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Abstract. We prove, following DiBenedetto’s intrinsic scaling method,
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1. Introduction

The study of the regularity theory for both elliptic equations and for integrals
of the calculus of variations with non-standard growth conditions has been
initiated by Marcellini at the end of the 1980s (see [29] and also [30,31]) and
it has considerably grown in the last two decades.

In this framework, a particularly relevant class of interest is given by
functionals with anisotropic structures, i.e. those whose energy sees each
derivatives being penalized with a different exponent. Yet firstly studied by
Marcellini [29], further contributions have been given by Leonetti [22,23],
Acerbi and Fusco [1], Fusco and Sbordone [17,18]. Other relevant references
are [2,3,7,8,13,14,24,26,27].

The interest in these types of problems is related, not only to a huge
number of applications (in modeling electro-rheological fluids, image process-
ing and the theory of elasticity), but also to mathematical reasons involved:
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it is necessary to perform essential modifications to the classical methods in
the analysis, because of the nonlinear and non homogeneous nature of the
considered operators.

In this paper we identify a class of anisotropic second-order elliptic
equations for which local Hölder continuity can be established, following DiB-
enedetto’s method of intrinsic scaling. More precisely we prove that the weak
solution u of problem

⎧
⎨

⎩
−

N∑
i=1

∂
∂xi

[∣∣∣ ∂u
∂xi

∣∣∣
pi−2

∂u
∂xi

]
= f in Ω

u = 0 on ∂Ω
(1.1)

belongs to C0,α
loc (Ω) for some α ∈ (0, 1), where f is a given function belonging

to L∞(Ω), Ω is a smooth, bounded domain of R
N , N ≥ 3 and pi ≥ 2 for

any i = 1, . . . , N . Without loss of generality, we can assume that the pi’s are
ordered, that is

2 ≤ p1 ≤ · · · ≤ pN ;

thus,

p1 = min
i

{pi} and pN = max
i

{pi}.

Moreover, we suppose that p < N , where p is the harmonic mean of the
pi’s, that is

1
p

=
1
N

N∑

i=1

1
pi

;

otherwise, the weak solution of the problem (1.1) is C0,α
loc (Ω) by the anisotropic

Sobolev embeddings (see [36], and also [20,34]).
Notice that we assume Dirichlet boundary conditions only to be sure that

the solutions are bounded without any further assumptions on pi’s.
Concerning the local Hölder continuity for solutions of elliptic equations

(and the corresponding minimization problems), there are many papers, for
example [4,6,15,28,33], in which the cases of operators having p(x)-growth or
p,q type conditions are handled.

With regard to the qualitative theory of equations of the type (1.1) has
not yet been developed to the same extent. There is however a recent paper
about this problem. In [28], the authors establish the local Hölder continuity
for solutions of equations as that in (1.1), assuming

p1 = 2 < p2 = · · · = pN = p

and

pN < p∗ =
Np

N − p
.

As seen from the structure, the x1 variable is separated from the others
and so it was treated similarly to the time variable in the corresponding studies
of parabolic equations. The main novelty of that note is to use the DiBenend-
etto intrinsic scaling method for proving Hölder continuity of weak solutions
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for a class of anisotropic quasi-linear elliptic equations. This powerful method
was introduced in the 1980s (see [10] and more recently [11,37] and references
therein) that helped understanding the local behavior of weak solutions of
singular and degenerate PDEs. It was originally developed for studying the
evolutionary p-Laplace equation.

In this paper we also use the method of intrinsic scaling but in a simpler
way and we treat the general case in which all the pi’s are different. More-
over, another novelty of this work is that we do not need to assume pN < p∗,
since we are taking homogeneous Dirichlet boundary conditions. Indeed this
assumption assures that the weak solution of problem (1.1) is bounded with-
out further hypothesis on the pi’s, as showed in [12] (see also [35]). If we do
not assume Dirichlet boundary conditions the result of this paper is still true,
but we have to add the hypothesis that the solutions are bounded and hence
pN < p∗. As a matter of fact there exists an example of unbounded solutions
due to Marcellini (see [32] and also [19]) when no boundary assumptions are
given.

The main result of this paper is the following.

Theorem 1.1. Let u be the weak solution of problem (1.1) with f ∈ L∞(Ω) and
M = ‖u‖L∞(Ω). Then u is locally Hölder continuous in Ω, that is there exist
γ > 1 and α ∈ (0, 1) depending only on the data such that for every compact
K ⊂⊂ Ω the inequality

|u(x1) − u(x2)| ≤ γM

⎛

⎝
∑N

i=1 |x1,i − x2,i|
pi
pN M

pN −pi
pN

dist(K, ∂Ω)

⎞

⎠
α

holds for any x1, x2 ∈ K.

Here dist(K, ∂Ω) is the distance from K to the boundary of Ω, defined by

dist(K, ∂Ω) = inf
x∈K
y∈∂Ω

(
N∑

i=1

|xi − yi|
pi
pN M

pN −pi
pN

)
.

The rest of the paper contains the proof of the theorem above, after a
first section in which definitions, notation and some already known results are
given.

In the following we will denote ∂i := ∂/∂xi. We will write C to denote
positive constants, the value of which may vary from line to line, depending
on the data, that is they will be fixed in the assumptions we will make, as the
dimension N , the set Ω, the exponents pi, etc.

2. Definitions, notation and basic tools

It is well-known (see [25], and also [5,12]) that, for any N -vector of real num-
bers

2 ≤ p1 ≤ · · · ≤ pN
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and for any f ∈ L∞(Ω), there exists a unique weak solution of problem (1.1),
that is a function u ∈ W

1,(pi)
0 (Ω) such that

N∑

i=1

∫

Ω

|∂iu|pi−2∂iu∂iv dx =
∫

Ω

fv dx, ∀v ∈ W
1,(pi)
0 (Ω), (2.1)

where W
1,(pi)
0 (Ω) denotes the closure of C∞

0 (Ω) with respect to the norm

‖v‖1,(pi) :=
N∑

i=1

‖∂iv‖Lpi (Ω)

or, equivalently,

W
1,(pi)
0 (Ω) =

{
v ∈ W 1,p1

0 (Ω) : ∂iv ∈ Lpi(Ω), i = 1, . . . , N
}

.

