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Abstract. The paper deals with the existence of entire solutions for a
quasilinear equation (E)λ in R

N , depending on a real parameter λ, which
involves a general elliptic operator in divergence form A and two main
nonlinearities. The competing nonlinear terms combine each other, being
the first subcritical and the latter supercritical. We prove the existence
of a critical value λ∗ > 0 with the property that (E)λ admits nontrivial
non-negative entire solutions if and only if λ ≥ λ∗. Furthermore, when
λ > λ ≥ λ∗, the existence of a second independent nontrivial non-nega-
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on A.
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1. Introduction

In [3] Ambrosetti et al. studied the existence and multiplicity of solutions
for semilinear elliptic Dirichlet problems in bounded domains, analyzing the
combined effects of concave and convex nonlinearities with respect to a real
parameter λ. Later, Alama and Tarantello in [2] studied a related semilinear
Dirichlet problem in a bounded domain, with weighted nonlinear terms. In [2]
also solvability and multiplicity were proved under various assumptions on the
weights and on the parameter λ ∈ R. The famous results of [3] were partially
extended by De Figueiredo et al. to indefinite nonlinearities for the semilinear
case in [10] and for the p-Laplacian operator in [11]. For recent contributions
on related semilinear Dirichlet problems in bounded domains we refer to [8,18]
and on equations in the entire R

N to [19], and to the references therein. The
equation considered here is in the spirit of the previous papers, even if most of
them deal with problems not directly comparable to ours. The present work
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is more related to the results in [2,20], although in [20] different weights were
considered.

We study the one parameter elliptic equation in R
N ,

−divA(x,∇u) + a(x)|u|p−2u = λw(x)|u|q−2u− h(x)|u|r−2u (E)λ

where λ ∈ R and A : R
N × R

N → R
N admits a potential A , with respect to

its second variable ξ, satisfying the following assumption
(A) The potential A = A (x, ξ) is a continuous function in R

N × R
N , with

continuous derivative with respect to ξ,A = ∂ξA , and verifies:
(a) A (x, 0) = 0 and A (x, ξ) = A (x,−ξ) for all (x, ξ) ∈ R

N × R
N ;

(b) A (x, ·) is strictly convex in R
N for all x ∈ R

N ;
(c) There exist constants c, C > 0 and an exponent p, with 1 < p < N ,

such that for all (x, ξ) ∈ R
N × R

N

c|ξ|p ≤ A(x, ξ) · ξ and |A(x, ξ)| ≤ C|ξ|p−1.

Clearly A (x, ξ) = |ξ|p/p satisfies (A) for all p > 1, that is the usual p-Lapla-
cian operator Δpu = div(|∇u|p−2∇u) is covered for all p > 1.

The nonlinear terms in (E)λ are related to the main elliptic part by the
request that

max{2, p} < q < min{r, p∗}, (1.1)

where p∗ = Np/(N − p) is the critical Sobolev exponent. The coefficient a is
supposed to be in L∞

loc(R
N ) and to satisfy for a.a. x ∈ R

N

ν(x) = max{a(x), (1 + |x|)−p}, a(x) ≥ c1 ν(x), (1.2)

for some constant c1 ∈ (0, 1]. The weight w verifies

w ∈ L℘(RN ) ∩ Lσ
loc(R

N ), with ℘ = p∗/(p∗ − q) and σ > ℘, (1.3)

while h is a positive weight of class L1
loc(R

N ). Finally, h and w are related by
the condition ∫

RN

[
w(x)r

h(x)q

]1/(r−q)

dx = H ∈ R
+. (1.4)

Assumption (1.4) already appears in [2, condition (1.4) of the existence The-
orem 1.1] for positive solutions of semilinear elliptic Dirichlet problems in
bounded domains and in [20] with w = 1 for existence of solutions of quasi-
linear elliptic equations in R

N . Actually, [20] is the first attempt to estab-
lish existence of nontrivial non-negative entire solutions for (E)λ in R

N , when
A(x, ξ) = |ξ|p−2ξ and a = w = 1. Here, we solve the problem under conditions
(1.1)–(1.4).
Sections 2–4 of the paper are devoted to the proof of the following main exis-
tence

Theorem A. Under the above hypotheses there exists λ∗ > 0 such that equa-
tion (E)λ admits at least a nontrivial non-negative entire solution if and only
if λ ≥ λ∗.
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By the comments above it is clear that Theorem A extends Theorem
1.1 of [2] to quasilinear elliptic equations in R

N . Theorem 1.2 of [2] is a com-
plete statement when 2 < q < 2∗ and w satisfies (1.3) for p = 2, rather than
Theorem 1.1 of [2]. Hence, it still remains an open problem the extension of
Theorem 1.2 of [2] to quasilinear elliptic equations in R

N , that is when (1.3) is
replaced by the weaker condition w(w/h)(q−p)/(r−q) ∈ LN/p(RN ). In any case,
Theorem A extends the first part of Theorem 1.2 of [2] under condition (1.4).

In Sect. 5, under a further natural assumption on the potential A , see
(A)-(d), we prove the second main result in terms of a critical parameter
λ ≥ λ∗ > 0.

Theorem B. For all λ > λ equation (E)λ admits at least two nontrivial non-
negative entire solutions.

In the Appendix we present the auxiliary results largely used throughout
the paper, which seem not to be so well-known. In particular, we establish in
Theorem A.3 the existence of a Palais–Smale sequence via the Ekeland varia-
tional principle in a variant of the geometrical structure of the Mountain Pass
theorem of Ambrosetti and Rabinowitz. For the standard result based on this
technique we refer to [16]. Theorem A.3 is the key tool to construct a second
independent nontrivial entire solution in the proof of Theorem B.

2. Preliminaries and non-existence for λ small

Conditions (A)-(a) and (b) imply that

A (x, ξ) ≤ A(x, ξ) · ξ for all (x, ξ) ∈ R
N × R

N .

Furthermore, (A)-(b) is weaker than the request that A is p-uniformly convex,
i.e. that there exists a constant k > 0 such that

A

(
x,
ξ + η

2

)
≤ 1

2
A (x, ξ) +

1
2
A (x, η) − k|ξ − η|p (b′)

for all x ∈ R
N and ξ, η ∈ R

N . Condition (b′) is usually assumed in this context
in the literature and forces p ≥ 2, when A (x, ξ) = |ξ|p/p, cf. [13].

By (A)-(a) and (c)

A (x, ξ) =
∫ 1

0

d

dt
A (x, tξ) dt =

∫ 1

0

1
t
A(x, tξ) · tξdt ≥ c

p
|ξ|p,

that is for all (x, ξ) ∈ R
N × R

N

pA (x, ξ) ≥ c|ξ|p. (2.1)

Hence c ≤ C by (A)-(c).

Lemma 2.1. Let ξ, (ξn)n ∈ R
N be such that

(A(x, ξn) − A(x, ξ)) · (ξn − ξ) → 0 as n → ∞. (2.2)

Then (ξn)n converges to ξ.
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Proof. We are inspired in this proof by Lemma 2.4 of [9], see also the special
case of Lemma 3 in [12]. First, we assert that (ξn)n is bounded. Otherwise, up
to a subsequence, still denoted by (ξn)n, we would have |ξn| → ∞ and so

(A(x, ξn) − A(x, ξ)) · (ξn − ξ) ≥ c(|ξn|p + |ξ|p) − C(|ξn|p−1|ξ| + |ξ|p−1|ξn|)
∼ c|ξn|p → ∞,

as n → ∞. This is impossible by (2.2). Therefore, (ξn)n is bounded and pos-
sesses a subsequence, still denoted by (ξn)n, which converges to some η ∈ R

N .
Thus (A(x, η) − A(x, ξ)) · (η − ξ) = 0 by (2.2). Moreover, the strict convexity
of A (x, ·) for all x ∈ R

N implies that η = ξ. This also shows that actually the
entire sequence (ξn)n converges to ξ. �

The space E denotes the completion of C∞
0 (RN ) with respect to the norm

‖u‖E =
(∫

RN

|∇u|pdx+
∫

RN

ν(x)|u|pdx
)1/p

,

and X the completion of C∞
0 (RN ) with respect to the norm

‖u‖ =
(
‖u‖p

E + ‖u‖p
r,h

)1/p

, where‖u‖r
r,h =

∫
RN

h(x)|u|rdx.

From now on BR will denote the ball in R
N of center zero and radius R > 0.

From the structural assumptions (1.2)–(1.4) all the coefficients a,w, h in
(E)λ are weights in R

N . We indicate with Lp(RN ; a), Lq(RN ;w) and Lr(RN ;h)
the corresponding weighted Lebesgue spaces. See the Appendix for the main
properties.

Lemma 2.2. The embeddings X ↪→ E ↪→ D1,p(RN ) ↪→ Lp∗
(RN ) are continu-

ous, with ‖∇u‖p ≤ ‖u‖E for all u ∈ E, ‖u‖E ≤ ‖u‖ for all u ∈ X and

‖u‖p∗ ≤ Cp∗‖∇u‖p for all u ∈ D1,p(RN ). (2.3)

Moreover, for any R > 0 the embeddings E ↪→↪→ L�(BR) and X ↪→↪→ L�(BR)
are compact for all 
 ∈ [1, p∗).

Proof. The first two embeddings X ↪→ E ↪→ D1,p(RN ) ↪→ Lp∗
(RN ) are obvi-

ously continuous and ‖∇u‖p ≤ ‖u‖E for all u ∈ E and ‖u‖E ≤ ‖u‖ for all
u ∈ X, and the third one is classical, with Cp∗ the Talenti best constant of
the embedding, cf. [24].

Let R > 0 be fixed. By the first part of the lemma the embedding E ↪→
W 1,p(BR) is continuous, since a ∈ L∞

loc(R
N ) in (1.2), so that 0 < k1 ≤ ν(x) ≤

k2 for a.a. x ∈ BR and for some positive numbers k1 and k2 depending only on
R. Since the embedding W 1,p(BR) ↪→↪→ L�(BR) is compact for all 
 ∈ [1, p∗),
also the embeddings E ↪→↪→ L�(BR) and X ↪→↪→ L�(BR) are compact. �

Lemma 2.3. The embedding D1,p(RN ) ↪→ Lq(RN ;w) is continuous, with

‖u‖q,w ≤ Cw‖∇u‖p for all u ∈ D1,p(RN ), (2.4)

and Cw = Cp∗‖w‖1/q
℘ > 0.
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The embeddings E ↪→↪→ Lq(RN ;w) and X ↪→↪→ Lq(RN ;w) are
compact.

