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On the supercritical KdV equation
with time-oscillating nonlinearity

M. Panthee and M. Scialom

Abstract. For the initial value problem (IVP) associated to the generalized
Korteweg—de Vries (gKdV) equation with supercritical nonlinearity,

ue + Ou+ 0, () =0, k> 5,

numerical evidence [3] shows that, there are initial data ¢ € H'(R) such
that the corresponding solution may blow-up in finite time. Also, with
the evidence from numerical simulation [1,18], it has been claimed that
a periodic time dependent coefficient in the nonlinearity would disturb
the blow-up solution, either accelerating or delaying it. In this work, we
investigate the IVP associated to the gKdV equation

ug + O2u+ g(wt)@m(ukﬂ) =0,

where g is a periodic function and k > 5 is an integer. We prove that, for
given initial data ¢ € H'(R), as |w| — oo, the solution u, converges to
the solution U of the initial value problem associated to

Ui 4+ 82U +m(g)d. (U =0,

with the same initial data, where m(g) is the average of the periodic func-
tion g. Moreover, if the solution U is global and satisfies ||U]|

L3 L}O < o0,
then we prove that the solution w,, is also global provided |w| is sufficiently
large.
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1. Introduction

Motivated from an earlier work in [5] for the critical KdV equation, we consider
the initial value problem (IVP)

us + 6§’u + Q(Wt)ax(uk+1) -0,
{u(x,to) = ¢(x), (1.1)

where z, t,tp,w € R and v = u(z,t) is a real valued function, k > 5 is an
integer and g € C(R,R) is a periodic function with period L > 0. To make the
analysis simple, we translate the initial time ¢y to 0 and consider the following
VP

ug + O3u + g(w(t + t9)) 0 (uF+1) =0,
OETAR 2

Before analyzing the IVP (1.1) with time oscillating nonlinearity, we dis-
cuss some aspects of the supercritical Korteweg—de Vries (KdV) equation,

{ut + 03u + 0, (uFtt) =0, k> 5,

u(z,0) = ¢(), z,t €R. (1.3)

For k = 4 the IVP (1.3) is called critical in the literature for three dif-
ferent reasons, see [4,14] and references therein. As described in [14], the first
reason is that, for k = 1,2, 3 the solution exists globally for all data in H!(R),
while for k = 4 the global existence holds only for small data (i.e., data with
small H!(R)-norm). Second reason is that the index k = 4 is critical for the
orbital stability of the solitary wave solutions, see [4]. More precisely, using the
arguments from Grillakis et al. [9], Bona et al. [4] prove that the solitary wave
solutions of the gKdV equation (1.3) are H!-stable if and only if k < 4 and
instable if £ > 4. However, this argument does not apply for the case k = 4, see
also [19]. Finally, the third reason is that the case k = 4 is the only power for
which a solitary wave solution cannot have arbitrarily small L2-norm, see [14].
In the light of this observation, the equation (1.3) is known as the supercritical
KdV equation in the literature.

Well-posedness issues for the IVP (1.3) have been extensively studied in
the literature, see for example [10,14,15] and references therein. A detailed
account of the recent well-posedness results can be found in Kenig et al. [14],
where they proved that, there exists d; > 0 such that the IVP (1.3) is globally
well-posed for any data ¢ € H*(R),s > s, := 1 — £ satisfying [ D3F¢llLz < 6.
They were also able to relax the smallness condition on the given data to
obtain local well-posedness result, but paying price that the existence time
now depends on the shape of the data ¢ as well, and not just on its size. These
are the best well-posedness results in the sense that s = sy, is the critical expo-
nent given by the scaling argument. However, for data in H*(R), s > s, they
were able to remove the size and shape restriction and got local-well posed-
ness for arbitrary data with life span T" of the solution depending on ||}|| 7= ()
Quite recently, Farah et al. [8] considered the IVP (1.3) to address the global
well-posedness for the data with low Sobolev regularity. In this context, they
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proved the following local well-posedness result in the function space slightly
different from the one used in [14].

Theorem 1.1. [8] Let k > 4 and s > sj, == & — % Then for any ¢ € H*(R)
there exist T = T(||¢|| g+ ®)) > 0 (with T(s,p) — oo as p — 0) and a unique
strong solution u to the IVP (1.3) satisfying:

we ([0, T H*(R)), (1.4)
[0zl Lo 2. + [ DOzl oo L2 < 00, (1.5)
lull s ro + [[D7ullps Lio < oo, (1.6)
1D} Dg* D ul| e e < o0, (L.7)
where
1 3 6 S — Sk

= — — 25k L= — — — = = 1.8
(&7 10 5 ﬂk 10 5k7 Yk Pyk(s) 3 ( )

1 2 1 1 3 4
S 4 -2 _ = 1.9
Pk 5k + 10’ qk 10 5k (1.9)

Moreover, for any 1" € (0,T), there exists a neighborhood V of ¢ in
H?(R) such that the map ¢ — @ from V into the class defined by (1.4) to (1.7)
with T" in place of T is Lipschitz.

In what follows, we will modify the statement of this result to suit in our
context for given data in H'(R) (see Theorem 1.2 below).

We recall that, the L2(R) norm and energy are conserved by the flow of
(1.3). More precisely,

/R|u(x,t)| dx:/R|qS(a:)| dz, (1.10)
and
B, 0) 1= 3 [{ua(ot)? - 2o, 0o = B@), (111

are time independent quantities.