Moreover u ∈ L∞(Ω) by the assumption on f . The same result holds
under less strict assumptions on the regularity of the given function f , namely
f ∈ Lm(Ω), m > N/p, p defined below (see [5,12,35]).

In [20,34,36], the theory of anisotropic Sobolev spaces is developed and,
in particular, the corresponding Sobolev embeddings theorems are studied. Let

p∗ =
Np

N − p
, for p < N and

1
p

=
1
N

N∑

i=1

1
pi

. (2.2)

In [36] it is proved that if p < N , then

W
1,(pi)
0 (Ω) ↪→ Lr(Ω), ∀r ∈ [1, p∗].

This embedding is continuous and also compact if r < p∗. The follow-
ing Sobolev type inequality is also proved: there exists a positive constant C,
depending only on Ω, pi’s, r and N , such that

‖v‖Lr(Ω) ≤ C
N∏

i=1

‖∂iv‖ 1
N

Lpi (Ω), ∀r ∈ [1, p∗], (2.3)

for any v ∈ C1
0 (Ω). By density, (2.3) also holds for any v ∈ W

1,(pi)
0 (Ω). The

inequality (2.3) also implies that

‖v‖Lr(Ω) ≤ C

N∑

i=1

‖∂iv‖Lpi (Ω), ∀r ∈ [1, p∗].

Subsequently, in [16], it is proved that the critical exponent depends on
the kind of anisotropy. If the pi’s are not too far apart (i.e. the anisotropy is
concentrated) the critical exponent is p∗, as in [36], that is the usual critical
exponent related to the harmonic mean p of the pi’s. While if the pi’s are too
spread out, it coincides with the maximum of the pi’s, i.e., pN . We also recall
a Poincaré type inequality, valid for all v ∈ W

1,(pi)
0 (Ω):

‖v‖Lr(Ω) ≤ bir

2
‖∂iv‖Lr(Ω), ∀r ≥ 1, (2.4)
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with bi = supx,y∈Ω(x − y, ei), the width of Ω in the direction ei, for any
i = 1, . . . , N , see [16].

We recall in this section some technical (and by now classical) tools that
are essential in establishing our regularity result.

Given a continuous function u : Ω → R and two real numbers k < l, let

Ak,S := {x ∈ S : u(x) > k} (2.5)
Bl,S := {x ∈ S : u(x) < l} (2.6)

Ak,S ∩ Bl,S := {x ∈ S : k < u(x) < l} (2.7)

for S ⊆ Ω. Moreover |S| is the measure of the set S.

Lemma 2.1. (De Giorgi) Let u ∈ W 1,1(Kρ(x0)) ∩ C(Kρ(x0)) with ρ > 0,
x0 ∈ R

N , Kρ(x0) an arbitrary sphere of radius ρ and centre x0 and l > k ∈ R.
There exists a constant C, depending only on N (and thus independent of ρ,
x0, u, k and l), such that

(l − k)|Al,Kρ(x0)| ≤ C
ρN+1

|Bk,Kρ(x0)|
∫

Ak,Kρ(x0)∩Bl,Kρ(x0)

|∇u| dx.

Proof. See [9]. (See also [21], Lemmas 3.4 and 3.5, pp. 54–56.) �

Remark 2.2. Obviously this lemma holds true for N = 1. We will use it in this
case (see the proof of Lemma 4.2 in the following).

We also underline that the conclusion remains valid for functions u
belonging to W 1,1(Ω)∩C(Ω), provided Ω is a convex region of diameter 2ρ. In
addition, the continuity is not essential for the result to hold. For a function
merely in W 1,1(Ω), we define Ak,S and Bl,S through any representative in the
equivalence class of u. It can be shown that the conclusion of the lemma is
independent of this choice.

The next lemma concerns the geometric convergence of some sequences
of real numbers.

Lemma 2.3. Suppose that a sequence yh, for h = 0, 1, 2, . . ., of nonnegative real
numbers, satisfies the recurrence relation

yh+1 ≤ C bhy1+ε
h , h = 0, 1, 2, . . .

where C, ε and b are positive constants and b > 1. Then

yh ≤ C
(1+ε)h−1

ε b
(1+ε)h−1

ε2 − h
ε y

(1+ε)h

0 , h = 0, 1, 2, . . .

In particular, if y0 ≤ θ = C− 1
ε b− 1

ε2 then yh ≤ θb− h
ε and consequently

yh → 0 as h → +∞.

Proof. See Lemma 4.7, p. 66 of [21]. �

Before starting with the main result of this paper, we want to give some
notation that we will use in the following. Let QN

ρ be the cube in R
N of side
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2ρ and center at the origin, whose sides are parallel to the coordinate axes,
defined by

QN
ρ = (−ρ, ρ) × · · · × (−ρ, ρ) =

N∏

i=1

(−ρ, ρ). (2.8)

Let also Qρ,a,(pi) be the parallelepiped in R
N , whose sides are parallel to

the coordinate axes, that is

Qρ,a,(pi) =
(
−a

p1−pN
p1 ρ

pN
p1 , ρ

pN
p1 a

p1−pN
p1

)
× · · ·

×
(

−a
pN−1−pN

pN−1 ρ
pN

pN−1 , ρ
pN

pN−1 a
pN−1−pN

pN−1

)
× (−ρ, ρ)

=
N∏

i=1

(
−a

pi−pN
pi ρ

pN
pi , ρ

pN
pi a

pi−pN
pi

)
, (2.9)

for some a > 0. We have

|Qρ,a,(pi)| = 2a
p1−pN

p1 ρ
pN
p1 × · · · × 2a

pN−1−pN
pN−1 ρ

pN
pN−1 × 2ρ

= 2Na
∑N

i=1
pi−pN

pi ρ
∑N

i=1
pN
pi = 2NaN− NpN

p ρ
NpN

p , (2.10)

with p defined in (2.2).

Remark 2.4. We note that if pi = p for any i, that is if we consider the isotro-
pic problem, Qρ,a,(pi) = QN

ρ , the usual cube in R
N defined in (2.8). Moreover

Qρ,a(pi) ⊂ QN
ρ if, and only if,

a
pi−pN

pi ρ
pN
pi < ρ, ∀i = 1, . . . , N,

that is a > ρ.

