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Abstract. The paper deals with the existence of entire solutions for a
quasilinear equation (£) in RY, depending on a real parameter \, which
involves a general elliptic operator in divergence form A and two main
nonlinearities. The competing nonlinear terms combine each other, being
the first subcritical and the latter supercritical. We prove the existence
of a critical value \* > 0 with the property that (£)x admits nontrivial
non-negative entire solutions if and only if A > A*. Furthermore, when
X > X > X\, the existence of a second independent nontrivial non-nega-
tive entire solution of (€)x is proved under a further natural assumption
on A.
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1. Introduction

In [3] Ambrosetti et al. studied the existence and multiplicity of solutions
for semilinear elliptic Dirichlet problems in bounded domains, analyzing the
combined effects of concave and convex nonlinearities with respect to a real
parameter A. Later, Alama and Tarantello in [2] studied a related semilinear
Dirichlet problem in a bounded domain, with weighted nonlinear terms. In [2]
also solvability and multiplicity were proved under various assumptions on the
weights and on the parameter A € R. The famous results of [3] were partially
extended by De Figueiredo et al. to indefinite nonlinearities for the semilinear
case in [10] and for the p-Laplacian operator in [11]. For recent contributions
on related semilinear Dirichlet problems in bounded domains we refer to [8, 18]
and on equations in the entire RY to [19], and to the references therein. The
equation considered here is in the spirit of the previous papers, even if most of
them deal with problems not directly comparable to ours. The present work
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is more related to the results in [2,20], although in [20] different weights were
considered.
We study the one parameter elliptic equation in RY,

—~divA(z, Vu) + a(z)|ulP?u = () [u|?u — h(z)|u|""2u  (£)a

where A € R and A : RY x RN — RY admits a potential o7, with respect to
its second variable &, satisfying the following assumption

(A) The potential of = of (x,€) is a continuous function in RN x RN with
continuous derivative with respect to §, A = O¢o/, and verifies:
(a) o (2,0) =0 and o (z,£) = o (x,—E€) for all (z,£) € RN x RV;
(b) o (z,-) is strictly convezr in RN for all z € RY;
(¢) There exist constants ¢,C' > 0 and an exponent p, with 1 <p < N,
such that for all (x,£) € RN x RV

clefP < A(w,6)- ¢ and [A(z,€)] < ClEPT

Clearly o (x,&) = |£|P/p satisfies (A) for all p > 1, that is the usual p-Lapla-
cian operator A,u = div(|Vu|P~2Vu) is covered for all p > 1.

The nonlinear terms in () are related to the main elliptic part by the
request that

max{2,p} < ¢ < min{r,p*}, (1.1)

where p* = Np/(N — p) is the critical Sobolev exponent. The coefficient a is
supposed to be in L (RN) and to satisfy for a.a. x € RN

loc
v(z) = max{a(z), (1 +|z))7"},  alz) = cv(z), (1.2)
for some constant ¢; € (0,1]. The weight w verifies

we LYRNYNLE (RY), with o =p*/(p* —q) and o > ¢, (1.3)

loc

while h is a positive weight of class Li .(RN). Finally, h and w are related by
the condition

/RN H’((;”))q} e de = H € R™. (1.4)

Assumption (1.4) already appears in [2, condition (1.4) of the existence The-
orem 1.1] for positive solutions of semilinear elliptic Dirichlet problems in
bounded domains and in [20] with w = 1 for existence of solutions of quasi-
linear elliptic equations in RY. Actually, [20] is the first attempt to estab-
lish existence of nontrivial non-negative entire solutions for (£), in RY, when
A(z,€) = |€|P~2¢ and a = w = 1. Here, we solve the problem under conditions
(1.1)—(1.4).

Sections 2—4 of the paper are devoted to the proof of the following main exis-
tence

Theorem A. Under the above hypotheses there exists \* > 0 such that equa-
tion (£)x admits at least a nontrivial non-negative entire solution if and only
if A > A%
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By the comments above it is clear that Theorem A extends Theorem
1.1 of [2] to quasilinear elliptic equations in R"Y. Theorem 1.2 of [2] is a com-
plete statement when 2 < ¢ < 2* and w satisfies (1.3) for p = 2, rather than
Theorem 1.1 of [2]. Hence, it still remains an open problem the extension of
Theorem 1.2 of [2] to quasilinear elliptic equations in RY, that is when (1.3) is
replaced by the weaker condition w(w/h)(@=P)/(r=0) ¢ LN/P(RN). In any case,
Theorem A extends the first part of Theorem 1.2 of [2] under condition (1.4).

In Sect. 5, under a further natural assumption on the potential <7, see
(A)-(d), we prove the second main result in terms of a critical parameter
A >\ > 0.

Theorem B. For all A > X equation (€)x admits at least two nontrivial non-
negative entire solutions.

In the Appendix we present the auxiliary results largely used throughout
the paper, which seem not to be so well-known. In particular, we establish in
Theorem A.3 the existence of a Palais—Smale sequence via the Ekeland varia-
tional principle in a variant of the geometrical structure of the Mountain Pass
theorem of Ambrosetti and Rabinowitz. For the standard result based on this
technique we refer to [16]. Theorem A.3 is the key tool to construct a second
independent nontrivial entire solution in the proof of Theorem B.

2. Preliminaries and non-existence for A small
Conditions (A)-(a) and (b) imply that
o (2,6) < Az, &) - ¢ for all (z,8) e RY x RV,

Furthermore, (A)-(b) is weaker than the request that < is p-uniformly conver,
i.e. that there exists a constant k > 0 such that
+ 1 1
o (0. 557) < 5.9 + 3o/ w) — Hle = P )
for allz € RN and &,7 € RY. Condition (V') is usually assumed in this context
in the literature and forces p > 2, when & (z, &) = |£|P/p, cf. [13].
By (A)-(a) and (c)

Ld ' c
A6 = [ Ger@ied= [ {A@e)- = S
that is for all (z,&) € RY x RY
pod (x,€) > clél”. (21)

Hence ¢ < C by (A)-(c).
Lemma 2.1. Let &, (£,), € RY be such that

(A(z, &) — A(2,8) (& =€) — 0 asn— oo (22)
Then (£,)n converges to &.
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Proof. We are inspired in this proof by Lemma 2.4 of [9], see also the special
case of Lemma 3 in [12]. First, we assert that (&), is bounded. Otherwise, up
to a subsequence, still denoted by (&, )n, we would have |§,| — oo and so

(A(z,60) = A(2,€)) - (6 — &) = c(€al” + [€]P) = CEI"E + 1P [8nl)
~ clgnl” — oo,

as n — oo. This is impossible by (2.2). Therefore, (£,), is bounded and pos-
sesses a subsequence, still denoted by (&,,),, which converges to some n € RY.
Thus (A(z,n) — A(z,£)) - (n— &) =0 by (2.2). Moreover, the strict convexity
of o/ (z,-) for all z € RY implies that = £. This also shows that actually the
entire sequence (&), converges to . O

The space E denotes the completion of C§°(RY) with respect to the norm

1/p
lullg = (/ |Vu|pdac+/ V(m)u|pdx> ,
RN RN

and X the completion of C§°(RY) with respect to the norm

1/p
= E rh ’ :,h = "dx.
lJull = ( el + l[ull? where||u|| - h(z)|ul"dx

From now on Bp will denote the ball in RN of center zero and radius R > 0.

From the structural assumptions (1.2)—(1.4) all the coefficients a,w, h in
(€)x are weights in RY. We indicate with LP(R™; a), L9(RY;w) and L"(R™; h)
the corresponding weighted Lebesgue spaces. See the Appendix for the main
properties.

Lemma 2.2. The embeddings X «— E < DVP(RN) < LP"(RN) are continu-
ous, with ||Vull, < ||ullg for allu € E,|ul|p < ||u|| for allu € X and

lullp- < Cpe||Vull, for all u € DVP(RY). (2.3)

Moreover, for any R > 0 the embeddings E —<— L°(Bpr) and X —<— L°(BpR)
are compact for all g € [1,p*).

Proof. The first two embeddings X < E < D"?(RN) «— LP"(RN) are obvi-
ously continuous and ||Vu|, < |lul|g for all u € E and |ul|g < [Ju| for all
u € X, and the third one is classical, with Cy,- the Talenti best constant of
the embedding, cf. [24].

Let R > 0 be fixed. By the first part of the lemma the embedding F —
WLP(Bpg) is continuous, since a € L2 (RY) in (1.2), so that 0 < k; < v(x) <
ko for a.a. z € By and for some positive numbers k; and ks depending only on
R. Since the embedding W1?(Bg) << L2(Bg) is compact for all g € [1,p*),

also the embeddings F << L9(Bg) and X << L¢(Bg) are compact. [

Lemma 2.3. The embedding D'P(RY) — LY(RY;w) is continuous, with

ullgw < Cul|Vull, for all u € DMP(RY), (2.4)

and €, = p*||w\|610/q > 0.
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The embeddings E <~ LI(RY;w) and X << LI(RN;w) are
compact.

