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Dedicated to Arrigo Cellina, on occasion of his 70th birthday.
António has been maybe the second—out of a long list yet to end—earning
a PhD under Arrigo’s supervision. He still recalls quite vividly the great pleasure
aroused, back in 1985 and 1986, on his young and fresh mind, by Arrigo’s lectures
at the great SISSA school, e.g. those on Smale’s continuous Newton method, those
on Granas and Dugundji’s fixpoint theory, and those on Oxtoby’s Lebesgue measure
versus Baire category. Arrigo still remains, to this day, António’s model
mathematician.

Abstract. Given any AC solution x : [a, b] → R
n to the convex ordinary

differential inclusion

x′(t) ∈ co{v1(t), . . . , vm(t)} a.e. on [a, b], (*)

we aim at solving the associated nonconvex inclusion

x′(t) ∈ {v1(t), . . . , vm(t)} a.e., x(a) = x(a), x(b) = x(b), (**)

under an extra pointwise constraint (e.g. on the first coordinate):

x1(t) ≤ x1(t) ∀t ∈ [a, b]. (***)

While the unconstrained inclusion (**) had been solved already in 1940
by Liapunov, its constrained version, with (***), was solved in 1994 by
Amar and Cellina in the scalar n = 1 case. In this paper we add an
extra geometrical hypothesis which is necessary and sufficient, in the vec-
tor n > 1 case, for existence of solution to the constrained inclusion (**)
and (***). We also present many examples and counterexamples to the
2 × 2 case.

The research leading to this paper was performed at: Cima-ue (Math Research Center of

Universidade de Évora, Portugal) with financial support from the research project PEst-
OE/MAT/UI0117/2011, FCT (Fundação para a Ciência e a Tecnologia, Portugal); and its
resulting applications have been presented by A. Ornelas at the International Workshop
“Nonlinear differential equations and control”, Milan September 2011.
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1. Introduction and main results

To state precisely the results of this paper, consider the space

X := W 1,1([a, b],Rn), (1.1)

fix m integrable velocities

v1(·), . . . , vm(·) ∈ L1([a, b],Rn), (1.2)

fix any AC (absolutely continuous) function

x(·) ∈ X co := {x(·) ∈ X : x′(t) ∈ co{v1(t), . . . , vm(t)} a.e.}; (1.3)

and consider the associated nonconvex differential inclusion

x′(t) ∈ {v1(t), . . . , vm(t)} a.e., x(a) = x(a), x(b) = x(b), (1.4)

and its convexified, or relaxed, differential inclusion

x′(t) ∈ co{v1(t), . . . , vm(t)} a.e., x(a) = x(a), x(b) = x(b); (1.5)

together with their solution sets

X co
:= {x(·) ∈ X : x(·) solves (1.5)}, (1.6)

X true
:= {x(·) ∈ X : x(·) solves (1.4)}. (1.7)

Fix, moreover, any “direction” ω ∈ R
n, e.g. ω = (1, 0, . . . , 0); and consider

the corresponding constrained solution sets:

X co

− := {x(·) ∈ X co
: 〈x(t), ω〉 ≤ 〈x(t), ω〉 ∀t ∈ [a, b]}, (1.8)

X true

− := X true ∩ X co

− , 〈·, ·〉 = R
n-inner product. (1.9)

In order to gain some geometrical insight into our problem, taking, e.g.,
|ω| = 1, we are given an AC factor h(·) ∈ W 1,1([a, b]), a hyperplane H(t)
orthogonal to ω, namely

H(t) := {S ∈ R
n : 〈S − ωh(t), ω〉 = 0}, t ∈ [a, b],

moving along the ω-direction with relaxed velocities h
′
(t) ∈ co{〈v1(t), ω〉, . . . ,

〈vm(t), ω〉} a.e. on [a, b]; and an AC point x(t) ∈ H(t) moving inside this hyper-
plane with relaxed velocities x′(t) ∈ co{v1(t), . . . , vm(t)} a.e. on [a, b]. Our aim
is to find an AC point x̂(t) starting from the same initial point, x̂(a) = x(a) ∈
H(a), moving with true velocities x̂′(t) ∈ {v1(t), . . . , vm(t)} a.e. on [a, b], and
reaching exactly the same final endpoint, x̂(b) = x(b) ∈ H(b), under the extra
constraint of (touching at will but) never crossing the moving hyperplane H(t).

Recall now the classical 1940 theorem of Liapunov [21] on convexity of
the range of vector measures (which may also be seen, with a new proof, e.g.
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in the more recent [4] paper). This result guarantees that

∀x(·) ∈ X co ∃x̂(·) ∈ X true
, ∀n ≥ 1 in (1.2), (1.3) and (1.7),

i.e. the unconstrained inclusion always has a solution.
If one wishes to add the pointwise constraint in (1.8) to the inclusion

(1.4), then the result of [1, lemma 3.4] tells us that

∀x(·) ∈ X co ∃x̂(·) ∈ X true

− , for n = 1 in (1.2), (1.3) and (1.9),

i.e. up to now only the scalar n = 1 case of the general constrained inclusion
had been solved. (Or, more precisely, thanks to a helpful referee info: some
special cases, of this constrained inclusion with single integrals, had also been
then solved, namely: in [2], the vector n > 1 case with constant control-poly-
hedron, i.e. v1, . . . , vm ∈ R

n in (1.2); and, in [14], the scalar n = 1 case of
optimal control driven by a scalar second-order linear differential inclusion.)

Our first result is a simple direct generalization to the vector n > 1 case
of [1, lemma 3.4] which, however, does not solve n− 1 coordinates of the final
endpoint equality in (1.4). Namely, setting

Xω := {x(·) ∈ X : x(a) = x(a), 〈x(b), ω〉 = 〈x(b), ω〉} (1.10)

X co

ω := {x(·) ∈ Xω : x′(t) ∈ co{v1(t), . . . , vm(t)} a.e.} (1.11)

X true

ω := {x(·) ∈ Xω : x′(t) ∈ {v1(t), . . . , vm(t)} a.e.}, (1.12)

then it says:

Theorem 1.1. (Existence of true ω-extremal weak-solutions)

∀x(·) ∈ X co ∀ω ∈ R
n ∃xmin

ω (·) ∈ X true

ω ∃xmax
ω (·) ∈ X true

ω :

〈xmin
ω (·), ω〉 ≤ 〈x(·), ω〉 ≤ 〈xmax

ω (·), ω〉 ∀x(·) ∈ X co

ω .
(1.13)

The proof of Theorem 1.1 defines xmin
ω (·) and xmax

ω (·) in such a way that

xmin
ω (·) ∈ X ext

ω and xmax
ω (·) ∈ X ext

ω (see (3.5) and (3.9)),

where the space

X ext
ω := {x(·) ∈ X : x′(t) ∈ {vmin

ω (t), vmax
ω (t)} a.e.} (1.14)

depends on the also there defined

ω-extremal velocities vmin
ω (·) and vmax

ω (·) (see (3.1)). (1.15)

Geometrically, Theorem 1.1 tells us that the final hyperplane H(b) is eas-
ily attained. Thus our real challenge, in this research, has been how to reach,
more specifically, the exact final target x(b) inside H(b).