We also denote

1
2
Qρ,a,(pi) =

N∏

i=1

(
−1

2
a

pi−pN
pi ρ

pN
pi ,

1
2
ρ

pN
pi a

pi−pN
pi

)
. (2.11)

3. Energy estimates

As it is well known, the building blocks of the method of intrinsic scaling are
a priori estimates for weak solutions. Once established these energy estimates
we can get rid of the equation and the problem becomes, purely, a problem in
analysis. So in this section we prove integral inequalities on the level sets that
measure the behavior of the weak solution near its infimum and its supremum
in the interior of an appropriate parallelepiped. Consider Qρ,a,(pi) ⊂ Ω, defined
in (2.9), and let

ξ =
N∏

i=1

ξpi

i , with 0 ≤ ξi = ξ(xi) ≤ 1, ∀i = 1, . . . , N,
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be a piecewise smooth cutoff function in Qρ,a,(pi), such that vanishes outside
of the set Qρ,a,(pi) and

|ξ′
i| ≤ C, ∀i = 1, . . . , N.

We also define

ξi =
N∏

j=1,j �=i

ξ
pj

j .

Proposition 3.1. Let u be the weak solution of problem (1.1) and k ∈ R. There
exists a constant C > 0 depending only on the data such that

N∑

i=1

∫

Ω

|∂i(u − k)−|piξ dx ≤ C

⎡

⎣
N∑

j=1

∫

Ω

|(u − k)−|pj |ξ′
j |pj ξj dx

+ |Bk,Qρ,a,(pi)
|
⎤

⎦ , (3.1)

where Bk,Qρ,a,(pi)
is defined in (2.6), Qρ,a,(pi) in (2.9) and ξ as above.

Proof. We use, as a test function in (2.1), φ− = −(u − k)−ξ, where

(u − k)− = (k − u)+ = max{k − u, 0}.

We note that ∂iφ− = ξ∂i[−(u − k)−] − (u − k)−piξ
pi−1
i ξ′

i ξi, so we get

N∑

i=1

∫

Ω

|∂i(u − k)−|piξ dx

≤pN

N∑

i=1

∫

Ω

|∂i(u−k)−|pi−1|(u−k)−|ξpi−1
i |ξ′

i|ξi dx+
∫

Ω

|f ||(u − k)−|ξ dx.

By ε-version of Young’s inequality, with exponents pi and p′
i, we have

|∂i(u − k)−|pi−1|(u − k)−|ξpi−1
i |ξ′

i| ≤ ε|∂i(u − k)−|piξpi +
|(u − k)−|pi |ξ′

i|pi

εpi−1
,

for any i = 1, . . . , N ; so we obtain

N∑

i=1

∫

Ω

|∂i(u − k)−|piξ dx ≤ εpN

N∑

i=1

∫

Ω

|∂i(u − k)−|piξpi

i ξi dx

+
N∑

i=1

pN

εpi−1

∫

Ω

|(u − k)−|pi |ξ′
i|piξi dx

+
∫

Ω

|f ||(u − k)−|ξ dx.
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Noting that ξpi

i ξi = ξ and choosing ε such that 1 − ε pN > 0, we arrive at

N∑

i=1

∫

Ω

|∂i(u − k)−|piξ dx ≤ C

N∑

i=1

∫

Ω

|(u − k)−|pi |ξ′
i|piξi dx

+C

∫

Ω

|f ||(u − k)−|ξ dx.

We estimate the second term in the right hand side of the previous
inequality using Poincaré type inequality (2.4), with r = pi, the ε-version
of Young’s inequality and the assumptions on f , to get

∫

Ω

|f ||(u − k)−|ξ dx ≤ C ′
ε

N∑

i=1

∫

Bk,Qρ,a,(pi)

|f |p′
i dx

+C ′′
ε

N∑

i=1

∫

Ω

|∂i((u − k)−ξ)|pi dx

≤ C ′
ε

N∑

i=1

‖f‖p′
i

L∞(Ω)|Bk,Qρ,a,(pi)
|

+C ′′
ε

N∑

i=1

∫

Ω

|∂i(u − k)−|piξ dx

+C ′′
ε

N∑

i=1

∫

Ω

|(u − k)−|pi |ξ′
i|piξi dx

where Bk,Qρ,a,(pi)
is defined in (2.6). In conclusion, choosing ε conveniently,

that is such that 1 − C
′′
ε > 0, we obtain (3.1). �

In a similar way it is also possible to prove the proposition below.

Proposition 3.2. Let u be the weak solution of problem (1.1) and k ∈ R. There
exists a constant C > 0 depending only on the data such that

N∑

i=1

∫

Ω

|∂i(u − k)+|piξ dx ≤ C

⎡

⎣
N∑

j=1

∫

Ω

|(u − k)+|pj |ξ′
j |pj ξj dx

+ |Ak,Qρ,a,(pi)
|
⎤

⎦ , (3.2)

where Ak,Qρ,a,(pi)
is defined in (2.5), Qρ,a,(pi) in (2.9) and ξ as before.

Proof. We proceed as in the previous proposition but we use as a test function
in the weak formulation (2.1), φ+ = (u−k)+ξ instead of φ− = −(u−k)−ξ. �
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4. Auxiliary lemmas

We consider 0 < ρ < 1, sufficiently small so that QN
ρ ⊂ Ω, and we define the

essential oscillation of the weak solution u in QN
ρ

ω = ess osc
QN

ρ

u = μ+ − μ−,

where

μ+ = ess sup
QN

ρ

u and μ− = ess inf
QN

ρ

u.

Then, we construct the rescaled parallelepiped Qρ, ω

2λ ,(pi), defined in (2.9),
with a = ω/2λ, where λ > 1 is to be fixed later, depending only on the data
(see (4.13)). We assume, without loss of generality, that

ρ <
ω

2λ
. (4.1)

Instead, if this is not true, we have ω ≤ 2λρ and there is nothing to prove
because the oscillation is comparable to the “radius”. Now (4.1) implies that

Qρ, ω

2λ ,(pi) ⊂ QN
ρ ,

see Remark 2.4, and the relation

ess osc
Qρ, ω

2λ
,(pi)

u ≤ ω,

which will be the starting point of an iteration process that leads to the main
result. We consider a subparallelepiped of Qρ, ω

2λ ,(pi), namely

Qρ, ω
2 ,(pi) ⊂ Qρ, ω

2λ ,(pi) ⊂ QN
ρ ⊂ Ω.

