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1. Introduction

The study of the regularity theory for both elliptic equations and for integrals
of the calculus of variations with non-standard growth conditions has been
initiated by Marcellini at the end of the 1980s (see [29] and also [30,31]) and
it has considerably grown in the last two decades.

In this framework, a particularly relevant class of interest is given by
functionals with anisotropic structures, i.e. those whose energy sees each
derivatives being penalized with a different exponent. Yet firstly studied by
Marcellini [29], further contributions have been given by Leonetti [22,23],
Acerbi and Fusco [1], Fusco and Sbordone [17,18]. Other relevant references
are [2,3,7,8,13,14,24,26,27].

The interest in these types of problems is related, not only to a huge
number of applications (in modeling electro-rheological fluids, image process-
ing and the theory of elasticity), but also to mathematical reasons involved:
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it is necessary to perform essential modifications to the classical methods in
the analysis, because of the nonlinear and non homogeneous nature of the
considered operators.

In this paper we identify a class of anisotropic second-order elliptic
equations for which local Holder continuity can be established, following DiB-
enedetto’s method of intrinsic scaling. More precisely we prove that the weak
solution u of problem

N
- Z aii |:

1=

pi—2

w"ge| =1 o

1
0 on 0N}

(1.1)

u

belongs to C’l(z)ca (Q) for some «a € (0,1), where f is a given function belonging
to L>=(£2), 2 is a smooth, bounded domain of RY, N > 3 and p; > 2 for
any i = 1,..., N. Without loss of generality, we can assume that the p;’s are
ordered, that is

2<p1 < <pnN;
thus,
pr=min{p;} and py =max{p;}.

Moreover, we suppose that p < N, where p is the harmonic mean of the
pi’s, that is
N

1 1 1
5N

otherwise, the weak solution of the problem (1.1) is C{;"
Sobolev embeddings (see [36], and also [20,34]).

Notice that we assume Dirichlet boundary conditions only to be sure that
the solutions are bounded without any further assumptions on p;’s.

Concerning the local Holder continuity for solutions of elliptic equations
(and the corresponding minimization problems), there are many papers, for
example [4,6,15,28,33], in which the cases of operators having p(x)-growth or
p,q type conditions are handled.

With regard to the qualitative theory of equations of the type (1.1) has
not yet been developed to the same extent. There is however a recent paper
about this problem. In [28], the authors establish the local Hélder continuity
for solutions of equations as that in (1.1), assuming

(€2) by the anisotropic

pr=2<py=--=pN=P

and

As seen from the structure, the ;1 variable is separated from the others
and so it was treated similarly to the time variable in the corresponding studies
of parabolic equations. The main novelty of that note is to use the DiBenend-
etto intrinsic scaling method for proving Hélder continuity of weak solutions
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for a class of anisotropic quasi-linear elliptic equations. This powerful method
was introduced in the 1980s (see [10] and more recently [11,37] and references
therein) that helped understanding the local behavior of weak solutions of
singular and degenerate PDEs. It was originally developed for studying the
evolutionary p-Laplace equation.

In this paper we also use the method of intrinsic scaling but in a simpler
way and we treat the general case in which all the p;’s are different. More-
over, another novelty of this work is that we do not need to assume py < p*,
since we are taking homogeneous Dirichlet boundary conditions. Indeed this
assumption assures that the weak solution of problem (1.1) is bounded with-
out further hypothesis on the p;’s, as showed in [12] (see also [35]). If we do
not assume Dirichlet boundary conditions the result of this paper is still true,
but we have to add the hypothesis that the solutions are bounded and hence
py < P*. As a matter of fact there exists an example of unbounded solutions
due to Marcellini (see [32] and also [19]) when no boundary assumptions are
given.

The main result of this paper is the following.

Theorem 1.1. Let u be the weak solution of problem (1.1) with f € L*>(Q) and
M = ||lu||po<(q). Then u is locally Hélder continuous in €2, that is there exist
v > 1 and « € (0,1) depending only on the data such that for every compact
K CC Q the inequality

PN —Pi

Ef\il |$1 i — X2 z|pN M v~
dist (K, 0R2)

fu(e1) — u(as)| < M

holds for any x1, xo € K.
Here dist(K, 99) is the distance from K to the boundary of €, defined by

dist (K, 092) mf <Z|xl yl|l”N M”%Nm>'

yEBQ

The rest of the paper contains the proof of the theorem above, after a
first section in which definitions, notation and some already known results are
given.

In the following we will denote 0; := 9/0x;. We will write C to denote
positive constants, the value of which may vary from line to line, depending
on the data, that is they will be fixed in the assumptions we will make, as the
dimension NV, the set €2, the exponents p;, etc.

2. Definitions, notation and basic tools

Tt is well-known (see [25], and also [5,12]) that, for any N-vector of real num-
bers

2<p1<---<pwN
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and for any f € L*(Q), there exists a unique weak solution of problem (1.1),
that is a function u € I/V1 o(ps) () such that

i
2 fe

where VVO1 (P )(Q) denotes the closure of C§°(Q2) with respect to the norm

N
1,(ps) "= Z 050l Lei (o)
i=1

Pi=20,udv dx = / fodz, Yve Wol’(pi)(Q), (2.1)
Q

[[v

or, equivalently,
Wy (@) = {v EWy P (Q): g € LM (Q), i=1,... 7N} :

Moreover u € L*°(2) by the assumption on f. The same result holds
under less strict assumptions on the regularity of the given function f, namely
feL™(Q), m> N/p, D defined below (see [5,12,35]).