Proof. By (1.3), Holder’s and Sobolev’s inequalities, for all u € DP(RY),

1/pq 1/p*
RN RN

that is (2.4) holds.

In order to prove the last part of the lemma it is enough to show that
E << LI(RYN;w). In other words, we show that if u,, — v in E, then |u, —
ullgw — 0 as n — co. By Holder’s inequality,

/e
/ w(x)|uy — ul|fdx < M (/ w(ac)@ix) =o(1)
RN\Bg RN\Br

as R — oo, being w € L*(RY) by (1.3) and sup,, ||u, —ul|}. = M < oco. For all
€ > 0 there exists R. > 0 so large that sup,, fRN\BR w(z)|u, — ullde < /2.
Moreover, by Holder’s inequality we have as n — oo

wll/ 1V,

| w@lu, = de < el = 0l 5, = 000
Re

since E << L”/Q(BRE), being ¢'q < p* by (1.3). Therefore, there exists
N, > 0 such that fBR w(x)|uy, —u|?dr < €/2 for all n > N,. In conclusion,
for all n > N,

|tn —ull,, = / w(x)|uy, —ul?de + / w(@)|u, —ul?de < e,
7 RN\Br,

Br,

as required. O

Lemma 2.4. For allu € FE

A(x,Vu) - Vudr + [lu|b , > kllull%,
RY 1 . (2.5)
A (x,Vu)dr + =||ul? , > —||lull%,
- ( ) p|| 15, p|| %

where k = min{c, c1} > 0. Moreover, if u € X \ {0} and X € R satisfy

RNA(% Vu) - Vudr + [[ull] o + lullzn = Allull§ . (2.6)
then 0 < wlluly < MullZ,,, A >0 and
RN P < g0 < RoX/PUTD, (2.7)

where k1 and ko are positive constants independent of .

Proof. Take u € E. By (A)-(c) and (1.2), it follows that

Az, Vu) - Vudr + [[ullf o = cl[Vull] + caf|ullf, -
RN
In conclusion, (2.5); holds, with ¢ given in (A)-(c¢). Similarly, using (1.2) and
(2.1), we get
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1
A (x, W)dx+fIIUHpa > —{cl[Vullb + e fullb, }
RN p

for all u € E, which immediately gives (2.5)s.
Let u € X\ {0} and A € R satisfy (2.6). By (2.5)1,0 < sull; < A|ul|Z,.
Hence A > 0. Therefore, by (2.4), (2.5); and (2.6), we have

(4
full o < bllully < <2 { [ A V0 Fude + ul} |
RN

P
< e, (238)

By Young’s inequality,
b a® b’
ab < — + —
a  p’

with @ = h(2)?"u|? > 0,b = Mw(z)h(z)~¥" > 0,a = r/¢g > 1 and 3 =
r/(r—q) > 1, we find

. wl r/(r—q)
w(z)|ul? < %h(x)lulr +— ’ <hA(x)(q/)r) ‘

Integration over RY gives

Allullg,w < *lluH?h + L /),
Thus, by (2.6) we obtain

A(z, V) - Vudz + |ullt,, < L=y, + Z= 2 g ar/r=a)
RN ’ T ’ T

< r—4q H N/ (=),

r

being ¢ < r. Hence, since u Z 0 by assumption, the last inequality and (2.8)
yield (2.7), with

K1 = (ﬁ/@ﬁ)l/(qu) and ko = [(r — q)QﬁfUH/rn]l/p.
This completes the proof. O

We say that u € X is a (weak) entire solution of (£)y if

A(z,Vu)-Vodz —I—/ a(z)|u|P"?uv dx = /\/ ) u|? 2up da
RN RN
— h(z)|u|"?uv dz (2.9)
RN
for all v € X.

Hence the entire solutions of (£)x correspond to the critical points of the
energy functional @ : X — R, defined by

1 A 1, ..
Or(u) = [ A (x,Vu)dr + —|lullp . — —[lullf ., + = llully,
RN p q r
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If (£)x admits a nontrivial entire solution u € X, then A > 0 by Lemma 2.4,
and A > A\ by (2.7), where
Ao = (m/,iz)p(rfq)(q*p)/r;z(r*p) > 0.
Define
A =sup{X >0 : (&), admits only the trivial solution for all p<\}.

Clearly A* > Ag > 0. In Sects. 3 and 4 we show that A" is exactly the critical
value of Theorem A.

3. Preliminary results for existence

By the results of Sect. 2 from now on we consider only the case A > 0.

Lemma 3.1. The functional @y is coercive in X. In particular, any sequence
(un)n in X such that (P (uy))n, is bounded admits a weakly convergent subse-
quence in X.

Proof. Let us consider the following elementary inequality: for every ki, ks > 0
and 0 < a<f

ko \ &/ B
k1|t — kalt]? < Copkr (k) for all ¢ € R, (3.1)
2

where C3 > 0 is a constant depending only on a and /3.
Taking k1 = Aw(z)/q, ke = (p — 1)h(x)/pr,a = q and = r in (3.1), for
all z € RV we have

(p-Vh)
P (el < 0

Aw () [ 2w (z)/q r/(r_q)
o= Dh(e) o

w(l,)r} 1/(r—a)

h(x)1

A q _
7 V@)l

)

_ o9 [

where C = Cy, [pr/q(p — 1)]Q/(T_q) /q. Integrating the above inequality over
RN we get by (1.4)

p—1

A
EHUIIZ,w - [ullfn < Cx,

where C = CHA"/("=9) > 0.
Therefore, by (2.5), for all u € X

1 A p—1, .
Py(u) = - A (x,Vu)dx + g”“”i,a - EHUHZ,M - pT”uHr,h

p—1 1
—?||U||:,h + ;HUH:,h
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K 1 K 1
> ul|B + —jul|", — Cx > —||lul® —( ”—1)—0
> p”uHE + prllullf,h A= pHu”E + o Ul A
min{x,r! 1
> W T ey L
p pr

In conclusion, @) is coercive in X.
The last part of the claim follows at once by the coercivity of ®, and the
reflexivity of the space X, see Proposition A.11. O

Lemma 3.2. The functional @ : X — R, & (u f]RN (z,Vu)dzx, is con-
vex and of class C*. In particular, ® . is sequentzally weakly lower semicon-
tinuous in X.

Proof. The convexity is an immediate consequence of assumption (A)-(b). Let
us prove the continuity. Let (uy,),,u € X be such that v, — u in X and fix
a subsequence (un, )k of (uy)n. Clearly Vu,, — Vu in [LP(RY)]Y and so, by
Theorem 4.9 of [6], there exists a further subsequence (unkj );j of (un,)r and a

function ¢ € LP(RY) such that a.e. in RY
Vg, — Vuas j — oo and |Vunkj| <4y forall jeN. (3.2)
Hence, condition (A) implies that o7 (x, Vunkj) — o/ (x,Vu) a.e. in RV and
|£7(x,Vunkj)| < |A(x,Vunkj)\ . |Vunkj| < C|Vun,€j P < CyP € LYRY).

The Dominated Convergence theorem forces that o (x, Vunkj) — o (x,Vu)
in LY(RY) as j — oo, and the arbitrariness of (u,, )r guarantees that actually
o (x,Vu,) — o (z,Vu) in LY(RY) as n — oco. This gives the continuity of
./, and so P is sequentially w.l.s.c. by Corollary 3.9 of [6].

Moreover, @, is Gateaux-differentiable in X and for all u,¢p € X it
results

(@ (uw),0) = [ Az, Vu) - Vodz.
RN
Now, let (up)n,u € X be such that u, — v in X as n — co. We claim that
||¢)iz¢(un) - ¢;¢(u)||X/ = sup

peX
llell=1

as n — co. By (A)-(c), it follows that A (z, Vu) is in [L? (RN)]N for all u € X.
Applying Hoélder’s inequality, we obtain

/RN(A(x, Vu,) — Az, Vu)) - Vo dz| = o(1)

< [[A(z, Vun) = Az, Vu) [ [Vellp-

/]RN (A(z,Vu,) — A(z,Vu)) - Veodz

Hence, for all ¢ € X, with ||¢|| = 1, we have
197 (un) — Py (u) [l xr < [|A(2, Vun) — Az, Vu)|p. (3-3)

Fix now a subsequence (uy, )i of (un),. Proceeding exactly as above we find
a further subsequence (unkj ); and a function ¢ € LP(RY) verifying (3.2).
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Therefore, by (A)-(c) we get
| A@, Vun,) = Az, V) [P <2770 (|A @, Vun, )P + Az, o))
<or'=lgv {|Vunkj P+ |Vu|p}
< (20)7 P € LY(RM). (3.4)
On the other hand, |A(x, Vunkj) — A(x,Vu)| — 0 for a.a. » € RY as j — oo,
since A is continuous by (A). Thus, A(z, Vu,, ) — A(z,Vu) in [LP (RV)N
by (3.4) and the Dominated Convergence theorem. Hence the entire sequence
A(z,Vu,) — Az, Vu) in [LP (RN)]N and the claim follows from (3.3).
In conclusion, @, is of class C*, as required. O

Lemma 3.3. The functional &, : X — R, ®,(u) = %Huﬂg,a, is convex, of class

C' and sequentially weakly lower semicontinuous. Moreover, if (up)n,u € X
and w, — u in X, then ® (u,) = @ (u) in X'.