The proof of the Hölder continuity of the weak solution u of (1.1) now
follows from the analysis of two complementary cases. For Qρ, ω

2 ,(pi) either
The First Alternative: there exists ν0 ∈ (0, 1) such that

∣∣∣
{

x ∈ Qρ, ω
2 ,(pi) : u(x) < μ− +

ω

2

}∣∣∣ ≤ ν0|Qρ, ω
2 ,(pi)|, (4.2)

or this does not hold. Then for any ν ∈ (0, 1),
The Second Alternative holds:∣∣∣

{
x ∈ Qρ, ω

2 ,(pi) : u(x) < μ− +
ω

2

}∣∣∣ > ν|Qρ, ω
2 ,(pi)|. (4.3)

Since μ+ − ω
2 = μ− + ω

2 , (4.3) is equivalent to
∣∣∣
{

x ∈ Qρ, ω
2 ,(pi) : u(x) ≥ μ+ − ω

2

}∣∣∣ < (1 − ν)|Qρ, ω
2 ,(pi)| = ν1|Qρ, ω

2 ,(pi)|,
(4.4)

for any ν1 ∈ (0, 1).
Now we start the analysis assuming that (4.2) holds in Qρ, ω

2 ,(pi) for some
ν0 ∈ (0, 1), that will be determined, depending only on the data, that is u
is essentially away from its infimum. We show that going down to a smaller
parallelepiped the oscillation decreases by a small factor that we can exhibit.
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Lemma 4.1. Assume (4.1) is in force. There exists ν0 ∈ (0, 1) such that if (4.2)
holds, then

u(x) > μ− +
ω

4
, a.e. in Q ρ

2 , ω
2 ,(pi).

Proof. We consider a sequence of parallelepipeds Qh = Qρh, ω
2 ,(pi) where

ρh =
ρ

2
+

ρ

2h+1
, h = 0, 1, . . . . (4.5)

We note that Qh ⊂ Ω, for any h, since the sequence {ρh} is decreasing
and

lim
h→∞

ρh =
ρ

2
< ρh ≤ ρ0 = ρ.

Let us also consider a sequence

kh = μ− +
ω

4
+

ω

2h+2
, h = 0, 1, . . . , (4.6)

and cutoff functions, ξh, defined as followed

ξh =
N∏

i=1

ξpi

h,i, with ξh,i = ξh(xi), ∀i = 1, . . . , N.

ξh ∈ C1
0 (Qh) is a nonnegative function, 0 ≤ ξh,i ≤ 1, for any i = 1, . . . , N ,

that vanishes outside of the set Qh, is equal to unity in Qh+1 and

|ξ′
h,i| ≤ 2(h+2)

pN
pi

ρ
pN
pi

(
ω
2

) pi−pN
pi

, ∀i = 1, . . . , N. (4.7)

By the definitions of kh, the sets Bkh,Qh
and ξh, we have

( ω

2h+3

)p

|Bkh+1,Qh+1 | = (kh − kh+1)p|Bkh+1,Qh+1 |

=
∫

Bkh+1,Qh+1

(kh − kh+1)p dx

≤
∫

Bkh+1,Qh+1

(kh − u)p dx

≤
∫

Bkh,Qh+1

(kh − u)p ξp
h dx ≤

∫

Ω

(u − kh)p
− ξp

h dx.

Now we use Hölder’s inequality with exponents N/(N − p) > 1 and N/p
to obtain

( ω

2h+3

)p

|Bkh+1,Qh+1 | ≤
(∫

Ω

(u − kh)p∗
− ξp∗

h dx

)N−p
N

|Bkh,Qh
| p

N ,
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where p∗ is defined in (2.2). So, by the anisotropic Sobolev inequality (2.3),
we have

( ω

2h+3

)p

|Bkh+1,Qh+1 |≤C

{
N∏

i=1

(∫

Ω

|∂i[(u − kh)−ξh]|pi dx

) p
piN

}
|Bkh,Qh

| p
N

≤C

{
N∏

i=1

(∫

Ω

|∂i(u − kh)−|piξh dx

+
∫

Ω

(u − kh)pi

− |ξ′
h,i|piξhi dx

) p
piN

}
|Bkh,Qh

| p
N ,

recalling that ξh,i ≤ 1, pi ≥ 2 for any i and

∂iξh = ξpi−1
h,i ξ′

h,i ξhi.

Now we use (3.1) with k = kh and ξ = ξh to estimate the first terms of
the product in the right hand side of the previous inequality. We obtain
( ω

2h+3

)p

|Bkh+1,Qh+1 |

≤ C

⎧
⎪⎨

⎪⎩

N∏

i=1

⎡

⎣
N∑

j=1

∫

Ω

(u − kh)pj

− |ξ′
h,j |pj ξhj dx + |Bkh,Qh

|
⎤

⎦

p
piN

⎫
⎪⎬

⎪⎭
|Bkh,Qh

| p
N

= C

⎡

⎣
N∑

j=1

∫

Ω

(u − kh)pj

− |ξ′
h,j |pj ξhj dx + |Bkh,Qh

|
⎤

⎦ |Bkh,Qh
| p

N .

By (4.7), the definition of (u − kh)− and ξh we have

N∑

j=1

∫

Ω

(u − kh)pj

− |ξ′
h,j |pj ξhj dx ≤

N∑

j=1

∫

Bkh,Qh

(kh − u)pj |ξ′
h,j |pj dx

≤
N∑

j=1

(ω

2

)pj C 2(h+2)pN

ρpN
(

ω
2

)pj−pN
|Bkh,Qh

|.

We note that

kh − u = μ− +
ω

4
+

ω

2h+2
− u ≤ ω

2
.

We arrive at
( ω

2h+3

)p

|Bkh+1,Qh+1 | ≤ C

[(ω

2

)pN 2(h+2)pN

ρpN
+ 1
]

|Bkh,Qh
|1+ p

N

≤ C
2(h+3)pN

ρpN

(ω

2

)pN |Bkh,Qh
| p

N +1,
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by the assumption (4.1). Simplifying

|Bkh+1,Qh+1 | ≤ C
2(h+3)(pN+p)

ρpN

(ω

2

)pN −p

|Bkh,Qh
| p

N +1.