In [20,34,36], the theory of anisotropic Sobolev spaces is developed and,
in particular, the corresponding Sobolev embeddings theorems are studied. Let

Np 1 1
=¥ Z > (2.2)

, T <N
Nf orp and

’U\M—‘

In [36] it is proved that if p < N, then
Wy Q) — L), Vre [1,57).

This embedding is continuous and also compact if r < p*. The follow-
ing Sobolev type inequality is also proved: there exists a positive constant C,
depending only on Q, p;’s, r and NN, such that

N
lollzriy < CTL 10wy ¥r € LF, (2.3)
i=1

for any v € C3(Q). By density, (2.3) also holds for any v € W1 (p’)(Q). The
inequality (2.3) also implies that

N
[vllzr@) < CY_10wllLri(), V€ [1,P7].

i=1
Subsequently, in [16], it is proved that the critical exponent depends on
the kind of anisotropy. If the p;’s are not too far apart (i.e. the anisotropy is
concentrated) the critical exponent is p*, as in [36], that is the usual critical
exponent related to the harmonic mean p of the p;’s. While if the p;’s are too
spread out, it coincides with the maximum of the p;’s, i.e., py. We also recall

a Poincaré type inequality, valid for all v € WO1 (P )(Q)

bi’I‘
L) < 7||3i71|

[[0] L), Vr=1, (2.4)
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with b; = sup, ,cq(z — y,e;), the width of  in the direction e;, for any
t=1,...,N, see [16].

We recall in this section some technical (and by now classical) tools that
are essential in establishing our regularity result.

Given a continuous function u : 2 — R and two real numbers k < [, let

Aps:={x e S:ulx) >k} (2.5)
B g:={ze S ulx)<l} (2.6)
AI@S NBs:= {33 €S k< U(QL‘) < l} (27)

for S C Q. Moreover |S| is the measure of the set S.

Lemma 2.1. (De Giorgi) Let u € WH(K,(z¢)) N C(K,(z0)) with p > 0,
zo € RN, K,(z0) an arbitrary sphere of radius p and centre zo and | > k € R.
There exists a constant C, depending only on N (and thus independent of p,
Zo, u, k and 1), such that

N+1

(I = B)A1 K, ()] < C |Vu| dx.

|Bk,Kp(900)| Ak, K (20) VBl K, (20)

Proof. See [9]. (See also [21], Lemmas 3.4 and 3.5, pp. 54-56.) O

Remark 2.2. Obviously this lemma holds true for N = 1. We will use it in this
case (see the proof of Lemma 4.2 in the following).

We also underline that the conclusion remains valid for functions w
belonging to W1(Q)NC(2), provided Q is a convex region of diameter 2p. In
addition, the continuity is not essential for the result to hold. For a function
merely in W1(Q), we define Ay s and By g through any representative in the
equivalence class of u. It can be shown that the conclusion of the lemma is
independent of this choice.

The next lemma concerns the geometric convergence of some sequences
of real numbers.

Lemma 2.3. Suppose that a sequence yy,, for h =0,1,2,..., of nonnegative real
numbers, satisfies the recurrence relation

Yh+1 SCbhy}lfgv h:071727"'

where C, € and b are positive constants and b > 1. Then

yh <C , h=0,1,2,...

At —1  a+e) -1 _n (1o )h
bz eyl

In particular, if yo < 0 = Ctb™ then yp < 0b=% and consequently
yn — 0 as h — +oo0.

Proof. See Lemma 4.7, p. 66 of [21]. O

Before starting with the main result of this paper, we want to give some
notation that we will use in the following. Let Qf,\f be the cube in RN of side
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2p and center at the origin, whose sides are parallel to the coordinate axes,
defined by

N

QY = (=p,p) x - x (=p,p) = [[(=p.p)- (2.8)

i=1

Let also Q) 4,(p,) be the parallelepiped in RY, whose sides are parallel to
the coordinate axes, that is

P1—PN PN PN Pl*PN>
X

Qp,a,(pi) = (—a PLopPL pPlqg Pl

PN—1—"PN PN PN PN—1—"PN
X | —a

PNSL pPN-1 pPN-1q PN-1 )X(p,p)

Pi=PN PN PN  Pi=PN
:H<*a i pPi,pPiq Pi )7 (29)

i=1
for some a > 0. We have

P1-PN PN PN—-17"PN _PN

|Qp,a,(pi)| — 2a P1 p? X oo X 2a PN—-1 pPN—l X 2p

— 9N lin %pzle B o= NN pNP?N, (2.10)

with p defined in (2.2).

Remark 2.4. We note that if p; = p for any 4, that is if we consider the isotro-
pic problem, Q, 4 (p,) = Qi,v, the usual cube in RY defined in (2.8). Moreover

Qp.a(p,) C Q) if, and only if,

Pi—PN PN

a ri pri <p, Yi=1,...,N,

that is a > p.

We also denote

1 1 pi=pn 2y 1 PN PizPpN
2Qp,a,(pi):H<_2a Pi P’”a§P“a Pi > (2.11)

3. Energy estimates

As it is well known, the building blocks of the method of intrinsic scaling are
a priori estimates for weak solutions. Once established these energy estimates
we can get rid of the equation and the problem becomes, purely, a problem in
analysis. So in this section we prove integral inequalities on the level sets that
measure the behavior of the weak solution near its infimum and its supremum
in the interior of an appropriate parallelepiped. Consider @, 4 (p,) C €2, defined
in (2.9), and let

N
¢=[]¢&" witho <& =¢(@) <1, Vi=1,... N,
=1
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be a piecewise smooth cutoff function in @, 4,(p,), such that vanishes outside
of the set @, 4 (p,) and
gl <cC, Vi=1,...,N.