Proof. By (1.3), Hölder’s and Sobolev’s inequalities, for all u ∈ D1,p(RN ),

‖u‖q,w ≤
(∫

RN

w(x)℘dx

)1/℘q

·
(∫

RN

|u|p∗
dx

)1/p∗

≤ Cp∗‖w‖1/q
℘ ‖∇u‖p,

that is (2.4) holds.
In order to prove the last part of the lemma it is enough to show that

E ↪→↪→ Lq(RN ;w). In other words, we show that if un ⇀ u in E, then ‖un −
u‖q,w → 0 as n → ∞. By Hölder’s inequality,

∫
RN \BR

w(x)|un − u|qdx ≤ M

(∫
RN \BR

w(x)℘dx

)1/℘

= o(1)

as R → ∞, being w ∈ L℘(RN ) by (1.3) and supn ‖un −u‖q
p∗ = M < ∞. For all

ε > 0 there exists Rε > 0 so large that supn

∫
RN \BRε

w(x)|un − u|qdx < ε/2.
Moreover, by Hölder’s inequality we have as n → ∞∫

BRε

w(x)|un − u|q dx ≤ ‖w‖Lσ(BRε )‖un − u‖q

Lσ′q(BRε )
= o(1),

since E ↪→↪→ Lσ′q(BRε
), being σ′q < p∗ by (1.3). Therefore, there exists

Nε > 0 such that
∫

BRε
w(x)|un − u|q dx < ε/2 for all n ≥ Nε. In conclusion,

for all n ≥ Nε

‖un − u‖q
q,w =

∫
RN \BRε

w(x)|un − u|q dx+
∫

BRε

w(x)|un − u|q dx < ε,

as required. �
Lemma 2.4. For all u ∈ E∫

RN

A(x,∇u) · ∇u dx+ ‖u‖p
p,a ≥ κ‖u‖p

E ,∫
RN

A (x,∇u) dx+
1
p
‖u‖p

p,a ≥ κ

p
‖u‖p

E ,
(2.5)

where κ = min{c, c1} > 0. Moreover, if u ∈ X \ {0} and λ ∈ R satisfy∫
RN

A(x,∇u) · ∇u dx+ ‖u‖p
p,a + ‖u‖r

r,h = λ‖u‖q
q,w, (2.6)

then 0 < κ‖u‖p
E ≤ λ‖u‖q

q,w, λ > 0 and

κ1λ
1/(p−q) ≤ ‖u‖q,w ≤ κ2λ

r/p(r−q), (2.7)

where κ1 and κ2 are positive constants independent of u.

Proof. Take u ∈ E. By (A)-(c) and (1.2), it follows that∫
RN

A(x,∇u) · ∇u dx+ ‖u‖p
p,a ≥ c‖∇u‖p

p + c1‖u‖p
p,ν .

In conclusion, (2.5)1 holds, with c given in (A)-(c). Similarly, using (1.2) and
(2.1), we get
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∫
RN

A (x,∇u) dx+
1
p
‖u‖p

p,a ≥ 1
p

{
c‖∇u‖p

p + c1‖u‖p
p,ν

}

for all u ∈ E, which immediately gives (2.5)2.
Let u ∈ X \{0} and λ ∈ R satisfy (2.6). By (2.5)1, 0 < κ‖u‖p

E ≤ λ‖u‖q
q,w.

Hence λ > 0. Therefore, by (2.4), (2.5)1 and (2.6), we have

‖u‖p
q,w ≤ Cp

w‖u‖p
E ≤ Cp

w

κ

{∫
RN

A(x,∇u) · ∇udx+ ‖u‖p
p,a

}

≤ λCp
w

κ
‖u‖q

q,w. (2.8)

By Young’s inequality,

ab ≤ aα

α
+
bβ

β
,

with a = h(x)q/r|u|q ≥ 0, b = λw(x)h(x)−q/r ≥ 0, α = r/q > 1 and β =
r/(r − q) > 1, we find

λw(x)|u|q ≤ q

r
h(x)|u|r +

r − q

r

(
λw(x)
h(x)q/r

)r/(r−q)

.

Integration over R
N gives

λ‖u‖q
q,w ≤ q

r
‖u‖r

r,h +
r − q

r
H λr/(r−q).

Thus, by (2.6) we obtain∫
RN

A(x,∇u) · ∇udx+ ‖u‖p
p,a ≤ q − r

r
‖u‖r

r,h +
r − q

r
H λr/(r−q)

≤ r − q

r
H λr/(r−q),

being q < r. Hence, since u �≡ 0 by assumption, the last inequality and (2.8)
yield (2.7), with

κ1 = (κ/Cp
w)1/(q−p) and κ2 = [(r − q)Cp

wH/rκ]
1/p.

This completes the proof. �

We say that u ∈ X is a (weak) entire solution of (E)λ if∫
RN

A(x,∇u) · ∇v dx+
∫

RN

a(x)|u|p−2uv dx = λ

∫
RN

w(x)|u|q−2uv dx

−
∫

RN

h(x)|u|r−2uv dx (2.9)

for all v ∈ X.
Hence the entire solutions of (E)λ correspond to the critical points of the

energy functional Φλ : X → R, defined by

Φλ(u) =
∫

RN

A (x,∇u) dx+
1
p
‖u‖p

p,a − λ

q
‖u‖q

q,w +
1
r
‖u‖r

r,h.
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If (E)λ admits a nontrivial entire solution u ∈ X, then λ > 0 by Lemma 2.4,
and λ ≥ λ0 by (2.7), where

λ0 = (κ1/κ2)p(r−q)(q−p)/q(r−p) > 0.

Define

λ∗ = sup{λ > 0 : (E)μ admits only the trivial solution for all μ<λ}.

Clearly λ∗ ≥ λ0 > 0. In Sects. 3 and 4 we show that λ∗ is exactly the critical
value of Theorem A.

3. Preliminary results for existence

By the results of Sect. 2 from now on we consider only the case λ > 0.

Lemma 3.1. The functional Φλ is coercive in X. In particular, any sequence
(un)n in X such that (Φλ(un))n is bounded admits a weakly convergent subse-
quence in X.

Proof. Let us consider the following elementary inequality: for every k1, k2 > 0
and 0 < α < β

k1|t|α − k2|t|β ≤ Cαβk1

(
k1

k2

)α/(β−α)

for all t ∈ R, (3.1)

where Cαβ > 0 is a constant depending only on α and β.
Taking k1 = λw(x)/q, k2 = (p− 1)h(x)/pr, α = q and β = r in (3.1), for

all x ∈ R
N we have

λ

q
w(x)|u(x)|q − (p− 1)h(x)

pr
|u(x)|r ≤ Cqr

λw(x)
q

[
λw(x)/q

(p− 1)h(x)/pr

]q/(r−q)

= C λr/(r−q)

[
w(x)r

h(x)q

]1/(r−q)

,

where C = Cqr [pr/q(p− 1)]q/(r−q)
/q. Integrating the above inequality over

R
N , we get by (1.4)

λ

q
‖u‖q

q,w − p− 1
pr

‖u‖r
r,h ≤ Cλ,

where Cλ = CHλr/(r−q) > 0.
Therefore, by (2.5)2, for all u ∈ X

Φλ(u) =
∫

RN

A (x,∇u) dx+
1
p
‖u‖p

p,a −
[
λ

q
‖u‖q

q,w − p− 1
pr

‖u‖r
r,h

]

−p− 1
pr

‖u‖r
r,h +

1
r
‖u‖r

r,h



984 G. Autuori and P. Pucci NoDEA

≥ κ

p
‖u‖p

E +
1
pr

‖u‖r
r,h − Cλ ≥ κ

p
‖u‖p

E +
1
pr

(
‖u‖p

r,h − 1
)

− Cλ

≥ min{κ, r−1}
p

‖u‖p − Cλ − 1
pr
.

In conclusion, Φλ is coercive in X.
The last part of the claim follows at once by the coercivity of Φλ and the

reflexivity of the space X, see Proposition A.11. �

Lemma 3.2. The functional ΦA : X → R,ΦA (u) =
∫

RN A (x,∇u) dx, is con-
vex and of class C1. In particular, ΦA is sequentially weakly lower semicon-
tinuous in X.

Proof. The convexity is an immediate consequence of assumption (A)-(b). Let
us prove the continuity. Let (un)n, u ∈ X be such that un → u in X and fix
a subsequence (unk

)k of (un)n. Clearly ∇unk
→ ∇u in [Lp(RN )]N and so, by

Theorem 4.9 of [6], there exists a further subsequence (unkj
)j of (unk

)k and a
function ψ ∈ Lp(RN ) such that a.e. in R

N

∇unkj
→ ∇u as j → ∞ and |∇unkj

| ≤ ψ for all j ∈ N. (3.2)

Hence, condition (A) implies that A (x,∇unkj
) → A (x,∇u) a.e. in R

N and

|A (x,∇unkj
)| ≤ |A(x,∇unkj

)| · |∇unkj
| ≤ C|∇unkj

|p ≤ Cψp ∈ L1(RN ).

The Dominated Convergence theorem forces that A (x,∇unkj
) → A (x,∇u)

in L1(RN ) as j → ∞, and the arbitrariness of (unk
)k guarantees that actually

A (x,∇un) → A (x,∇u) in L1(RN ) as n → ∞. This gives the continuity of
ΦA , and so ΦA is sequentially w.l.s.c. by Corollary 3.9 of [6].

Moreover, ΦA is Gateaux-differentiable in X and for all u, ϕ ∈ X it
results

〈Φ′
A (u), ϕ〉 =

∫
RN

A(x,∇u) · ∇ϕdx.

Now, let (un)n, u ∈ X be such that un → u in X as n → ∞. We claim that

‖Φ′
A (un) − Φ′

A (u)‖X′ = sup
ϕ∈X

‖ϕ‖=1

∣∣∣∣
∫

RN

(A(x,∇un) − A(x,∇u)) · ∇ϕdx
∣∣∣∣ = o(1)

as n → ∞. By (A)-(c), it follows that A(x,∇u) is in [Lp′
(RN )]N for all u ∈ X.

Applying Hölder’s inequality, we obtain∣∣∣∣
∫

RN

(A(x,∇un) − A(x,∇u)) · ∇ϕdx
∣∣∣∣ ≤ ‖A(x,∇un) − A(x,∇u)‖p′‖∇ϕ‖p.

Hence, for all ϕ ∈ X, with ‖ϕ‖ = 1, we have

‖Φ′
A (un) − Φ′

A (u)‖X′ ≤ ‖A(x,∇un) − A(x,∇u)‖p′ . (3.3)

Fix now a subsequence (unk
)k of (un)n. Proceeding exactly as above we find

a further subsequence (unkj
)j and a function ψ ∈ Lp(RN ) verifying (3.2).
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Therefore, by (A)-(c) we get

| A(x,∇unkj
) − A(x,∇u) |p′ ≤ 2p′−1

(
|A(x,∇unkj

)|p′
+ |A(x,∇u)|p′)

≤ 2p′−1Cp′ {|∇unkj
|p + |∇u|p

}

≤ (2C)p′
ψp ∈ L1(RN ). (3.4)

On the other hand, |A(x,∇unkj
) − A(x,∇u)| → 0 for a.a. x ∈ R

N as j → ∞,

since A is continuous by (A). Thus, A(x,∇unkj
) → A(x,∇u) in [Lp′

(RN )]N

by (3.4) and the Dominated Convergence theorem. Hence the entire sequence
A(x,∇un) → A(x,∇u) in [Lp′

(RN )]N and the claim follows from (3.3).
In conclusion, ΦA is of class C1, as required. �

Lemma 3.3. The functional Φa : X → R,Φa(u) = 1
p‖u‖p

p,a, is convex, of class
C1 and sequentially weakly lower semicontinuous. Moreover, if (un)n, u ∈ X

and un ⇀ u in X, then Φ′
a(un) ∗

⇀ Φ′
a(u) in X ′.

Proof. The convexity of Φa is obvious being p > 1. Moreover, since the embed-
ding X ↪→ Lp(RN ; a) is continuous by (1.2), with ‖u‖p,a ≤ ‖u‖ for all u ∈ X,
the functional Φa is continuous in X. Consequently, Φa is sequentially w.l.s.c.
by Corollary 3.9 of [6].

Moreover, Φa is Gateaux-differentiable in X and for all u, ϕ ∈ X we have

〈Φ′
a(u), ϕ〉 =

∫
RN

a(x)|u|p−2uϕdx.