In order to solve this problem, consider a new subspace of (1.8):

X co

−− := {x(·) ∈ X co

− : 〈x(t), ω〉 < 〈x(t), ω〉 a.e. in Ox}, (1.16)

where Ox is an open set and satisfies

Ox ⊃ a.e. {t ∈ (a, b) : ∃x′(t) /∈ {v1(t), . . . , vm(t)}}, (1.17)

e.g. Ox = (a, b). Then the main result of our research is:
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Theorem 1.2. (Necessary and sufficient condition for ω-lower true-solutions)

X true

− �= ∅ ⇔ X co

−− �= ∅, ∀x(·) ∈ X co ∀ω ∈ R
n ∀n > 1. (1.18)

Remark 1.3. More precisely, the inclusion ⊃ in (1.17) is intended in the a.e.
sense, i.e. ignoring null sets. Thus, to prove the ⇒ implication in (1.18), given
any x(·) in X true

− one shows that such x(·) also belongs to X co

−− by setting Ox in
(1.16) to be the set where 〈x(t), ω〉 < 〈x(t), ω〉 (or any open subset of it, e.g. ∅),
which trivially contains a.e. the null set in the rhs of (1.17). Notice also that,
as an extreme weird case, one may even have X co

−− = X co

− = {x(·)} = X true

− .
More generally, as will be shown after (3.13), the implication ⇐ in (1.18)

remains valid if the open set in definition (1.17) and (1.16) is changed, to
become (see (1.14) and (1.15)) any open set

Ox ⊃ {t ∈ (a, b) : x(t) �= xmin
ω (t) and x(t) �= xmax

ω (t)} or (1.19)
Ox ⊃ {t ∈ (a, b) : x(t) �= x̌(t)}, for some x̌(·) ∈ X ext

ω . (1.20)

Another possibility is to consider any open set

Ox ⊃ {t ∈ (a, b) : 〈xmin
ω (t), ω〉 < 〈x(t), ω〉 < 〈xmax

ω (t), ω〉}, (1.21)

and add an extra geometrical hypothesis: to forbid nonsingleton faces orthogo-
nal to ω, on the relative boundary of the convex hull of the vj(·) velocities in
(1.2); or, more precisely, for a.e. t ∈ [a, b] \ Ox, to impose

〈vj(t), ω〉 = 〈vmin
ω (t), ω〉 = 〈vk(t), ω〉 ⇒ vj(t) = vk(t), (1.22)

〈vj(t), ω〉 = 〈vmax
ω (t), ω〉 = 〈vk(t), ω〉 ⇒ vj(t) = vk(t). (1.23)

Theorem 1.4. (ω-increasing sequence of true-solutions) Assume, in (1.16) with
Ox defined (not as in (1.17) but) as in (1.19) or (1.20) or (1.21), or even by
Ox := (a, b), that X co

−− is nonempty and both (1.22), (1.23) hold true.
Then x(·) may be uniformly approximated by a ω-increasing sequence of

true solutions, i.e.

∃(x̂k(·)) ⊂ X true
: (x̂k(·)) → x(·) and

(〈x̂k(·), ω〉) ↗ 〈x(·), ω〉, uniformly.
(1.24)

Finally, our last result in this section delivers a stronger approximation
under a stronger extra hypothesis: the possibility of finding a product reordering
of the vj(·) velocities in (1.2), namely so as to become

v1(t) ≤ v2(t) ≤ · · · ≤ vm(t) a.e., meaning (1.25)
v1
i (t) ≤ v2

i (t) ≤ · · · ≤ vmi (t) a.e. ∀i ∈ {1, . . . , n}.
In this case we redefine (1.8), to become

X co

− := {x(·) ∈ X co
: x(t) ≤ x(t) ∀t ∈ [a, b]},

using the same definition of ≤ as in (1.26); redefine (1.14), (1.20) and (1.16)
to become, for some

x̌(·) ∈ X ext := {x(·) ∈ X : x′(t) ∈ {v1(t), vm(t)} a.e.}
and some open Ox ⊃ {t ∈ (a, b) : x(t) �= x̌(t)},
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X co

−− := {x(·) ∈ X co

− : x(t) < x(t) for a.e. t ∈ Ox}, (1.26)

x(t) < x(t) now meaning xi(t) < xi(t) ∀i ∈ {1, . . . , n}; and add an extra
hypothesis on (1.26): for a.e. t ∈ [a, b] \ Ox and ∀j ∈ {1, . . . ,m},

either v1(t) < vj(t) or else v1(t) = vj(t), (1.27)

either vj(t) < vm(t) or else vj(t) = vm(t). (1.28)

Theorem 1.5. (Product-increasing sequence of true-solutions) Assume, in
(1.26), X co

−− �= ∅ with the product ordering (1.26) satisfying (1.27) and (1.28).
Then x(·) may be uniformly approximated by an increasing sequence of true
solutions:

∃(x̂k(·)) ⊂ X true
: (x̂k(·)) ↗ x(·) uniformly.

(Notice: the hypothesis (1.27) and (1.28) is not needed for k = 1.)

The multitude of potential applications of these results can easily be
guessed by recalling all the research papers, using the Liapunov convexity the-
orem as main tool of the proof, which have been published on nonconvex ordi-
nary differential inclusions, calculus of variations and optimal control, since
the pioneering works [3,12], including, e.g., dozens of papers published by the
last author of the present paper, along the last quarter of century, together
with, e.g., [1,2,8,14,17,18].

Indeed, our motivation to invest such effort into this nontrivial extension
of the Liapunov tool has been precisely the need we felt to have it available
in order to unblock our road towards solving some real-life nonconvex prob-
lems of the calculus of variations and optimal control, involving both single
and multiple integrals. Their solutions appear in our several papers (see, e.g.,
[9,10]) in preparation which use (1.18) and (1.24) as a crucial tool, and yield,
in particular, a sharp version of [14].