Now we divide both terms of the previous inequality by

|Qh+1| = 2N
(ω

2

)N− NpN
p

ρ
NpN

p

h+1 ,

defined in (2.10), to get

|Bkh+1,Qh+1 |
|Qh+1| ≤ C2(pN+p)h 1

ρpN

ρ
NpN

p (1+ p
N )

h

ρ
NpN

p

h+1

( |Bkh,Qh
|

|Qh|
)1+ p

N

.

We note that, by (4.5),

1
ρpN

ρ
NpN

p (1+ p
N )

h

ρ
NpN

p

h+1

=
1

ρpN

ρ
NpN

p +pN

ρ
NpN

p

(
1
2 + 1

2h+1

)NpN
p +pN

(
1
2 + 1

2h+2

)NpN
p

≤ 2
NpN

p .

In conclusion, we arrive at the following inequality

|Bkh+1,Qh+1 |
|Qh+1| ≤ C 2h(pN+p)

( |Bkh,Qh
|

|Qh|
)1+ p

N

,

where the constant C depends only upon the data. So we can use Lemma 2.3
if we define

yh =
|Bkh,Qh

|
|Qh| , b = 2pN+p > 1 and ε =

p

N

and we have that if

y0 ≤ C− N
p 2−(pN+p) N2

p2 (4.8)

then yh → 0 as h → ∞. We observe, by (4.5) and (4.6), that

y0 =
|Bk0,Q0 |

|Q0| =
|Bk0,Qρ, ω

2 ,(pi)
|

|Qρ, ω
2 ,(pi)|

.

Therefore, we can take

ν0 ≤ C− N
p 2−(pN+p) N2

p2

and so (4.8) is equivalent to the assumption (4.2). The proof is completed. �
Now we prove another lemma, useful to prove the Hölder continuity of

the weak solution of problem (1.1). This lemma states that, if (4.2) does not
hold, then u is strictly below its supremum μ+ in a smaller parallelepiped.

Lemma 4.2. Assume (4.1) is in force. If (4.3), or equivalently (4.4) holds, then
there exists λ > 1, depending only on the data such that

u(x) ≤ μ+ − ω

2λ+1
, a.e. in

1
2

Q ρ
2 , ω

2λ ,(pi)

where 1
2 Q ρ

2 , ω

2λ ,(pi) is defined in (2.11).



Vol. 20 (2013) Local Hölder continuity of weak solutions 475

Proof. We proceed as before. We consider a sequence

ρh =
ρ

2
+

ρ

2h+1
, h = 0, 1, 2, . . . .

and a sequence of parallelepipeds Qh = 1
2 Qρh, ω

2λ ,(pi). Let us consider

kh = μ+ − ω

2λ+1
− ω

2λ+1+h
, h = 0, 1, . . . .

an increasing sequence, that is

k0 = μ+ − ω

2λ
≤ kh < lim

h→+∞
kh = μ+ − ω

2λ+1

and cutoff functions, ξh, defined as follows

ξh =
N∏

i=1

ξpi

h,i, with ξh,i = ξh(xi) ∀i = 1, . . . , N,

ξh ∈ C1
0 (Qh) is a nonnegative function, 0 ≤ ξh,i ≤ 1, for any i = 1, . . . , N ,

that vanishes outside of the set Qh, is equal to unity in Qh+1 and

|ξ′
h,i| ≤ 2(h+3)

pN
pi

ρ
pN
pi

1
2

(
ω
2λ

) pi−pN
pi

, ∀i = 1, . . . , N.

Using the same tools of the previous lemma, and (3.2) instead of (3.1),
we arrive at the following inequality

( ω

2λ+h+2

)p

|Akh+1,Qh+1 | ≤ C

⎡

⎣
N∑

j=1

∫

Ω

(u − kh)pj

+ |ξ′
h,j |pj ξhj dx + |Akh,Qh

|
⎤

⎦

×|Akh,Qh
| p

N .

We note that

u − kh = u − μ+ +
ω

2λ+1
+

ω

2λ+1+h
≤ ω

2λ

and by the choice of ξh and (4.1) we obtain
( ω

2λ+h+2

)p

|Akh+1,Qh+1 | ≤ C
( ω

2λ

)pN 2pN (h+4)

ρpN
|Akh,Qh

|1+ p
N

and so

|Akh+1,Qh+1 |
|Qh+1| ≤ C2h(pN+p)

( |Akh,Qh
|

|Qh|
)1+ p

N

.

So we can use Lemma 2.3 if we define

yh =
|Akh,Qh

|
|Qh| , b = 2pN+p > 1 and ε =

p

N

and we have that if

y0 ≤ C− N
p 2−(pN+p) N2

p2 := ν∗ (4.9)
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then yh → 0 as h → ∞. We observe, by the definition of {ρh} and {kh}, that

y0 =
|Ak0,Q0 |

|Q0| =

∣∣∣∣Ak0, 1
2 Qρ, ω

2λ
,(pi)

∣∣∣∣
∣∣∣ 12 Qρ, ω

2λ ,(pi)

∣∣∣
.

So if we show that∣∣∣∣

{
x ∈ 1

2
Qρ, ω

2λ ,(pi) : u(x) > μ+ − ω

2λ

}∣∣∣∣ ≤ ν∗

∣∣∣∣
1
2
Qρ, ω

2λ ,(pi)

∣∣∣∣ , (4.10)

for some λ > 1, depending only on the data, the lemma is proved.
We use (3.2) with

ξ =
N∏

i=1

ξpi

i , ξi = ξ(xi), 0 ≤ ξi ≤ 1, ∀i = 1, . . . , N,

ξ ∈ C1
0 (Qρ, ω

2λ ,(pi)) vanishes outside of the set Qρ, ω

2λ ,(pi) and is equal to unity
in 1

2 Qρ, ω

2λ ,(pi),

|ξ′
i| ≤ 2

(
ω
2λ

) pi−pN
pi ρ

pN
pi

, ∀i = 1, . . . , N,

and

k = μ+ − ω

2s
.