Now, let (un)n, u ∈ X be such that un ⇀ u in X as n → ∞. Since X ↪→ E ↪→
Lp(RN ; ν) ↪→ Lp(RN ; a) by (1.2), then un ⇀ u in Lp(RN ; a). Let n �→ vn =
|un|p−2un and fix a subsequence (vnk

)k of (vn)n. By Proposition A.10 there
exists a subsequence (unkj

)j of (unk
)k converging a.e. in R

N to u. Furthermore,

(unkj
)j is bounded in Lp(RN ; a), so that vnkj

⇀ v in Lp′
(RN ; a) by Proposi-

tion A.8-(i). This implies that the whole sequence vn ⇀ v in Lp′
(RN ; a). Thus,

for all ϕ ∈ X we have∫
RN

a(x)|un|p−2unϕdx →
∫

RN

a(x)|u|p−2uϕdx

as n → ∞, that is 〈Φ′
a(un), ϕ〉 → 〈Φ′

a(u), ϕ〉. This shows that Φ′
a(un) ∗

⇀ Φ′
a(u)

in X ′, as claimed.
Let us prove that Φa ∈ C1(X). Fix (un)n, u ∈ X, with un → u in X.

Hence un → u in Lp(RN ; a), since X ↪→ Lp(RN ; a) by (1.2). Thus |un|p−2un =
vn → v = |u|p−2u in Lp′

(RN ; a), by Proposition A.8-(ii). Therefore, for all
ϕ ∈ X, with ‖ϕ‖ = 1,

|〈Φ′
a(un) − Φ′

a(u), ϕ〉| ≤ ‖vn − v‖p′,a‖ϕ‖p,a ≤ ‖vn − v‖p′,a,

since ‖ϕ‖p,a ≤ ‖ϕ‖p,ν ≤ ‖ϕ‖ for all ϕ ∈ X by (1.2). Therefore,

‖Φ′
a(un) − Φ′

a(u)‖X′ ≤ ‖vn − v‖p′,a → 0

as n → ∞. In conclusion, Φa is of class C1(X). �
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Lemma 3.4. The functional Φw : X → R,Φw(u) = 1
q ‖u‖q

q,w, is convex, of class
C1 and sequentially weakly continuous in X. Moreover, if (un)n, u ∈ X and
un ⇀ u in X, then Φ′

w(un) → Φ′
w(u) in X ′.

Proof. The convexity of Φw is obvious, being q > 2. Moreover, by Lemma
2.3 it is clear that Φw is sequentially weakly continuous, so that in particular
Φw is continuous. Furthermore, Φw is Gateaux-differentiable in X and for all
u, ϕ ∈ X

〈Φ′
w(u), ϕ〉 =

∫
RN

w(x)|u|q−2uϕdx.

Now, let (un)n, u ∈ X be such that un ⇀ u in X and fix ϕ ∈ X, with ‖ϕ‖ = 1.
By Lemma 2.3 and Proposition A.8-(ii), it follows that vn = |un|q−2un → v =
|u|q−2u in Lq′

(RN ;w). Therefore,

|〈Φ′
w(un) − Φ′

w(u), ϕ〉| ≤ ‖vn − v‖q′,w‖ϕ‖q,w ≤ Cw‖vn − v‖q′,w

by (2.4). Hence,

‖Φ′
w(un) − Φ′

w(u)‖X′ ≤ Cw‖vn − v‖q′,w,

that is Φ′
w(un) → Φ′

w(u) in X ′. In particular, this shows that Φw is of class
C1(X) and completes the proof of the lemma. �

Clearly the conclusions of Lemmas 3.3 and 3.4 continue to hold when the
functionals are defined in the bigger space E. Indeed, all the functionals are
well defined in E, being E ↪→ Lp(RN ; a) by (1.2) and E ↪→↪→ Lq(RN ;w) by
Lemma 2.3.

Lemma 3.5. The functional Φh : X → R,Φh(u) = 1
r ‖u‖r

r,h is convex, of class
C1 and sequentially weakly lower semicontinuous. Moreover, if (un)n, u ∈ X

and un ⇀ u in X as n → ∞, then Φ′
h(un) ∗

⇀ Φ′
h(u) in X ′.

Proof. The convexity of Φh is obvious, being r > 2. Moreover, the continuity
of Φh follows from the continuity of the embedding X ↪→ Lr(RN ;h). Hence
Φh is sequentially w.l.s.c. by Corollary 3.9 of [6]. On the other hand, Φh is
Gâteaux-differentiable in X and for all u, ϕ ∈ X

〈Φ′
h(u), ϕ〉 =

∫
RN

h(x)|u|r−2uϕdx.

Let (un)n, u ∈ X be such that un → u in X. Then, un → u in Lr(RN ;h),
and so vn = |un|r−2un → v = |u|r−2u in Lr′

(RN ;h) by Proposition A.8-(ii).
Therefore,

‖Φ′
h(un) − Φ′

h(u)‖X′ = sup
ϕ∈X

‖ϕ‖=1

∣∣∣∣
∫

RN

h(x)
(|un|r−2un − |u|r−2u

)
ϕdx

∣∣∣∣
≤ sup

ϕ∈X‖ϕ‖=1

‖vn − v‖r′,h · ‖ϕ‖r,h ≤ ‖vn − v‖r′,h = o(1)

as n → ∞. This gives the C1 regularity of Φh.
Suppose now that un ⇀ u in X. Let n �→ vn = |un|r−2un and fix a

subsequence (vnk
)k of (vn)n. Of course unk

⇀ u in X and by Proposition A.10
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there exists a further subsequence (unkj
)j such that unkj

→ u a.e. in R
N .

Thus vnkj
→ v = |u|r−2u a.e. in R

N . On the other hand, (vnkj
)j is bounded in

Lr′
(RN ;h) since ‖vnkj

‖r′
r′,h = ‖unkj

‖r
r,h and (unkj

)j is bounded in Lr(RN ;h).

Therefore vnkj
⇀ v in Lr′

(RN ;h), by Proposition A.8-(i). In conclusion, due

to the arbitrariness of (vnk
)k, the entire sequence vn ⇀ v in Lr′

(RN ;h) as
n → ∞. Hence, in particular for all ϕ ∈ X∫

RN

h(x)|un|r−2unϕdx →
∫

RN

h(x)|u|r−2uϕdx

as n → ∞. This gives the claim and completes the proof. �

For any (x, u) ∈ R
N × R put

f(x, u) = λw(x)|u|q−2u− h(x)|u|r−2u, (3.5)

so that

F (x, u) =
∫ u

0

f(x, v)dv =
λ

q
w(x)|u|q − h(x)

|u|r
r
. (3.6)

Lemma 3.6. For any fixed u ∈ X the functional Fu : X → R, defined by
Fu(v) =

∫
RN f(x, u(x))v(x)dx, is in X ′. In particular, if vn ⇀ v in X then

Fu(vn) → Fu(v).

Proof. Take u ∈ X. Clearly Fu is linear. Moreover, using (2.4), we get for all
v ∈ X

|Fu(v)| ≤ λ

∫
RN

w(x)|u|q−1|v| dx+
∫

RN

h(x)(r−1)/r|u|r−1 · h(x)1/r|v|dx

≤ λ‖u‖q−1
q,w ‖v‖q,w + ‖u‖r−1

r,h ‖v‖r,h ≤ (λCw‖u‖q−1
q,w + ‖u‖r−1

r,h )‖v‖,
and so Fu is continuous in X. �

In the next result we strongly use the assumption q > 2. An interesting
open question occurs when 1 < p < q ≤ 2 and q < min{r, p∗}.

Lemma 3.7. The functional Φλ is of class C1 and sequentially weakly lower
semicontinuous in X, that is if un ⇀ u in X, then

Φλ(u) ≤ lim inf
n→∞ Φλ(un). (3.7)

Proof. We take inspiration from Lemma 2 of [20]. Lemmas 3.2–3.5 imply that
Φλ ∈ C1(X). Let (un)n and u be such that un ⇀ u in X. The definition of
Φλ and (3.5) give

Φλ(u) − Φλ(un) =
∫

RN

[A (x,∇u) − A (x,∇un)] dx

+
1
p

(‖u‖p
p,a−‖un‖p

p,a

)
+
∫

RN

[F (x, un)−F (x, u)]dx. (3.8)

Since un ⇀ u in X, Lemma 3.2 implies that∫
RN

A (x,∇u) dx ≤ lim inf
n→∞

∫
RN

A (x,∇un) dx (3.9)
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and Lemma 3.3 yields

‖u‖p
p,a ≤ lim inf

n→∞ ‖un‖p
p,a.

Hence, by (3.8)

lim sup
n→∞

[Φλ(u) − Φλ(un)] ≤ lim sup
n→∞

∫
RN

[F (x, un) − F (x, u)]dx. (3.10)

By (3.5) and (3.6), for all s ∈ [0, 1],

Fu(x, u+ s(un − u)) = f(x, u+ s(un − u))

=f(x, u)+(un−u)
∫ s

0

fu(x, u+ t(un − u))dt, (3.11)

where clearly

fu(x, z) = λ(q − 1)w(x)|z|q−2 − h(x)(r − 1)|z|r−2.

Multiplying (3.11) by un − u and integrating over [0, 1], we obtain

F (x, un) − F (x, u) = f(x, u)(un − u)

+ (un−u)2
∫ 1

0

(∫ s

0

fu(x, u+ t(un−u))dt
)
ds. (3.12)

Now, (3.1), with k1 = λw(x)(q − 1), k2 = h(x)(r − 1), α = q − 2 > 0 and
β = r − 2 > 0, and (1.3) force

fu(x, z) ≤ 2C1w(x)2/q

[
w(x)r/q

h(x)

](q−2)/(r−q)

,

where C1 is a positive constant, depending only on q, r and λ. Consequently,
(3.12) yields∫

RN

[F (x, un) − F (x, u)]dx ≤
∫

RN

f(x, u)(un − u)dx

+C1

∫
RN

w(x)2/q(un − u)2
[
w(x)r/q

h(x)

](q−2)/(r−q)

dx

≤
∫

RN

f(x, u)(un − u)dx+ C1H
(q−2)/q‖un − u‖2

q,w, (3.13)

by Hölder’s inequality and (1.4). Now, Lemma 3.6 gives

lim
n→∞

∫
RN

f(x, u)(un − u) dx = 0, (3.14)

and Lemma 2.3 implies

lim
n→∞ ‖un − u‖q,w = 0. (3.15)

Putting (3.13)–(3.15) in (3.10) we get the claim (3.7). �
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Lemma 3.8. Let (un)n be bounded in X and (λn)n bounded in R. Put

n �→ gn(x)=−a(x)|un|p−2un+λnw(x)|un|q−2un−h(x)|un|r−2un. (3.16)

For all compact set K ⊂ R
N there exists CK > 0 such that

sup
n

∫
K

|gn(x)| dx ≤ CK .