Finally, a non-exhaustive list of papers and books containing generaliza-
tions of the Liapunov convexity theorem [21] appears in our References below,
namely [1,2,4–7,13–17,19,20,22–24].

2. A deeper analysis of the 2 × 2 case

While (1.18), together with either (1.17) or (1.19) or (1.20) or else (1.21)–
(1.23), yields a nice and simple theoretical sufficient condition, in practical
applications one is given a specific n × m matrix of velocities in (1.2) and a
specific relaxed solution x(·) in (1.3); and then it is not at all clear, a priori,
whether the above class X co

−−, in (1.18) and (1.16) is, or is not, empty.
The aim of this section is to present our first contribution towards clarify-

ing such issue, namely through necessary conditions, and sufficient conditions,
to have X co

−− nonempty, and to have X co

−− empty. However, at least in this
paper, we only do this under the most basic nontrivial framework: the special
case of a 2 × 2 matrix of given velocities (i.e. m = 2 = n in (1.2)).

More precisely, in this section we consider, for simplicity: just m = 2
velocities to be given in (1.2), in space-dimension n = 2; and with difference
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between these two velocities having second coordinate writable as a factor f(t)
times the first one. Thus we assume given

v1(·) and v2(·) ∈ L1([a, b],R2), (v2 − v1)(t) = v(t)(1, f(t)) a.e., (2.1)
for some v(·) ≥ 0 a.e. in L1(a, b) and some f(·) in

(2.2)F := {f(·) ∈ L1(a, b) : (f · v)(·) ∈ L1(a, b)}.
While this may, at first sight, seem like a very very special situation, in reality
asking for v(·) ≥ 0 is not a loss of generality; and such very basic framework
is precisely what we need for our applications, of this constrained Liapunov
convexity Theorem 1.2, to the Calculus of Variations involving vector-valued
functions in competition towards minimization of nonconvex single or multiple
integrals, under state and gradient pointwise constrained lagrangians, in our
next papers, beginning with [9,10].

To clarify the situation under this basic framework, we begin by present-
ing a necessary condition; hence, in particular, a counterexample illustrating
the necessity of including some extra hypothesis, like (as in (1.18)) nonemp-
tiness of the set X co

−−, in order to guarantee solvability of our pointwise con-
strained Liapunov problem. Again for simplicity, let us assume, in this section,

ω = (1, 0) and Ox = (a, b) on defining X co

−− in (1.16); (2.3)

and associate to each f(·) ∈ F (as in (2.2)) the new class of functions

G
f

:= {g(·) ∈ W 1,1
0 ([a, b]) : g(·) �≡ 0 and (f · g′)(·) ∈ L1(a, b)}. (2.4)

Theorem 2.1. (Necessary condition and counterexample) For each given
f(·) and x(·), as in (2.1), (2.2) and (1.3), so that

∃λ(·) ∈ L∞(a, b) : λ(t) ∈ [0, 1] a.e. and

x′(t) = v1(t) + λ(t)v(t) · (1, f(t)) a.e.,
(2.5)

it turns out that the class

X co

− \ {x(·)} (resp. X co

−−) is nonempty if and only if (2.6)
∃g

f
(·) ∈ G

f
: g

f
(·) ≥ 0 (resp. g

f
(·) > 0 a.e.) and (2.7)

∫ b

a

f(t)g
f

′(t)dt = 0 and − [v · (1 − λ)](t) ≤ g
f

′(t) ≤ [v · λ](t) a.e.. (2.8)

In particular, such necessary condition yields a simple counterexample
(independent of x(·)) involving essentially all the monotone f(·) ∈ F :

f(·) a.e. monotone and
∫ b

a

|f ′(t)|dt > 0 ⇒ X co

−− = ∅ (see (2.3)) (2.9)

(or, more precisely, ∃ monotone f̌(·) = f(·) a.e. and
∫ b

a
|f̌ ′(t)|dt > 0);

f(·) a.e. strictly monotone ⇒ X co

− \ {x(·)} = ∅ (see (1.8)). (2.10)
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The equality in the lhs of (2.8) renders natural the following definitions

F+ :=

⎧

⎨

⎩

f(·) ∈ F : ∃g
f
(·) ∈ G

f
with g

f
(·) ≥ 0

and
∫ b

a

f(t)g
f

′(t)dt = 0

⎫

⎬

⎭

(2.11)

F++ :=

⎧

⎨

⎩

f(·) ∈ F : ∃g
f
(·) ∈ G

f
with g

f
(·) > 0 a.e.

and
∫ b

a

f(t)g
f

′(t)dt = 0

⎫

⎬

⎭

. (2.12)

More precisely than (2.9), we prove (in [11]) that

f(·) a.e. monotone and
∫ b

a

|f ′(t)|dt > 0 ⇒ f(·) /∈ F++; (2.13)

and the next result is a kind of expectable enlarged “converse” of (2.13):

Proposition 2.2. (Density of F++ in F)

F++ is a dense subset of F (2.14)

or, more precisely, the subclass Fpc of a.e. piecewise constant functions in F
(see (2.2)) satisfies:

Fpc ⊂ F++ and Fpc is dense in F . (2.15)

Proposition 2.3. (Partial sufficient condition via mean replacement)

f(·) ∈ F and

∫ b

a

f(t) · tdt =
∫ b

a

f(t)
a+ b

2
dt ⇒ f(·) ∈ F++. (2.16)

(Demand on f(·): the factor t should be replaceable by its mean a+b
2 .)

Proposition 2.4. (Partial sufficient condition for AC functions plus jumps)

f(·) ∈ W 1,1([a, b]) ⇒
∫ b

a

f(t)|f0|′(t)dt = [f(a) − f(b)] · |f0|, (2.17)

in particular f(a) = f(b) �≡ f(·) ⇒ f(·) ∈ F+ (2.18)
and f(a) = f(b) �= f(t) for a.e. t ∈ (a, b) ⇒ f(·) ∈ F++, (2.19)

where f0(t) := f(t) − faf (t) − f(a) (�=0 a.e. in case (2.19)) (2.20)

with faf (t) :=
t− a

b− a
[f(b)−f(a)] and |f0| := 1

b− a

∫ b

a

|f0(t)|dt. (2.21)

Moreover, the integral in (2.17) does not change its value whenever one
adds to f(·) any number of jump-discontinuities of the type

fpc(t) := ci for t ∈ (ai, bi), ∀i ∈ I, with (ci) bounded ⊂ R, (2.22)

where
⋃

i∈I
(ai, bi) = O := {t ∈ (a, b) : |f0(t)| > 0}, i.e. (2.23)

∫ b

a

(f + fpc)(t) · |f0|′(t)dt = [f(a) − f(b)] · |f0|, (2.24)

hence f(a) = f(b) �= f(t) a.e. ⇒ (f + fpc)(·) ∈ F++. (2.25)
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(Propositions 2.2–2.4, together with (2.9) and (2.10), are proved in [11].)
The above (2.15), (2.16), (2.19) and (2.25) present simple hypotheses

guaranteeing the lhs of (2.8), thus yielding, in particular, some geometrical
insight on F++.