Proof. The convexity of ®, is obvious being p > 1. Moreover, since the embed-
ding X < LP(R";a) is continuous by (1.2), with ||u|,. < ||ul for all u € X,
the functional ®, is continuous in X. Consequently, ®, is sequentially w.l.s.c.
by Corollary 3.9 of [6].

Moreover, @, is Gateaux-differentiable in X and for all u, ¢ € X we have

(D! (u), ) = / a(x)|uP~2updz.
RN
Now, let (up)n,u € X be such that u, = uin X as n — oo. Since X — F —
LP(RN;v) — LP(R¥;a) by (1.2), then u,, — u in LP(RY;a). Let n +— v, =

|t |P~2u, and fix a subsequence (v, ) of (v,),. By Proposition A.10 there
exists a subsequence (unkj ); of (un,, )i converging a.e. in RV to u. Furthermore,

(unkj ); is bounded in LP(RV;a), so that Un,, = vin LP (RV;a) by Proposi-

tion A.8-(i). This implies that the whole sequence v, — v in L? (R";a). Thus,
for all ¢ € X we have

[ a@lual e — [ at@)lul? upds
RN RN

as n — 00, that is (®/, (u,), ) — (P, (u), ¢). This shows that &/, (u,) — &/, (u)
in X', as claimed.

Let us prove that ®, € C*(X). Fix (uy)n,u € X, with u,, — u in X.
Hence u,, — u in LP(R¥;a), since X — LP(R¥;a) by (1.2). Thus |u, |P~%u, =
vy — v = |uP"2u in L (RV;a), by Proposition A.8-(ii). Therefore, for all
o€ X, with o] = 1,

(@4 (un) = @4 (u), 0| < llvn = vllp allellp.a < llvn = Vllp.a;
since |[¢|lp.a < llellpr < ll¢| for all ¢ € X by (1.2). Therefore,
1@ (un) — @4 (u)llx < llon = vllp.a — 0

as n — oo. In conclusion, ®, is of class C(X). a
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Lemma 3.4. The functional @, : X — R, @, (u) = 1|2, is conver, of class
q 9w

C' and sequentially weakly continuous in X. Moreover, if (un)n,u € X and

up, = u in X, then @ (u,) — @, (u) in X'.

Proof. The convexity of ®,, is obvious, being ¢ > 2. Moreover, by Lemma
2.3 it is clear that ®,, is sequentially weakly continuous, so that in particular
®,, is continuous. Furthermore, ®,, is Gateaux-differentiable in X and for all
u,p € X
@0 = [ wle)luftup da.
RN
Now, let (un)n,u € X be such that u, — uin X and fix ¢ € X, with ||¢|| = 1.
By Lemma 2.3 and Proposition A.8-(ii), it follows that v, = |u,|9"2u, — v =
|u|?=2u in LY (RN; w). Therefore,
(@ () = @y (), @) < Nlvn = Vllg wllllgw < Cwllvn = vllg
by (2.4). Hence,
1@ (un) — @ ()l x7 < Cullvn — Vg w,

that is @/ (u,) — @), (u) in X'. In particular, this shows that ®,, is of class
C'(X) and completes the proof of the lemma. O

Clearly the conclusions of Lemmas 3.3 and 3.4 continue to hold when the
functionals are defined in the bigger space E. Indeed, all the functionals are
well defined in E, being E — LP(RY;a) by (1.2) and E << LI(RN;w) by
Lemma 2.3.

Lemma 3.5. The functional @y, : X — R, ®p(u) = %HuHﬁh is convez, of class
C' and sequentially weakly lower semicontinuous. Moreover, if (up)n,u € X
and u, — uw in X asn — oo, then @) (u,) — @} (u) in X'.

Proof. The convexity of ®; is obvious, being r > 2. Moreover, the continuity
of ®;, follows from the continuity of the embedding X < L"(R™;h). Hence
®;, is sequentially w.l.s.c. by Corollary 3.9 of [6]. On the other hand, ®j, is
Gateaux-differentiable in X and for all u,p € X

(@), (u), ) = /]RN h(z)|u|"?up dx.

Let (uy)n,u € X be such that u,, — u in X. Then, u,, — u in L"(RY;h),
and s0 v, = |u,|""2u, — v = |u|""2u in L” (RN;h) by Proposition A.8-(i).
Therefore,

|95, (un) = @}, (u)|lx+ = sup
peX
llell=1

< sup fon— vl Ilen < llon = vlln = o(1)
peX|lpll=1

50 (a2~ " 20) s
RN

as n — oo. This gives the C! regularity of ®;,.
Suppose now that u, — w in X. Let n — v, = |u, u, and fix a
subsequence (v, )x of (vp)n. Of course u,, — uin X and by Proposition A.10

|'r72
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there exists a further subsequence (unk]_)j such that u, — u a.e. in RN,
Thus vn,, — v = |u|"~%u a.e. in RV. On the other hand, (vnkj ); is bounded in
L™ (RY; h) since lone, 7 = llny, 117, and (up, ); is bounded in L™ (RN h).
Therefore vy, — v in L (RY; h), by Proposition A.8-(i). In conclusion, due

to the arbitrariness of (v, )k, the entire sequence v, — v in L™ (RN;h) as
n — o0. Hence, in particular for all ¢ € X

h(2) |wn|" 2 up p do — / h(z)u|""?uyp du
RN RN
as n — o0o. This gives the claim and completes the proof. 0

For any (z,u) € RY x R put
Fla,u) = Mw(@)ul " — h(z)ul "y, (3.5)
so that

Jul”

Flawu) = [ f(o.0)do =2 wla)al’ - hiz) (36)
0

Lemma 3.6. For any fired u € X the functional F, : X — R, defined by

Fu() = [pn [z u(@))v(z)de, is in X'. In particular, if v, — v in X then

Fu(vy) — Fu(v).

r

Proof. Take u € X. Clearly F, is linear. Moreover, using (2.4), we get for all
veX

Fuw)] < A / w(e)|ult o e + / B(a) D ) ol
RN RN
< Al 45 ol + [al73 0len < OS]t + JulZ30) ),
and so F, is continuous in X. O

In the next result we strongly use the assumption ¢ > 2. An interesting
open question occurs when 1 < p < ¢ < 2 and ¢ < min{r, p*}.

Lemma 3.7. The functional ®y is of class C' and sequentially weakly lower
semicontinuous in X, that is if u, — u in X, then

D) (u) < liminf @y (uy,). (3.7)
n—oo

Proof. We take inspiration from Lemma 2 of [20]. Lemmas 3.2-3.5 imply that
®, € CH(X). Let (uy), and u be such that u, — u in X. The definition of
) and (3.5) give

Dy (u) — Pa(uy) = /]RN [ (x,Vu) — o (z,Vu,)| dx
! b —llunl® T, Un)—F(x,u)|dx
+];(||U||p,a I an,a)vL/RN[F( s ) = F(z,u)ldr. (3.8)

Since u,, — u in X, Lemma 3.2 implies that

& (x, Vu) dr < liminf o (x,Vuy,) de (3.9)

]RN n—oo ]RN
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and Lemma 3.3 yields

Jull 0 < timinf 2,
Hence, by (3.8)

limsup [®y(u) — Py (uy,)] < limsup /]RN [F(z,un) — F(z,u)]ldz. (3.10)

n—oo n—0oo

By (3.5) and (3.6), for all s € [0, 1],
P, + s(un — 0)) = f(z,u + s(un — u))
— f(a, u)—i—(un—u)/osfu(x, wt tu, —u)dt,  (3.11)
where clearly
ful@,2) = Mg = Dw(@)|2|77? = h(z)(r — 1)]2["2.
Multiplying (3.11) by u, — u and integrating over [0, 1], we obtain
Flo,un) — F(z,u) = f(@,0)(wn — )
g
+ (un—u) /0 (/0 Fulzsu+ t(unu))dt> ds. (3.12)

Now, (3.1), with k; = Mw(z)(¢ — 1),k2 = h(z)(r — 1), = ¢ —2 > 0 and
B=r—2>0,and (1.3) force
W] (¢=2)/(r—q)

Sfulz, 2) < 2C’1w(x)2/q [ W)

)

where C] is a positive constant, depending only on ¢,r and A. Consequently,
(3.12) yields

/ [F(x,up) — F(z,u)|dx < flz,u)(u, —u)de
RN RN

dzx

+G /RN w(z)? 1 (u, — u)? {wi(;g)/q} (4=2)/(r—aq)