Proof. Let K ⊂ R
N be a compact set. Clearly a ∈ LN/p(K) by (1.2), so that

by Hölder’s inequality
∫

K

a(x)|un|p−1dx≤|K|1/p∗
(∫

K

a(x)N/pdx

)p/N

sup
n

‖un‖p−1
p∗ = C1 (3.17)

and C1 = C1(K). Similarly, by Hölder’s inequality and (1.3), we obtain∫
K

w(x)|un|q−1dx ≤ |K|1/p∗‖w‖℘ sup
n

‖un‖q−1
p∗ = C2, (3.18)

and C2 = C2(K). Finally, since h ∈ L1
loc(R

N ) and (‖un‖r,h)n is bounded, then
∫

K

h(x)|un|r−1dx ≤
(∫

K

h(x)dx
)1/r

sup
n

‖un‖r−1
r,h = C3, (3.19)

with C3 = C3(K). Combining (3.17)–(3.19), and recalling that (λn)n is
bounded, we get the claim. �

4. Existence if λ is large

Define

λ = inf
u∈X

‖u‖q,w=1

{
q

∫
RN

A (x,∇u) dx+
q

p
‖u‖p

p,a +
q

r
‖u‖r

r,h

}
.

Note that λ > 0. Indeed, for any u ∈ X with ‖u‖q,w = 1, by Hölder’s inequality
and (1.4), we have

1=‖u‖q
q,w =

∫
RN

w(x)
h(x)q/r

h(x)q/r|u|qdx≤
(∫

RN

[
w(x)r

h(x)q

]1/(r−q)

dx

)(r−q)/r

‖u‖q
r,h

= H(r−q)/r‖u‖q
r,h,

where H > 0 is the number introduced in (1.4). Consequently, using also
(2.5)2, we get

q

∫
RN

A (x,∇u) dx+
q

p
‖u‖p

p,a +
q

r
‖u‖r

r,h ≥ κq

p
‖u‖p

E +
q

r
H(q−r)/q

≥ κq

pCp
w

+
q

r
H(q−r)/q,

where Cw > 0 is given in (2.4). In other words,

λ ≥ κq

pCp
w

+
q

r
H(q−r)/q > 0.
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Lemma 4.1. For all λ > λ there exists a global nontrivial non-negative mini-
mizer e ∈ X of Φλ with negative energy, that is Φλ(e) < 0.

Proof. By Lemmas 3.1, 3.7 and Corollary 3.23 of [6], for each λ > 0 there
exists a global minimizer e ∈ X of Φλ, that is

Φλ(e) = inf
v∈X

Φλ(v).

Clearly e is a solution of (E)λ. We prove that e �≡ 0 provided that λ > λ. To
this aim we show that infv∈X Φλ(v) < 0.

Let λ > λ. Then there exists a function ϕ ∈ X, with ‖ϕ‖q,w = 1, such
that

λ‖ϕ‖q
q,w = λ > q

∫
RN

A (x,∇ϕ) dx+
q

p
‖ϕ‖p

p,a +
q

r
‖ϕ‖r

r,h.

This can be rewritten as

Φλ(ϕ) =
∫

RN

A (x,∇ϕ) dx+
1
p
‖ϕ‖p

p,a − λ

q
‖ϕ‖q

q,w +
1
r
‖ϕ‖r

r,h < 0

and consequently Φλ(e) = infv∈X Φλ(v) ≤ Φλ(ϕ) < 0.
In conclusion, for any λ > λ, equation (E)λ has a nontrivial solution

e ∈ X such that Φλ(e) < 0. Finally, we may assume e ≥ 0 a.e. in R
N , since

|e| ∈ X and Φλ(e) = Φλ(|e|) by (A)-(a). �

Define

λ∗∗ =inf{λ > 0 : (E)λ admits a nontrivial entire solution}.

Lemma 4.1 assures that this definition is meaningful. Clearly λ ≥ λ∗∗.

Theorem 4.2. For any λ > λ∗∗ equation (E)λ admits a nontrivial non-negative
entire solution uλ ∈ X.

Proof. We take somehow inspiration from [17, Theorem 1.1] and
[23, Theorem 2.4].

Fix λ > λ∗∗. By definition of λ∗∗ there exists μ ∈ (λ∗∗, λ) such that Φμ

has a nontrivial critical point uμ ∈ X. We assume, without loss of generality,
that uμ ≥ 0 a.e. in R

N , since |uμ| is also a solution of (E)μ by (A)–(a).
Of course, uμ is a sub-solution for (E)λ. Consider the following minimization
problem

inf
v∈M

Φλ(v), M = {v ∈ X : v ≥ uμ}.
First note that M is closed and convex, and in turn also weakly closed. More-
over, Φλ is coercive in M, being coercive in X by Lemma 3.1. Finally Φλ is
sequentially weakly lower semicontinuous in X and so in M. Hence, Corollary
3.23 of [6] assures that Φλ is bounded from below in M and attains its infimum
in M, i.e. there exists uλ ≥ uμ such that Φλ(uλ) = infv∈M Φλ(v).

We claim that uλ is a solution of (E)λ. Indeed, take ϕ ∈ C∞
0 (RN ) and

ε > 0. Put

ϕε = max{0, uμ − uλ − εϕ} ≥ 0 and vε = uλ + εϕ+ ϕε,
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so that vε ∈ M. Of course

0 ≤ 〈Φ′
λ(uλ), vε − uλ〉 = ε〈Φ′

λ(uλ), ϕ〉 + 〈Φ′
λ(uλ), ϕε〉,

and in turn

〈Φ′
λ(uλ), ϕ〉 ≥ −1

ε
〈Φ′

λ(uλ), ϕε〉. (4.1)

Define

Ωε = {x ∈ R
N : uλ(x) + εϕ(x) ≤ uμ(x) < uλ(x)}.

Clearly Ωε ⊂ suppϕ. Since uμ is a subsolution of (E)λ and ϕε ≥ 0 it turns
out that 〈Φ′

λ(uμ), ϕε〉 ≤ 0. Hence, using the notation of (3.5), we have

〈Φ′
λ(uλ), ϕε〉 = 〈Φ′

λ(uμ), ϕε〉 + 〈Φ′
λ(uλ) − Φ′

λ(uμ), ϕε〉
≤
∫

Ωε

(A(x,∇uλ) − A(x,∇uμ)) · ∇(uμ − uλ − εϕ) dx

+
∫

Ωε

a(x) (|uλ|p−2uλ − |uμ|p−2uμ)(uμ − uλ − εϕ) dx

−
∫

Ωε

(f(x, uλ) − f(x, uμ))(uμ − uλ − εϕ) dx. (4.2)

By convexity∫
Ωε

(A(x,∇uλ) − A(x,∇uμ)) · (∇uμ − ∇uλ) dx ≤ 0,

while, since 0 ≤ uμ − uλ − εϕ = uμ − uλ + ε|ϕ| < ε|ϕ| in Ωε, we get∣∣∣∣
∫

Ωε

a(x) (|uλ|p−2uλ − |uμ|p−2uμ)(uμ − uλ − εϕ) dx
∣∣∣∣

≤
∫

Ωε

a(x)||uλ|p−2uλ − |uμ|p−2uμ|(uμ − uλ − εϕ) dx

≤ ε

∫
Ωε

a(x)||uλ|p−2uλ − |uμ|p−2uμ| · |ϕ| dx,

and similarly∣∣∣∣
∫

Ωε

(f(x, uλ)−f(x, uμ))(uμ − uλ−εϕ)dx
∣∣∣∣≤ε

∫
Ωε

|f(x, uλ)−f(x, uμ)| · |ϕ|dx.

Therefore, (4.2) yields

〈Φ′
λ(uλ), ϕε〉 ≤ ε

∫
Ωε

ψ(x)dx,

where ψ = (A(x,∇uμ) − A(x,∇uλ)) · ∇ϕ + (a(x)||uλ|p−2uλ − |uμ|p−2uμ| +
|f(x, uλ) − f(x, uμ)|)|ϕ|. We claim that ψ ∈ L1(suppϕ). Indeed, A(x,∇uμ)
and A(x,∇uλ) are in [Lp′

(RN )]N by (A)-(c), while a|uλ|p−1 and a|uμ|p−1 are
in L1

loc(R
N ). Finally, also |f(x, uλ) − f(x, uμ)| is in L1

loc(R
N ), since

|f(x, uλ) − f(x, uμ)| ≤ λw(x)
(|uλ|q−1 + |uμ|q−1

)
+ h(x)

(|uλ|r−1 + |uμ|r−1
)
.
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Therefore the claim follows from the proof of Lemma 3.8. Thus,

lim
ε→0+

∫
Ωε

ψ(x)dx = 0,

since |Ωε| → 0 as ε → 0+. In conclusion, 〈Φ′
λ(uλ), ϕε〉 ≤ o(ε) as ε → 0+,

so that by (4.1) it follows that 〈Φ′
λ(uλ), ϕ〉 ≥ o(1) as ε → 0+. Therefore,

〈Φ′
λ(uλ), ϕ〉 ≥ 0 for all ϕ ∈ C∞

0 (RN ), that is 〈Φ′
λ(uλ), ϕ〉 = 0 for all ϕ ∈

C∞
0 (RN ). Since X = C∞

0 (RN )
‖·‖

, we obtain that uλ is a solution of (E)λ.
Finally, uλ is nontrivial and non-negative, since uλ ≥ uμ. �

Lemma 4.3. λ∗∗ = λ∗.

Proof. Theorem 4.2 shows that λ∗∗ ≥ λ∗. Suppose by contradiction that λ∗∗ >
λ∗. Problem (E)λ cannot admit a nontrivial solution u ∈ X if λ < λ∗∗, since
this would contradict the minimality of λ∗∗. Hence, for all λ ∈ [λ∗, λ∗∗) the
unique solution of (E)λ is u ≡ 0. But this is again impossible since it would
contradict the maximality of λ∗. Hence λ∗∗ = λ∗. �

Theorem 4.4. Equation (E)λ∗ admits a nontrivial non-negative entire solution
u ∈ X.

Proof. Let (λn)n be a strictly decreasing sequence converging to λ∗ and un ∈
X be a nontrivial non-negative entire solution of (E)λn

. By (2.9) we get∫
RN

A(x,∇un)∇v dx =
∫

RN

gnv dx for all v ∈ X, (4.3)

where n �→ gn(x) = −a(x)|un|p−2un + λnw(x)|un|q−2un − h(x)|un|r−2un. By
(2.5)1, (2.6), (2.7) and the monotonicity of (λn)n, we obtain

κ‖un‖p
E + ‖un‖r

r,h ≤ λn‖un‖q
q,w ≤ κq

2λ
1+rq/p(r−q)
1 .

Therefore (‖un‖E)n and (‖un‖r,h)n are bounded, and in turn also (‖un‖)n is
bounded. Hence, (gn)n is bounded in L1

loc(R
N ) by Lemma 3.8, since also (λn)n

is bounded. Moreover, by (A)-(c), Lemma 2.3, Propositions A.6, A.10 and A.11
it is possible to extract a subsequence, still relabeled (un)n, satisfying

un ⇀ u in X; un → u in Lq(RN ;w);
un ⇀ u in Lr(RN ;h); un → u a.e. in R

N ;
∇un ⇀ ∇u in [Lp(RN )]N ; A(x,∇un) ⇀ Θ in [Lp′

(RN )]N ,
(4.4)

for some u ∈ X and Θ ∈ [Lp′
(RN )]N . We claim that Θ = A(x,∇u) and that

u, which is clearly non-negative by (4.4), is the solution we are looking for.