In order to generalise (2.16) to higher degree polynomial factors, instead
of affine ones, we search for a polynomial g(·) ∈ G

f
of degree 2d; and associate

to each such d ∈ {1, 2, . . .} and to each f(·) ∈ F a

d× d-symmetric matrix Md
f whose entries M ij

f (2.26)

are linear combinations of pairs of iterated indefinite integrals of f(·); namely,
for k := i+ j and i and j ∈ {0, 1, . . . , d− 1},

M ij
f := (−1)k

(k + 1)!
i!j!

[(k + 2)f (−k−2)(b) − (b− a)f (−k−1)(b)], (2.27)

using the iterated indefinite integrals of f(·), i.e. f (0)(t) := f(t) and

f (−k−1)(t) :=
∫ t

a

f (−k)(τ)dτ for k = 0, 1, 2, . . . . (2.28)

Then, given any x(·) hence a corresponding λ(·), as in (1.3) and (2.5), we
finally present our main result on the special 2 × 2 case:

Theorem 2.5. (Fully sufficient condition) Under (2.1)–(2.3) and (2.5), it turns
out that (1.18) is applicable to yield X true

− �= ∅
(since ∃x̃(·) ∈ X co

−− having x̃′(·) := x′(·) − g′(·)(1, f(·)), (2.29)

namely f(·) belongs to F++ as in (2.12), with a 2d degree polynomial g(·) > 0
a.e. having g(a) = 0 = g(b) and satisfying (2.8))
whenever

(2.26) has, for some i ∈ {1, 2, . . .}, M ii
f ·M00

f ≤ 0 (2.30)

(or, more generally, M ii
f ·M00

f ≤ (M0i
f )2) (2.31)

and, e.g., the following inequalities hold true: (see (2.2) and (2.5))

−ess inf [v · (1 − λ)]([a, b]) < 0 < ess inf [v · λ]([a, b]). (2.32)

Remark 2.6. See (3.52) for a still more general replacement for (2.31).
Let us clarify now conditions under which (2.31) holds true. To begin

with, using the mean-value

mf :=
1

b− a

∫ b

a

f(t)dt

to define the classes

F i
r := {f(·) ∈ F : mf = 0 and M ii

f = r}, (2.33)

clearly the special case M00
f = 0 of (2.31) yields the inclusion

F0
0 ⊂ F++. (2.34)
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Next we show that

f(·) ∈ F ⇔ ∃ ˜f(·) ∈ F0
0 ∪ F0

1 ∃qf ∈ R \ {0} :

f(·) = mf + qf · ˜f(·);
(2.35)

and a useful simplification follows: since, obviously,
∫ b

a

f(t)g′(t)dt = 0 ⇔
∫ b

a

˜f(t)g′(t)dt = 0, ∀g(·) ∈ G
f
,

then, for the purpose of guaranteeing existence of such g(·), one may, instead
of the whole F , focus attention on F0

1 only, due to (2.34).
To prove (2.35), just set

˜f(·) := f(·)−mf

qf
, qf :=

{

1, if M00
f = 0

M00
f , if M00

f �= 0,

to obtain m
˜f = 0 and M00

˜f
∈ {0, 1} hence ˜f(·) ∈ F0

0 ∪ F0
1 .

As shown in Sect. 4 below, one may always, by subtracting an affine
function to any f(·) ∈ F , reduce it to a function

˜f0(·) ∈ F0
0 ⊂ F++ or ˜f1(·) ∈ F0

1 or ˜f−1(·) ∈ F0
−1. (2.36)

Simple examples of polynomial functions not satisfying (2.30) but for
which (2.31) holds true, with, e.g., i = 1, are also presented in Sect. 4; together
with an example in which (2.31) is unapplicable and should be replaced by the
more general (3.52).

Remark 2.7. On the other hand, while the inequalities (2.32) do suffice for
Theorem 2.5, they may be judged too heavy. Indeed, what is really needed is

−[v · (1 − λ)](t) ≤ g′(t) ≤ [v · λ](t) for a.e. t ∈ [a, b] (2.37)

(see (2.8)) or, more precisely, the possibility of finding a nonconstant polyno-
mial ϕ(·) of degree d− 1 such that, setting

g(t) := h(t) · ϕ(t) · ϕ(t), with h(t) := (b− t)(t− a), (2.38)

then g′(·) satisfies (2.37) and the nonzero vector α of Taylor coefficients of ϕ(·)
(as in (3.50) below) solves the bilinear matricial equation

αT ·Md
f · α = 0. (2.39)

At this point it becomes natural to define, using (2.1), (2.2) and (2.12),
the new class

F++
< := {f(·) ∈ F++ : (2.32) or (2.37) holds true} (2.40)

obtaining, due to (2.6)–(2.8) and (1.18),

F++
< �= ∅ ⇔ X co

−− �= ∅ (with (2.3)) ⇒ X true

− �= ∅. (2.41)
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3. Proofs

Proof of Theorem 1.1. Define the following measurable subsets of [a, b],

E0
+, E

1
+, . . . , E

m
+ and E0

−, E
1
−, . . . , E

m
− , by :

E0
+ := E0

− := ∅; and, for j = 1, 2, . . . ,m,
E
j−1

+ := [a, b] \ E0
+ \ E1

+ \ · · · \Ej−1
+ ,

E
j−1

− := [a, b] \ E0
− \ E1

− \ · · · \ Ej−1
− ,

Ej+ := {t ∈ E
j−1

+ : 〈vj(t), ω〉 ≥ 〈vk(t), ω〉 ∀k ∈ {1, . . . ,m}},
Ej− := {t ∈ E

j−1

− : 〈vj(t), ω〉 ≤ 〈vk(t), ω〉 ∀k ∈ {1, . . . ,m}}.
Using these sets Ej+ and Ej−, and their characteristic functions XEj