The conserved quantities (1.10) and (1.11) yield an a priori estimate
for ||0,u(t)||L2(r) if the initial data ¢ is sufficiently small in H'(R). For a
detailed work-out of this fact we refer readers to [8]. This a priori estimate
allows one to iterate the local solution to get the global one for small data in
H(R). Recently, a numerical study carried out by Bona et al. [3] (see also
[2,4]) reveled the existence of H!-data for which the corresponding solution to
the supercritical KdV equation may blow-up in finite time. This is the point
that motivated us to carry on this work in the light of the recent work of
Abdullaev et al. [1] and Konotop and Pacciani [18]. In the case of the critical
KdV equation (k = 4), there is an extensive series of works carried out by
Martel and Merle [19-21] about the finite time blow-up solutions and their
stability /instability analysis. For the most resent work in this series, see [22].
As far as we know, for the supercritical case such analytical study does not
exist.
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The authors in [1,18] investigate the effect of a time oscillating coeffi-
cient in the nonlinearity of the Bose—Einstein condensates. An investigation of
solutions which are global for large frequencies is carried out in [1], while in
[18], a study of solutions which blow-up in finite time is done. Their results
are numerical. Roughly speaking, they claim that the periodic time depen-
dent coefficient in the nonlinearity would disturb the blow-up solution, either
by accelerating or delaying it. Recently, Cazenave and Scialom [6] considered
the nonlinear Schrodinger (NLS) equation and got an analytical insight to
understand the problem by showing that the solution really depends on the
frequency of the oscillating term. They proved that the solution u to the IVP
associated to the NLS equation

iug + Au A+ 0(wt)|u|*u =0, xcRY, (1.12)
where 0 < a < ﬁ is an H' sub-critical exponent and 6 is a periodic

function, with initial data ¢ € H'(R") converges as |w| — oo to the solution
U of the limiting equation

iUy + AU+ I1(0)|U|°U =0, xRN, (1.13)

with the same initial data, where I(#) is the average of 6. Moreover, they
also showed that, if the limiting solution U is global and has a certain decay
property as t — oo, then u is also global if |w| is sufficiently large. A similar
result has been proved for the critical KdV equation in our earlier work [5]. In
this work, we are interested in addressing the supercritical KdV equation in
the same spirit. The numerical evidences for the existence of blow-up solution
to (1.3) in H'(R) due to Bona et al. [3] (see also [2,4]) and the discussion
made above strengthen our motivation of studying (1.1) with time oscillating
nonlinearity.

As discussed above, our interest here is to investigate the behavior of the
solution for given data in H!(R) to the IVP (1.1) as |w| — oo. The natural
limiting candidate to think of is the solution to the following IVP

{Ut + 03U +m(g)0,(U*) =0, k>5,

U(z,0) = ¢(z), r,teR, (1.14)

where m(g) = 1 fOL g(t)dt is the mean value of g and is a real number. To this
end, we need an appropriate well-posedness result for the supercritical KdV
equation in H'(R). We recall the local well-posedness result from [8] for arbi-
trary data in H*(R), s > sy, stated in Theorem 1.1 (See also [14]). The function
space used in Theorem 1.1 has an additional norm || D}* D% DP*v|| prepae that
involves time derivatives of the solution. The presence of this norm creates an
extra difficulty to handle the time-oscillating nonlinearity. Therefore, to deal
with our case, we need to avoid the presence of the norm that involves time
derivatives. Also, it is very important to have an explicit expression that pro-
vides the local existence time of the solution. In the literature, we did not
find an explicitly written proof of the H'(R) well-posedness for the IVP (1.3)
that fulfills our requirement. Therefore, we will provide a new proof for the
well-posedness of the IVP (1.3) in H'(R). Our proof allows us to extend the
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well-posedness result to the IVP (1.2) and as a consequence to have an estimate
of the local existence time.

Other than the recent works [5,6], there are very less works in the litera-
ture that address the well-posedness issues for the equations of the KdV and
NLS family with time dependent nonlinearity (see [7,23,24]). The authors in [7]
deal with the NLS equation in R? with nonlinearity of the form cos?(Q¢)|u[P~ u
in the critical and supercritical cases. The author in [23] considered the tran-
sitional KdV equation with nonlinearity of the form f(t)ud,u, where f is a
continuous function such that f’ € Llloc(R), and proved the global well-posed-
ness in H*(R),s > 1. The transitional KdV arises in the study of long solitary
waves propagating on the thermocline separating two layers of fluids of almost
equal densities in which the effect of the change in the depth of the bottom
layer, which the wave feels as it approaches the shore, results in the coefficient
of the nonlinear term, for details see [17]. In [24], transitional Benjamin-Ono
equation with time dependent coefficient in the nonlinearity has been consid-
ered and the main result is the global existence of the solution for data in
H*(R),s > 3.

Before stating the main results of this work, we define notations that will
be used throughout this work.

Notation: We use f to denote the Fourier transform of f and is defined
as,

. e f(x) dx
16) = Gy [ @

The L2-based Sobolev space of order s will be denoted by H*® with norm

11 ey = (/Ru +52)Sf(5>|2d5)1/2.