Step 1. In the sequel we somehow follow the proofs of Theorem 2.1 of [5] and
Lemma 2 of [12]. Fix R > 0. Let ϕR ∈ C∞

0 (RN ) be such that 0 ≤ ϕR ≤ 1 in
R

N and ϕR ≡ 1 in BR. Given ε > 0 define for each t ∈ R

ηε(t) =

⎧⎨
⎩
t, if |t| < ε,

ε
t

|t| , if |t| ≥ ε.
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Put vn = ϕRηε ◦ (un − u), so that vn ∈ X. Taking v = vn in (4.3), we get∫
RN

ϕR(A(x,∇un) − A(x,∇u)) · ∇(ηε ◦ (un − u)) dx

= −
∫

RN

ηε ◦ (un − u)A(x,∇un) · ∇ϕR dx

−
∫

RN

ϕRA(x,∇u) · ∇(ηε ◦ (un − u)) dx+
∫

RN

gnvn dx. (4.5)

Observe now that∫
RN

ηε ◦ (un − u)A(x,∇un) · ∇ϕR dx → 0 as n → ∞,

since ηε ◦ (un − u)∇ϕR → 0 in [Lp(suppϕR)]N and A(x,∇un) ⇀ Θ in
[Lp′

(RN )]N by (4.4). Furthermore, ∇(ηε ◦ (un − u)) ⇀ 0 in [Lp(RN )]N , since
un ⇀ u in X, and consequently∫

RN

ϕRA(x,∇u) · ∇(ηε ◦ (un − u)) dx → 0 as n → ∞,

being A(x,∇u) ∈ [Lp′
(RN )]N .

In conclusion, the first two terms in the right hand side of (4.5) go to
zero as n → ∞. Now, recalling that 0 ≤ ϕR ≤ 1 in R

N , we have∫
RN

gnvn dx ≤
∫

supp ϕR

|gn| · |ηε ◦ (un − u)| dx ≤ ε

∫
supp ϕR

|gn| dx ≤ εCR,

since (gn)n is bounded in L1
loc(R

N ) by Lemma 3.8. By (A)-(b) and the defini-
tions of ϕR and ηε,

ϕR(A(x,∇un) − A(x,∇u)) · ∇(ηε ◦ (un − u)) ≥ 0 a.e. in R
N ,

and in turn∫
BR

ϕR(A(x,∇un) − A(x,∇u)) · ∇(ηε ◦ (un − u))dx

≤
∫

RN

ϕR(A(x,∇un) − A(x,∇u)) · ∇(ηε ◦ (un − u))dx.

Combining all these facts with (4.5), we find that

lim sup
n→∞

∫
BR

ϕR(A(x,∇un) − A(x,∇u)) · ∇(ηε ◦ (un − u)) dx ≤ εCR. (4.6)

Define the non-negative function en by

en(x) = (A(x,∇un) − A(x,∇u)) · ∇(un − u).

Note that (en)n is bounded in L1(RN ). Indeed,

0 ≤
∫

RN

en(x) dx ≤ ‖A(x,∇un) − A(x,∇u)‖p′ · ‖∇un − ∇u‖p ≤ C0, (4.7)

where C0 is an appropriate constant, independent of n, deriving from the
boundedness of (∇un)n in [Lp(RN )]N and of (A(x,∇un))n in [Lp′

(RN )]N

by (4.4).
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Fix θ ∈ (0, 1). Split the ball BR into

Sε
n(R) = {x ∈ BR : |un(x) − u(x)| ≤ ε}, Gε

n(R) = BR \ Sε
n(R).

By Hölder’s inequality,
∫

BR

eθ
ndx ≤

(∫
Sε

n(R)

endx

)θ

|Sε
n(R)|1−θ +

(∫
Gε

n(R)

endx

)θ

|Gε
n(R)|1−θ

≤ (εCR)θ|Sε
n(R)|1−θ + Cθ

0 |Gε
n(R)|1−θ,

by (4.6), since ϕR ≡ 1 and ∇(ηε ◦ (un − u)) = ∇(un − u) in Sε
n(R), and by

(4.7). Moreover, |Gε
n(R)| tends to zero as n → ∞. Hence

0 ≤ lim sup
n→∞

∫
BR

eθ
n dx ≤ (εCR)θ|BR|1−θ.

Letting ε tend to 0+ we find that eθ
n → 0 in L1(BR) and so, thanks to the

arbitrariness of R, we deduce that

en → 0 a.e. in R
N

up to a subsequence. Thus, by Lemma 2.1

∇un → ∇u a.e. in R
N ,

and so

A(x,∇un) → A(x,∇u) a.e. in R
N ,

by (A). Hence, Proposition A.7 implies that Θ = A(x,∇u) and consequently
for all v ∈ X ∫

RN

A(x,∇un) · ∇v dx →
∫

RN

A(x,∇u) · ∇v dx (4.8)

as n → ∞, since A(x,∇un) ⇀ A(x,∇u) in [Lp′
(RN )]N by (4.4).

Step 2. Since un ⇀ u in X, Lemma 3.3 yields in particular that for all v ∈ X∫
RN

a(x)|un|p−2unv dx →
∫

RN

a(x)|u|p−2uv dx (4.9)

as n → ∞. Moreover, Lemmas 3.4 and 3.5 imply that for all v ∈ X∫
RN

w(x)|un|q−2unv dx →
∫

RN

w(x)|u|q−2uv dx,

∫
RN

h(x)|un|r−2unv dx →
∫

RN

h(x)|u|r−2uv dx,

(4.10)

as n → ∞. In conclusion, passing to the limit in (4.3) as n → ∞, we get by
(4.8)–(4.10)∫

RN

A(x,∇u) · ∇v dx+
∫

RN

a(x)|u|p−2uv dx = λ∗
∫

RN

w(x)|u|q−2uv dx

−
∫

RN

h(x)|u|r−2uv dx

for all v ∈ X, that is u is an entire non-negative solution of (E)λ∗ .
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Step 3. We claim that u �≡ 0. Indeed, since un ⇀ u in X by (4.4), Lemma 2.3
yields in particular that ‖u‖q,w = limn→∞ ‖un‖q,w. Moreover, (2.7) applied to
each un �= 0 implies that ‖un‖q,w ≥ κ1λ

1/(p−q)
n , that is

‖u‖q,w = lim
n→∞ ‖un‖q,w ≥ κ1(λ∗)1/(p−q) > 0,

since λn ↘ λ∗ and λ∗ > 0. Hence u is nontrivial and non-negative by (4.4). �

Proof of Theorem A. Section 2, Lemma 4.3 and Theorems 4.2 and 4.4 show
the existence of λ∗ > 0, with the properties required in Theorem A. �

5. Existence of a second non-negative entire solution
in a special case

In this section we prove that equation (E)λ admits at least two nontrivial
solutions if λ is sufficiently large, via variational methods. We start by estab-
lishing a geometrical property for the energy functional Φλ, which is valid for
all λ > 0 and is a variant of the geometrical structure of the Mountain Pass
theorem due to Ambrosetti and Rabinowitz [4]. For a similar result, obtained
with a different proof and the use of the Palais–Smale compactness condition,
we refer to [7].

Lemma 5.1. For any e ∈ X \ {0} and λ > 0 there exist 
 ∈ (0, ‖e‖E) and
α = α(
) > 0 such that Φλ(u) ≥ α for all u ∈ X, with ‖u‖E = 
.

Proof. Let u be in X. By (2.4) and (2.5)2

Φλ(u) ≥ κ

p
‖u‖p

E − λ

q
‖u‖q

q,w ≥
(
κ

p
− λ

q
Cq

w‖u‖q−p
E

)
‖u‖p

E .

Therefore, it is enough to take 0 < 
 < min
{

(κq/λpCq
w)1/(q−p)

, ‖e‖E

}
, so

that α = (κ/p− λCq
w


q−p/q) 
p > 0 satisfies the assertion. �

In Lemma 4.1 we have shown that for all λ > λ there exists a nontrivial
non-negative entire solution e ∈ X of (E)λ, which is a global minimizer for Φλ

in X, with Φλ(e) < 0. In this section we are looking for a second nontrivial
solution of (E)λ, when λ > λ.

By Lemma 5.1 and the variant of the Ekeland principle given in Theorem
A.3, for all λ > λ there exists a sequence (un)n ∈ X such that

Φλ(un) → c and ‖Φ′
λ(un)‖X′ → 0 (5.1)

as n → ∞, where

c = inf
γ∈Γ

max
t∈[0,1]

Φλ(γ(t)) and Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e}.

The principal aim is to prove that (un)n strongly converges to some u ∈ X
and that u is a second nontrivial non-negative solution of (E)λ. In order to do
this, we assume the further following growth condition on A .
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(A)-(d) There exists k > 0 such that

|ξ − ξ0|p ≤ k

{
(A(x, ξ) − A(x, ξ0)) · (ξ − ξ0), p ≥ 2,
{(A(x, ξ) − A(x, ξ0)) · (ξ − ξ0)}

p
2 (|ξ|p + |ξ0|p) 2−p

2 , 1 < p < 2,

for all x, ξ, ξ0 ∈ R
N .

Any function A(x, ξ) = d(x)|ξ|p−2ξ, with d ∈ C(RN ,R+) ∩ L∞(RN ), satis-
fies (A)-(d). For the p-Laplacian operator, A(x, ξ) = |ξ|p−2ξ, p > 1, property
(A)-(d) was proved by Simon in [22]. In particular,
(S ) For all s ∈ (1,∞) there exists k̂ > 0, depending only on s, such that

|ξ − ξ0|s ≤ k̂

{
(|ξ|s−2ξ − |ξ0|s−2ξ0) · (ξ − ξ0), s ≥ 2,{
(|ξ|s−2ξ − |ξ0|s−2ξ0) · (ξ − ξ0)

} s
2 (|ξ|s + |ξ0|s) 2−s

2 , 1 < s < 2,

for all ξ, ξ0 ∈ R
N .

Proof of Theorem B. Fix λ > λ and let e ∈ X be the global minimizer of Φλ

obtained by Lemma 4.1.

Step 1. Thanks to Lemma 5.1 and the fact that Φλ(e) < 0, the assumptions of
Theorem A.3 are satisfied for the functional Φλ. Hence, there exists a sequence
(un)n ⊂ X such that (5.1) holds. By Lemma 3.1, the sequence (un)n is bounded
in X and so also (A(x,∇un))n is bounded in [Lp′

(RN )]N by (A)-(c). From now
on we can follow the argument of the proof of Theorem 4.4. We report here
the main differences. By Lemma 2.3, Propositions A.6, A.10 and A.11, it is
again possible to extract a subsequence, still relabeled (un)n, satisfying (4.4),
for some u ∈ X and Θ ∈ [Lp′

(RN )]N . The main point of the proof is to prove
that Θ = A(x,∇u) and that u is a nontrivial solution of (E)λ, with u �= e.

Clearly, now

〈Φ′
λ(un), v〉 =

∫
RN

A(x,∇un) · ∇v dx−
∫

RN

gnv dx (5.2)

for any v ∈ X, where the sequence (gn)n, defined in (3.16) with λn ≡ λ, is in
L1

loc(R
N ) by Lemma 3.8, being (‖un‖)n bounded.

Fix R > 0 and ε > 0. Take ϕR ∈ C∞
0 (RN ) and ηε as in Theorem 4.4. Put

again vn = ϕRηε ◦ (un − u) ∈ X. Taking v = vn in (5.2), it results that∫
RN

ϕR(A(x,∇un) − A(x,∇u)) · ∇(ηε ◦ (un − u)) dx

= −
∫

RN

ηε ◦ (un − u)A(x,∇un) · ∇ϕR dx

−
∫

RN

ϕRA(x,∇u) · ∇(ηε ◦ (un − u)) dx

+〈Φ′
λ(un), vn〉 +

∫
RN

gnvn dx. (5.3)

Proceeding as for Theorem 4.4, we find that the first two terms in the right
hand side of (5.3) go to zero as n → ∞. Moreover



Vol. 20 (2013) Entire solutions for quasilinear equations 997

〈Φ′
λ(un), vn〉 → 0 as n → ∞,

since Φ′
λ(un) → 0 in X ′ and vn ⇀ 0 in X as n → ∞. Finally, recalling that

also in this case (gn)n is bounded in L1
loc(R

N ), we obtain∫
RN

gnvn dx ≤ εCR,

where CR > 0 is an appropriate constant dependent only on R. From now on,
proceeding as in the proof of Theorem 4.4, we find that

A(x,∇un) → A(x,∇u) as n → ∞ for a.a. x ∈ R
N .

