x L5

T
‖∂xuω,t0‖L2

xL2
T
‖uω,t0 − U‖L5

xL10
T

≤ C‖uk−1
ω,t0‖L5

T L
20/3
x

‖∂xuω,t0‖L2
T L2

x
‖uω,t0 − U‖L5

xL10
T

≤ C T 7/10‖uω,t0‖k
L∞

T H1‖uω,t0 − U‖L5
xL10

T

≤ C T 7/10‖uω,t0 − U‖L5
xL10

T
. (3.34)

In view of (3.32), (3.33) and (3.34), we get from (3.31) that

L2 ≤ CAT 7/10{‖∂x(uω,t0 − U)‖L5
xL10

T
+ ‖uω,t0 − U‖L5

xL10
T

} + Cω. (3.35)

Therefore, Lemma 3.2 and (3.28), imply

L2
|ω|→∞→ 0. (3.36)

Now, the proof of the Lemma follows by combining (3.24), (3.28) and
(3.36). �

In what follows, as we did in our earlier work [5], consider the super-
critical KdV equation with more general time dependent coefficient on the
nonlinearity {

ut + uxxx + h(t)∂x(uk+1) = 0, x, t ∈ R, k ≥ 5
u(x, 0) = φ(x), (3.37)

where h ∈ L∞ is given.
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The results for the IVP (3.37) and their proofs that we are going to pres-
ent here are quite similar to the ones we have for the critical KdV equation in
[5]. For the sake of clarity, we reproduce them here.

Proposition 3.4. Given any A > 0, there exist ε = ε(A) and B > 0 such that
if ‖h‖L∞ ≤ A and if φ ∈ H1(R) satisfies

‖S(t)φ‖L5
xL10

t
≤ ε, (3.38)

then the corresponding solution u of (3.37) is global and satisfies

‖u‖L5
xL10

t
≤ 2 ‖S(t)φ‖L5

xL10
t

, (3.39)

‖u‖Xt
≤ B‖φ‖H1(R). (3.40)

Conversely, if the solution u of (3.37) is global and satisfies

‖u‖L5
xL10

t
≤ ε, (3.41)

then

‖S(t)φ‖L5
xL10

t
≤ 2‖u‖L5

xL10
t

. (3.42)

Proof. Since ‖h‖L∞
t

≤ A, as in Theorem 1.4 we can prove the local
well-posedness for the IVP (3.37) in H1(R) with time of existence T =
T (‖φ‖H1(R), ‖h‖L∞). Let u ∈ C([0, Tmax);H1(R)) be the maximal solution
of the IVP (3.37). For 0 ≤ t < Tmax, we have that

u(t) = S(t)φ + w(t), (3.43)

where

w(t) = −
∫ t

0

S(t − t′)h(t′)∂x(uk+1)(t′) dt′.

Using (2.11) from Proposition 2.7 for admissible triples (5, 10, 0) and
(∞, 2, 1), we obtain

‖w‖L5
xL10

T
≤ CA‖uk+1‖L1

xL2
T

≤ CA‖uk−4‖L∞
x L∞

T
‖u5‖L1

xL2
T

≤ CA‖u‖k−4
L∞

T H1‖u‖5
L5

xL10
T

≤ CA‖u‖5
L5

xL10
T

. (3.44)

From (3.43) and (3.44) it follows that

| ‖u‖L5
xL10

T
− ‖S(t)φ‖L5

xL10
T

| ≤ CA‖u‖5
L5

xL10
T

. (3.45)

Thus, for all T ∈ (0, Tmax) one has

‖u‖L5
xL10

T
≤ ε + CA‖u‖5

L5
xL10

T
. (3.46)

Choose ε = ε(A) such that

CA(2ε)4 < 1/2, (3.47)

and suppose that the estimate (3.38) holds. As the norm is continuous on T
and vanishes at T = 0, using continuity argument, the estimate (3.46) and the
choice of ε in (3.47), imply that