The Riesz potential of order —s is denoted by DS = (—82)%/2. For f :
R x [0,7] — R we define the mixed L? L1.-norm by

T p/q 1/p
[ fllzpre = /(/ f(:c,t)|th> dx 7
R 0

with usual modifications when p = co. We replace T by ¢ if [0, 7] is the whole
real line R. We use the notation f € H*" if f € H€ for € > 0.
We define two more spaces X7 and Y7 with norms
[ fllxz == 1 fllzgemr + 10xfllLeer2 + ||3§f||Lg°L2T
s zse + 102 fllLawse + 102 fll 20 a2 + [ fllLanse, (1.15)

and
1 fllve == 10 fll 22 + | fllL2 2. (1.16)

respectively. We replace X1 by X or X7 ), if the time integral is taken in
the interval (0,00) or (T, 00) respectively, and similarly for Yr.
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We use the letter C' to denote various constants whose exact values are
immaterial and which may vary from one line to the next.

First, let us state the H!'-local well-posedness result for the IVP (1.3)
in a function space that does not use norms involving time derivatives of the
solution.

Theorem 1.2. Suppose ¢ € H' (R
a unique solution u to the IVP (

). Then there exist T = T(||¢|| g1 (ry) > 0 and
1.3) satisfying

we (0, T); H'(R),

10zull Lo £, + 1050l pee 13 < 00,

lallzs g + N0l g + 10tl 052 < o0,
lull Larg < oo.

Moreover, for any T’~€ (0,T), there exists a neighborhood V of ¢ in
HY(R) such that the map ¢ — @ from V into the class defined by (1.17) to
(1.20) with T in place of T is Lipschitz.

Using Duhamel’s principle, we prove Theorem 1.2 by considering the
integral equation associated to the IVP (1.3),

u(t) = S(t)p — /Ot S(t — )0, (uF T () dt’, (1.21)

where S(t) is the unitary group generated by the operator 92 that describes
the solution to the linear problem. Our interest is to solve (1.21) using the
contraction mapping principle in an appropriate metric space.

Remark 1.3. Since the average m(g) of g is a constant, the proof of Theorem
1.2 can be adapted line by line to obtain a similar well-posedness result for the
IVP (1.14). The only difference in this case is that, to complete the contraction
argument we need to choose 7' > 0 in such a way that C\m(g)|T1/2H¢||]}{1(R) <

1. So the existence time 7" depends on |m(g)| and ||¢|| g1 (r). We also have the
following bound

Ullxs < Cligllarwy, ¥V tel0,T]. (1.22)

Regarding the well-posedness results for the IVP (1.2), we have the fol-
lowing theorem.

Theorem 1.4. Suppose ¢ € H'(R). Then there exist T="T(||d| (=), |9/l L) >
0 and a unique solution uy+, € C([0, T]; HX(R)) to the IVP (1.2) satisfying
(1.18)~(1.20).

Moreover, for any T' € (0,T), there exists a neighborhood V of ¢ in
H'(R) such that the map ¢ v i, 4, from V into the class defined by (1.17) to
(1.20) with T in place of T is Lipschitz.

Now, we state the main results of this work.

Theorem 1.5. Fiz ¢ € H'(R). For given w,ty € R, let u, 4, be the mazimal
solution of the IVP (1.2) and U be the solution of the limiting IVP (1.14)
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defined on the maximal time of existence [0, Smax). Then, for given any 0 <
T < Smax, the solution ug, 1, exists on [0,T] for allty € R and |w| large. More-
over, ||uw.1, — Ullx; — 0, as |w| — oo, uniformly in ty € R. In particular, the
convergence holds in C([0,T]; HY(R)) for all T € (0, Smaz)-

Theorem 1.6. Let ¢ € H'(R) and u, ., be the mazimal solution of the
IVP (1.1). Suppose U be the maximal solution of the IVP (1.14) defined on
[O7Smaw)' If Smax =00 and

1)l 130 < o, (1.23)

then it follows that w4, is global for all ty € R if |w| is sufficiently large.
Moreover,

luwt, —Ullx, = 0, when |w|— oo, (1.24)
uniformly in to. In particular, convergence holds in L>((0,00); H*(R)).

In view of the numerical prediction in [3] of the existence of blow-up
solution for the supercritical KAV equation in H!(R), the Theorem 1.6 is very
interesting in the sense that when m(g) < 0 and k is even the solution U to
the IVP (1.14) will be global for all H!-data (see [8]) and the solution wu,, ¢, to
the nonlinear problem (1.2) will be global too, for |w| large enough.

Before leaving this section, we discuss the example constructed in [6] in
the context of the NLS equation with time oscillating nonlinearity. The authors
in [6] showed that for small frequency |w|, the solution u, ;, blows-up in finite
time or is global depending on tg, while for the large frequency |w|, the solu-
tion ug, 4, is global for all £y € R. The same example can be utilized with small
modification in the context of the supercritical KAV equation. We present it
here for the convenience of the readers.

Ezxample 1.7. Let L > 1,0 < € < % and consider a periodic function g
defined by

1, |s| <e,
m(g) =0, and g(s):{o’|1|<5<1Jre (1.25)

with period L.
Fix ¢ € H'(R) and assume that the solution v of the IVP

{vt + Vgpe + 000 =0, k>05,
U(:]C, O) - d)(x)a

blows-up in finite time, say T%. In the light of the numerical evidences
presented in [2,3] (see also [4]) we can suppose that such a solution v(z,t) of
(1.26) with ¢t € [0, T™), exists.

From Theorem 1.5, for this particular ¢ and the periodic function g, we
have that the solution w4, to the IVP (1.2) converges, as |w| — oo, to the
solution U of the linear KdV equation with same initial data ¢. So, in view of
Theorem 1.6, u,, ¢, is global as |w| — oo for all t5 € R.