Hence, Proposition A.7 shows that Θ = A(x,∇u) and so for all v ∈ X∫
RN

A(x,∇un) · ∇v dx →
∫

RN

A(x,∇u) · ∇v dx as n → ∞, (5.4)

since A(x,∇un) ⇀ A(x,∇u) in [Lp′
(RN )]N by (4.4).

The proofs of Steps 2 and 3 of Theorem 4.4 can be repeated also in this
case, obtaining (4.9) and (4.10). Hence, passing to the limit as n → ∞ in (5.2),
using (5.4) and the fact that 〈Φ′

λ(un), v〉 → 0 as n → ∞ for all v ∈ X, we get∫
RN

A(x,∇u) · ∇v dx+
∫

RN

a(x)|u|p−2uv dx = λ

∫
RN

w(x)|u|q−2uv dx

−
∫

RN

h(x)|u|r−2uv dx

for all v ∈ X, that is u is an entire solution of (E)λ.
Step 2. We claim that

Jw(n) =
∫

RN

w(x)(|un|q−2un − |u|q−2u)(un − u) dx → 0 (5.5)

as n → ∞. Indeed, un → u in Lq(RN ;w) by Lemma 2.3, since un ⇀ u in X by
(4.4). Thus, |un|q−2un → |u|q−2u in Lq′

(RN ;w) by Proposition A.8-(ii) and in
turn, applying Hölder’s inequality, we get

0 ≤
∫

RN

w(x)(|un|q−2un − |u|q−2u)(un − u) dx

≤ ‖|un|q−2un − |u|q−2u‖q′,w‖un − u‖q,w → 0,

as n → ∞. This completes the proof of (5.5).
Step 3. Here we show that

‖un − u‖ → 0 as n → ∞. (5.6)

Clearly, by convexity

I1,n =
∫

RN

(A(x,∇un) − A(x,∇u)) · (∇un − ∇u) dx ≥ 0

I2,n =
∫

RN

a(x)(|un|p−2un − |u|p−2u)(un − u) dx ≥ 0

I3,n =
∫

RN

h(x)(|un|r−2un − |u|r−2u)(un − u) dx ≥ 0.
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Put Rn = I1,n + I2,n + I3,n. Note that 〈Φ′
λ(un) − Φ′

λ(u), un − u〉 → 0 as
n → ∞, since un ⇀ u in X and Φ′

λ(un) → 0 in X ′ as n → ∞. Hence, by (5.5)

Rn = 〈Φ′
λ(un) − Φ′

λ(u), un − u〉 + λJw(n) = o(1) (5.7)

as n → ∞.
By (S ), with s = r > 2, and by (5.7) it follows that

‖un − u‖r
r,h ≤ k̂I3,n = o(1), (5.8)

as n → ∞.
Case p ≥ 2. Using (1.2), (A)-(d) and (S ), with s = p, we get

‖un − u‖p
E ≤ k

∫
RN

(A(x,∇un) − A(x,∇u)) · (∇un − ∇u)dx

+
1
c1

‖un − u‖p
p,a (5.9)

≤ max{k, k̂/c1} {I1,n + I2,n} = o(1),

as n → ∞, by (5.7).
Case 1 < p < 2. By (S ), with s = p, and Hölder’s inequality we have

‖∇un − ∇u‖p
p ≤ k

∫
RN

{(A(x,∇un) − A(x,∇u))

· (∇un − ∇u)}p/2(|∇un|p + |∇u|p)(2−p)/2dx

≤ kIp/2
1,n

(‖∇un‖p
p + ‖∇u‖p

p

)(2−p)/2

≤ kIp/2
1,n

(
‖∇un‖(2−p)p/2

p + ‖∇u‖(2−p)p/2
p

)

≤ 2kM (2−p)p/2Ip/2
1,n ,

where M > 0 is such that ‖∇un‖p, ‖∇u‖p ≤ M for all n, being the sequence
(‖∇un‖p)n bounded by (4.4). Similarly, again by (S ), with s = p, we have

‖un − u‖p
p,a ≤ k̂Ip/2

2,n

(
‖un‖(2−p)p/2

p,a + ‖u‖(2−p)p/2
p,a

)
≤ 2k̂K(2−p)p/2Ip/2

2,n ,

where K > 0 is such that ‖un‖p,a, ‖u‖p,a ≤ K for all n, being (‖un‖p,a)n

bounded. Hence, using also (1.2), it follows that

‖un − u‖2
E ≤ 2(2−p)/p

{
‖∇un − ∇u‖2

p +
(∫

RN

ν(x)|un − u|pdx
)2/p

}

≤ 2(2−p)/p

{
‖∇un − ∇u‖2

p +
(

1
c1

‖un − u‖p
p,a

)2/p
}

≤ C {I1,n + I2,n} = o(1) (5.10)

as n → ∞ by (5.7), where C = 2(2−p)/p max{(2k)2/pM2−p, (2k̂/c1)2/pK2−p}.
In conclusion, for all p > 1, using (5.8)–(5.10), we obtain (5.6).

Step 4. Since un → u in X and Φλ ∈ C1(X), we have that Φλ(u) = c =
limn→∞ Φλ(un). Therefore, u is a second independent nontrivial entire solu-
tion of (E)λ, with Φλ(u) = c > 0 > Φλ(e). Clearly we can assume u ≥ 0 a.e. in
R

N , since |u| is also a solution of (E)λ by (A)-(a). This concludes the proof.
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Appendix A

In this section we present some auxiliary results, starting by recalling this
definition.

A Banach space (V, ‖·‖V ) is said to be locally uniformly convex if ‖vn‖V =
‖v‖V = 1 and limn→∞ ‖vn + v‖V = 2 imply that lim

n→∞ ‖vn − v‖V = 0.

Proposition A.1. Let (V, ‖ · ‖V ) be a locally uniformly convex Banach space.
Let (vn)n and v be in V such that

(i) vn ⇀ v in V as n → ∞, (ii) lim sup
n→∞

‖vn‖V ≤ ‖v‖V .

Then vn → v in V as n → ∞.

Proof. If v = 0 there is nothing to prove and the conclusion is obvious. Hence
suppose v �= 0. By (ii) and the weak lower semicontinuity of the norm, we get

lim
n→∞ ‖vn‖V = ‖v‖V . (5.1)

Thus there exists n ≥ 0 such that for all n ≥ n it is ‖vn‖V > 0. For n ≥ n
define yn = vn/‖vn‖V and y = v/‖v‖V , so that ‖yn‖V = ‖y‖V = 1. For all
f ∈ V ′ we have

f(yn−y)=f

(
vn

‖vn‖V
−‖vn‖V

vn

‖vn‖V

)
+ f(vn−v)+f

(
‖v‖V

v

‖v‖V
− v

‖v‖V

)

=
1 − ‖vn‖V

‖vn‖V
f(vn) + f(vn − v) +

‖v‖V − 1
‖v‖V

f(v).

Now, by (i), the sequence (‖vn‖V )n is bounded, while f(vn) → f(v) and
f(vn − v) → 0. That is f(yn) → f(y), or, in other words, yn ⇀ y in V .

We claim that limn→∞ ‖yn + y‖V = 2. To prove this, first note that the
weak convergence of yn and the weak lower semicontinuity of the norm imply
that

yn + y

2
⇀ y and ‖y‖V ≤ 1

2
lim inf
n→∞ ‖yn + y‖V .

Consequently,

1 = ‖y‖V ≤ 1
2

lim inf
n→∞ ‖yn + y‖V ≤ 1

2
lim sup

n→∞
‖yn + y‖V

≤ 1
2

lim sup
n→∞

(‖yn‖V + ‖y‖V ) = 1,

that is limn→∞ ‖yn + y‖V = 2, as claimed. The local uniform convexity of V
assures that limn→∞ ‖yn − y‖V = 0. Hence,

‖vn − v‖V ≤ ‖vn‖V ‖yn − y‖V + ‖y‖V |‖vn‖V − ‖v‖V | → 0 as n → ∞,

by (5.1) and the boundedness of (‖vn‖V )n. The proof is complete. �



1000 G. Autuori and P. Pucci NoDEA

As a consequence of Proposition A.1 we have the following important

Corollary A.2. Let (V, ‖ · ‖V ) be a reflexive Banach space. Let (vn)n and v be
in V such that as n → ∞

(i) vn ⇀ v in V (ii) ‖vn‖V → ‖v‖V .

Then vn → v in V as n → ∞.

Proof. First observe that there exists an equivalent norm on V , say ‖·‖, which
makes V a locally uniformly convex Banach space, see the Troyanski theorem
[25]. Hence, conditions (i) and (ii) hold also if we consider on V the norm
‖ · ‖. Therefore ‖vn − v‖ → 0 as n → ∞, by Proposition A.1. Finally, also
‖vn − v‖V → 0, being the two norms equivalent. �

The following theorem is stated for two general Banach spaces X and E.
We apply it in Theorem B, in which X and E are the special spaces defined
in Section 2. The proof of Theorem A.3 is based on the Ekeland variational
principle, see for instance [16]. For a similar generalization of the Mountain
Pass theorem, with a different proof and the use of a compactness condition,
we refer to Theorem 2.5 of [7].

Theorem A.3. Let (X, ‖ · ‖) and (E, ‖ · ‖E) be two Banach spaces such that
X ↪→ E. Let Φ : X → R be a C1 functional with Φ(0) = 0. Suppose that there
exist 
, α > 0 and e ∈ X such that ‖e‖E > 
,Φ(e) < α and Φ(u) ≥ α for all
u ∈ X with ‖u‖E = 
.

Then there exists a sequence (un)n ∈ X such that for all n

c ≤ Φ(un) ≤ c+
1
n2

and ‖Φ′(un)‖X′ ≤ 2
n
,

where

c = inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)) and Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = e}.

Proof. Step 1. We claim that c ≥ α. Indeed, fix γ ∈ Γ. Clearly, γ ∈ C([0, 1];E),
since X ↪→ E. This implies that the function g : [0, 1] → R defined by g(t) =
‖γ(t)‖E is continuous and such that g(0) = 0 < 
 and g(1) = ‖e‖E > 
. Hence
‖γ(t�)‖E = 
 for some t� ∈ (0, 1). Consequently, Φ(γ(t�)) ≥ α and in turn
maxt∈[0,1] Φ(γ(t)) ≥ α. Finally, due to the arbitrariness of γ, we get the claim.

Step 2. Let us consider on Γ the metric d∞(γ, η) = maxt∈[0,1] ‖γ(t) − η(t)‖.
Thus, (Γ, d∞) is a complete metric space. Define on Γ the functional

J(γ) = max
t∈[0,1]

Φ(γ(t)).