< fla,u)(u, —w)de + CLHO Dy, — ul|? (3.13)

w
RN q,

by Hélder’s inequality and (1.4). Now, Lemma 3.6 gives

lim fz,u)(u, —uw)dx =0, (3.14)

n—oo RN
and Lemma 2.3 implies

lim |Ju, — u|gw = 0. (3.15)

n—oo

Putting (3.13)—(3.15) in (3.10) we get the claim (3.7). O
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Lemma 3.8. Let (uy,), be bounded in X and (\,), bounded in R. Put
n = gn(2) = —a(@) [t P2t + M0 () [t |7 20 —h(2) [un " 2. (3.16)
For all compact set K C RY there exists Cx > 0 such that

sup/ |gn(x)] dx < Ck.
n JK

Proof. Let K C RN be a compact set. Clearly a € LN/P(K) by (1.2), so that
by Hoélder’s inequality

p/N
/a(x)|un|p—1dxg|f<|1/p* (/ a(ac)N/pdm) supuunug:l:cl (3.17)
K K

and Cy = C1(K). Similarly, by Holder’s inequality and (1.3), we obtain

] wia)

and Cy = C3(K). Finally, since h € L{ (RY) and (||un|\,»7h)n is bounded, then

1/r
/ h(x)|un|" e < </ h(m)dx) sup ||Un||;711 = Cj, (3.19)
K K n

with C3 = C3(K). Combining (3.17)—(3.19), and recalling that (\,), is
bounded, we get the claim. (]

=, (3.18)

4. Existence if \ is large
Define
A= inf { / o (z,Vu) dz + fHuHP ﬁun;h}.
HUHq w=

Note that A > 0. Indeed, for any u € X with ||ul|., = 1, by Holder’s inequality
and (1.4), we have

m1/—q) O
w(x ” w(x
1nnwuténggrmmW|muxs<éNLégJ m) e,

= HO

where H > 0 is the number introduced in (1.4). Consequently, using also
(2.5)2, we get

Y

Kkq 9 1r(q—r
b + ;H(‘? )/a

¢ [ o2, Vuyde+ Ljuln, +
RN p

RO 9 pr(a—r)/
M L ppa-r)/g
= e, + , ;
where €, > 0 is given in (2.4). In other words,

> ra + qH(q*T)/q 0.
r
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Lemma 4.1. For all A > X there exists a global nontrivial non-negative mini-
mizer e € X of ® with negative energy, that is ®5(e) < 0.

Proof. By Lemmas 3.1, 3.7 and Corollary 3.23 of [6], for each A > 0 there
exists a global minimizer e € X of ®,, that is

Dy (e) = 1)1é1)f( D) (v).

Clearly e is a solution of (£)y. We prove that e # 0 provided that A > X. To
this aim we show that inf,ex D, (v) <0.

Let A > A. Then there exists a function ¢ € X, with ||¢]/qw = 1, such
that

q q r
Agllt, =2 > g / o (5,V9) dz + Lol2 o + Ll
RN p T
This can be rewritten as

r0) = [ @ Ve)dr+ gl — Sl + 1l <0
RN p q r
and consequently @y (e) = inf,ex @5 (v) < Py(p) < 0.
In conclusion, for any A > A, equation (£)x has a nontrivial solution
e € X such that ®,(e) < 0. Finally, we may assume e > 0 a.e. in R, since
le] € X and ®y(e) = Pr(le]) by (A)-(a). O

Define
A =inf{\ > 0 : () admits a nontrivial entire solution}.
Lemma 4.1 assures that this definition is meaningful. Clearly A > \**.

Theorem 4.2. For any A > A** equation (€)x admits a nontrivial non-negative
entire solution uy € X.

Proof. We take somehow inspiration from [17, Theorem 1.1] and
[23, Theorem 2.4].

Fix A > A**. By definition of \** there exists u € (A**, \) such that @,
has a nontrivial critical point u, € X. We assume, without loss of generality,
that u, > 0 a.e. in RV, since |u,| is also a solution of (&), by (A)—(a).
Of course, u,, is a sub-solution for (£). Consider the following minimization
problem

i = U > .
Ulenjf/l@)\(v), M={veX:v>u,}

First note that M is closed and convex, and in turn also weakly closed. More-
over, @ is coercive in M, being coercive in X by Lemma 3.1. Finally ®, is
sequentially weakly lower semicontinuous in X and so in M. Hence, Corollary
3.23 of [6] assures that @) is bounded from below in M and attains its infimum
in M, i.e. there exists uy > u, such that ®,(uy) = inf,eps Pa(v).

We claim that uy is a solution of (€),. Indeed, take » € C§°(RY) and
e > 0. Put

. =max{0,u, —ux —ep} >0 and v, =u\+ep+ @,
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so that v. € M. Of course
0 < (@ (ua),ve — ux) = (@) (ua), @) + (P4 (un), ¢2),
and in turn
(B (1), ) > 2 (@4 (12), 02). (41)
Define
Qe = {2 €RY : up(2) + ep(x) < uy(w) < un(z)}.

Clearly Q. C supp . Since u, is a subsolution of (£)y and ¢. > 0 it turns
out that (®)(u,),p-) < 0. Hence, using the notation of (3.5), we have

(@A (ur), pe) = (P (un), e) + (P (ua) — i (un), oc)

< (A(z,Vuy) — A(z,Vuy)) - V(u, —ux —ep) dz
Q.

+ [ a(@) (ual"™ux = Ju" ) (uy — ux — ep) da
Qe

- (o) = flo )~ —ep)dn. (42
By convexity
/Q (A(x, Vuy) — A(z,Vuy)) - (Vu, — Vuy) dr <0,
while, since 0 ; Uy — Uy — P = Uy — Uy + £lp] < ely| in Q, we get
[ o) Qa2 = a2 s = <) o
< [ a@llinP = = 2l = 0 = e9) do
: E/Q a(@)[[ux|P~ux — Ju, P~ 2uy| - ol da,

and similarly

/Q (F(,un)— (2, u)) (1, — un—e0)da

Therefore, (4.2) yields

<e [ 15~ flo,)] - elde.

=

(@) (up), pc) < /Q o),

where ¢ = (A(z, Vu,) — A(z, Vuy)) - Vo + (a(@)||uxP~2ur — |uu[P~?u,| +
|f(z,ux) — f(z,uu)])|pl. We claim that ¢ € L'(supp ¢). Indeed, A(z, Vu,)
and A (z, Vuy) are in [L? (RM)]N by (A)-(c), while aluy|[P~" and a|u,|[P~! are
in LL _(RY). Finally, also |f(x,uy) — f(z,u,)| is in L{ (RY), since

loc

(@) = £ (@] < Awo(@) (Jual”™ + ) + (@) (Jual + [l ?).
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Therefore the claim follows from the proof of Lemma 3.8. Thus,

li dr=20
Eir&/gsw(x) z =0,
since || — 0 as e — 07. In conclusion, (®}(uy),p:) < o(¢e) as e — 0T,
so that by (4.1) it follows that (®)(uy),p) > o(1) as e — 0F. Therefore,
(@) (ur), ) > 0 for all ¢ € CE°(RY), that is (@) (uy),) = 0 for all ¢ €
C§°(RYM). Since X = Cg°(RY) ”.”, we obtain that uy is a solution of ().
Finally, uy is nontrivial and non-negative, since uy > u,. U

Lemma 4.3. \** = \*.

Proof. Theorem 4.2 shows that \** > A\*. Suppose by contradiction that \** >
A*. Problem (€), cannot admit a nontrivial solution v € X if A < A\**, since
this would contradict the minimality of A**. Hence, for all A € [A\*, \**) the
unique solution of (£)y is u = 0. But this is again impossible since it would
contradict the maximality of A*. Hence A\™* = \*. O

Theorem 4.4. Equation (€)x« admits a nontrivial non-negative entire solution
ue X.

Proof. Let (An), be a strictly decreasing sequence converging to \* and u,, €
X be a nontrivial non-negative entire solution of (£),,. By (2.9) we get

A(z,Vu,)Vudr = / gnvdz  for all v € X, (4.3)
RN RN
where n — g, (z) = —a(z)|u,|P~2u, + A\pw(2)|un |9 2w, — h(z)|u,|""u,. By

(2.5)1, (2.6), (2.7) and the monotonicity of (A, ), we obtain

T < Aallunl|,, < IATTIPOD,

illunl + llun

Therefore (||un||g)n and (||tun|rn)n are bounded, and in turn also (||un]|)n is
bounded. Hence, (g,,),, is bounded in L], (RY) by Lemma 3.8, since also (A, ),

is bounded. Moreover, by (A)-(c¢), Lemma 2.3, Propositions A.6, A.10 and A.11
it is possible to extract a subsequence, still relabeled (uy,),, satisfying

U, —~u in X; Uup —u in LYRN;w);
up, —u in L"(RN;h); Up, — u  a.e. in RY; (4.4)
Vu, = Vu in [LPRM)N;  A(z,Vu,) =0 in [LP(RV)V,

for some u € X and © € [LP (RV)]N. We claim that © = A(z, Vu) and that
u, which is clearly non-negative by (4.4), is the solution we are looking for.