+
(·),

XEj
−
(·), define the functions

vmax
ω (t) :=

m
∑

j=1

XEj
+
(t)vj(t), vmin

ω (t) :=
m

∑

j=1

XEj
−
(t)vj(t) (3.1)

so that, by construction,

h(t) := 〈vmax
ω (t) − vmin

ω (t), ω〉 ≥ 0 ∀t ∈ [a, b]. (3.2)

Indeed, more precisely, for any j ∈ {1, . . . ,m} and any t ∈ [a, b],

〈vmin
ω (t), ω〉 = min{〈v1(t), ω〉, . . . , 〈vm(t), ω〉} ≤ 〈vj(t), ω〉

≤ max{〈v1(t), ω〉, . . . , 〈vm(t), ω〉} = 〈vmax
ω (t), ω〉,

in particular (recall (1.13), (1.11) and (1.10))

〈vmin
ω (t), ω〉 ≤ 〈x′(t), ω〉 ≤ 〈vmax

ω (t), ω〉 a.e. ∀x(·) ∈ X co

ω ;

so that certainly

∃λ(·) ∈ Λ := {λ(·) ∈ L∞(a, b) : λ(t) ∈ [0, 1] a.e.} (3.3)

for which one may write

〈x′(t), ω〉 = 〈(1 − λ)(t)vmin
ω (t) + λ(t)vmax

ω (t), ω〉 a.e.. (3.4)

Our first aim is to define, for t ∈ [a, b],

xmin
ω (t) := x(a) +

∫ t

a

(1 − XE−)(τ)vmin
ω (τ) + XE−(τ)vmax

ω (τ)dτ (3.5)

where E− is the subset of [a, b] to be constructed as follows.
To begin with define, for t ∈ [a, b], using (3.2), the function

H(t) :=
∫ b

t

h(τ)dτ −
∫ b

a

h(τ)λ(τ)dτ, (3.6)

obtaining, by (3.6),

H(b) = −
∫ b

a

h(τ)λ(τ)dτ ≤ 0 ≤ H(a) =
∫ b

a

h(τ)(1 − λ)(τ)dτ

hence 0 ∈ co{H(a),H(b)} ⊂ H([a, b]) so that, setting

E− := [c−, b], with c− := max{t ∈ [a, b] : H(t) = 0},
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one gets
∫ b

c−
h(τ)dτ =

∫ b

a

h(τ)XE−(τ)dτ =
∫ b

a

h(τ)λ(τ)dτ. (3.7)

We claim that, for t ∈ [a, b], with equality at t = b,
∫ t

a

h(τ)XE−(τ)dτ ≤
∫ t

a

h(τ)λ(τ)dτ. (3.8)

Indeed, the equality at t = b appears in (3.7); while for t ∈ [a, c−]
∫ t

a

h(τ)XE−(τ)dτ = 0 ≤
∫ t

a

h(τ)λ(τ)dτ ;

and, to complete the proof of (3.8), for t ∈ [c−, b] it is
∫ t

a

h(τ)XE−(τ)dτ =
∫ t

c−
h(τ)dτ =

∫ b

a

h(τ)λ(τ)dτ −
∫ b

t

h(τ)dτ

≤
∫ b

a

h(τ)λ(τ)dτ −
∫ b

t

h(τ)λ(τ)dτ =
∫ t

a

h(τ)λ(τ)dτ.

By (3.5), (3.2), (3.8) and (3.4), xmin
ω (a) = x(a) and

〈xmin
ω (t), ω〉 = 〈x(a), ω〉 +

∫ t

a

〈vmin
ω (τ), ω〉dτ +

∫ t

a

h(τ)XE−(τ)dτ

≤ 〈x(a), ω〉 +
∫ t

a

〈vmin
ω (τ), ω〉dτ +

∫ t

a

h(τ)λ(τ)dτ

= 〈x(a), ω〉 +
∫ t

a

〈x′(τ), ω〉dτ = 〈x(t), ω〉,

with equality at t = b, thus proving (1.13) for xmin
ω (·).

Similarly one may construct E+ ⊂ [a, b] such that defining

xmax
ω (t) := x(a) +

∫ t

a

(1 − XE+)(τ)vmin
ω (τ) + XE+(τ)vmax

ω (τ)dτ (3.9)

then xmax
ω (·) ∈ X true

ω and 〈x(t), ω〉 ≤ 〈xmax
ω (t), ω〉 ∀t ∈ [a, b]. �

Proof of Theorems 1.2, 1.4 and 1.5. (a) To simplify notation assume

ω = (1, 0, . . . , 0) in (1.8); (3.10)

hence define, as in (3.1), (3.5) and (3.9) but for this special ω,

vmin(t) :=
m

∑

j=1

XEj
−
(t)vj(t), vmax(t) :=

m
∑

j=1

XEj
+
(t)vj(t) (3.11)

xmin(t) := x(a) +
∫ t

a

(1 − XE−)(τ)vmin(τ) + XE−(τ)vmax(τ)dτ (3.12)

xmax(t) := x(a) +
∫ t

a

(1 − XE+)(τ) vmin(τ) + XE+(τ)vmax(τ)dτ. (3.13)
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Considering the situation of (1.21) and setting

X := {x(·) ∈ X : x(a) = x(a) and x(b) = x(b)}, (3.14)

then (1.6)–(1.8), (1.16), (1.21), (1.9) and (1.13) yield, respectively,

X co
= {x(·) ∈ X : x′(t) ∈ co{v1(t), . . . , vm(t)} a.e.}

X true
= {x(·) ∈ X : x′(t) ∈ {v1(t), . . . , vm(t)} a.e.} (3.15)

X co

− = {x(·) ∈ X co
: x1(t) ≤ x1(t) ∀t ∈ [a, b]}

X co

−− = {x(·) ∈ X co

− : x1(t) < x1(t) for a.e. t ∈ Ox} (3.16)

Ox ⊃ {t ∈ (a, b) : xmin
1 (t) < x1(t) < xmax

1 (t)} for x(·) ∈ X co

−

X true

− = {x(·) ∈ X true
: x1(t) ≤ x1(t) ∀t ∈ [a, b]} (3.17)

xmin
1 (t) ≤ x1(t) ≤ xmax

1 (t) ∀t ∈ [a, b] ∀x(·) ∈ X co
; (3.18)

while our aim (1.24) becomes

(x̂k(·)) → x(·) and (x̂k1(·)) ↗ x1(·), uniformly.