Of course, J is bounded from below by Step 1, since J(γ) ≥ α for all γ ∈ Γ.
Moreover, J is lower semicontinuous, being the supremum of continuous func-
tions. Therefore, by Ekeland’s variational principle, for all ε > 0 there exists
γε ∈ Γ such that

(i) J(γε) ≤ infγ∈Γ J(γ) + ε2;
(ii) J(γ) ≥ J(γε) − εd∞(γ, γε) for all γ ∈ Γ.
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Step 3. We claim that for all ε > 0 and all ηε ∈ C([0, 1],X) such that

ηε(0) = ηε(1) = 0 and max
t∈[0,1]

‖ηε(t)‖ ≤ 1 (A.2)

there exists tε ∈ [0, 1] such that

Φ(γε(tε)) = J(γε) and −ε ≤ 〈Φ′(γε(tε)), ηε(tε)〉. (A.3)

Indeed, fix ε > 0 and choose a continuous function ηε : [0, 1] → X satisfying
(A.2). Define γε,h = γε +h ηε for all h > 0, so that γε,h ∈ Γ. By the continuity
of Φ and γε,h, there exists tε,h ∈ [0, 1] such that

J(γε,h) = Φ(γε,h(tε,h)).

Moreover, the boundedness of (tε,h)h implies the existence of a convergent
subsequence, still denoted in the same way, with limit tε ∈ [0, 1]. Therefore,
thanks to the continuity of Φ and the lower semicontinuity of J , we get

Φ(γε(tε)) ≤ J(γε) ≤ lim inf
h→0+

J(γε,h) = lim
h→0+

Φ(γε,h(tε,h)) = Φ(γε(tε)),

that is (A.3)1 holds. Moreover, by (ii) and (A.2)2,

−εh ≤ J(γε,h) − J(γε) ≤ Φ(γε,h(tε,h)) − Φ(γε(tε,h))
= h〈Φ′(γε(tε,h)), ηε(tε,h)〉 + o(h)

as h → 0+. In turn, dividing by h > 0 and passing to the limit as h → 0+, we
find (A.3)2.
Step 4. We claim that for all ε > 0 there exists uε ∈ X such that

‖Φ′(uε)‖ ≤ 2ε and inf
γ∈Γ

J(γ) ≤ Φ(uε) ≤ inf
γ∈Γ

J(γ) + ε2. (A.4)

Fix ε > 0 and let γε ∈ Γ be the curve obtained in Step 2, satisfying (i) and
(ii). Take a with max{Φ(e), 0} < a < α. This is possible being Φ(e) < α. Now,
for all t ∈ [0, 1] for which

Φ(γε(t)) > a (A.5)

we find xt ∈ X, with ‖xt‖ = 1, such that

〈Φ′(γε(t)), xt〉 ≤ −3
4
‖Φ′(γε(t))‖.

Since Φ ∈ C1(X) and γε is continuous, then

〈Φ′(γε(s)), xt〉 ≤ −1
2
‖Φ′(γε(s))‖

for all s in a neighborhood of t. By compactness of [0, 1] there exists a finite
number of open sets U1, . . . , Uk and vectors x1, . . . , xk ∈ X, with ‖xi‖ = 1, i =
1, . . . , k, such that if Φ(γε(t)) > a, then t ∈ Ui for some i = 1, . . . , k and

〈Φ′(γε(t)), xi〉 ≤ −1
2
‖Φ′(γε(t))‖.
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Let V be such that U1, . . . , Uk, V cover [0, 1] and let ϕ1, . . . , ϕk, ψ be a partition
of unity subordinated to this covering. Set

η(t) =
k∑

i=1

ϕi(t)xi for all t ∈ [0, 1].

Note that η ∈ span{x1, . . . , xk} and for all t ∈ [0, 1] satisfying (A.5)

〈Φ′(γε(t)), η(t)〉 =
k∑

i=1

ϕi(t)〈Φ′(γε(t)), xi〉 ≤ −1
2
‖Φ′(γε(t))‖

k∑
i=1

ϕi(t)

= −1
2
‖Φ′(γε(t))‖. (A.6)

Moreover, η verifies (A.2), since maxt∈[0,1] ‖η(t)‖ ≤ 1,Φ(0) = 0 < a and
Φ(e) < a. Hence, by Step 3, there exists tε ∈ [0, 1] satisfying (A.3). Further-
more, Φ(γε(tε)) = J(γε) ≥ α > a by (A.3)1 and Step 1. Therefore, by (A.6)
and (A.3)1, with ηε = η, we get

−ε ≤ 〈Φ′(γε(tε)), η(tε)〉 ≤ −1
2
‖Φ′(γε(tε))‖

that is

‖Φ′(γε(tε))‖ ≤ 2ε.

Finally, using (ii) of Step 2 and (A.3)1, we obtain

inf
γ∈Γ

J(γ) ≤ Φ(γε(tε)) ≤ inf
γ∈Γ

J(γ) + ε2.

Hence, (A.4) holds with uε = γε(tε) ∈ X.
This concludes the proof, by taking ε = 1/n and un = γn(tn). �

We present now some results on the weighted Lebesgue spaces. Let ω be
a weight on R

N , that is a measurable function such that ω > 0 a.e. in R
N . If

s ∈ R
+, following [14, Chapter V, Section 6], we put

Ls(RN ;ω) = {u : R
N → R measurable : ω|u|s ∈ L1(RN )}.

The set Ls(RN ;ω) is a linear space, thanks to the inequality (1.5) given in [14,
Lemma 1.1, page 222], and

‖u‖s,ω =
(∫

RN

ω(x)|u(x)|sdx
)1/s

is a norm-like function on Ls(RN ;ω) when s ∈ (0, 1), and a norm if s ∈ [1,∞).
The next result is well-known in the usual Lebesgue spaces (see, for

instance, Theorem 4.9 of [6]). The proof is left to the reader, since it is stan-
dard, see also [21].

Lemma A.4. Let s ∈ [1,∞). If (un)n and u are in Ls(RN ;ω) and un → u in
Ls(RN ;ω) as n → ∞, then there exist a subsequence (unk

)k of (un)n and a
function ψ ∈ Ls(RN ;ω) such that a.e. in R

N

(i) unk
→ u as k → ∞; (ii) |unk

(x)| ≤ ψ(x) for all k ∈ N.
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Proposition A.5. Let σ ∈ (0, 1). If u, v ∈ Lσ(RN ;ω) then

‖|u| + |v|‖σ,ω ≥ ‖u‖σ,ω + ‖v‖σ,ω.

Proof. If u = v = 0 in Lσ(RN ;ω) the conclusion is trivial. Hence, let us suppose
|u| + |v| > 0 in a subset of R

N of positive measure, so that ‖|u| + |v|‖σ,ω > 0,
being ω > 0 a.e. in R

N .
Let σ′ < 0 be the conjugate exponent of σ, given by 1/σ + 1/σ′ = 1,

see [14, Section V.1.2, page 222]. Since ω1/σ′
(|u| + |v|)σ−1 ∈ Lσ′

(RN ) and
ω1/σ|u|, ω1/σ|v| ∈ Lσ(RN ), by the reverse Hölder inequality, see Theorem 2.6
of [1], we obtain

‖|u| + |v|‖σ
σ,ω =

∫
RN

ω(x)1/σ′
(|u| + |v|)σ−1

ω(x)1/σ (|u| + |v|) dx

≥
(∫

RN

ω(x) (|u| + |v|)σ
dx

)1/σ′(∫
RN

ω(x)|u|σdx
)1/σ

+
(∫

RN

ω(x) (|u| + |v|)σ
dx

)1/σ′(∫
RN

ω(x)|v|σdx
)1/σ

= ‖|u| + |v|‖σ−1
σ,ω (‖u‖σ,ω + ‖v‖σ,ω).

In conclusion, since ‖|u| + |v|‖σ,ω > 0, we get the assertion. �

Proposition A.6. Let s ∈ (1,∞). The Banach space (Ls(RN ;ω), ‖ · ‖s,ω) is
uniformly convex.

Proof. We follow the proof given in [1, Corollary 2.29]. Fix ε ∈ (0, 2) and let
u, v be in Ls(RN ;ω) such that ‖u‖s,ω = ‖v‖s,ω = 1 and ‖u− v‖s,ω ≥ ε.
Case s ≥ 2. By inequality (3.5) of [1, Lemma 2.27] we have

∥∥∥∥u+ v

2

∥∥∥∥
s

s,ω

+
∥∥∥∥u− v

2

∥∥∥∥
s

s,ω

=
∫

RN

ω(x)
{∣∣∣∣u+ v

2

∣∣∣∣
s

+
∣∣∣∣u− v

2

∣∣∣∣
s}

dx

≤ 1
2

∫
RN

ω(x) {|u|s + |v|s} dx

=
1
2
(‖u‖p

s,ω + ‖v‖s
s,ω

)
= 1.

Therefore
∥∥∥∥u+ v

2

∥∥∥∥
s

s,ω

≤ 1 −
(ε

2

)s

,

and so, taking δ = δ(ε) such that 1 − (ε/2)s = (1 − δ)s, we obtain that
‖u+ v‖s,ω ≤ 2(1 − δ).
Case 1 < s < 2. First note that ‖u‖s′

s,ω = ‖|u|s′‖s−1,ω for all u ∈ Ls(RN ;ω),
and so, applying Proposition A.5, with σ = s− 1 ∈ (0, 1), we obtain
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∥∥∥∥u+ v

2

∥∥∥∥
s′

s,ω

+
∥∥∥∥u− v

2

∥∥∥∥
s′

s,ω

=

∥∥∥∥∥
∣∣∣∣u+ v

2

∣∣∣∣
s′∥∥∥∥∥

s−1,ω

+

∥∥∥∥∥
∣∣∣∣u− v

2

∣∣∣∣
s′∥∥∥∥∥

s−1,ω

≤
∥∥∥∥∥
∣∣∣∣u+ v

2

∣∣∣∣
s′

+
∣∣∣∣u− v

2

∣∣∣∣
p′∥∥∥∥∥

s−1,ω

≤
(

1
2
‖u‖s

s,ω +
1
2
‖v‖s

s,ω

)1/(s−1)

= 1,

where in the last step we have used [1, Lemma 2.27, inequality (3.4)]. Now, pro-
ceeding exactly as before, and taking δ = δ(ε) such that 1−(ε/2)s′

= (1−δ)s′
,

we get the claim. �

Proposition A.7. Assume that ω ∈ L1
loc(R

N ). Let s ∈ [1,∞), and let (un)n, u ∈
Ls(RN ;ω) be such that

un ⇀ u in Ls(RN ;ω) and un → ũ a.e. in R
N

as n → ∞. Then u = ũ a.e. in R
N .

Proof. Denote by A = {x ∈ R
N : u(x) �= ũ(x)} and suppose by contradiction

that A has positive measure. Take R > 0 so large that 0 < |A ∩BR| < ∞. By
the Severini–Egoroff theorem there exists a measurable set B ⊂ A∩BR, with
0 < |B| < ∞ such that (un)n converges uniformly to ũ in B and so un → ũ in
L∞(B). Consequently,

‖un − ũ‖s
Ls(B;ω) ≤ ‖ω‖L1(B)‖un − ũ‖s

L∞(B) = o(1)

as n → ∞, since |B| < ∞. Therefore, un → ũ and so un ⇀ ũ in Ls(B;ω).
Hence, ũ = u a.e. in B, since the weak limit is unique, being ω > 0 a.e. in R

N .
But this occurrence is impossible, since B ⊂ A and |B| > 0. This contradiction
concludes the proof. �

Proposition A.8. Assume ω ∈ L1
loc(R

N ). Let s ∈ (1,∞) and let (un)n, u be in
Ls(RN ;ω).