We also define

N

Ei: H ffj-

j=1,j#i

Proposition 3.1. Let u be the weak solution of problem (1.1) and k € R. There
ezists a constant C' > 0 depending only on the data such that

N N )
;/Q|6i(u—k)|m§dx§0 ;/ﬂ(u_k)|m|§;|p,~€j dr

+1Br@pa o | 5 (3.1)

where By, . (., s defined in (2.6), Q. q,(p,) in (2.9) and & as above.

(p4)
Proof. We use, as a test function in (2.1), ¢_ = —(u — k)_¢, where
(u—k)- = (k—u)y = max{k — u,0}.

We note that 0;¢_ = £0;[—(u — k)] — (u — k)_piffi_lgg £;, so we get

z [ o1

N —
<p1v;/9|3i(u—k)lpi_ll(u—k)ffi1|§§|€id$+/§2|f|(u—k)Iédx-

Plé‘dl,

By e-version of Young’s inequality, with exponents p; and p}, we have

) — k) _|pi|gl|pi
0 — k)P — k)2 el < el — k) g 4 T ETIST
for any ¢ = 1,..., N; so we obtain
N N
> [10u—hpede <apn Y [ oitu- - da
i=1 1=1

N
PN ; =
+30 25 [ Jw=b-ierde
i=1

+/Q\f||(u—k)7|£dw~
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Noting that &€, =& and choosing € such that 1 —epy >0, we arrive at

N N
. — Di _ i /,Pi,*.
;/Qaz(u k)| édxgc;/QKu k)_[P[€P°E, da
+0 [ Ifllu - 0)-leds.

We estimate the second term in the right hand side of the previous
inequality using Poincaré type inequality (2.4), with » = p;, the e-version
of Young’s inequality and the assumptions on f, to get

N ’
1= < o;/B 1 da

k:Qp a,(p;)

N
+ery [ atu=h-9
N

Pi dx

<Cl Z Hf||pioo(ﬂ)|Bkap~a,(pn

i=1

N
ey [ b-reds
=179

N
+c;’_z;/9 |(u—k)_

where Bi.q, , ., 18 defined in (2.6). In conclusion, choosing & conveniently,
that is such that 1 — C. > 0, we obtain (3.1). O

pi

&

pigi dr

In a similar way it is also possible to prove the proposition below.

Proposition 3.2. Let u be the weak solution of problem (1.1) and k € R. There
exists a constant C > 0 depending only on the data such that

N
Z/Q\amufm

N
e Z/Q\<ufk>+|pf\s;|%dx
j=1

T 1Ak a o | > (3.2)

where Ay.q, , ., i defined in (2.5), Q) a,(p,) in (2.9) and £ as before.

Proof. We proceed as in the previous proposition but we use as a test function
in the weak formulation (2.1), ¢4 = (u—k) € instead of p_ = —(u—k)_¢. O
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4. Auxiliary lemmas

We consider 0 < p < 1, sufficiently small so that Qijv C Q, and we define the
essential oscillation of the weak solution u in Qf)v

W =essosCU = 4 — I,
Qp

where

iy =esssupu  and p_ = essinfu.
QY QY

Then, we construct the rescaled parallelepiped Q P55 (Do) defined in (2.9),
with a = w/2*, where A\ > 1 is to be fixed later, depending only on the data
(see (4.13)). We assume, without loss of generality, that

w

Instead, if this is not true, we have w < 2*p and there is nothing to prove
because the oscillation is comparable to the “radius”. Now (4.1) implies that

N
Qmﬁ,(m) CQp,
see Remark 2.4, and the relation

essosc u < w,
p,,ﬁ,(m)
which will be the starting point of an iteration process that leads to the main

result. We consider a subparallelepiped of @, « (), namely
2

N
Qp,%,(m) C Qp’z%,(pi) - Qp c .

The proof of the Holder continuity of the weak solution w of (1.1) now
follows from the analysis of two complementary cases. For @, « (p,) either
The First Alternative: there exists vy € (0, 1) such that

w
{2 € Qs o s ul@) <+ 5} < 01Qp 5.0 (4.2)

or this does not hold. Then for any v € (0,1),
The Second Alternative holds:

w
‘{{L‘ € va%’(iﬂz‘) cu(z) < p- + 5}’ > l/lQp,%,(pi) . (4.3)
Since g — & = p_ + %, (4.3) is equivalent to
w
{2€ Qs u@ 2 m = 2} < 1= 0)IQu3 40l = 111Q05 60
(4.4)

for any 11 € (0,1).