Step 1. In the sequel we somehow follow the proofs of Theorem 2.1 of [5] and
Lemma 2 of [12]. Fix R > 0. Let pr € C°(RY) be such that 0 < pr < 1 in
RY and pr =1 in Bg. Given € > 0 define for each t € R

t, if [t| <,

W =9l e

2l
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Put v, = pgne o (un, — u), so that v, € X. Taking v = v, in (4.3), we get
/ er(A(z, Vuy,) — Az, Vu)) - V(e o (u, — u)) dz
RN
= —/ Ne © (up, — w)A(x,Vuy,) - Vog dx
RN

—/ ©YrA(z,Vu) - V(e o (up, —u))dx + / gnn dr.  (4.5)
RN RN
Observe now that

/ Ne © (Un, — w)A(z,Vuy,) - Vopdr — 0 asn — oo,
RN

since 7. o (u, — u)Vepr — 0 in [LP(suppy¢gr)]Y and A(x,Vu,) — O in
[LP (RM)]N by (4.4). Furthermore, V(1. o (up, — u)) — 0 in [LP(RN)]V, since
u, — u in X, and consequently

/ YrA(z,Vu) - V(ne o (up, —u))de — 0 asn — oo,
RN

being A(z, Vu) € [LP (RV)]V.
In conclusion, the first two terms in the right hand side of (4.5) go to
zero as n — oo. Now, recalling that 0 < pp < 1 in RV, we have

/ gnvndxg/ |gn|-\n50(un—u)|dx§€/ |gn|dz < eCh,
RN Supp ¥R Supp ¥R

since (gn)n is bounded in Ll (RY) by Lemma 3.8. By (A)-(b) and the defini-
tions of pg and 7,

or(A(z, Vu,) — Az, Vu)) - V(ne o (up —u)) >0 ae. in RY,

and in turn

/B or(A(z, Vi) — Az, Vu)) - V(e o (tun — u)dz

< /N or(A (2, Viin) — A, V1)) - V(e o (un — u))d.
R
Combining all these facts with (4.5), we find that

limsup/ (A2, Vi) — A, V) - V(e o (un — 1)) dz < e Cr.  (4.6)
n—oo Br
Define the non-negative function e,, by

en(z) = (A(z, Vu,) — Az, Vu)) - V(u, — u).

Note that (e, ), is bounded in L*(RY). Indeed,
0< / en(z)dr < ||A(z, Vu,) — Az, Vu)|lp - [|Vun, — Vull, < Co, (4.7)
RN
where Cj is an appropriate constant, independent of n, deriving from the

boundedness of (Vuy,), in [LP(RM)]N and of (A(z, Vuy,)), in [LP (RV)]N
by (4.4).
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Fix 6 € (0,1). Split the ball B into
Su(R) ={x € Br: |un(z) —u(z)| < e}, GL(R) = Br\ S,(R).
By Holder’s inequality,

0 6
/ ¢ dy < ( / endx> |55 ()" + ( / endx> IGE (R)[
Br S5 (R) G5 (R)

< (eCR)ISL(R)|'™" + CHIGR(R)' 7,
by (4.6), since pp = 1 and V(1. o (u, —u)) = V(u, —u) in S5(R), and by
(4.7). Moreover, |G (R)| tends to zero as n — oo. Hence

0< limsup/ el de < (eCRr)’|Br|*".
Br

n—oo

Letting ¢ tend to 0% we find that ¢ — 0 in L'(Bg) and so, thanks to the
arbitrariness of R, we deduce that

e, — 0 a.e. in RN
up to a subsequence. Thus, by Lemma 2.1
Vu, — Vu ae. in RV,
and so
A(z,Vu,) — Az, Vu) a.e. in RV,
by (A). Hence, Proposition A.7 implies that © = A(z, Vu) and consequently
forall v e X

A(z,Vuy,) - Vodr — A(z,Vu) - Vvdx (4.8)
RN RN
as n — oo, since A(z, Vu,) — A(z, Vu) in [L? (RN by (4.4).

Step 2. Since u,, — v in X, Lemma 3.3 yields in particular that for all v € X

/]RN a(x)|u, [P~ unvda:—>/ z)|ulP2uv da (4.9)

as n — 0o. Moreover, Lemmas 3.4 and 3.5 imply that for all v € X

/ w(x)|un |9 2unvdﬂc—>/ x)|u|? 2w d,
RN

(4.10)
h(x)|un|“2unvdx—>/ h(z)|u|"?uv de,
RN

RN
as n — oo. In conclusion, passing to the limit in (4.3) as n — oo, we get by
(4.8)-(4.10)

A(z,Vu)-Vodz + /

a(x)|uP~2uv de = )\*/ w(z)|u|? 2w da
RN

RN

- / h(z)|u|"?uv dx
RN

for all v € X, that is w is an entire non-negative solution of (&)~

RN
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Step 3. We claim that v # 0. Indeed, since w,, — v in X by (4.4), Lemma 2.3
yields in particular that ||ul/q,w = limy, e ||t ||g,. Moreover, (2.7) applied to

cach u, # 0 implies that ||t [|g. > &1 A P~9, that is
lullgw = Hm flug g = m1 (M) @D >0,
since A, \, A* and \* > 0. Hence u is nontrivial and non-negative by (4.4). O

Proof of Theorem A. Section 2, Lemma 4.3 and Theorems 4.2 and 4.4 show
the existence of A* > 0, with the properties required in Theorem A. O

5. Existence of a second non-negative entire solution
in a special case

In this section we prove that equation (£), admits at least two nontrivial
solutions if A is sufficiently large, via variational methods. We start by estab-
lishing a geometrical property for the energy functional ®,, which is valid for
all A > 0 and is a variant of the geometrical structure of the Mountain Pass
theorem due to Ambrosetti and Rabinowitz [4]. For a similar result, obtained
with a different proof and the use of the Palais—Smale compactness condition,
we refer to [7].

Lemma 5.1. For any e € X \ {0} and A\ > 0 there exist o € (0,]|le]|g) and
a = a(p) >0 such that @ (u) > a for allu € X, with ||u||g = o.

Proof. Let u be in X. By (2.4) and (2.5)

K A KA
Dy (u) > =||lullf — =lul|? 2<_¢qqu>up.
(u) pll I q|| 1, P wllullg™ ) lulls

Therefore, it is enough to take 0 < p < min{(/iq/)\pﬂfv)l/(q*p) , HeHE}, 0
that a = (k/p — A€L 0777 /q) o > 0 satisfies the assertion. O

In Lemma 4.1 we have shown that for all A > X there exists a nontrivial
non-negative entire solution e € X of (£),, which is a global minimizer for ®
in X, with ®5(e) < 0. In this section we are looking for a second nontrivial
solution of (€)y, when A > A.

By Lemma 5.1 and the variant of the Ekeland principle given in Theorem
A.3, for all A > X there exists a sequence (u,), € X such that

Dy (uy) — ¢ and || P (up)|lx — 0 (5.1)
as n — 0o, where

¢ = inf max ®,(y(t)) and I ={y€ C([0,1;X): v(0) =0, v(1) = e}.
Y€l te0,1]
The principal aim is to prove that (u,), strongly converges to some u € X
and that u is a second nontrivial non-negative solution of (£)y. In order to do
this, we assume the further following growth condition on 7.
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(A)-(d) There exists k > 0 such that

(A(r,€) ~ Alw&) - (€~ &), T
{(A(.T,g) - A(l‘,go)) : (5 - 60)}5 (|§|p + |§0|p)%”7 1< p < 2u
for all z, &, & € RN,

Any function A(z, &) = d(z)[¢[P~2¢, with d € C(RY,R*) N L= (RY), satis-
fies (A)-(d). For the p-Laplacian operator, A(z,&) = [£[P72¢,p > 1, property
(A)-(d) was proved by Simon in [22]. In particular,

(&) For all s € (1,00) there exists k > 0, depending only on s, such that

€ et <k {<|f|s-2£ U ORG N 522,
T L{UglTE = [GolF280) - (€ — &) b2 (€ + ]5)%", 1<s<2,
for all £,& € RN,

Proof of Theorem B. Fix A > X and let e € X be the global minimizer of ®,
obtained by Lemma 4.1.

|§—§0|p<k{

Step 1. Thanks to Lemma 5.1 and the fact that ®,(e) < 0, the assumptions of
Theorem A.3 are satisfied for the functional ®,. Hence, there exists a sequence
(un)n C X such that (5.1) holds. By Lemma 3.1, the sequence (uy,), is bounded
in X and so also (A (z, Vauy,)), is bounded in [L? (RV)]N by (A)-(¢). From now
on we can follow the argument of the proof of Theorem 4.4. We report here
the main differences. By Lemma 2.3, Propositions A.6, A.10 and A.11, it is
again possible to extract a subsequence, still relabeled (u,, ), satisfying (4.4),
for some u € X and © € [L? (RV)]N. The main point of the proof is to prove
that ® = A(x, Vu) and that u is a nontrivial solution of (£)y, with u # e.
Clearly, now