Now we move to analyze the behavior of the solution for |w| small. Note
that g(ws) = 1 when |ws| < e. Therefore, if we consider |w| < 7%, then we
see that the solution v to the IVP (1.26) satisfies (1.2) for ¢o = 0 on [0,7%).

(1.26)
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By uniqueness, u,, o = v. Hence the solution u, ¢ of the IVP (1.2) blows-up in
finite time, provided |w| < 7.
Let € = €(A) be as in Corollary 3.5 with A = ||g||zs. From the linear

estimate (2.6) we have that S(-)¢ € L2L}°, so there exists T > 0 such that
SO Larie = 1SCPlLarig < e (1.27)

For w > 0, if we consider ¢ty = X, we have that g(w(s + t9)) = 0 for all

I <w(s+ty) <1+¢ ie, forall 0 < s < <. Therefore, if we let w > 0
satisfying w < & (i.e, T < £), and choose tg = L, then g(w(s + to)) = 0 for

all 0 < s < T'. So, with this choice, w4, solveswthe linear KdV equation if
0 <t < T. Therefore, for w < &, u, 4, exists on [0,7] and is given by S(t)¢,
in particular ug, ¢, (1) = S(T')¢. From (1.27), |[S(-)uw,to (T)[|Ls 1o < €. Hence,
from Corollary 3.5 we conclude that w,, +, is global. '

This paper is organized as follows. In Sect. 2 we record some preliminary
estimates associated to the linear problem and other relevant results. In Sect.
3 we give a proof of the local well-posedness result for the supercritical KAV
equation in H'(R) and some other results that will be used in the proof of
the main Theorems. Finally, the proof of the main results will be given in
Sect. 4.

2. Preliminary estimates

In this section we record some linear estimates associated to the IVP (1.1).
These estimates are not new and can be found in the literature. For the sake of
clearness we sketch the ideas involved and provide references where a detailed
proof can be found.

Lemma 2.1. If ug € L*(R), then
1025 (®yuoll 17 < Clualzz. (21)
If f € LLL?, then

t
’agﬂ/o S(t— ) (-, )t

Proof. For the proof of the homogeneous smoothing effect (2.1) and the double
smoothing effect (2.3), see Theorem 3.5 in [14] (see also Section 4 in [13]). The
inequality (2.2) is the dual version of (2.1). O

<COlfllzeres (2.2)
L¥L2

and

02 /t St —t")f(-,t)dt'
0

< Cllfllzrrsz- (2.3)
Lo L}

Now we give the maximal function estimate.
Lemma 2.2. If ug € H'/*(R), then
IS uollLizse < C Dy *uol L2 @)- (2.4)
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Also, we have

1St uollzey < Clluoll, (2.5)

2T (R)’

Proof. For the proof of the estimate (2.4) we refer to Theorem 3.7 in [14] (see
also [12] and [16]). The estimate (2.5) follows from Sobolev embedding. O

In what follows, we state some more estimates that will be used in our
analysis.

Lemma 2.3. If ug € L*(R), then

1S@uoll s 1o < Cluollzs- (2.6)
Also we have
102 5(0)uoll 0272 < CILDY )13 27)
Proof. The proof of the estimates (2.6) and (2.7) can be found in Corollary
3.8 and Proposition 3.17 in [14] respectively. O
Lemma 2.4. Let ug € L2, then for any (0,a) € [0,1] x [0, 3], we have
ID3*2S (t)uol| Ly oy < Clluol| 2 (2.8)
where (¢,p) = (9((3_1), =25).
Proof. See Lemma 2.4 in [11]. O

We state next the Leibniz’s rule for fractional derivatives whose proof is
given in [14], Theorem A.8.

Lemma 2.5. Let o € (0,1),a1,a3 € [0,a], a1 + a2 = a. Let p,p1,p2,q¢,q1,92 €
(1,00) be such that % = p% + p%, % = q% + q%. Then

1Dz (f9) = fDZg = 9D fllezry, < CIDZ fllpo pa 1DZ2gllprzpge - (2.9)
Moreover, for oy = 0 the value g1 = oo is allowed.

Definition 2.6. Let 1 < p, ¢ < 0o,—% < a < 1. We say that a triple (p,q, )
is an admissible triple if
1 1 1

2
- and a=—-—
q

Proposition 2.7. For any admissible triples (p;,q;,;),7 = 1,2, the following
estimate holds

‘D‘;l /Ot St —t")f(,t"at

where ph, ¢ are the conjugate exponents of pa, qa.

<CIDZfl e (211)

LytLyt —
Proof. For the proof we refer to Proposition 2.3 in [15]. O

The following results will be used to complete the contraction mapping
argument.
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Lemma 2.8. Let X1 and Yp be the spaces defined earlier and S be the unitary
group associated to the operator 93, then we have

[1S(t)uollx, < Colluollmr (w), (2.12)

H /Ot St —tf(t"dt

S CTY|flly,. (2.13)

Proof. The estimate (2.12) follows from the linear estimates in Lemmas 2.1,
2.2 and 2.3. For the proof of the estimate (2.13), we refer to our earlier work
in [5]. O
Lemma 2.9. The following estimate holds,

105 (™) vz < Cllull! (2.14)

Proof. The idea of the proof is similar to the one we used in [5] for the critical
KdV equation. Using Hélder’s inequality and the fact that H(R) < L*(R),
we get

10: (") |12 12, < Cllu* 2| oo Lz [0 Onurl| 12 12,
< CllullF =i o 1l 2 oo 110l Lo 2. (2.15)
Similarly
102 (" Iz 2, < C[I[u* 1 (@ew)®ll 1212 + lu" 2wl 1212 ]
<Ol noenge lw(@ew)? || 2 22, + 10" |l Lo Lo W Oul| L2 12 ]
< Cllulli s g lull g g 10l g Ly |9sull 0, 5/2

+|IUI\'2§%OII<9§UIIL3CL2T} (2.16)

In view of definitions of Xp-norm and Yr-norm, the estimates (2.15) and
(2.16) yield the required result (2.14). O

The following result from [6] will also be useful in our analysis.