Now we start the analysis assuming that (4.2) holds in @, « (;,) for some
vy € (0,1), that will be determined, depending only on the data, that is u
is essentially away from its infimum. We show that going down to a smaller
parallelepiped the oscillation decreases by a small factor that we can exhibit.
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Lemma 4.1. Assume (4.1) is in force. There exists vy € (0,1) such that if (4.2)
holds, then

w .
u(z) > p_ + 7 aein Qs . (p)
Proof. We consider a sequence of parallelepipeds Qn = Q,, « (p,) Where

PP
ph:§+w, h:(),l,.... (45)

We note that Q, C Q, for any h, since the sequence {pp,} is decreasing
and

: P
lim pp =35 < pn < po = p.
h—o0 2

Let us also consider a sequence

w w
kp=p—+—+

4 W’ h:071,..., (46)

and cutoff functions, &,, defined as followed

N
Sh = Hfﬁfiv with & = &n(ws), Vi=1,...,N.
i=1

&, € C3(Qp) is a nonnegative function, 0 < &,; < 1, for any i = 1,..., N,
that vanishes outside of the set @y, is equal to unity in Qp41 and
2(h+2)2—17‘,’
!/ y .
|£h,i| < Tom PPN Vi=1,...,N. (4.7)
pr(g) 7

By the definitions of kj, the sets By, ¢, and &, we have

w P _
(W) ‘Bkh+17Qh+1| = (kh - kh+1)p|Bkh+1,Qh+1|

= / (kh — kh+1)ﬁdx
B

kh41:Qht1

< /B (kp, — u)P dx

k’h+ ' Qh
< /
B

(kn — w)P & da < /(u — kp)?. & da.
Q
Now we use Hoélder’s inequality with exponents N/(N —p) > 1 and N/p
to obtain

kp Qpt1

N-—pP

w \P — N -
(W) |Bkh+1’Qh+1| < Q(U_kh)f gh dx ‘Bkh,ﬁthNv
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where p* is defined in (2.2). So, by the anisotropic Sobolev inequality (2.3),
we have

_ N s _
(QZL,)’WBM,QHJSO{H( [ttt ac)” }|Bkh,Qh|f%
i=1 /&
N
Oi(u — kp)_
SC{E(/Q| ()

. \m¥ 2
+/ (u — kh)zil Pilh, dx) } |Bkh,th,|%7
Q

recalling that &, ; <1, p; > 2 for any ¢ and
81'5}1 - pz—lgh i ghz

Now we use (3.1) with k = kj, and £ = &, to estimate the first terms of
the product in the right hand side of the previous inequality. We obtain

Pi gh dz

€h,i

w p
(W) |Bkh+1;Qh+1 |

D
pi N

Z/ w—kn)? € ;17 €ny dz + | B,,Qul | Br.anl ¥
=1 ]4=1

I /\

N
=C |3 [ = k163,18 do -+ 1B 0] | 1Bl ¥
j=1

By (4.7), the definition of (u — kp)— and &, we have

N

N
g /Q (u— ) |, [P d < g
N
>

/ (ko — WP |E) ;[P da
Bkh Qp

IN

pJ —DPN |Bkh7Qh :

w i C 2(h+2)pN
2)

j=1 PP (

‘We note that

AN
| E

kp —u=p- +4+2h+2*u_

We arrive at

w \P w\py 2(h+2)pN -
(W) |Bkh+17Qh+1‘ <C [<2> p’T + 1] |Bkthh|1+N

2(h+3)pN W\ PN 5
07 (7) ‘Bkh»Qh|ﬁ+1

pPN 2
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by the assumption (4.1). Simplifying

9(h+3)(pN+D)
|Bkh+1,Qh+1| <C—-—— (

PN —P B
5) |Bkh7Qh|N+1‘

Now we divide both terms of the previous inequality by

ppN

N—NEN  Npy
N (W I
|Qh+1‘ =2 (*) phfl >

2
defined in (2.10), to get

2y (14+F) :

1+Z
|Bkh+1,Qh+1| < 02PN +P)h i Pyt <|Bkh,,Qh,|> N .
|Qnt1]  — PPN o Q|
Pht1
We note that, by (4.5),
NEN (142 N Moy
L opy” (+%) _ 1oy PN (%"’ 2h1+1) o <2N§N
ppN NEN B pPN NﬁN 1 1 N& - :
Pri1 P (3 + 2h+2) )

In conclusion, we arrive at the following inequality

P

|Bkh+1,Qh+1 | < O 2"(pN+P) < ‘Bkh,Qh | ) Hw
Qnar| |Qnl ’

where the constant C' depends only upon the data. So we can use Lemma 2.3

if we define

B _
yh:| kh,Qh') b=9PNtP - 1 and &=

|Qnl

2|

and we have that if
_ 2
yo < O~ % 27PN IP 5 (4.8)
then yp, — 0 as h — oco. We observe, by (4.5) and (4.6), that

Yo = |Bk07Qo‘ _ |Bk°’QP%v(m>‘
0= e
|Qol IQP,%,(M)

Therefore, we can take
v < O 9N D)3
and so (4.8) is equivalent to the assumption (4.2). The proof is completed. [

Now we prove another lemma, useful to prove the Holder continuity of
the weak solution of problem (1.1). This lemma states that, if (4.2) does not
hold, then wu is strictly below its supremum g4 in a smaller parallelepiped.

Lemma 4.2. Assume (4.1) is in force. If (4.3), or equivalently (4.4) holds, then
there exists A > 1, depending only on the data such that

w 1
u(x) §;L+7W, a.e. 1n§Qg < (p)

215%0

where %Q§7%7(pi) is defined in (2.11).