(D (un),v) = A(z,Vuy,) - - Vudr — / gnvdx (5.2)
RN RN
for any v € X, where the sequence (g )n, defined in (3.16) with A, = A, is in
L (RN) by Lemma 3.8, being (||u,|), bounded.
Fix R > 0 and ¢ > 0. Take ¢ € C5°(RY) and 7. as in Theorem 4.4. Put
again v, = @grNe o (uy, —u) € X. Taking v = v, in (5.2), it results that

|, or(AG Vi) = A, V) - Vo o (1, — ) da
_ /RN Do © (tn — W)A(z, Viy) - Vior di
- / PrA@, Vu) - V(e o (u — w)) do

+<q>/}\(un)avn> + /]RN GnUn dx. (53)

Proceeding as for Theorem 4.4, we find that the first two terms in the right
hand side of (5.3) go to zero as n — co. Moreover
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(@) (un),vn) — 0 asn — oo,
since ® (u,) — 0 in X’ and v, — 0 in X as n — oo. Finally, recalling that

also in this case (g, ), is bounded in Li _(R™), we obtain

loc

/ gnvn dz < eCp,
RN
where C'g > 0 is an appropriate constant dependent only on R. From now on,
proceeding as in the proof of Theorem 4.4, we find that
A(z,Vu,) — A(x,Vu) as n— oo for a.a. x € RV,
Hence, Proposition A.7 shows that © = A(z, Vu) and so for all v € X
A(z,Vuy,) - -Vodr — A(z,Vu)-Vvdr as n— oo, (5.4)
RN RN

since A(x, Vuy,) — A(z, Vu) in [LP (RV)]N by (4.4).

The proofs of Steps 2 and 3 of Theorem 4.4 can be repeated also in this
case, obtaining (4.9) and (4.10). Hence, passing to the limit as n — oo in (5.2),
using (5.4) and the fact that (®) (u,),v) — 0 as n — oo for all v € X, we get

A(z,Vu)-Vodz + /

a(x)|uP~2uv dz = )\/ w(z)|ul? 2w dx
RN

RN RN

- / h(z)|u|""%uv dx
RN

for all v € X, that is w is an entire solution of (£)x.
Step 2. We claim that

Tuln) = [ wl@)ualun = 00 0 = w)de =0 (55)

as n — oo. Indeed, u,, — u in LI(R™;w) by Lemma 2.3, since u,, — u in X by
(4.4). Thus, |u,|? 2w, — |u|92u in LY (RN;w) by Proposition A.8-(ii) and in
turn, applying Holder’s inequality, we get

0< / w () (|un |7 2w, — [u|9%u) (u, — u) do
RN

< |||un|q72un - ‘“|q72“Hq’,wHun - u“q,w — 0,

as n — oo. This completes the proof of (5.5).
Step 3. Here we show that

lun —ull =0 as n — oo. (5.6)

Clearly, by convexity

)

Tin = / (A(z,Vu,) — A(z,Vu)) - (Vu, — Vu)dz >0
RN

Iopn = / a(@)(|un P 2upn — |ulP~2u) (uy — u) dz >0
RN

I3 p = R(2) (Jun|" 2wy — |u|" %) (u, — u) dz > 0.
RN
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Put R, = Zi, + Zon + Z3,,. Note that (P (uy,) — P (u), up, —u) — 0 as
n — oo, since u,, — v in X and ®) (u,) — 0 in X’ as n — oo. Hence, by (5.5)

Ry = (24 (un) — @ (u), un — u) + ATuw(n) = o(1) (5.7)
as n — oo.
By (), with s =7 > 2, and by (5.7) it follows that
llwn — UH:,h < 1%1—3,71 = o(1), (5.8)
as n — oo.

Case p > 2. Using (1.2), (A)-(d) and (), with s = p, we get

lun — ully < k/RN (A(z,Vu,) — A(z,Vu)) - (Vu, — Vu)dx

1
+—lun —ullf, (5.9)
C1 ’

< max{k, IA€/01} {Zin + Ion} = o(1),

as n — oo, by (5.7).
Case 1 < p < 2. By (), with s = p, and Holder’s inequality we have

[V, — Vul[h < k/ {(A(z, Vu,) — Az, Vu))
]RN
- (Vay, — Vu) P 2(|Vun|P 4 |VulP) 2P/ 24z
< KTY? ([Vunll + [ Fullp) @~
< KT} (V|77 + | ul 277772
< 2]€]\4(2*LD)P/QI{’/37

where M > 0 is such that |Vuy||,, |[Vull, < M for all n, being the sequence
(IVuy|[p)n bounded by (4.4). Similarly, again by (.), with s = p, we have

lotm =l < RZEE (Ianll 2972 4 |full 370712 < 2kRE—PPITE,

p,a — a

where 8 > 0 is such that ||un|/p.a;||tlpe < R for all n, being (|lu,

bounded. Hence, using also (1.2), it follows that

2/p
i~ ulfy < 227907 {Nun =Vl + ([ vt —upr) }

1 2/p
< 2@=2/7 ! |y, — Vul? + (||un —ul|® a>
C1 ’

< C{Tin+Ton} = o(1) (5.10)

as n — oo by (5.7), where C = 22-P)/P max{(2k)2/P M7 (2k/c,)*/PR2-P}.
In conclusion, for all p > 1, using (5.8)—(5.10), we obtain (5.6).

Step 4. Since u, — v in X and ®) € C*(X), we have that ®)(u) = ¢ =

lim,, oo @y (uy). Therefore, u is a second independent nontrivial entire solu-

tion of (&), with ®5(u) = ¢ > 0 > @, (e). Clearly we can assume u > 0 a.e. in

RY | since |ul is also a solution of (£)y by (A)-(a). This concludes the proof.

p.a)n
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Appendix A

In this section we present some auxiliary results, starting by recalling this
definition.

A Banach space (V, ||-||v) is said to be locally uniformly convez if |v, ||v =
llvllv =1 and lim,, oo |JUn, + v||y = 2 imply that nl:rr;o lvn —v|ly = 0.

Proposition A.1. Let (V]| - ||v) be a locally uniformly convex Banach space.
Let (vn)n and v be in 'V such that
(i) vy, —vin Vasn — oo, (ii)  limsup||va|lv < ||Jv]lv.
n—oo

Then v, — v in'V as n — oo.

Proof. If v = 0 there is nothing to prove and the conclusion is obvious. Hence
suppose v # 0. By (ii) and the weak lower semicontinuity of the norm, we get

tim_[loa v = [lv]lv- (5.1)

Thus there exists @ > 0 such that for all n > 7 it is ||v,|ly > 0. For n > @
define y, = v,/||vn|lv and y = v/||v|lv, so that ||y,|lv = |lyllv = 1. For all
f €V’ we have

f(yn—y)=f(

1ol
Toullv

Un Un

v v
lloally )+ﬂwfw+f0mw— )
ol ol ol ~ ol

F(w) + $on =)+ 1 g,
[ollv
Now, by (i), the sequence (||vn||v ). is bounded, while f(v,) — f(v) and

f(v, —v) — 0. That is f(yn) — f(y), or, in other words, y, — y in V.

We claim that lim, . ||yn + y||v = 2. To prove this, first note that the
weak convergence of y,, and the weak lower semicontinuity of the norm imply
that

Yn +y

1. .
5 —y and |yllv < §hmmf lyn + yllv-
n—oo

Consequently,

1. . 1.
1= lyllv < 3 liminf ||y, 4+ yllv < = limsup ||y, + yllv
2 n—oo 2 pooo

IN

1.,
5 limsup([lyallv +[lyllv) =1,
n—oo
that is lim, e ||yn + yllv = 2, as claimed. The local uniform convexity of V
assures that lim, . ||y, — y|lv = 0. Hence,

[on = vllv < lonllvllyn —yllv + lyllvilloally = llvlv] — 0 asn — oo,

by (5.1) and the boundedness of (||v,|/v)n. The proof is complete. O
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As a consequence of Proposition A.1 we have the following important

Corollary A.2. Let (V|- |lv) be a reflexive Banach space. Let (v,)n and v be
in V' such that as n — oo

(i) vo—vinV (i) [onllv = fvllv-
Then v, > v inV asn — oo.

Proof. First observe that there exists an equivalent norm on V, say || - ||, which
makes V' a locally uniformly convex Banach space, see the Troyanski theorem
[25]. Hence, conditions (i) and (ii) hold also if we consider on V' the norm
| - ||. Therefore ||v, — v|| — 0 as n — oo, by Proposition A.1. Finally, also
||vn, — v|]|y — 0, being the two norms equivalent. O

The following theorem is stated for two general Banach spaces X and F.
We apply it in Theorem B, in which X and E are the special spaces defined
in Section 2. The proof of Theorem A.3 is based on the Fkeland variational
principle, see for instance [16]. For a similar generalization of the Mountain
Pass theorem, with a different proof and the use of a compactness condition,
we refer to Theorem 2.5 of [7].