Lemma 2.10. LetT > 0,1 <p<g<ooand A,B >0. If f € L9(0,T) satisfies

£, <A+ Bl .. (217)
for allt € (0,T), then there exists a constant K = K(B,p,q,T) such that
£, < KA 218)

3. Proof of the well-posedness results

We start this section by proving the well-posedness results for the IVP (1.3)
announced in Theorem 1.2.
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Proof of Theorem 1.2. For a > 0, consider a ball in X7 defined by
B ={ueC(0,T]: X7(R)) : ||ul|x, < a}.

Our aim is to show that, there exist a > 0 and T" > 0, such that the
application ® defined by

B(u) == S(t)¢—/0 St — )0, (k) (t')dt (3.1)

maps BT into BT and is a contraction.
Using the estimates (2.13) and (2.14), we obtain

@]l x7 < Colldllm + CT 2|00 (" )llyy
< Collgllas + CT2|Jull 34 (3-2)

Hence, for u € BL,
|12 x, < Colllm + CT2a" 1. (3.3)

Now, choose a = 2Cy||#| i and T such that CT/?a* < 1/2. With these
choices we get, from (3.3),
a a
[®llx,r < 5 + 5
Therefore, ® maps BI into BZ.
With the similar argument, one can prove that ® is a contraction. The
rest of the proof follows standard argument. O

Remark 3.1. From the choice of a and T in the proof of Theorem 1.2 it is clear
that the local existence time is given by

T < COl¢ll k) (34)

Moreover, we have the following bound,
ullxr < Cllollm @®)- (3.5)

In what follows, we sketch a proof for the local well-posedness result for
the IVP (1.2).

Proof of Theorem 1.4. As in the proof of Theorem 1.2, this theorem will also
be proved by considering the integral equation associated to the IVP (1.2),

u(t) = S(t)¢ — /O S(t—t)g(w(t' +t0))0u (uFTH) (') at’, (3.6)

and using the contraction mapping principle.

First of all, notice that the periodic function g is bounded, say ||g||z= <
A, for some positive constant A. Since the norms involved in the space Y
permit us to take out [|g||ps-norm as a coefficient, the proof of this theorem
follows exactly the same argument as in the proof of Theorem 1.2. Moreover,
as the initial data ¢ is the same, the choice of the radius a of the ball is exactly
the same. However, to complete the contraction mapping argument, we must
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select 7' > 0 such that C||g||=T"/?a* < 1, which implies that the existence
T is given by
C

T=T\glles: ol w) = 5 mr— (3.7)
191170 1011371 gy
Furthermore, in this case too, from the proof, one can get
[ull x7 < Cllol (- (3.8)
d

In sequel, we present some results that play a central role in the proof
of the main theorems of this work. We begin with the following lemma whose
proof can be found in [5].

Lemma 3.2. Let Xt and Yr be spaces as defined in (1.15) and (1.16). Let
f € Yp, then we have the following convergence

t t
/0 g(w(t' +10))S(t — ) f(¢')dt" — m(g)/o St =) f(E)dt', (3.9
whenever |w| — oo, in the Xr-norm.

With the similar argument as in the case of the critical KdV equation
(see [5]), we have the following convergence result.

Lemma 3.3. Let the initial data ¢ € H*(R). Let u,, 4, be the mazimal solution
of the IVP (1.1). Suppose U be the mazimal solution of the IVP (1.14) defined
in [0, Smaz)- Let 0 <T < Sy and let gy, exists in [0,T] for |w| large and
that

limsup sup ||t ¢, | s 11 (r) < 00, (3.10)
|w|—o0 toE

and

lim sup sup [ty ¢l 215 < 00. (3.11)
|w]—o0 to€ER

Then, for allt € [0,T],

sup ||t , —Ullxy — 0, as |w] — oo. (3.12)
toER

In particular, uy 4, — U as |w| — oo, in HY(R).

Proof. Since u,, 4+, and U have the same initial data ¢, from Duhamel’s formula,
we have

t
oty — U = / 9@t +10))S(t—t')0s (uH1)dt /Stft )9, (UF )t
0
t
- / (' +10))S(t — )0u (uEL — UM )ar
0

+ / (@ (' + to)) — m(@)]|S(t — )2 (U*)at
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We note that
[T — P < C(Juf* + o) u — o] (3.14)
and
|0 (M = "] < C[(Jul® + [0]*)|0s (u — )|
+(10sul + |0z0]) (Jul*~ + Jo*H)u — o], (3.15)

Let [|gllnse < A. Use of (2.2), (3.14), Hélder’s inequality and the assump-
tions (3.10) and (3.11), yield
Iz < Cllgllosllulht — U L
< CAllul ¢, (ww,ty — D)llLi Lz + 1U* (vw,ty — U)llLi 2
< CAllul 4 llnz Lo luw,eo — UllLapz + 11U L2 L lluw,ee — Ull2 13,
< CA[llul 2l 62 o ez g +1U 2l e 102z s | bty —Ull g 2
< CAlltwto 152301 1y Mt 1 e HNUNE s o 101315 |ttt = Ul 22