2
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Proof. We proceed as before. We consider a sequence

p . p

h=0,1,2,....

and a sequence of parallelepipeds Q) = % Qmuﬁ,(pi)' Let us consider

w w

kh:M+_W_W, h:0,1,

an increasing sequence, that is
w w
ko = -~ <kp< lim kp= - —
0 M4+ 2)\ >~ hh hbeo h M 2/\+1
and cutoff functions, &, defined as follows

N
&=[]&, with &, = &) Vi=1,...,N,

i=1

475

&, € C3(Qp) is a nonnegative function, 0 < &,; < 1, for any i = 1,..., N,

that vanishes outside of the set @}, is equal to unity in Qn4+1 and
, o(h+3)5E .
€hil < — X > Vi=1,...,N.
prig(s) 7

Using the same tools of the previous lemma, and (3.2) instead of (3.1),

we arrive at the following inequality

_ N
w p X —
(5) 1m0l <€ |2 [ (0= )16, G o + A
=1

X|Akh7Qh|%'

‘We note that
w w

u—kn=u—ptr+ o33t oxpm S o

and by the choice of &, and (4.1) we obtain

h44 _
w )PN opn (h+4) |1+%

w P
(2)\+h+2) |Akh+17Qh+1| <C (27)\ PPN | kn,Qn

and so

1+ 2
‘Akh+17Qh+1| < CQh(PNJrﬁ) (|Akthh,|) N )
|Qht1] o

Qnl
So we can use Lemma 2.3 if we define

A _
yh:7| k’“Qh|,b:2pN“’>1 and €=

|Qnl

and we have that if

*
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then yp — 0 as h — oco. We observe, by the definition of {ps} and {ks}, that

Ay 0] ‘A’%’z @500

yO = =
|Qol

‘5 Qp,fw(m)
So if we show that

1
HI €5 Qo 5.0 ¢ w(x) > py = 2,\} Q/L 25(p0)

for some A > 1, depending only on the data, the lemma is proved
We use (3.2) with

(4.10)

¢ = Hé“ L& =), 0<& <1, Vi=1,..

N,

£e C&(prz%(m)) vanishes outside of the set Q, «

.(py) and is equal to unity
1
ng Qmﬁ,(pi)’

2
&l < — , Vi=1,...,N,
w Pq ?N PN
x) "opr
and
w
k= py — 95"
We have
/ |8up7dx<C{Z/u_ Bilgr p1§d$+|AkQPw<pl }
Ak’%vaf’yv(m
N
Pi PN —DPi 2PN
C{Z(gs) (3) W“}Mk@p@,)
i=1
w \ PN 9PN
o) e ) o
for all i =

., N and for any s < A, by the facts that

u—k=u—p" 2y

28 — 28
1 w
? 2 27 and 29p > 1,

since s < A and (4.1) holds. Now we apply Lemma 2.1 to the one variable
function w(zq, ..

., ZN—1,°) for the levels

w w
k—ﬂ+—§ and ls:ﬂ+_ﬁv
and

Al.s7Q1£ (Il'l, . ,LUN_l), Bks’ng (zl, . ,IrN_l),
2 2
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AkS,ng (1,...,2N-1) N BlS,ng (1,...,2N-1),

subsets of R, defined, respectively, in (2.5), (2.6) and (2.7), with
L_ (PP
Qs = ( 2’ 2) '

fixed. So we obtain

2
|Al Ql ‘ < Ci/ |(9Nu|d:13N
5,QL NnB

2s+1 | By, Q£| ol
2
We can suppose that
! P
B >Z|10b = L.
|Br..y | 2 51031 =5
In fact, if this is not true,
P TP
IBr.qyl < 5 = eyl > 5 (4.12)

where A = A U 0A, for some set A. Let a; = pPN/Pi(w/2)Pi=PN)/Pi for any
t=1,...,N, then

w aq as
Hx € Qp.(p) 1 u(T) = puy — 5}‘ = / dzq dzsy ...

—ai —az

aN—1 w
/ {xNe( 0, p) (xh...,xN)Z,qu—inxN,l
—aN-1
ay aN—1 w
Z/ dl’l/ {I‘NE(—/),[)). ()>u+—§}’d$1\],1
—ai —aN-—1

a anN-—1
pp w
> [ day .. { e(—f,f) > ——Hd B
=, dn /aN-l TN 55 ) tul@) 2 B = 55 p|dzN-

since
,u+—§§,u+—%, if s>1 and g<p.
So, using (4.12), we arrive at

w 1
‘{z € Qp7%7(pi) : U(I‘) Z Mt = 5}‘ Z Z|Qp)%)(pi)

and this inequality contradicts the second alternative (4.4). Hence we obtain

w
25+1 |Als7Qlﬁ| S Op/ |8NU|dIN
2 Ak oL NnB

15,Q%
2
Integrating over z1,...,zx_1 the previous inequality, we arrive at
' C Onuld
gl sa, 5| <00 [ y orlde.

1 L
kS’ZQp,ﬁ&m) lb'Zprz%,(m)
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By Hoélder’s inequality with exponents py and py, we get

1
PN
w
— PN
25+1|AS’2Q0 <p)| =Cp / |OnulPN dx
AkSle W (o mBlSle W (.
2 ﬂw2x~(m) 2 p,y.(m)
_ 1
X A B PN
| szQn (p)ﬁ g72Qp (pg)
1
PN
<Cp / |OnulPN da
A
ks’%sz%\-,(m)
A B 1— L
X M PN,
| ks’%Qmﬁ,(m) S’ZQ v(Pi)‘
Now we use inequality (4.11), with ¢ = N, and arrive at
Yy
w 1
——|A A PN
28+1| lsv%vaz%\,(pi)' - | ks,Q,, () |
A NB I=5x
X 1 1 PN
| kS7§Qp,5“)X,(pi) ls’iQ/’vfxv(PiJ
and so
1
- PN
1A | < C|4, |

a1
1 NB; 1 PN | = w (o
lstQﬂvﬁJz’i) 872Qp (i) lsﬁQp,fp(m) ‘QQP’Q‘;\’(;D’)

using the facts that

1

PN

1 ~ |1
‘AkﬁQp,ﬁ,(pM < ‘vaﬁV(pi)L |C°2p,2%7(p1:)|p’v = 27N §Q972%7(pi)