We have
∫

A
k, 1

2 Qρ, ω
2λ

,(pi)

|∂iu|pi dx ≤ C

{
N∑

i=1

∫

Ω

(u − k)pi

+ |ξ′
i|piξi dx + |Ak,Qρ, ω

2λ
,(pi)

|
}

≤ C

{
N∑

i=1

( ω

2s

)pi
( ω

2λ

)pN −pi 2pN

ρpN
+ 1

}
|Ak,Qρ, ω

2λ
,(pi)

|

≤ C
( ω

2s

)pN 2pN

ρpN
|Ak,Qρ, ω

2λ
,(pi)

|, (4.11)

for all i = 1, . . . , N and for any s ≤ λ, by the facts that

u − k = u − μ+ +
ω

2s
≤ ω

2s

1
2s

≥ 1
2λ

and
ω

2sρ
> 1,

since s ≤ λ and (4.1) holds. Now we apply Lemma 2.1 to the one variable
function u(x1, . . . , xN−1, ·) for the levels

ks = μ+ − ω

2s
and ls = μ+ − ω

2s+1
,

and

Als,Q1
ρ
2

(x1, . . . , xN−1), Bks,Q1
ρ
2

(x1, . . . , xN−1),
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Aks,Q1
ρ
2

(x1, . . . , xN−1) ∩ Bls,Q1
ρ
2

(x1, . . . , xN−1),

subsets of R, defined, respectively, in (2.5), (2.6) and (2.7), with

Q1
ρ
2

=
(
−ρ

2
,
ρ

2

)
.

and

−1
2
ρ

pN
pi

( ω

2λ

) pi−pN
pi ≤ xi ≤ 1

2
ρ

pN
pi

( ω

2λ

) pi−pN
pi

, ∀i = 1, . . . , N − 1,

fixed. So we obtain
ω

2s+1
|Als,Q1

ρ
2

| ≤ C
ρ2

|Bks,Q1
ρ
2

|
∫

A
ks,Q1

ρ
2

∩ B
ls,Q1

ρ
2

|∂Nu|dxN .

We can suppose that

|Bks,Q1
ρ
2

| ≥ 1
2
|Q1

ρ
2
| =

ρ

2
.

In fact, if this is not true,

|Bks,Q1
ρ
2

| <
ρ

2
⇒ |Aks,Q1

ρ
2

| >
ρ

2
, (4.12)

where A = A ∪ ∂A, for some set A. Let ai = ρpN /pi(ω/2)(pi−pN )/pi for any
i = 1, . . . , N , then

∣∣∣
{

x ∈ Qρ, ω
2 ,(pi) : u(x) ≥ μ+ − ω

2

}∣∣∣ =
∫ a1

−a1

dx1

∫ a2

−a2

dx2 . . .

. . .

∫ aN−1

−aN−1

∣∣∣
{

xN ∈ (−ρ, ρ) : u(x1, . . . , xN ) ≥ μ+ − ω

2

}∣∣∣ dxN−1

≥
∫ a1

−a1

dx1 . . .

∫ aN−1

−aN−1

∣∣∣
{

xN ∈ (−ρ, ρ) : u(x) ≥ μ+ − ω

2s

}∣∣∣ dxN−1

≥
∫ a1

−a1

dx1 . . .

∫ aN−1

−aN−1

∣∣∣
{

xN ∈
(
−ρ

2
,
ρ

2

)
: u(x) ≥ μ+ − ω

2s

}∣∣∣ dxN−1

since

μ+ − ω

2
≤ μ+ − ω

2s
, if s ≥ 1 and

ρ

2
< ρ.

So, using (4.12), we arrive at
∣∣∣
{

x ∈ Qρ, ω
2 ,(pi) : u(x) ≥ μ+ − ω

2

}∣∣∣ ≥ 1
4
|Qρ, ω

2 ,(pi)|
and this inequality contradicts the second alternative (4.4). Hence we obtain

ω

2s+1
|Als,Q1

ρ
2

| ≤ Cρ

∫

A
ks,Q1

ρ
2

∩ B
ls,Q1

ρ
2

|∂Nu|dxN .

Integrating over x1, . . . , xN−1 the previous inequality, we arrive at
ω

2s+1
|Als, 1

2 Qρ, ω
2λ

(pi)
| ≤ Cρ

∫

A
ks, 1

2 Qρ, ω
2λ

,(pi)
∩ B

ls, 1
2 Qρ, ω

2λ
,(pi)

|∂Nu|dx.
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By Hölder’s inequality with exponents pN and p′
N , we get

ω

2s+1
|Als, 1

2 Qρ, ω
2λ

,(pi)
| ≤ Cρ

⎛

⎜⎝
∫

A
ks, 1

2 Qρ, ω
2λ

,(pi)
∩ B

ls, 1
2 Qρ, ω

2λ
,(pi)

|∂Nu|pN dx

⎞

⎟⎠

1
pN

×|Aks, 1
2 Qρ, ω

2λ
,(pi)

∩ Bls, 1
2 Qρ, ω

2λ
,(pi)

|1− 1
pN

≤ Cρ

⎛

⎜⎝
∫

A
ks, 1

2 Qρ ω
2λ

,(pi)

|∂Nu|pN dx

⎞

⎟⎠

1
pN

×|Aks, 1
2 Qρ, ω

2λ
,(pi)

∩ Bls, 1
2 Qρ, ω

2λ
,(pi)

|1− 1
pN .

Now we use inequality (4.11), with i = N , and arrive at
ω

2s+1
|Als, 1

2 Qρ, ω
2λ

,(pi)
| ≤ C

ω

2s
|Aks,Qρ, ω

2λ
,(pi)

| 1
pN

×|Aks, 1
2 Qρ, ω

2λ
,(pi)

∩ Bls, 1
2 Qρ, ω

2λ
,(pi)

|1− 1
pN

and so

|Als, 1
2 Qρ, ω

2λ
,(pi)

| ≤ C|Aks, 1
2 Qρ, ω

2λ
,(pi)

∩ Bls, 1
2 Qρ, ω

2λ
,(pi)

|1− 1
pN

∣∣∣∣
1
2
Qρ, ω

2λ ,(pi)

∣∣∣∣

1
pN

,

using the facts that

|Aks,Qρ, ω
2λ

,(pi)
| ≤ |Qρ, ω

2λ ,(pi)|, |Qρ, ω

2λ ,(pi)|
1

pN = 2
N

pN

∣∣∣∣
1
2
Qρ, ω

2λ ,(pi)

∣∣∣∣

1
pN

.