< CAljuety — Ullza z2. (3.16)

Again, using (2.2) and (3.15), one can obtain
10x 11l Lser2 < CA[|Ou(ulhy = U L1pa

< CA| (ot * + 1U1*) 0 (et = Ul 1 12,
H1 (10t to] + 10U 1) (1t + U1 (g — U)IIL;L';;]
=: OA[Jl + JQ] (317)
With the same argument as in (3.16)
Jl <C||6(UU_, to —U)HLQ L2- (318)

Now we move to estimate the first term, ||u” toa U to (Ueo,te — Ul L1 2
in Jo, the estimates for the other terms are similar. We have,

1l 20 Ottty (o — UL 12,
< Cllud g Iz pe 20 Outteo,to (vt — Ul 2 22
< Ol 7 pe o s Lo 100t to | e 12 | (ot — Ul 3 100
< Ottt 7 Lo terto I T oy | Wt = Ul 22
< Ol(u,to — U)HL2TH1(]R)- (3.19)
Inserting (3.18) and (3.19) in (3.17), we get
Haa:hHL%"Li < CAl[(uw,to — U)HLzTHl(R)' (3.20)
Combining (3.16) and (3.20), we obtain
11l Lge o Ry < CAll(uer,te = U)ll L2112 () (3.21)

From Lemma 3.2, we have

HIQ”L%OHI(R) <C,—0, as |w|— oc. (3.22)
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Therefore, we have
tw,to = UllLgemr®) < CAl|(vw,te — U)ll 2. 11 (m) + Coo- (3.23)
Applying Lemma 2.10 in (3.23), we get
tw,to = UllLge )y < KCy — 0, as |w| — oo. (3.24)
From (3.23) and (3.24), it is easy to conclude that
[(tuw,to = U)llL2.51 ) — 0, as [w| — oo. (3.25)

Now, we move to estimate the other norms involved in the definition of
XT. Let,

L1 = (100 (Ut = U)ll e £z, + 107 (e ty — U)ll oo 12,
Fllvw,to = Ullzzpio + [ Da(vw,i0 = ULz Lio

and
£, = ||8x(uw,to - U)”LiUL;/Z + ”uw,to - UHL?CL%C'

Use of (2.2), (2.3), the estimate (2.11) from Proposition 2.7 with admis-
sible triples (p1,¢1,a1) = (5,10,0), and (p2, g2, a2) = (00,2,1) in (3.13), yields

£, < CAY0:(uhy — UM paps + CAllufY, — UM paps + II2llx,-

w,to w,to
(3.26)
Therefore, with the same argument as in (3.16)—(3.20), we can obtain
£, < OAllug,ty = Ullpz. g + Co- (3.27)
Hence, using Lemma 3.2 and (3.25) we get from (3.27) that
g, “B=0. (3.28)

Finally, to estimate £, we use Proposition 2.7 with admissible triples
(p1,q1, 1) = (20,5/2,3/4) and (p2, g2, a2) = (20/3,5,1/4), to get

|

and with admissible triples (p1,q1,01) = (4,00,—1/4), and (p2, g2, 2) =
(20/3,5,1/4), to have

| s

Using (3.29), (3.30), and the definition of X7, we get from (3.13) that

t
635/ St —t)f(,t"dt < C|[fll 207, 5/4; (3.29)
0

L2OL 5/2 -

L ) e (3.30)

w,to

£, < CA||6$(uk+1 _ UkJrl)HLiO/NL;M -+ ||IQ||XT (331)
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Using (3.15), we can obtain
1052~ U zonr g < €[t ol + 1010 (st = D)l 2007
Hl1 (1020 | + 102U (ftt gy |~
+|U\k_1)(u‘”’t° - U)||L§O/17L§/4}
=: C[Jy + Ja). (3.32)

Holder’s inequality, the fact that 20/13 > 10/7, Sobolev immersion and the
assumption (3.10), imply that

Ji < ClOu (g — V)l osp Ul g | s e + U] o 07}
< O110% (torto — U gz o Ul ol 2077 s+ [U*| a0/ 200}

< Cl10s (uwty = Uz o T ttwto 55 2 + 10 g e}

@

< CT)0y (v tg — U) | 13 130- (3.33)
As in (3.17), we give details in estimating the first term, ||uf,;38muw7to

(U g — U)||L§°/”L5T/4 in Jo, the estimates for the other terms are similar. Here

too, Holder’s inequality, the fact that 20/3 > 5, Sobolev immersion and the
assumption (3.10), yield

Hui;i@muw,to (tho — U) ||Lio/17L5T/4
< CHUEJSS; ||L§0/3L5T ”afbuw,to ”L?EL?F ||uw,t0 - U”LgL%P
k—

< CH“w,ténLg}Liom||8wuwnfo||L2TL§ l[tw,to = UllLs 20

< CT M ug 1|15 oo g1 [t to — Ull s 1o

< CT gty = Ul s Lo (3.34)
In view of (3.32), (3.33) and (3.34), we get from (3.31) that

20 < CATT 0,0y — U2z 130 + tso — Ullzasze} + Co (3.35)

Therefore, Lemma 3.2 and (3.28), imply

e, =, (3.36)
Now, the proof of the Lemma follows by combining (3.24), (3.28) and
(3.36). O

In what follows, as we did in our earlier work [5], consider the super-
critical KdV equation with more general time dependent coefficient on the
nonlinearity

k+1 — >
{ut + Upge + R0, (w* 1) =0,2,t €R, k>5 (3.37)

u(z,0) = o(z),

where h € L is given.
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The results for the IVP (3.37) and their proofs that we are going to pres-
ent here are quite similar to the ones we have for the critical KdV equation in
[5]. For the sake of clarity, we reproduce them here.