Notice also that, using (3.3) to set

Λm :=

⎧

⎨

⎩

(λ1, . . . , λm)(·) ∈ Λm :
m

∑

j=1

λj(t) = 1 a.e.

⎫

⎬

⎭

,

fixing any x̃(·) ∈ X co

−− and setting O := Ox̃, (3.19)

then clearly

∃(˜λ1, . . . , ˜λm)(·) ∈ Λm : x̃′(t) =
m

∑

j=1

˜λj(t)vj(t) a.e., (3.20)

hence x̃′
1(t) =

m
∑

j=1

˜λj(t)vj1(t) for a.e. t ∈ [a, b].

Moreover, (3.19) and (3.18) for x̃(·) yield, on [a, b] \ O,

x̃1(t) ∈ {xmin
1 (t), xmax

1 (t)}
so that, by (3.12), (3.13) and (3.11),

x̃′
1(t) ∈ {xmin ′

1 (t), xmax ′
1 (t)}

⊂ {v1
1(t), . . . , vm1 (t)} a.e. on [a, b] \ O;

which implies, by (3.20), (1.22) and (1.23),

x̃′(t) ∈ {v1(t), . . . , vm(t)} for a.e. t ∈ [a, b] \ O, (3.21)

whenever O is as in (3.19).
Thus, in order to reach a x̂(·) ∈ X true

− , as intended in (1.18) to prove
Theorem 1.2 using (1.21), it is enough to define

x̂(t) := x̃(t) at each t ∈ [a, b] \ O (3.22)



Vol. 20 (2013) Pointwise constrained Liapunov convexity theorem 285

to get at once, by (3.21),

x̂′(t) ∈ {v1(t), . . . , vm(t)} for a.e. t ∈ [a, b] \ O,
x̂1(t) ≤ x1(t) ∀t ∈ [a, b] \ O;

(3.23)

so that it suffices then (recalling (3.15) and (3.17))

to extend such x̂(·) into O so as to satisfy :

x̂′(t) ∈ {v1(t), . . . , vm(t)} for a.e. t ∈ O,
x̂1(t) ≤ x1(t) ∀t ∈ O,

(3.24)

using the hypothesis in the rhs of (1.18), namely, by (3.19) and (3.16),

x̃1(t) < x1(t) for a.e. t ∈ O. (3.25)

On the other hand, using, in (3.22), O := Ox̃ defined as in (1.17) or
(1.19), obviously again (3.23) holds true hence again we just need (3.24) using
(3.25).

Moreover recalling that (1.14) now yields, by (3.11),

X ext
1 := {x(·) ∈ X : x′(t) ∈ {vmin(t), vmax(t)} a.e.},

if one wishes to use, instead of (1.19), the definition (1.20) for O, namely

O ⊃ {t ∈ (a, b) : x̃(t) �= x̌(t)}, for some x̌(·) ∈ X ext
1 ,

then we clearly have

x̃′(t) = x̌′(t) ∈ {v1(t), . . . , vm(t)} for a.e. t ∈ [a, b] \ O
so that, using (3.22), again (3.23) leads to (3.24) using (3.25).

(b) This part is dedicated to prove, at last, that

(3.25) allows (3.24). (3.26)

To simplify notation we assume here, without loss of generality,

O = (a, b) in (3.25). (3.27)

Indeed, once (3.24) is performed for this special case O = (a, b), then the gen-
eral case of any open set O can be similarly solved: just apply the same recipe
to each one of the maximal intervals (ai, bi) that form O.

Let us begin the proof of (3.26) under (3.27). As in (3.20),

∃(λ
1
, . . . , λ

m
)(·) ∈ Λm : x′(t) =

m
∑

j=1

λ
j
(t)vj(t) a.e..

Recalling (3.2) and (3.10) then clearly, for any t ∈ [a, b],

f(t) := vmax(t) − vmin(t) yields g(t) := f1(t) ≥ 0; (3.28)

and using such g(·) we define the linear functional

G : Λ → R, G(λ(·)) :=
∫ b

a

g(t)λ(t)dt (see (3.3)). (3.29)
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By (3.3), (3.4) and (3.28),

∃λ(·) ∈ Λ : x′
1(t) = vmin

1 (t) + λ(t)g(t) for a.e. t ∈ [a, b]; (3.30)

and, using (3.29), to each x(·) ∈ X co
there corresponds a unique

λ(·) ∈ Λ := {λ(·) ∈ Λ : G(λ(·)) = G(λ(·))}. (3.31)

Indeed, similarly to (3.30), again (3.4) yields a λ(·) ∈ Λ for which

x′
1(t) = vmin

1 (t) + λ(t)g(t) for a.e. t ∈ [a, b], (3.32)

such λ(·) is in Λ, by (3.31), (3.29) and (3.14), and we set λ(·) := 1 where
g(·) = 0. Hence one may define the linear function

L : X co → Λ, L(x(·)) := λ(·) satisfying (3.32). (3.33)

Then, setting ˜λ(·) := L(x̃(·)) and considering the open set

˜O := {t ∈ (a, b) : x̃1(t) < x1(t)} (see (3.16)), (3.34)

we have | ˜O| = b− a, i.e. (3.35)
∫ t

a

g(τ)˜λ(τ)dτ <
∫ t

a

g(τ)λ(τ)dτ a.e. in (a, b).

In order to fulfil our aim (3.24) in (3.26), we proceed (recalling (1.1) and
(1.9)) to construct a x̂(·) ∈ X true

− , namely a

x̂(·) ∈ X : x̂(a) = x(a) and x̂(b) = x(b) and

x̂′(t) ∈ {v1(t), . . . , vm(t)} and x̂1(t) < x1(t), a.e. in (a, b).
(3.36)

To further simplify notation (beyond (3.27)), again without loss of gen-
erality we assume

˜O = (a, b) in (3.35) and (3.36). (3.37)

Indeed, once x̂(·) has been constructed along (a, b), assuming (3.37), to treat
a general open set ˜O satisfying (3.36) one starts by defining

x̂(·) := x̃(·) on the null set [a, b] \ ˜O;

and then such construction on (a, b) can easily be adapted to similarly con-
struct x̂(·) on each one of the countably many maximal intervals (ai, bi) that
form ˜O.