On the left hand side we replace |A#+*ﬁ»%‘?p,2% <m>| by the smaller

quantity |A“+7T’EQ ,2%’(“)|, taking 1 < s < A —1and so A > 2, to obtain

_1
pN—1

A N L
| B — QMZQ,, (i) |pN <C §QP,2%7(P1')

x|A, 1 ﬂB
| ksyg p,ﬁ,(pi) S’zQ y(Pi)‘7

for s=1,...,A— 1. Let us sum with respect to s and replace the right side of
the resulting inequality by the larger quantity |%Qp,2%7(pi) , to get
PN
pN—1

oty 1
A =Dl g d0, 00T < C[3Qs 0
I
pN—1
c ) v |1
Ay, - 3.5 .00 | < (ﬁ) ‘iQp,g%,(m)
We obtain (4.10) if A is chosen so large that

PN —1

C o d A>2 4.13
ﬁ S Vg o al = 4, ( )
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where v, defined in (4.9). This conclude the proof of (4.10) and so that of the
lemma. O

5. Recursive argument and final remarks

Before proving the Holder continuity of the weak solution of the problem (1.1),
we present two corollaries of the previous lemmas.

Corollary 5.1. If the First Alternative (4.2) is true and (4.1) is in force, then
there exists a constant oo € (0,1) such that

essosc u < ogw.
2.%.(py)

Proof. By Lemma 4.1, we have

. w
essinf w>p_ + —

£.4.(py) 4
and so
. w
essinf u>pu_ + 7
2.9 .(ps)
since
Qz.5.00 C @s.5.00)-
Hence
essosc u = esssup u— essinf wu
£:%.(0) Qe e (p;) Qe g )
§u+—u——ﬂ=§w-
4 4
We have the thesis with ¢ = 3/4. O

Corollary 5.2. If the Second Alternative (4.3) holds and (4.1) is in force, there
exists a constant o1 € (0,1), depending only on the data, such that

essosc U < o1w.
1Qp w
2 2,2*},(1%)

Proof. By Lemma 4.2, there exists A > 1 (see (4.13)) such that

w 1
U< fiy — o aein §Q§»2%7(P71)'

Then
< -
_OSSSUD U < fiy — 5y
2Q8, % )
and so

| €SSOSC u = esssup u— essinf w

1 @ 1 1 w

2Q§,2—A,<m> ng,z%,(pi) ng,?,(m

< woo 1
i/'I’Jr_/’L*_W_ I_W w.
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We obtain the desired result with oy =1 —1/2*1, O

We finally prove the Holder continuity of weak solutions of problem (1.1)
through an iterative scheme. An immediate consequence of Corollaries 5.1 and
5.2 is the following

Proposition 5.3. Assume (4.1) be in force. There exists a constant o € (0,1),
that depends only on the data, such that

essosc u < ow.
2.%.(pi)

Proof. We note that

and then
essosc u < ow,
Qe 2 )
where o = max{oy, 01 }. O

Proposition 5.4. Assume (4.1) be in force. There exists a positive constant C,
depending only on the data, such that, defining the sequences

pn=C""p and wp=0"w, h=01,2...,
where o € (0,1) is given by the previous proposition, and constructing the
family of parallelepipedes Qn = Q,,, “0(pi) where X\ > 1 is given in (4.13), we
Ly 2 k) K
have

Qne1 C Qn and e(s;)soscu <wpt1, forallh=0,1,2,...
h41

Proof. The starting relation

essoscu < w (5.1)
Qo

holds, since we are assuming (4.1). We find, for any ¢ = 1,..., N,

Pi—PN

(g) pq‘,;iPN (B) sz;f B (£> Pi;:’N z pi (ﬂ) Pi;:’N p%
2 1) ~\2 w1 22 47

Pi—PN Pi—PN L PN
w i 2)‘ P (wl ) Py p:)N p ri
w1 2 2>‘ 41;1;’

— s — 2 P; —PN
PNZPi (N—1)P2iZPN 2PN (W] Pi
o ri 2 Pi Pi 2—)\

Notice that

PN =P pi=pN
4<C=0 v 2 ATDTRGTA2

_PN—P1 _ _ P1—PN
9= (A1 T 2

<C=o0 »rn~

(5.2)
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for any i = 1,..., N. So that

Pi=PN PN Pi=PN

W\ " P »i —EN W1\ T 2N
(3) " (G =@ () " e
Pi—PN PN Pi—PN
EN W] Pi . (W1 Pi
2@ (5) 7=l ()
foralli=1,...,N. Hence Q1 C Q¢ ¢ (p,)- From Proposition 5.3, we conclude
that
essoscu < essosc < ow = wi. (5.3)
1 Q{f»%&m)

Moreover Q1 C Qg, indeed, by the definitions,
% Pi—PN PN P; —PN PN PN —Pj
pF ()" < ¥ (3) " o R BR 0

)

_pPN—P1 9~ (A— 1)?1 PN+2PN PN —Pj p1—p; (A-1)(pNy— P1)+2PN

o~ i vi g Pi >l<=o ? 2 P i > 1

and it is true, for all ¢, since o € (0,1) and

; A~ 1)(py — ,
b QDb =p) ey gy, (5.4)
pi Y2 pi

Now (5.3) puts us back to the setting of (5.1), so the entire process can
now be repeated inductively. We suppose that it holds