Proposition 3.4. Given any A > 0, there exist € = €(A) and B > 0 such that
if |R|lL~ < A and if p € HY(R) satisfies

1S®)llLsrio < (3.38)

then the corresponding solution u of (3.37) is global and satisfies
lullps pio < 2([S(#)l 15 L0, (3.39)
ullx, < Bl@| i (r)- (3.40)

Conversely, if the solution u of (3.37) is global and satisfies
[ull s 1o <€, (3.41)

then

[S#®)@llLs Lo < 2|ullLs Lo (3.42)

Proof. Since ||h|p= < A, as in Theorem 1.4 we can prove the local
well-posedness for the IVP (3.37) in H'(R) with time of existence T =
T([|¢]l zr2 (my |B][ o). Let uw € C([0, Tpaz); H*(R)) be the maximal solution
of the IVP (3.37). For 0 <t < T}p4z, we have that

u(t) = S(t)é + wl(t), (3.43)

where
w(t) = — /t S(t —t)h(t)0, (uF T () dt’.
0

Using (2.11) from Proposition 2.7 for admissible triples (5,10,0) and
(00,2, 1), we obtain

lwll s a0 < CAllu" | 1pe < CAllu" | Lee s 0|l Lrr

< CAllulls s g0 < CAlull3s e (3.44)
From (3.43) and (3.44) it follows that
llzgno — ISl g rao] < CAlulSy . (3.45)
Thus, for all T € (0, Tynq.) one has
Jull i < €+ CAlul o (3.46)
Choose € = ¢(A) such that
CA(2)* < 1/2, (3.47)

and suppose that the estimate (3.38) holds. As the norm is continuous on T
and vanishes at T' = 0, using continuity argument, the estimate (3.46) and the
choice of € in (3.47), imply that
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Moreover, from (3.45)

lllosee < 1S@6lisop  +CAlulligp

<S@®llrzrie  +CAR2) |ullpzriwe (3.49)
Therefore, with the choice of € satisfying (3.47), the estimate (3.49) yields
lullsrse < 2SE)@llrsrw . (3.50)

In what follows, we will show that T},,4. = 0o. The inequalities (2.2), (2.3),
(2.11) with admissible triples (5,10,0) and (o0, 2, 1), and Holder’s inequality
imply

wllrge 4+ |0zwl[ Lo 2, + ||8§w||L;oL2T + |wllzs Lio + 10z fl s L1
< CAllullds o lull (3.51)
Now using (3.29), (3.30) and Hoélder’s inequality, we have
190020502 + 0lz2 < CAL ()20
< OAHukHLZ/“LST/QHaquLgOLST/Q
< AWz a2 10s]
< CAZ o el o9l
< CAHUHigLITO||5zu||LioLsT/2~ (3.52)
Combining (3.51) and (3.52), we obtain
lwllxy < CAlullss gy llullxa (3.53)

This estimate with (3.47) and (3.48) gives

lwllx, < CAQe)|ullx, < %HUHXT- (3.54)
Using (3.43) we obtain
lullxr < 1SE)lxr + lwllxr < Clldll @) + %HUIIXW (3.55)
for all T € (0, Trnaz). Therefore, we have
lullxr,,,, <2C8llm ®)- (3.56)
Hence, from the definition of |lu|x,, , we have that
lull g, o) < Cllu(0)lla @) (3.57)

Now, combining the local existence from Theorem 1.4 and the estimate
(3.57), the blow-up alternative implies that T},., = co. Finally, the estimates
(3.50) and (3.56) yield (3.39) and (3.40) respectively with B = 2C.

Conversely, let Tj,q, = o0 and (3.41) holds. With the similar argument
as in (3.45), we can get

Hlwllzg pio = 1S®)¢ll L Liol < CAllullzs 1o (3.58)
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Thus, from (3.58) in view of (3.41) and (3.47), one has
1S®) Bl rspro < [lullpspio + C A |ull s 110 < 2||ull s po- (3.59)
O
Corollary 3.5. Let h € L>°(R) satisfy |h|L~ < A and € and B be as in Prop-
osition 3.4. Given ¢ € HY(R), let u be the solution of the IVP (3.37) defined
on the mazimal interval [0, Tpar ). If there exists T € (0, Tynaz) such that
IS@u(T)llzsrie <

then the solution u is global. Moreover

lllgsoyg <2 and [y, <Blu()]m .

Proof. The proof follows by using a standard extension argument. For details
we refer to the proof of Corollary 2.4 in [6]. O

4. Proof of the main results

The argument in the proof of the main results, Theorem 1.5 and Theorem 1.6,
is quite similar to the one used in the case of the critical KdV equation [5]. As
mentioned earlier, Lemma 3.3 and the local existence Theorem 1.4 are used in
the proof of Theorem 1.5. While, Proposition 3.4 and Theorem 1.5 are crucial
in the proof of Theorem 1.6. Here we adapt the techniques used in [5] and [6]
to complete the proofs.