On the left hand side we replace |Aμ+− ω
2s+1 , 1

2 Qρ, ω
2λ

,(pi)
| by the smaller

quantity |Aμ+− ω

2λ , 1
2 Qρ, ω

2λ
,(pi)

|, taking 1 ≤ s ≤ λ − 1 and so λ ≥ 2, to obtain

|Aμ+− ω

2λ , 1
2 Qρ, ω

2λ
,(pi)

|
pN

pN −1 ≤ C

∣∣∣∣
1
2
Qρ, ω

2λ ,(pi)

∣∣∣∣

1
pN −1

×|Aks, 1
2 Qρ, ω

2λ
,(pi)

∩ Bls, 1
2 Qρ, ω

2λ
,(pi)

|,
for s = 1, . . . , λ − 1. Let us sum with respect to s and replace the right side of
the resulting inequality by the larger quantity |12Qρ, ω

2λ ,(pi)|, to get

(λ − 1)|Aμ+− ω

2λ , 1
2 Qρ, ω

2λ
,(pi)

|
pN

pN −1 ≤ C
∣∣∣ 12Qρ, ω

2λ ,(pi)

∣∣∣
pN

pN −1

⇓
|Aμ+− ω

2λ , 1
2 Qρ, ω

2λ
,(pi)

| ≤
(

C
λ−1

) pN −1
pN

∣∣∣ 12Qρ, ω

2λ ,(pi)

∣∣∣ .

We obtain (4.10) if λ is chosen so large that
(

C

λ − 1

) pN −1
pN ≤ ν∗ and λ ≥ 2, (4.13)
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where ν∗ defined in (4.9). This conclude the proof of (4.10) and so that of the
lemma. �

5. Recursive argument and final remarks

Before proving the Hölder continuity of the weak solution of the problem (1.1),
we present two corollaries of the previous lemmas.

Corollary 5.1. If the First Alternative (4.2) is true and (4.1) is in force, then
there exists a constant σ0 ∈ (0, 1) such that

ess osc
Q ρ

4 , ω
2 ,(pi)

u ≤ σ0ω.

Proof. By Lemma 4.1, we have

ess inf
Q ρ

2 , ω
2 ,(pi)

u ≥ μ− +
ω

4

and so

ess inf
Q ρ

4 , ω
2 ,(pi)

u ≥ μ− +
ω

4
,

since

Q ρ
4 , ω

2 ,(pi) ⊂ Q ρ
2 , ω

2 ,(pi).

Hence

ess osc
Q ρ

4 , ω
2 ,(pi)

u = ess sup
Q ρ

4 , ω
2 ,(pi)

u − ess inf
Q ρ

4 , ω
2 ,(pi)

u

≤ μ+ − μ− − ω

4
=

3
4
ω.

We have the thesis with σ0 = 3/4. �
Corollary 5.2. If the Second Alternative (4.3) holds and (4.1) is in force, there
exists a constant σ1 ∈ (0, 1), depending only on the data, such that

ess osc
1
2 Q ρ

2 , ω
2λ

,(pi)

u ≤ σ1ω.

Proof. By Lemma 4.2, there exists λ > 1 (see (4.13)) such that

u ≤ μ+ − ω

2λ+1
, a.e. in

1
2
Q ρ

2 , ω

2λ ,(pi).

Then

ess sup
1
2 Q ρ

2 , ω
2λ

,(pi)

u ≤ μ+ − ω

2λ+1
,

and so

ess osc
1
2 Q ρ

2 , ω
2λ

,(pi)

u = ess sup
1
2 Q ρ

2 , ω
2λ

,(pi)

u − ess inf
1
2 Q ρ

2 , ω
2λ

,(pi)

u

≤ μ+ − μ− − ω

2λ+1
=
(

1 − 1
2λ+1

)
ω.
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We obtain the desired result with σ1 = 1 − 1/2λ+1. �

We finally prove the Hölder continuity of weak solutions of problem (1.1)
through an iterative scheme. An immediate consequence of Corollaries 5.1 and
5.2 is the following

Proposition 5.3. Assume (4.1) be in force. There exists a constant σ ∈ (0, 1),
that depends only on the data, such that

ess osc
Q ρ

4 , ω
2 ,(pi)

u ≤ σω.

Proof. We note that

Q ρ
4 , ω

2 ,(pi) ⊆ 1
2
Q ρ

2 , ω

2λ ,(pi)

and then

ess osc
Q ρ

4 , ω
2 ,(pi)

u ≤ σω,

where σ = max{σ0, σ1}. �

Proposition 5.4. Assume (4.1) be in force. There exists a positive constant C,
depending only on the data, such that, defining the sequences

ρh = C−hρ and ωh = σhω, h = 0, 1, 2, . . . ,

where σ ∈ (0, 1) is given by the previous proposition, and constructing the
family of parallelepipedes Qh = Qρh,

ωh
2λ ,(pi)

, where λ > 1 is given in (4.13), we
have

Qh+1 ⊂ Qh and ess osc
Qh+1

u ≤ ωh+1, for all h = 0, 1, 2, . . .

Proof. The starting relation

ess osc
Q0

u ≤ ω (5.1)

holds, since we are assuming (4.1). We find, for any i = 1, . . . , N ,

(ω

2

) pi−pN
pi

(ρ

4

) pN
pi =

(ω

2

) pi−pN
pi

(
2λ

ω1

) pi−pN
pi (ω1

2λ

) pi−pN
pi ρ

pN
pi

4
pN
pi

=
(

ω

ω1

) pi−pN
pi

(
2λ

2

) pi−pN
pi (ω1

2λ

) pi−pN
pi ρ

pN
pi

4
pN
pi

= σ
pN −pi

pi 2(λ−1)
pi−pN

pi
− 2pN

pi

(ω1

2λ

) pi−pN
pi

ρ
pN
pi .