Qn C Qn_1 and eszoscu < wp,. (5.5)
h

We have to prove that

Qni1=0Q

SREL () C Qpn and e%sh(ﬁcu < wpi1 (5.6)

Ph+1,

with pp1 = C~" D pand wy, 41 = 0" 'w, C defined in (5.2). By the inductive
hypothesis (5.5), we can apply the previous results using @}, instead of Qg, we
arrive at

essosc  u < owp, (5.7)
)
12 P

(see Proposition 5.3), where o € (0, 1) is always the same because it is depends
only from the data. So for any i = 1,..., N,

Pi—PN PN Pi—PN A PiZPN Pi—PN %

(@)Ti (@) o (ﬂ) n < 2 > v (Wh+1) 5 Ph

2 4 2 Wh+1 2/\ 4%
P;—DP

N
PN SWh1 Di PN __pPN
= (CZ) Pj ( 2)\ ) p Pj C Pq

)



482 A. Di Castro NoDEA

by the definitions of wy, wrt1, pr and C;. So, by (5.2)

Pi—PN PN Pi—PN
() ()% 2o (2) e
C(h4D)EY (Wha1\ Cw e
=C Pi o p Pi

Pi—PN
_(Whtt\ w5
— U Pht1-

Hence, we have Qp41 C Q%7%7(pi) and by (5.7) we arrive at

essoscu < essosc U< owp = oty = Wht1,

Qnt1 Qop b o)

the second part of (5.6) is proved. For the first part, as before, we note that

Pi=PN py Pi=PN py

Wh+1 P i Wh Pi p
Qnt1 CQn = ( ) Php+1 < (7) Php )

22 22
foralli=1,...,N. Now

Pi=PN

Wh+1 P plj Wh ;71 B
(50) 7 el () 7oA

_PN=P1 _(y_1\PL=PN PN  PN—P; r1—p; (A=1((®ny-=P1) PN
o P 2 A=D=5 T2 o > 1le=o w Pi 2o >

and it is true, for all ¢, since o € (0,1) and (5.4) holds. The proof of Proposition
5.4 is concluded. O

Lemma 5.5. There exist constants v > 1 and o € (0,1), that can be determined
a priori in terms of the data, such that, for all parallelepipeds

meﬁa(m)’ with 0 < po < p,

we have
«
essosc u < yw <p0) with w = essoscu
po,ﬁ,(pi) 14 ,ZJV
Proof. See, for example, Lemma 4.9 of [37] (p. 45). O

Now we have all the tools to prove the main result of this paper, namely
Theorem 1.1; for more details, see Theorem 4.10 of [37] (p. 46).

Remark 5.6. If we consider the isotropic case, that is all the p;’s are equal to 2
(or, more generally all are equal to p), we essentially recover the now classical

proof of Holder continuity of weak solutions for elliptic equations, presented
in [21].

Remark 5.7. We want also to underline that the result presented in this work
also holds for more general datum f. As we expect by the isotropic case, The-
orem 1.1 is also true if we suppose that f € L™(Q), with m > N/p. As a
matter of fact if f belongs to L™(Q) with m > N/p it is known that weak
solutions of (1.1) are bounded (see [12,35]). We present the result in the case
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of f bounded only for simplicity. To be complete, we want to note that, in this
general case, to prove the same result we have to slightly change the proofs.
For f in L™(RQ), it is possible to prove the following energy estimates, where
the hypothesis m > N/P is necessary:

z [ o

[N
redr<C | Y [ = R)-PIg e dor | Bugyl T |
j=1

[N
X . = _ 1
redr<C | Y [ =R P I PE dotlAngyl |
_‘]71

N
> /Q 10, (u—k)s

foranyi=1,..., N, instead of (3.1) and (3.2). Moreover we have to substitute
the assumption (4.1) with the following
N

W 1— N
27)\>,0 ‘P,

But this fact does not substantially change the proofs. In fact, if it is not
true we always have that the oscillation of u is comparable to the “radius” of
the set that we are considering and so there is nothing to prove. Moreover, by
the assumption on m, we also have

and it ensures that
N
Qp,z%,(pi) - Qp )

and the starting point of the iteration process that leads to the main result is
satisfied.

References

[1] Acerbi, E., Fusco, N.: Partial regularity under anisotropic (p,q) growth
conditions. J. Differ. Equ. 107, 46-67 (1994)

[2] Acerbi, E., Mingione, G.: Gradient estimates for the p(z)-Laplacean system.
J. Reine Angew. Math. 584, 117-148 (2005)

[3] Alberico, A.: Boundedness of solutions to anisotropic variational problems.
Commun. Partial Differ. Equ. 36, 470-486 (2011)

[4] Alkhutov, Yu. A.: On the Hélder continuity of p(z)-harmonic function. (Rus-
sian). Mat. Sb. 196, 3-28 (2005), translation in Sb. Math. 196, 147-171 (2005)

[5] Boccardo, L., Marcellini, P., Sbordone, C.: L*-regularity for variational prob-
lems with sharp non-standard growth conditions. Boll. Un. Mat. Ital. A 4,
219-225 (1990)

[6] Chiado Piat, V., Coscia, A.: Holder continuity of minimizers of functions with
variable growth exponent. Manuscr. Math. 93, 283-299 (1997)



484 A. Di Castro NoDEA

[7] Cianchi, A.: Local boundedness of minimizers of anisotropic functionals. Ann.
Inst. H. Poincaré Anal. Non Linéaire 17, 147-168 (2000)

[8] Cianchi, A.: Symmetrization in anisotropic elliptic problems. Commun. Partial
Differ. Equ. 32, 693-717 (2007)