(i) If (un)n is bounded in Ls(RN ;ω) and un → u a.e. in R
N , then

un ⇀ u in Ls(RN ;ω) and |un|s−2un ⇀ |u|s−2u in Ls′
(RN ;ω).

(ii) If ‖un‖s,ω → ‖u‖s,ω and un ⇀ u in Ls(RN ;ω), then

un → u in Ls(RN ;ω) and |un|s−2un → |u|s−2u in Ls′
(RN ;ω).

Proof. Let (un)n, u be in Ls(RN ;ω).

Case (i). Fix a subsequence (unk
)k of (un)n. By Proposition A.6 there exists a

further subsequence (unkj
)j ⊂ (unk

)k and v ∈ Ls(RN ;ω) such that unkj
⇀ v

in Ls(RN ;ω), being (unk
)k bounded in Ls(RN ;ω). On the other hand, v = u

by Proposition A.7, since ω ∈ L1
loc(R

N ) and ω > 0 a.e. in R
N by assumption.

By the arbitrariness of (unk
)k, we deduce that the entire sequence un ⇀ u in
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Ls(RN ;ω). Applying the same argument to the sequence n �→ |un|s−2un, we
obtain that |un|s−2un ⇀ |u|s−2u in Ls′

(RN ;ω).

Case (ii). Corollary A.2 and Proposition A.6 imply that un → u in Ls(RN ;ω).
Now, fix a subsequence (vnk

)k of n �→ vn = |un|s−2un. Hence unk
→ u in

Ls(RN ;ω), and so there exists a further subsequence (unkj
)j of (unk

)k such
that unkj

→ u a.e. in R
N by Lemma A.4. Of course, vnkj

→ v = |u|s−2u

a.e. in R
N . On the other hand, ‖vnkj

‖s′
s′,ω = ‖unkj

‖s
s,ω → ‖u‖s

s,ω = ‖v‖s′
s′,ω

by assumption. Therefore, vnkj
→ v in Ls′

(RN ;ω) by the first part of this
proposition and by Corollary A.2. Due to arbitrariness of (vnk

)k, the entire
sequence (vn)n converges to v in Ls′

(RN ;ω). �

From now on, E andX denote the two Banach spaces defined in Sect. 2. In
the next proposition we somehow follow the ideas contained in [15, Theorem 6].

Proposition A.9. The Banach space (E, ‖ · ‖E) is uniformly convex.

Proof. Case p ≥ 2. Fix ε ∈ (0, 2) and let u, v ∈ E be such that ‖u‖E = ‖v‖E =
1 and ‖u− v‖E ≥ ε. Using [1, Lemma 2.27, inequality (3.5)], we have
∥∥∥∥u+ v

2

∥∥∥∥
p

E

+
∥∥∥∥u− v

2

∥∥∥∥
p

E

=
∫

RN

{∣∣∣∣∇u+ ∇v
2

∣∣∣∣
p

+
∣∣∣∣∇u− ∇v

2

∣∣∣∣
p}

dx

+
∫

RN

ν(x)
{∣∣∣∣u+ v

2

∣∣∣∣
p

+
∣∣∣∣u− v

2

∣∣∣∣
p}

dx

≤ 1
2

∫
RN

{|∇u|p + |∇v|p + ν(x) (|u|p + |v|p)} dx

=
1
2

(‖u‖p
E + ‖v‖p

E) = 1.

Therefore,
∥∥∥∥u+ v

2

∥∥∥∥
p

E

≤ 1 −
(ε

2

)p

,

and so, taking δ = δ(ε) such that 1 − (ε/2)p = (1 − δ)p, we obtain that
‖u+ v‖E ≤ 2(1 − δ).

Case 1 < p < 2. Fix ε ∈ (0, 22/p) and let u, v ∈ E be such that ‖u‖E = ‖v‖E =
1 and ‖u − v‖E ≥ ε. First note that |∇ϕ|p′ ∈ Lp−1(RN ) and ‖|∇ϕ|p′‖p−1 =
‖∇ϕ‖p′

p for all ϕ ∈ E. Therefore, using the reverse Minkowsky inequality given
in [14, Proposition 3.2], we get
∥∥∥∥∇u + ∇v

2

∥∥∥∥
p′

p

+

∥∥∥∥∇u − ∇v

2

∥∥∥∥
p′

p

=

∥∥∥∥∥
∣∣∣∣∇u + ∇v

2

∣∣∣∣
p′∥∥∥∥∥

p−1

+

∥∥∥∥∥
∣∣∣∣∇u − ∇v

2

∣∣∣∣
p′∥∥∥∥∥

p−1

≤
∥∥∥∥∥
∣∣∣∣∇u + ∇v

2

∣∣∣∣
p′

+

∣∣∣∣∇u − ∇v

2

∣∣∣∣
p′∥∥∥∥∥

p−1
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=

[∫
RN

(∣∣∣∣∇u+∇v

2

∣∣∣∣
p′

+

∣∣∣∣∇u−∇v

2

∣∣∣∣
p′)p−1

dx

] 1
p−1

≤
(

1

2
‖∇u‖p

p +
1

2
‖∇v‖p

p

)1/(p−1)

,

where in the last step we have used [1, Lemma 2.27, inequality (3.4)]. Hence
∥∥∥∥∇u+ ∇v

2

∥∥∥∥
p′

p

+
∥∥∥∥∇u− ∇v

2

∥∥∥∥
p′

p

≤
(

1
2
‖∇u‖p

p +
1
2
‖∇v‖p

p

)1/(p−1)

. (A.7)

Similarly, ‖u‖p′
p,ν = ‖|u|p′‖p−1,ν and ‖v‖p′

p,ν = ‖|v|p′‖p−1,ν , so that, applying
Proposition A.5 with ω = ν and σ = p−1, and proceeding as before, we obtain

∥∥∥∥u+ v

2

∥∥∥∥
p′

p,ν

+
∥∥∥∥u− v

2

∥∥∥∥
p′

p,ν

≤
∥∥∥∥∥
∣∣∣∣u+ v

2

∣∣∣∣
p′

+
∣∣∣∣u− v

2

∣∣∣∣
p′∥∥∥∥∥

p−1,ν
(A.8)

≤
(

1
2
‖u‖p

p,ν +
1
2
‖v‖p

p,ν

)1/(p−1)

.

Therefore, combining (A.7) with (A.8), we get
∥∥∥∥∇u+ ∇v

2

∥∥∥∥
p′

p

+
∥∥∥∥∇u− ∇v

2

∥∥∥∥
p′

p

+
∥∥∥∥u+ v

2

∥∥∥∥
p′

p,ν

+
∥∥∥∥u− v

2

∥∥∥∥
p′

p,ν

≤
(

1
2
‖∇u‖p

p +
1
2
‖∇v‖p

p

)1/(p−1)

+
(

1
2
‖u‖p

p,ν +
1
2
‖v‖p

p,ν

)1/(p−1)

≤
(

1
2
‖∇u‖p

p +
1
2
‖∇v‖p

p +
1
2
‖u‖p

p,ν +
1
2
‖v‖p

p,ν

)1/(p−1)

=
(

1
2
‖u‖p

E +
1
2
‖v‖p

E

)1/(p−1)

,

since 1/(p− 1) > 1. In other words,
∥∥∥∥∇u+ ∇v

2

∥∥∥∥
p′

p

+
∥∥∥∥u+ v

2

∥∥∥∥
p′

p,ν

≤
(

1
2
‖u‖p

E +
1
2
‖v‖p

E

)1/(p−1)

(A.9)

−
{∥∥∥∥∇u− ∇v

2

∥∥∥∥
p′

p

+
∥∥∥∥u− v

2

∥∥∥∥
p′

p,ν

}
.

Now, since ‖u− v‖E ≥ ε, it follows that

εp′ ≤ (‖∇u− ∇v‖p
p + ‖u− v‖p

p,ν

)1/(p−1)

= 2(p+1)/(p−1)

(
1
2

∥∥∥∥∇u− ∇v
2

∥∥∥∥
p

p

+
1
2

∥∥∥∥u− v

2

∥∥∥∥
p

p,ν

)1/(p−1)

≤ 22/(p−1)

(∥∥∥∥∇u− ∇v
2

∥∥∥∥
p′

p

+
∥∥∥∥u− v

2

∥∥∥∥
p′

p,ν

)
,
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being again 1/(p− 1) > 1. Hence

( ε

22/p

)p′

≤
∥∥∥∥∇u− ∇v

2

∥∥∥∥
p′

p

+
∥∥∥∥u− v

2

∥∥∥∥
p′

p,ν

.

Therefore, choosing δ = δ(ε) such that 1− ε/22/p = 2(p−2)/(p−1)(1− δ)p′
, from

(A.9) we obtain

∥∥∥∥∇u+ ∇v
2

∥∥∥∥
p′

p

+
∥∥∥∥u+ v

2

∥∥∥∥
p′

p,ν

≤ 2(p−2)/(p−1)(1 − δ)p′
.

In conclusion, being again 1/(p− 1) > 1,

∥∥∥∥u+ v

2

∥∥∥∥
p′

E

≤ 2(2−p)/(p−1)

(∥∥∥∥∇u+ ∇v
2

∥∥∥∥
p′

p

+
∥∥∥∥u+ v

2

∥∥∥∥
p′

p,ν

)
≤ (1 − δ)p′

,

that is ‖u+ v‖E ≤ 2(1 − δ), as required. �

Proposition A.10. Let (un)n, u ∈ X be such that un ⇀ u in X. Then, up to a
subsequence, un → u a.e. in R

N .

Proof. Let (un)n and u be as in the statement. Then, un → u in Lp(BR) for
all R > 0, where BR = {x ∈ R

N : |x| < R}. Indeed, X ↪→ W 1,p(BR), since
0 < k1 ≤ ν(x) ≤ k2 for a.a. x ∈ BR and for some positive numbers k1 and k2

depending only on R by (1.2), and W 1,p(BR) ↪→↪→ Ls(BR) for all s ∈ [1, p∗).
In particular, in correspondence to R = 1 we find a subsequence (u1,n)n of
(un)n such that u1,n → u a.e. in B1. Clearly u1,n ⇀ u in X and so, in corre-
spondence to R = 2, there exists a subsequence (u2,n)n of (u1,n)n such that
u2,n → u a.e. in B2, and so on. The diagonal subsequence (un,n)n of (un)n,
constructed by induction, converges to u a.e. in R

N as n → ∞. �

Clearly Proposition A.10 continues to hold when X is replaced by the
larger space E, see the proof of Lemma 2.2.

Proposition A.11. The Banach space (X, ‖ · ‖) is reflexive.

Proof. We follow the proof of Proposition 8.1 of [6]. First note that the prod-
uct space Y = E×Lr(RN ;h), endowed with the norm ‖u‖Y = ‖u‖E + ‖u‖r,h,
is reflexive, being E and Lr(RN ;h) both uniformly convex by Propositions
A.9 and A.6. Consider now the operator T : X → Y defined by T (u) = (u, u).
Clearly T is well defined and linear. Moreover T is an isometry, if X is endowed
with the equivalent norm ‖u‖Y . Therefore, T (X) is a closed subspace of the
reflexive space Y , and so T (X) is reflexive. Consequently, also (X, ‖ · ‖Y ) is
reflexive, being isomorphic to a reflexive space. Finally, since reflexivity is pre-
served under equivalent norms, we conclude that also (X, ‖ ·‖) is reflexive. �
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