Theorem A.3. Let (X,| - ||) and (E,|| - ||g) be two Banach spaces such that
X —E. Lt ®: X — R be a C* functional with ®(0) = 0. Suppose that there
exist o, > 0 and e € X such that |le||g > 0, P(e) < a and ®(u) > « for all
u € X with ||ul|lg = o.

Then there exists a sequence (up)n, € X such that for alln

1 2
<O(uy) <c+ — d |9 (un)||x < =,
c < D(uy) <c 3 and ||®'(u )”X_n

where

¢ = inf max ®(y(t)) and T'={ye€ C([0,1];X): v(0) =0, v(1) = e}.
vel' t€[0,1]
Proof. Step 1. We claim that ¢ > «. Indeed, fix v € T'. Clearly, v € C([0, 1]; E),
since X < E. This implies that the function g : [0,1] — R defined by g¢(¢t) =
l7(t)|| £ is continuous and such that g(0) = 0 < g and g(1) = |le||g > o. Hence
l7(to)lle = o for some t, € (0,1). Consequently, ®(y(t,)) > « and in turn
maxyefo,1] ®(7(t)) > . Finally, due to the arbitrariness of v, we get the claim.

Step 2. Let us consider on I' the metric doo(v,1) = maxeo,1) [|7(t) — n(t)]].
Thus, (T',ds) is a complete metric space. Define on I" the functional

J(v) = Jnax, (v(t)).

Of course, J is bounded from below by Step 1, since J(v) > « for all v € T.
Moreover, J is lower semicontinuous, being the supremum of continuous func-
tions. Therefore, by Ekeland’s variational principle, for all € > 0 there exists
Y. € I' such that

(i) J(72) < infyer J(7) + %
(ii) J(v) > J(ve) — €doo(y,7e) for all y € T
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Step 3. We claim that for all € > 0 and all . € C([0, 1], X) such that
1e(0) = 7e(1) =0 and  max |- ()] <1 (A.2)
te[0,1]

there exists t. € [0, 1] such that
P(ve(te)) = J(v:) and  —e < (P'(1e(te)), me(te))- (A.3)

Indeed, fix € > 0 and choose a continuous function 7. : [0,1] — X satisfying
(A.2). Define 7e j, = 7= + hn. for all h > 0, so that 7. 5, € I'. By the continuity
of ® and ~, p, there exists t. j, € [0,1] such that

J(’Vs,h) = CI)('Vs,h(ts,h))o

Moreover, the boundedness of (¢ ), implies the existence of a convergent
subsequence, still denoted in the same way, with limit ¢. € [0,1]. Therefore,
thanks to the continuity of ® and the lower semicontinuity of J, we get

P(1:(te)) < J(7e) < l}lrg(iﬁf J(Ve,n) = hli%l+ P (Ye,n(te,n)) = ®(e(te)),
that is (A.3); holds. Moreover, by (ii) and (A.2)a,

—eh < J(Yen) = J(ve) < P(Ve,n(te,n)) — P(ve(ten))
= h<¢’/('75(ta,h))a ns(ts,h» + O(h)

as h — 0. In turn, dividing by h > 0 and passing to the limit as h — 0, we
find (A3)2
Step 4. We claim that for all € > 0 there exists u. € X such that

|®(us)|| <2 and inf J(y) < ®(u.) < inf J(y) + % (A4)
~yel’ ~el’

Fix € > 0 and let 7. € T be the curve obtained in Step 2, satisfying (i) and
(ii). Take @ with max{®(e),0} < a < a. This is possible being ®(e) < a. Now,
for all ¢ € [0,1] for which

®(7:(t) > a (A.5)
we find z; € X, with ||a¢|| = 1, such that

(@ (1:(6)), ) < 2@ (2 (6))]

Since ® € C'(X) and ~. is continuous, then
1
(@(7:(5)), 20) < =5 119" (7(5)]
for all s in a neighborhood of t. By compactness of [0, 1] there exists a finite

number of open sets Uy, ..., U and vectors 1, ...,z € X, with ||z;]| = 1,i =
1,...,k, such that if ®(v.(t)) > a, then ¢t € U; for some i = 1,...,k and

(#(1:(1)), ) < — 5 1% (= ()]
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Let V be such that Uy, ..., U,V cover [0, 1] and let ¢1, . .., @k, 1 be a partition
of unity subordinated to this covering. Set

n(t) = Z wi(t)z; for all t € [0,1].

Note that n € span{xy, ..., 2} and for all ¢ € [0, 1] satisfying (A.5)

(@' (7: ZS@Z Ve(t), i) < — ||(I) Ye(t HZ@Z

= —§||<1>’(%(t))ll- (A.6)

Moreover, n verifies (A.2), since max¢jo 1) [|n(t)[] < 1,2(0) = 0 < a and
®(e) < a. Hence, by Step 3, there exists t. € [0, 1] satisfying (A.3). Further-
more, P(v.(t:)) = J(7:) > a > a by (A.3); and Step 1. Therefore, by (A.6)
and (A.3);, with n. =7, we get

—& <{P'(1e(te)) m(te)) < —%II‘I”(%(%))II
that is

H(I)I(’Ys(te))H S 2e.

Finally, using (ii) of Step 2 and (A.3)1, we obtain
inf J(y) < ®(7e(te)) < inf J %,
inf J(v) < (%(te)) < Inf J(v) +e

Hence, (A.4) holds with u. = v:(t:) € X.
This concludes the proof, by taking ¢ = 1/n and wu,, = v, (tn). O

We present now some results on the weighted Lebesgue spaces. Let w be
a weight on RY, that is a measurable function such that w > 0 a.e. in RV . If
s € R, following [14, Chapter V, Section 6], we put

L*(RY;w) = {u: RY — R measurable : wlu|® € L*(RV)}.

The set L*(RY;w) is a linear space, thanks to the inequality (1.5) given in [14,
Lemma 1.1, page 222], and

o= ( [ wlutra)”

is a norm-like function on L*(R™;w) when s € (0,1), and a norm if s € [1, 00).

The next result is well-known in the usual Lebesgue spaces (see, for
instance, Theorem 4.9 of [6]). The proof is left to the reader, since it is stan-
dard, see also [21].

Lemma A.4. Let s € [1,00). If (un)n and u are in L*(RY;w) and u, — u in
L¥(RYN;w) as n — oo, then there exist a subsequence (up, )i of (un)n and a
function ¢ € L*(RY;w) such that a.e. in RN

(i) Up, — u as k — oo; (i)  |un, ()] < ¢(x) for all k € N.
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Proposition A.5. Let o € (0,1). If u,v € L°(RY;w) then

Il + [0l

ow = (|l ow T ||v||cf,w-

Proof. If u = v = 0in L (R"™;w) the conclusion is trivial. Hence, let us suppose
|u| 4+ |v| > 0 in a subset of RY of positive measure, so that |[|u| + |v|||s.o > 0,
being w > 0 a.e. in RV,

Let o’ < 0 be the conjugate exponent of o, given by 1/o + 1/0’ = 1,
see [14, Section V.1.2, page 222]. Since w'/? (|u| + |[v])"”" € L (RV) and
w7 |u|, w7 v| € L7 (RN), by the reverse Holder inequality, see Theorem 2.6
of [1], we obtain

([l + 0[50 = /RN w(@)" (lul + |07 w(@) 7 (Ju] + [v]) da

Z(AQW@MW—Hmf&OUM(ANM@mPMJUU
+(ANw@Mmrme¢g”’(4NwﬂUrmouo

= lllul + lllg 2" (ellow + l[vllow)-

In conclusion, since |||u] 4 |v]|/sw > 0, we get the assertion. O

Proposition A.6. Let s € (1,00). The Banach space (L*(RY;w), || - ||s.) is
uniformly convex.

Proof. We follow the proof given in [1, Corollary 2.29]. Fix € € (0,2) and let
u,v be in L*(RY;w) such that ||ullsu = [|v]lsw =1 and |Ju — v|s. > €.
Case s > 2. By inequality (3.5) of [1, Lemma 2.27] we have

u+vl® u—ol® utwvl® u—uvl®
:/ w(x){ }dm
2 ||, 2 |, Ja~ 2 2
1
<5 | w@{ul* + o) do
2 Jgn
1 » s
= 5 (HuHs,w + ||U Is,w) =1
Therefore
u+v <1_ (§>57
s7w_ 2

and so, taking § = d(e) such that 1 — (¢/2)* = (1 — §)®, we obtain that
llu+vllsw < 2(1—09).