[9] De Giorgi, E.: Sulla differenziabilita e I’analiticita delle estremali degli integ-
rali multipli regolari. Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 3,
25-43 (1957)

[10] DiBenedetto, E.: Degenerate Parabolic Equations. Springer, Series Universitext,
New York (1993)

[11] DiBenedetto, E., Urbano, J.M., Vespri, V.: Current issues on singular and
degenerate evolution equations. Handbook of Differential Equations, vol. 1, pp.
169-286. Elsevier, Amsterdam (2004)

[12] Di Castro, A.: Existence and regularity results for anisotropic elliptic prob-
lems. Adv. Nonlinear Stud. 9, 367-393 (2009)

[13] Esposito, L., Leonetti, F., Mingione, G.: Higher integrability for minimizers of
integral functionals with (p, ¢) growth. J. Differ. Equ. 157, 414-438 (1999)

[14] Esposito, L., Leonetti, F., Mingione, G.: Sharp regularity for functionals with
(p, q) growth. J. Differ. Equ. 204, 5-55 (2004)

[15] Fan X.L.: A class of De Giorgi type and Holder continuity of minimizers of var-
iational integrals with m(xz)-growth condition. Lanzhou Univ., Lanzhou (1995)

[16] Fragala, 1., Gazzola, F., Kawohl, B.: Existence and nonexistence results for
anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non
Linéaire 21, 715-734 (2004)

[17] Fusco, N., Sbordone, C.: Local boundedness of minimizers in a limit case. Manu-
scr. Math. 69, 19-25 (1990)

[18] Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic
integrals. Commun. Partial Differ. Equ. 18, 153-167 (1993)

[19] Giaquinta, M.: Growth conditions and regularity, a counter example. Manuscr.
Math. 59, 245248 (1987)

[20] Kruzhkov, S.N., Kolodii, I.M.: On the theory of embedding of anisotropic Sobo-
lev spaces. Russian Math Surv. 38, 188189 (1983)

[21] Ladyzhenskaya, O.A., Ural'tseva, N.N.: Linear and Quasilinear Elliptic Equa-
tions. Academic Press, New York (1968)

[22] Leonetti, F.: Higher differentiability for weak solutions of elliptic systems with
nonstandard growth conditions. Ricerche di Mat. 42, 101-122 (1993)

[23] Leonetti, F.: Higher integrability for minimizers of integral functionals with non-
standard growth. J. Differ. Equ. 112, 308-324 (1994)



Vol. 20 (2013) Local Holder continuity of weak solutions 485

[24] Leonetti, F., Mascolo, E., Siepe, F.: Everywhere regularity for a class of vecto-
rial functionals under subquadratic general growth conditions. J. Math. Anal.
Appl. 287, 593-608 (2003)

[25] Leray, J., Lions, J.L.: Quelques résultats de Visik sur les problémes non
linéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France 93,
97-107 (1965)

[26] Lieberman, G.M.: Gradient estimates for a new class of degenerate ellip-
tic and parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21,
497-522 (1994)

[27] Lieberman, G.M.: Gradient estimates for anisotropic elliptic equations. Adv.
Differ. Equ. 10, 767-812 (2005)

[28] Liskevich, V., Skrypnik, I.I.: Holder continuity of solutions to an anisotropic
elliptic equation. Nonlinear Anal. 71, 1699-1708 (2009)

[29] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations
with non standard growth conditions. Arch. Rational Mech. Anal. 105, 267
284 (1989)

[30] Marcellini, P.: Regularity and existence of solutions of elliptic equations with
p,g-growth conditions. J. Differ. Equ. 90, 1-30 (1991)

[31] Marcellini, P.: Regularity for elliptic equations with general growth conditions. J.
Differ. Equ. 105, 296-333 (1993)

[32] Marcellini, P.: Un exemple de solution discontinue d’un probléme variationel
dans le cas scalaire. #11 Int. Mat. U. Dini, Firenze (1987, preprint)

[33] Moscariello, G., Nania, L.: Holder continuity of minimizers of functionals with
non standard growth conditions. Ricerche di Mat. 40, 259-273 (1991)

[34] Nikolskii, S.M.: Imbedding theorems for functions with partial derivatives con-
sidered in various metric. Izd. Akad. Nauk SSSR, 22, 321-336 (1958)

[35] Stroffolini, B.: Global boundedness of solutions of anisotropic variational prob-
lems. Boll. Un. Mat. Ital. A 5, 345-352 (1991)

[36] Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche di
Mat. 18, 3—24 (1969)

[37] Urbano, J.M.: The method of intrinsic scaling. A systematic approach to reg-
ularity for degenerate and singular PDEs. Lecture Notes in Mathematics, vol.
1930. Springer, Berlin (2008)



486 A. Di Castro

Agnese Di Castro

Dipartimento di Matematica

Universita degli Studi di Parma

Parco Area delle Scienze, 53/A

43124 Parma

Italy

e-mail: agnese.dicastro@unipr.it;
agnese.dicastroQgmail.com

Agnese Di Castro

CMUC

Department of Mathematics
University of Coimbra
Apartado 3008

3001-454 Coimbra

Portugal

Received: 16 November 2011.
Accepted: 25 February 2012.

NoDEA



	Local Hölder continuity of weak solutions for an anisotropic elliptic equation
	Abstract
	1. Introduction
	2. Definitions, notation and basic tools
	3. Energy estimates
	4. Auxiliary lemmas
	5. Recursive argument and final remarks
	References