Proof of Theorem 1.5. Let A = ||g||p~,T € (0, Smax) fixed and set

Mo =2 sup [[U)]arw)- (4.1)
te[0,7)
In particular, for t = 0, (4.1) gives ||¢| g1 (r) < Mo/2. From Theorem 1.4,
we have that for all w,ty € R, u,, exists on [0,d]. Using (3.7) we have that
the existence time 9, is given by

5— AzCMg' (4.2)
Moreover, from (3.8)
limsup sup [[ug ¢, ||z 1 (r) < Clloll 1 (m) (4.3)
|w|—oo to€
and
lim sup $up ([t o 23 25 211wy < Cll6ll a1 ay- (1.4)

|w|—oo to€ER

| —o0

From Lemma 3.3, we have that sup, cg |[tw,t — Ullxy s 0, in particular

up 1y (8) ~ U 6) 111 o wloe ), (4.5)

to€

Combining (4.1) and (4.5), for |w| sufficiently large, we deduce that

Sup [[tw,to (0) | 1 (r) < Mo. (4.6)
to€R
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We suppose § < T, otherwise we are done. Using Theorem 1.4 we can
extend the solution u, 4, (as in the proof of Corollary 3.5) on the interval [0, 24],
with Hﬂ’w,to HL?" (0,6)H (R) < CHﬁw,tD (0) HHl(R), where 4y, 4, (t) = Ut (t49) ie.,
‘|uw7t0 ||Lf°(6,26)H1 (R) < C’||uw7t0 (5) HH](]R) < C? H(b”Hl(]R). Therefore, (4.3) gives

lim sup sup [[ue,toll 22 (0,26 1 (r) < C(1 4 C)[[@]| m1.(w) - (4.7)

|w|—o0 toER
Similarly, from (4.4),
lim sup sup [[ue 1l s gz @) < C(1+ O)| ]| (r)- (4.8)

|Jw|—oo to€ER
So, we can again apply the Lemma 3.3. Iterating this argument at a finite
number of times with the same time of existence in each iteration, we see that

limsup sup [|ug ¢, | 5o 1 (®) < Clldl a1 (w)
|w|—o0 toER

and
limsup sup [[ug tllz2rse < Cll@l ar(m)-
|w|—oo to€ER
The result is therefore a consequence of Lemma 3.3. 0

Proof of Theorem 1.6. Let € € (0,€e(A)), where €(A) is as in Proposition 3.4.
If T is sufficiently large, from (1.23), we have that

€
1WUleazg < 1

Applying Proposition 3.4 to the global solution U(t) = U(t+T), the inequality
(3.42) gives

ISOUTM) g 130 = ISOUO) 15230 < 201025230 = 20U pg 20

(4.9)

€
< —.
-2
(4.10)
From this inequality and Corollary 3.5 we get
Ul x 00y < BIU(T) |10 m)- (4.11)
From Theorem 1.5 it follows that

sup sup tw,to(t) = U@) |1y — 0, as |w|— oo. (4.12)
to€R 0<t<
Thus, if |w] is sufficiently large, the triangular inequality along with (4.12)
gives

1S @) to (D)l g e < ([S@) 10 (T) = SOU(T) |5 20 + 1SOUT)] L3 Lo

€
< ftoa(T) = U(T) 2z + 5

<e (4.13)
Therefore, Corollary 3.5 implies that u,, 4, is global. Moreover,

Su% ”uUJio”LgL%% o) <2, and ||uw7t0||X(T,oc) < B||uw7to (T)”Hl(]R)a (414)
to€ !

for |w| sufficiently large.
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Let My = supg<;<r [|[U(t)| 51 (r), as in (4.1). Now, we move to prove
(1.24). The inequalities (4.12) and (4.14) show that there exists L > 0 such
that

sup sup sup ||ue ¢, (6) [ g1 ) < (14 Mo)+ Bl[ties 0 (T) || 111 (ry = M1 < o0.
lw|>L to€R t>0
(4.15)

In what follows, we prove that u,;, — U in the | - || x,-norm, when
|w| — 0.
Using Duhamel’s formulas for u, ;, and U we have

Uw tg (T + t) — U(T + t) S ’U,w Jto (T) - U(T))

/St—t W(T + '+ 10)) 0 (ul ) (T + ') dt!

/ S(t — 10, (UF ) (T + )t

=L+ L+ (4.16)

Using properties of the unitary group S(¢) we have by (4.12) that

|w]— 00

1111, = [[S(8) (oo, (T) =U(T)) L, < Clltsa b6 (T)=U (D)l 111 () 0.
(4.17)
With the same argument as in (3.53), we have

I1Tlx, < CAllwseallds g _ Tl (1.18)

From (4.18), with the use of (4.14) and (4.15), we have
[I2]| x, < CA(2¢)' BM,. (4.19)
As in I, using (4.9) and (4.11), we get

Fsllx, < CAIUN gy 10 ]xer.
<ca()'Bu (420)
< CA(Y) BM.

Now given 3 > 0, we choose € > 0 sufficiently small (7" sufficiently large)
such that C'A(2¢)*[BMy + BM;] < (/3 and |w| sufficiently large, so that
(4.16), (4.17), (4.19) and (4.20) imply

[t to (8) = U)X (7,c) = Nh,to (T + 1) = U(T + 1) x,
< llx, + [H2lx, + ]|,
< B. (4.21)
On the other hand, from Theorem 1.5, we have

||uw,t0 (t) - U(t)HX(o,T) = ||Uw,to (t) - U(t)HXT 0. (422)

Therefore, from (4.21) and (4.22), we can conclude the proof of the the-
orem. O

|w|—o0
N
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