Case 1 < s < 2. First note that ||u||;/w = ||[ul*[|s-1.0 for all u € L3(RY;w),
and so, applying Proposition A.5, with 0 = s —1 € (0,1), we obtain
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’ ! ’ !
S S S S
u—+v uU—v u—+v uU—v
2 2 N 2 2
S, S s—1,w s—1,w
S/ p/
u—+v U—0
- 2 2
s—1,w

1/(s—1)
1 1 ,
< (glula+ i) =1

where in the last step we have used [1, Lemma 2.27, inequality (3.4)]. Now, pro-
ceeding exactly as before, and taking § = §(¢) such that 1—(¢/2)% = (1—6)*,
we get the claim. O

Proposition A.7. Assume that w € Ll (RN). Let s € [1,00), and let (up)n,u €
L*(RN:;w) be such that

up —uin L*(RY;w)  and  u, — @ a.e. in RY
asn — oo. Then u =1 a.e. in RV,
Proof. Denote by A = {x € RV : u(x) # u(x)} and suppose by contradiction
that A has positive measure. Take R > 0 so large that 0 < |[AN Bg| < co. By
the Severini—Egoroff theorem there exists a measurable set B C AN Bg, with
0 < |B| < oo such that (uy), converges uniformly to @ in B and so u, — @ in
L*°(B). Consequently,

l[tn, — ﬂ”sLs(B;w) < wllzrmllun — f‘HsLoo(B) =o(1)

as n — 00, since |B| < oo. Therefore, u, — @ and so u, — @ in L*(B;w).
Hence, @ = v a.e. in B, since the weak limit is unique, being w > 0 a.e. in RV,
But this occurrence is impossible, since B C A and |B| > 0. This contradiction
concludes the proof. O

Proposition A.8. Assume w € Li (RN). Let s € (1,00) and let (up)n,u be in
L (RY; w).
(i) If (up)n is bounded in L*(RY;w) and u, — u a.e. in RN, then

tn —u in LS(RY:w)  and  |un|*2un — [ul*"2u in L% (RV;w).
(1) If |unllsw — Jullsw and u, —u in L*(RN;w), then

u, —u in LS(RY;w0)  and  |un|* 2w, — |[u)*"?u in L* (RN w).
Proof. Let (tuy)n,u be in L$(RY; w).

Case (7). Fix a subsequence (uy, )r of (uy)r. By Proposition A.6 there exists a
further subsequence (unkj )i € (tn, ) and v € L*(RN;w) such that u,,, — v
in L¥(RY;w), being (u,, )r bounded in L¥(RY;w). On the other hand, v = u
by Proposition A.7, since w € L}OC(RN) and w > 0 a.e. in RY by assumption.
By the arbitrariness of (u,, )i, we deduce that the entire sequence u,, — w in



Vol. 20 (2013) Entire solutions for quasilinear equations 1005

L*(RV;w). Applying the same argument to the sequence n +— |u,|*~%u,, we
obtain that |un, |*~2u, — |ul*~2u in L (RY;w).

Case (ii). Corollary A.2 and Proposition A.6 imply that u, — u in L*(RY;w).
Now, fix a subsequence (vp, )k of n +— v, = |u,|*2u,. Hence u,, — u in
L*(RY;w), and so there exists a further subsequence (unk_j ); of (un, )x such

that u,, — u a.e. in RY by Lemma A.4. Of course, v,, — v = |u|*"2u
J J

a.e. in RY. On the other hand, ||vnk_j ||§:w = \|unk7||§w — |lu

sw = ol
by assumption. Therefore, Uny, — U in L¥ (RV:w) by the first part of this
proposition and by Corollary A.2. Due to arbitrariness of (v, )x, the entire
sequence (vy,), converges to v in L¥ (RN ; w). O

From now on, E and X denote the two Banach spaces defined in Sect. 2. In
the next proposition we somehow follow the ideas contained in [15, Theorem 6.

Proposition A.9. The Banach space (E,| - ||g) is uniformly convex.

Proof. Casep > 2.Fixe € (0,2) and let u, v € E be such that ||u||g = ||v|]|g =
1 and ||u — v||g > €. Using [1, Lemma 2.27, inequality (3.5)], we have

u+vl|P u—uvl|P / {‘quLva 'Vqup}
= + dx
2 |, 2 |z Je~ 2 2
utv|? u—uvl?
d
—|—/RN1/(96){ 5 5 } s
1
< */ {IVul? + [Vol? +v(z) (Jul” + |v|P) } do
2 Jan
1
= 5 (lullp + lollE) = 1.
Therefore,
u+vl” <1 (E>p7
B 2

and so, taking § = d(¢) such that 1 — (¢/2)? = (1 — §)?, we obtain that
|u+v|r < 2(1 - 0).

Casel < p < 2. Fix e € (0,2%/?) and let u,v € E be such that ||ul|g = ||v||g =
1 and ||u — v||g > e. First note that |[Ve[?" € LP~Y(RN) and |||[Ve|?'|,—1 =
HVngg for all ¢ € E. Therefore, using the reverse Minkowsky inequality given
in [14, Proposition 3.2], we get

P’ P’

Vu+ Vo
2

2

p/+ Vu— Vv
2

v B H’VU—I—V@
» 2

H‘vu—vu
| e
.

p p—1

p/

< Vu+ Vv
- 2 2

v ‘Vu—Vv
+

p—1
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/ 71
B / ‘Vu—i—Vv P P\ ? i
. 2

1 1 1/(p—1)
< (GIvutg+ i)

where in the last step we have used [1, Lemma 2.27, inequality (3.4)]. Hence

_1_
p—1

2

'Vu—Vv

Vu+ Vol? Vu— Vol 1 1 1/(p=1)
H2 H2 < <2||Vu||g+2Vv£> . (A
p p
Similarty, [ul}Z, = [uf? lp—1» and [[o]Z, = [[o]" [p-1., 50 that, applying

Proposition A.5 with w = v and ¢ = p—1, and proceeding as before, we obtain

u+uvl’ u—uvl” u+uvl’ u—vp/
2 2 - 2 2
P P 1w (A8)
1 1 1/(p—1) ’
< (gl + 3ig,)
Therefore, combining (A.7) with (A.8), we get
HVU—FVU Pl+HVu—va u+v|” —
2 P 2 P 2 2 lpw
1 1 1/(p—1) 1 1 1/(p—1)
(3hvulz+ 5090lz) -+ (Gl + etz
1/(p—1)
1 1 1 1
< (17l + 51Vl + 5l + el
1 1 1/(p—1)
— (gl +300lz)
since 1/(p — 1) > 1. In other words,
Vu + Vol|” utol? Lo 1y /-1
. PO < (i + Sl
3 n ’ ’ (Ag)
Vu — Vol|” u—uvl’
2 P 2 o)

Now, since ||u — v| g > €, it follows that

e < (IIVu — Vo2 + [lu — o]z, )7

_ 9+1)/(p-1) M
2|7 2

u—v

1)

, >1/(p—1>
P,V

1
2

u—v

< 92/ (H Vu— Vo
= 2

p
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being again 1/(p — 1) > 1. Hence

/
u—v P

2

([

p b,V

Therefore, choosing § = d(¢) such that 1 —e/22/? = 2(=2/(=1)(1 —§)?' | from
(A.9) we obtain

’

P
HW < 2(17*2)/(17*1)(1 — 8P

u+v p
2 2

p b,v

In conclusion, being again 1/(p — 1) > 1,

<2(2 »)/(p—1) (HVquW utvl”

S (1 - (S)p/7
1)

that is [|u + v||g < 2(1 — 0), as required. O

u—+v
2

E p

Proposition A.10. Let (uy)n,u € X be such that u, — u in X. Then, up to a
subsequence, u, — u a.e. in RN

Proof. Let (uy,), and u be as in the statement. Then, u,, — u in LP(Bg) for
all R > 0, where Bg = {z € RY : |z| < R}. Indeed, X — W'P(Bg), since
0 < k1 <v(z) < ko for a.a. © € Bg and for some positive numbers k; and ko
depending only on R by (1.2), and W1?(Bg) << L*(Bg) for all s € [1,p*).
In particular, in correspondence to R = 1 we find a subsequence (uy,y,), of
(un)n such that uy , — u a.e. in By. Clearly u; , — w in X and so, in corre-
spondence to R = 2, there exists a subsequence (ug,)n of (1), such that
U, — u a.e. in By, and so on. The diagonal subsequence (un n)n Of (Un)n,
constructed by induction, converges to v a.e. in R as n — oo. O

Clearly Proposition A.10 continues to hold when X is replaced by the
larger space E, see the proof of Lemma 2.2.

Proposition A.11. The Banach space (X, || - ||) is reflezive.

Proof. We follow the proof of Proposition 8.1 of [6]. First note that the prod-
uct space Y = E x L"(RY; h), endowed with the norm ||ully = |lulz + ||u+n,
is reflexive, being £ and L"(R¥;h) both uniformly convex by Propositions
A.9 and A.6. Consider now the operator T': X — Y defined by T'(u) = (u,u).
Clearly T is well defined and linear. Moreover 7' is an isometry, if X is endowed
with the equivalent norm |Ju|y. Therefore, T'(X) is a closed subspace of the
reflexive space Y, and so T(X) is reflexive. Consequently, also (X, || - |ly) is
reflexive, being isomorphic to a reflexive space. Finally, since reflexivity is pre-
served under equivalent norms, we conclude that also (X, ||-]|) is reflexive. O
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