‖u‖L5
xL10

Tmax
≤ 2ε. (3.48)
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Moreover, from (3.45)

‖u‖L5
xL10

Tmax
≤ ‖S(t)φ‖L5

xL10
Tmax

+ CA‖u‖5
L5

xL10
Tmax

≤ ‖S(t)φ‖L5
xL10

Tmax
+ CA(2ε)4‖u‖L5

xL10
Tmax

. (3.49)

Therefore, with the choice of ε satisfying (3.47), the estimate (3.49) yields

‖u‖L5
xL10

Tmax
≤ 2‖S(t)φ‖L5

xL10
Tmax

. (3.50)

In what follows, we will show that Tmax = ∞. The inequalities (2.2), (2.3),
(2.11) with admissible triples (5, 10, 0) and (∞, 2, 1), and Hölder’s inequality
imply

‖w‖L∞
T H1 + ‖∂xw‖L∞

x L2
T

+ ‖∂2
xw‖L∞

x L2
T

+ ‖w‖L5
xL10

T
+ ‖∂xf‖L5

xL10
T

≤ CA‖u‖4
L5

xL10
T

‖u‖XT
. (3.51)

Now using (3.29), (3.30) and Hölder’s inequality, we have

‖∂xw‖
L20

x L
5/2
T

+ ‖w‖L4
xL∞

T
≤ CA‖∂x(uk+1)‖

L
20/17
x L

5/4
T

≤ CA‖uk‖
L

5/4
x L

5/2
T

‖∂xu‖
L20

x L
5/2
T

≤ CA‖uk−4‖L∞
x L∞

T
‖u4‖

L
5/4
x L

5/2
T

‖∂xu‖
L20

x L
5/2
T

≤ CA‖u‖k−4
L∞

T H1‖u‖4
L5

xL10
T

‖∂xu‖
L20

x L
5/2
T

≤ CA‖u‖4
L5

xL10
T

‖∂xu‖
L20

x L
5/2
T

. (3.52)

Combining (3.51) and (3.52), we obtain

‖w‖XT
≤ CA‖u‖4

L5
xL10

T
‖u‖XT

. (3.53)

This estimate with (3.47) and (3.48) gives

‖w‖XT
≤ CA(2ε)4‖u‖XT

<
1
2
‖u‖XT

. (3.54)

Using (3.43) we obtain

‖u‖XT
≤ ‖S(t)φ‖XT

+ ‖w‖XT
≤ C‖φ‖H1(R) +

1
2
‖u‖XT

, (3.55)

for all T ∈ (0, Tmax). Therefore, we have

‖u‖XTmax
≤ 2C‖φ‖H1(R). (3.56)

Hence, from the definition of ‖u‖XTmax
, we have that

‖u‖L∞
Tmax

H1(R) ≤ C‖u(0)‖H1(R). (3.57)

Now, combining the local existence from Theorem 1.4 and the estimate
(3.57), the blow-up alternative implies that Tmax = ∞. Finally, the estimates
(3.50) and (3.56) yield (3.39) and (3.40) respectively with B = 2C.

Conversely, let Tmax = ∞ and (3.41) holds. With the similar argument
as in (3.45), we can get

| ‖u‖L5
xL10

t
− ‖S(t)φ‖L5

xL10
t

| ≤ CA‖u‖5
L5

xL10
t

. (3.58)
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Thus, from (3.58) in view of (3.41) and (3.47), one has

‖S(t)φ‖L5
xL10

t
≤ ‖u‖L5

xL10
t

+ CAε4‖u‖L5
xL10

t
≤ 2‖u‖L5

xL10
t

. (3.59)

�
Corollary 3.5. Let h ∈ L∞(R) satisfy ‖h‖L∞ ≤ A and ε and B be as in Prop-
osition 3.4. Given φ ∈ H1(R), let u be the solution of the IVP (3.37) defined
on the maximal interval [0, Tmax). If there exists T ∈ (0, Tmax) such that

‖S(t)u(T )‖L5
xL10

t
≤ ε,

then the solution u is global. Moreover

‖u‖L5
xL10

(T,∞)
≤ 2ε, and ‖u‖X(T,∞) ≤ B‖u(T )‖H1(R).