To construct x̂(·), we begin by partitioning the open interval (a, b) where,
by (3.37), the strict inequality in (3.35) holds, namely

x̃1(t) < x1(t) ∀t ∈ (a, b), (3.38)

into countably many subintervals by points

a1 := b1 :=
a+ b

2
and, for k = 1, 2, . . . ,

ak+1 :=
a+ ak

2
and bk+1 :=

bk + b

2
,
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thus obtaining strictly monotone convergent sequences

(ak) ↘ a and (bk) ↗ b, with
∞
⋃

k=1

[ak+1, ak) =
(

a,
a+ b

2

)

,

∞
⋃

k=1

(bk, bk+1] =
(

a+ b

2
, b

)

. (3.39)

We claim first that

∃x1(·) ∈ X : x1(·) := x̃(·) on [a, b] \ (b1, b2),

x1′(t) ∈ {v1(t), . . . , vm(t)} a.e. in (b1, b2),

x1
1(t) < x1(t) ∀t ∈ (a, b).

(3.40)

Indeed, in order to construct such x1(·) we start by defining x1(·) as in
the first line of (3.40), then partition the subinterval [b1, b2] into N equal-length
subsubintervals by points

b�1 := b1 + �
b2 − b1
N

, � = 0, 1, . . . , N,

where N ∈ N is chosen large enough so as to get, by (3.28) and (3.38),

0 ≤
∫

I

g(t)dt < min (x1 − x̃1)([b1, b2])

∀I ⊂ [b1, b2] : |I| ≤ b2 − b1
N

;
(3.41)

and we claim that, for � = 1, 2, . . . , N ,

∃x1�(·) ∈ X : x1�(·) := x̃(·) on [a, b] \ (b�−1
1 , b�1),

x1�′(t) ∈ {v1(t), . . . , vm(t)} a.e. in (b�−1
1 , b�1),

x1�
1 (t) < x1(t) ∀t ∈ (a, b).

(3.42)

Indeed, consider first the case � = 1. In order to construct such x11(·),
begin by defining it as in the first line of (3.42) for � = 1; then apply the Liapu-
nov theorem (see, e.g., [15, 16.1.v]) to obtain measurable sets E1

11, . . . , E
m
11 ⊂

[b01, b
1
1], with characteristic functions λ1

11(·) := XE1
11

(·), . . . , λm11(·) := XEm
11

(·),
satisfying (see (3.20))

∫ b11

b01

m
∑

j=1

λj11(t)v
j(t)dt =

∫ b11

b01

m
∑

j=1

˜λj(t)vj(t)dt;

and finally set, on [b01, b
1
1],

x11(t) := x̃(b01) +
∫ t

b01

m
∑

j=1

λj11(τ)v
j(τ)dτ.
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Using (3.33), let λ11(·) := L(x11(·)). Then, by (3.28) and (3.41), for
t ∈ [b01, b

1
1], clearly x11

1 (t) − x1(t) equals
∫ t

b01

g(τ)λ11(τ)dτ +
∫ b01

a

g(τ)˜λ(τ)dτ −
∫ t

a

g(τ)λ(τ)dτ

< min(x1 − x̃1)([b1, b2]) −
∫ b01

a

g(τ)(λ− ˜λ)(τ)dτ ≤ 0,

i.e. x11
1 (t) < x1(t) ∀t ∈ [b01, b

1
1].

We have thus proved the special case � = 1 of (3.42), as one easily checks. For
� = 2, . . . , N the proof is similar, thus completing the proof of (3.42).

We claim now that, for k = 1, 2, . . .,

∃xk(·) ∈ X : xk(·) := x̃(·) on [a, b] \ (bk, bk+1),

xk′(t) ∈ {v1(t), . . . , vm(t)} a.e. in (bk, bk+1),

xk1(t) < x1(t) ∀t ∈ (a, b).

(3.43)

Indeed, for k = 1, after having defined x1(·) as in the first line of (3.40), it
suffices to define

x1(t) := x1�(t) for t ∈ [b�−1
1 , b�1], � = 1, 2, . . . , N,

and use (3.42); while for k = 2, 3, . . . the reasoning is similar. The special case
k = 1 of (3.43) is just our initial (3.40), which is thus also proved.

We claim now that, for k = 1, 2, . . .,

∃x−k(·) ∈ X : x−k(·) := x̃(·) on [a, b] \ (ak+1, ak),

x−k′(t) ∈ {v1(t), . . . , vm(t)} a.e. in (ak+1, ak),

x−k
1 (t) < x1(t) ∀t ∈ (a, b).

(3.44)

Indeed, the strategy is the same as to prove (3.43), after proving a statement
similar to (3.42) but adapted to (a�1, a

�−1
1 ) instead of (b�−1

1 , b�1).
We have, at last, all our building blocks ready; so that, in order to com-

plete the proof of (3.36), it suffices now to glue together the functions in (3.43)
and (3.44) by:

x̂(t) :=
{

xk(t) for t ∈ [bk, bk+1], k = 1, 2, . . .
x−k(t) for t ∈ [ak+1, ak], k = 1, 2, . . . ,

as one easily checks using (3.39).
Thus we have proved (3.36), hence (3.26), i.e. (1.18), including the second

paragraph of Remark 1.3.

(c) Finally, in order to prove (1.24) it suffices to consider the sequence

x̃k(·) :=
(

1 − 1
k

)

x(·) +
1
k
x̃(·).

Indeed, taking the above construction for x̃1(·) = x̃(·) and adapting it to

x̃k(·) for k = 2, 3, . . . ,
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one obtains, as is easily checked using (1.22) and (1.23), a sequence

(x̂k(·)) → x(·), with (x̂k1(·)) ↗ x1(·), uniformly,
thus proving (1.24).

One may similarly prove Theorem 1.5. �

Proof of Theorem 2.1. Take any

x̃(·) ∈ X co

− \ {x(·)} (see (1.8)), so that (3.45)

∃˜λ(·) ∈ L∞(a, b) : ˜λ(t) ∈ [0, 1] a.e. and

x̃′(t) = v1(t) + ˜λ(t)v(t) · (1, f(t)) a.e.,
(3.46)

subtract ˜λ(t)v(t) = x̃′
1(t) − v1

1(t) from λ(t)v(t) = x′
1(t) − v1

1(t) to get

g(t) :=
∫ t

a

(x′
1 − x̃′

1)(τ)dτ =
∫ t

a

(λ− ˜λ)(τ)v(τ)dτ ; (3.47)

then subtract x̃′
2(t) = v1

2(t) − f(t)v1
1(t) + f(t)x̃′

1(t) from x′
2(t) = v1

2(t) −
f(t)v1

1(t) + f(t)x′
1(t) and integrate from a to b to reach (2.7) and (2.8), since

˜λ(t) ∈ [0, 1]; thus proving (2.6).
Finally, (2.9) and (2.10) are proved in [11]. �

Proof of Theorem 2.5. As one easily checks, using (2.28),

f(t)g′(t) =
d

dt

∫

f(t)g′(t) =
d

dt

∫

f (−1)′(t)g′(t)

hence

f(t)g′(t) =
d

dt

∞
∑

k=0

(−1)kf (−k−1)(t)g(k+1)(t)

∫ b

a

f(t)g′(t)dt =
∞
∑

k=0

(−1)kf (−k−1)(b)g(k+1)(b).