Proof. The proof follows by using a standard extension argument. For details
we refer to the proof of Corollary 2.4 in [6]. �

4. Proof of the main results

The argument in the proof of the main results, Theorem 1.5 and Theorem 1.6,
is quite similar to the one used in the case of the critical KdV equation [5]. As
mentioned earlier, Lemma 3.3 and the local existence Theorem 1.4 are used in
the proof of Theorem 1.5. While, Proposition 3.4 and Theorem 1.5 are crucial
in the proof of Theorem 1.6. Here we adapt the techniques used in [5] and [6]
to complete the proofs.

Proof of Theorem 1.5. Let A = ‖g‖L∞ , T ∈ (0, Smax) fixed and set

M0 = 2 sup
t∈[0,T ]

‖U(t)‖H1(R). (4.1)

In particular, for t = 0, (4.1) gives ‖φ‖H1(R) ≤ M0/2. From Theorem 1.4,
we have that for all ω, t0 ∈ R, uω,t0 exists on [0, δ]. Using (3.7) we have that
the existence time δ, is given by

δ =
C

A2M8
0

. (4.2)

Moreover, from (3.8)

lim sup
|w|→∞

sup
t0∈R

‖uω,t0‖L∞
δ H1(R) ≤ C‖φ‖H1(R) (4.3)

and

lim sup
|w|→∞

sup
t0∈R

‖uω,t0‖L4
xL∞

δ H1(R) ≤ C‖φ‖H1(R). (4.4)

From Lemma 3.3, we have that supt0∈R
‖uω,t0 − U‖XT

|w|→∞→ 0, in particular

sup
t0∈R

‖uω,t0(δ) − U(δ)‖H1(R)
|w|→∞→ 0. (4.5)

Combining (4.1) and (4.5), for |w| sufficiently large, we deduce that

sup
t0∈R

‖uω,t0(δ)‖H1(R) ≤ M0. (4.6)
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We suppose δ ≤ T , otherwise we are done. Using Theorem 1.4 we can
extend the solution uω,t0 (as in the proof of Corollary 3.5) on the interval [0, 2δ],
with ‖ũω,t0‖L∞

t (0,δ)H1(R) ≤ C‖ũω,t0(0)‖H1(R), where ũω,t0(t) = uω,t0(t+ δ) i.e.,
‖uω,t0‖L∞

t (δ,2δ)H1(R) ≤ C‖uω,t0(δ)‖H1(R) ≤ C2‖φ‖H1(R). Therefore, (4.3) gives

lim sup
|w|→∞

sup
t0∈R

‖uω,t0‖L∞
t (0,2δ)H1(R) ≤ C(1 + C)‖φ‖H1(R). (4.7)

Similarly, from (4.4),

lim sup
|w|→∞

sup
t0∈R

‖uω,t0‖L4
xL∞

2δH1(R) ≤ C(1 + C)‖φ‖H1(R). (4.8)

So, we can again apply the Lemma 3.3. Iterating this argument at a finite
number of times with the same time of existence in each iteration, we see that

lim sup
|w|→∞

sup
t0∈R

‖uω,t0‖L∞
T H1(R) ≤ C‖φ‖H1(R)

and

lim sup
|w|→∞

sup
t0∈R

‖uω,t0‖L4
xL∞

T
≤ C‖φ‖H1(R).

The result is therefore a consequence of Lemma 3.3. �

Proof of Theorem 1.6. Let ε ∈ (0, ε(A)), where ε(A) is as in Proposition 3.4.
If T is sufficiently large, from (1.23), we have that

‖U‖L5
xL10

(T,∞)
≤ ε

4
. (4.9)

Applying Proposition 3.4 to the global solution Ũ(t) = U(t+T ), the inequality
(3.42) gives

‖S(t)U(T )‖L5
xL10

t
= ‖S(t)Ũ(0)‖L5

xL10
t

≤ 2‖Ũ‖L5
xL10

t
= 2‖U‖L5

xL10
(T,∞)

≤ ε

2
.