Looking, in particular, for a polynomial g(·) of the form (2.38) one gets

g(k+1)(t) = h(t)(ϕ ϕ)(k+1)(t)

+(k + 1)h′(t)(ϕ ϕ)(k)(t) + k
k + 1

2
h′′(t)(ϕ ϕ)(k−1)(t)

g(k+1)(b) = −(b− a)(k + 1)(ϕ ϕ)(k)(b) − k(k + 1)(ϕ ϕ)(k−1)(b)
∫ b

a

f(t)g′(t)dt =
∞
∑

k=0

(−1)k+1(k + 1)(b− a)f (−k−1)(b)(ϕ ϕ)(k)(b)

(3.48)

+
∞
∑

�=1

(−1)�+1�(�+ 1)f (−�−1)(b)(ϕ ϕ)(�−1)(b)
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∫ b

a

f(t)g′(t)dt =
∞
∑

i=0

αi

∞
∑

j=0

αjM
ij
f , (3.49)

using (2.27) and the general polynomial

ϕ(t) :=
d−1
∑

k=0

(t− b)k

k!
αk, where αk := ϕ(k)(b) and α0 := ϕ(b), (3.50)

so that one may insert in (3.49) the iterated derivatives

(ϕ ϕ)(k)(b) =
d−1
∑

i,j=0
i+j=k

k!
i! j!

αi αj .

But, using (2.26), the rhs of (3.49) may also be written as
∫ b

a

f(t) g′(t) dt = αT ·Md
f · α, (3.51)

αT the transpose of α := (α0, α1, . . . , αd−1).

Clearly the matrix Md
f has d real eigenvalues; and there exists a nontrivial

solution to the bilinear matricial equation (2.39) if and only if this matrix
Md
f in

(2.26) has eigenvalues β−, β+ with β− · β+ ≤ 0, (3.52)

as one easily checks.
We now claim that (2.39) has a solution α �= 0 whenever, simply, (2.30)

holds. Indeed, setting

d := i+ 1 and α = (α0, . . . , αd−1) = (α0, 0, . . . , 0, αi),

while the case M ii
f · M00

f = 0 is trivially solved (with α0 αi = 0), in case
M ii
f ·M00

f < 0 one sets

αi := 1 and α0 :=

√

(M0i
f )2 −M ii

f M
00
f −M0i

f

M00
f

(3.53)

to obtain, with θ :=
√

(M0i
f )2 −M ii

f M00
f ,

αT ·Md
f · α = α0(M00

f α0 + 2M0i
f ) +M ii

f

=
θ −M0i

f

M00
f

(θ +M0i
f ) +M ii

f =
−M ii

f ·M00
f

M00
f

+M ii
f = 0,

i.e. (2.39), thus proving that

(2.30) ⇒ ∃α �= 0 satisfying (2.39) (3.54)

which, together with (3.52), completes the proof. �
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4. Examples of functions f(·) ∈ F++ in (2.12)

To prove (2.36), we have, using (2.33),

f(·) ∈ F ⇒ ˜f0(·) := f(·) −mf −M00
f · ψ(·) ∈ F0

0 ⊂ F++,

where ψ(t) :=
3!

(b− a)3

(

a+ b

2
− t

)

∈ F0
1 ;

˜f1(·) := f(·) −mf − (M00
f − 1) · ψ(·) ∈ F0

1

and ˜f−1(·) := f(·) −mf − (M00
f + 1) · ψ(·) ∈ F0

−1.

Indeed clearly M ij
1 = 0; while

M ij
ψ =

(−1)i+j(b− a)i+j

(i+ j + 2)(i+ j + 3)
3!
i!j!

since ψ
(−k)

(t) = 3
(t− a)k

(b− a)3
(k − 1)(b− a) + 2(b− t)

(k + 1)!
,

in particular
(

(b− a)i

(i+ 1)!

)2

≤ M ii
ψ ≤

(

(b− a)i

i!

)2

,

as one easily checks by differentiation.
Notice also that the function h(·) in (2.38) has M00

h = 0, since

h
(−k)

(t) =
(t− a)k+1

(k + 1)!
k(b− a) + 2(b− t)

k + 2
and h

(−k)
(b) = k

(b− a)k+2

(k + 2)!
.

Finally, for p ∈ {2, 3, . . . , 8}, with an adequate cp, the function

fp(t) := −h(t) (p+ 1)(p+ 2)(p+ 3)
(p− 1)(b− a)p+3

(t− a)p−1 − cp

does not satisfy (2.30); while (2.31) holds true yielding, via (3.53), a solution
αp = (αp0, α

p
1) �= 0 for (2.39). Thus fp(·) ∈ F0

1 ∩F++, for those p. Indeed, with
ckp(t) := cp · (t− a)k · (k!)−1,

f
(−k)

p (t) =
−(p+ 3)!
(b− a)p+3

(t− a)k+p

(k + p)!
(p+ 1)(b− t) + k(b− a)

(p− 1)(k + p+ 1)
− ckp(t)

M ij
fp

=
(−1)

i+j

(i+ j + 1)!(b− a)i+j(p+ 3)![p(i+ j + 1) − 1]
i!j! (i+ j + p+ 3)! (p− 1)

M01
fp

= −2
b− a

p+ 4
2p− 1
p− 1

and M11
fp

=
6(b− a)2(3p− 1)

(p− 1)(p+ 4)(p+ 5)
M11
fp

(M01
fp

)2
=

3
2

p− 1
(2p− 1)2

(p+ 4)(3p− 1)
p+ 5

< 1, for 2 ≤ p ≤ 8. (4.1)

For p > 8 the quotient in (4.1) is > 1 not only for i = 1 but even for any i. In
particular (2.31) is never satisfied by f9(·); while surely (3.52) holds true for
f9(·) with d = 5, and f9(·) ∈ F++ (recall (2.40), (2.41) and (2.12)).
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