(4.10)

From this inequality and Corollary 3.5 we get

‖U‖X(T ;∞) ≤ B‖U(T )‖H1(R). (4.11)

From Theorem 1.5 it follows that

sup
t0∈R

sup
0≤t≤T

‖uω,t0(t) − U(t)‖H1(R) → 0, as |ω| → ∞. (4.12)

Thus, if |w| is sufficiently large, the triangular inequality along with (4.12)
gives

‖S(t)uω,t0(T )‖L5
xL10

t
≤ ‖S(t)uω,t0(T ) − S(t)U(T )‖L5

xL10
t

+ ‖S(t)U(T )‖L5
xL10

t

≤ ‖uω,t0(T ) − U(T )‖L2
x

+
ε

2
≤ ε. (4.13)

Therefore, Corollary 3.5 implies that uω,t0 is global. Moreover,

sup
t0∈R

‖uω,t0‖L5
xL10

(T,∞)
≤ 2ε, and ‖uω,t0‖X(T,∞) ≤ B‖uω,t0(T )‖H1(R), (4.14)

for |w| sufficiently large.
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Let M0 = sup0≤t≤T ‖U(t)‖H1(R), as in (4.1). Now, we move to prove
(1.24). The inequalities (4.12) and (4.14) show that there exists L > 0 such
that

sup
|w|≥L

sup
t0∈R

sup
t≥0

‖uω,t0(t)‖H1(R) ≤ (1+M0)+B‖uω,t0(T )‖H1(R) =M1 < ∞.

(4.15)

In what follows, we prove that uω,t0 → U in the ‖ · ‖Xt
-norm, when

|ω| → ∞.
Using Duhamel’s formulas for uω,t0 and U we have

uω,t0(T + t) − U(T + t) = S(t)(uω,t0(T ) − U(T ))

−
∫ t

0

S(t − t′)g(ω(T + t′ + t0))∂x(uk+1
ω,t0)(T + t′)dt′

+m(g)
∫ t

0

S(t − t′)∂x(Uk+1)(T + t′)dt′

=: I1 + I2 + I3. (4.16)

Using properties of the unitary group S(t) we have by (4.12) that

‖I1‖Xt
=‖S(t)(uω,t0(T )−U(T ))‖Xt

≤ C‖uω,t0(T )−U(T )‖H1(R)
|ω|→∞→ 0.

(4.17)

With the same argument as in (3.53), we have

‖I2‖Xt
≤ CA‖uω,t0‖4

L5
xL10

(T,∞)
‖uω,t0‖X(T,∞) , (4.18)

From (4.18), with the use of (4.14) and (4.15), we have

‖I2‖Xt
≤ CA(2ε)4BM1. (4.19)

As in I2, using (4.9) and (4.11), we get

‖I3‖Xt
≤ CA‖U‖4

L5
xL10

(T,∞)
‖U‖X(T,∞)

≤ CA
( ε

4

)4

BM0.
(4.20)

Now given β > 0, we choose ε > 0 sufficiently small (T sufficiently large)
such that CA(2ε)4

[
BM0 + BM1

]
< β/3 and |ω| sufficiently large, so that

(4.16), (4.17), (4.19) and (4.20) imply

‖uω,t0(t) − U(t)‖X(T,∞) = ‖uω,t0(T + t) − U(T + t)‖Xt

≤ ‖I1‖Xt
+ ‖I2‖Xt

+ ‖I3‖Xt

< β. (4.21)

On the other hand, from Theorem 1.5, we have

‖uω,t0(t) − U(t)‖X(0,T ) = ‖uω,t0(t) − U(t)‖XT

|ω|→∞→ 0. (4.22)

Therefore, from (4.21) and (4.22), we can conclude the proof of the the-
orem. �
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