Notice that

4 ≤ Ci = σ
− pN −pi

pN 2−(λ−1)
pi−pN

pN
+2

≤ C = σ
− pN −p1

pN 2−(λ−1)
p1−pN

pN
+2

, (5.2)
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for any i = 1, . . . , N . So that

(ω

2

) pi−pN
pi

(ρ

4

) pN
pi = (Ci)

− pN
pi

(ω1

2λ

) pi−pN
pi

ρ
pN
pi

≥ (C−1ρ)
pN
pi

(ω1

2λ

) pi−pN
pi = ρ

pN
pi

1

(ω1

2λ

) pi−pN
pi

for all i = 1, . . . , N . Hence Q1 ⊂ Q ρ
4 , ω

2 ,(pi). From Proposition 5.3, we conclude
that

ess osc
Q1

u ≤ ess osc
Q ρ

4 , ω
2 ,(pi)

≤ σω = ω1. (5.3)

Moreover Q1 ⊂ Q0, indeed, by the definitions,

ρ
pN
pi

1

(
ω1
2λ

) pi−pN
pi < ρ

pN
pi

(
ω
2λ

) pi−pN
pi ⇐⇒ C

pN
pi σ

pN −pi
pi > 1

�
σ

− pN −p1
pi 2−(λ−1)

p1−pN
pi

+2
pN
pi σ

pN −pi
pi > 1 ⇐⇒ σ

p1−pi
pi 2

(λ−1)(pN −p1)
pi

+2
pN
pi > 1

and it is true, for all i, since σ ∈ (0, 1) and

p1 − pi

pi
≤ 0,

(λ − 1)(pN − p1)
pi

+ 2
pN

pi
> 0 ∀i. (5.4)

Now (5.3) puts us back to the setting of (5.1), so the entire process can
now be repeated inductively. We suppose that it holds

Qh ⊂ Qh−1 and ess osc
Qh

u ≤ ωh. (5.5)

We have to prove that

Qh+1 = Qρh+1,
ωh+1

2λ ,(pi)
⊂ Qh and ess osc

Qh+1
u ≤ ωh+1 (5.6)

with ρh+1 = C−(h+1)ρ and ωh+1 = σh+1ω, C defined in (5.2). By the inductive
hypothesis (5.5), we can apply the previous results using Qh instead of Q0, we
arrive at

ess osc
Q ρh

4 ,
ωh
2 ,(pi)

u ≤ σωh, (5.7)

(see Proposition 5.3), where σ ∈ (0, 1) is always the same because it is depends
only from the data. So for any i = 1, . . . , N ,

(ωh

2

) pi−pN
pi

(ρh

4

) pN
pi =

(ωh

2

) pi−pN
pi

(
2λ

ωh+1

) pi−pN
pi (ωh+1

2λ

) pi−pN
pi ρ

pN
pi

h

4
pN
pi

= (Ci)
− pN

pi

(ωh+1

2λ

) pi−pN
pi

ρ
pN
pi C

−h
pN
pi ,
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by the definitions of ωh, ωh+1, ρh and Ci. So, by (5.2)
(ωh

2

) pi−pN
pi

(ρh

4

) pN
pi ≥ C

− pN
pi

(ωh+1

2λ

) pi−pN
pi

ρ
pN
pi C

−h
pN
pi

= C
−(h+1)

pN
pi

(ωh+1

2λ

) pi−pN
pi

ρ
pN
pi

=
(ωh+1

2λ

) pi−pN
pi

ρ
pN
pi

h+1.

Hence, we have Qh+1 ⊂ Q ρh
4 ,

ωh
2 ,(pi)

and by (5.7) we arrive at

ess osc
Qh+1

u ≤ ess osc
Q ρh

4 ,
ωh
2 ,(pi)

u ≤ σωh = σh+1ω = ωh+1,

the second part of (5.6) is proved. For the first part, as before, we note that

Qh+1 ⊂ Qh ⇐⇒
(ωh+1

2λ

) pi−pN
pi

ρ
pN
pi

h+1 <
(ωh

2λ

) pi−pN
pi

ρ
pN
pi

h ,

for all i = 1, . . . , N . Now
(ωh+1

2λ

) pi−pN
pi

ρ
pN
pi

h+1 <
(ωh

2λ

) pi−pN
pi

ρ
pN
pi

h

�

σ
− pN −p1

pi 2−(λ−1)
p1−pN

pi
+2

pN
pi σ

pN −pi
pi > 1 ⇐⇒ σ

p1−pi
pi 2

(λ−1)(pN −p1)
pi

+2
pN
pi > 1

and it is true, for all i, since σ ∈ (0, 1) and (5.4) holds. The proof of Proposition
5.4 is concluded. �
Lemma 5.5. There exist constants γ > 1 and α ∈ (0, 1), that can be determined
a priori in terms of the data, such that, for all parallelepipeds

Qρ0, ω

2λ ,(pi), with 0 < ρ0 ≤ ρ,

we have

ess osc
Qρ0, ω

2λ
,(pi)

u ≤ γ ω

(
ρ0

ρ

)α

with ω = ess osc
QN

ρ

u

Proof. See, for example, Lemma 4.9 of [37] (p. 45). �
Now we have all the tools to prove the main result of this paper, namely

Theorem 1.1; for more details, see Theorem 4.10 of [37] (p. 46).

Remark 5.6. If we consider the isotropic case, that is all the pi’s are equal to 2
(or, more generally all are equal to p), we essentially recover the now classical
proof of Hölder continuity of weak solutions for elliptic equations, presented
in [21].

Remark 5.7. We want also to underline that the result presented in this work
also holds for more general datum f . As we expect by the isotropic case, The-
orem 1.1 is also true if we suppose that f ∈ Lm(Ω), with m > N/p. As a
matter of fact if f belongs to Lm(Ω) with m > N/p it is known that weak
solutions of (1.1) are bounded (see [12,35]). We present the result in the case
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of f bounded only for simplicity. To be complete, we want to note that, in this
general case, to prove the same result we have to slightly change the proofs.
For f in Lm(Ω), it is possible to prove the following energy estimates, where
the hypothesis m > N/p is necessary:

N∑

i=1

∫

Ω

|∂i(u−k)−|piξ dx≤C

⎡

⎣
N∑

j=1

∫

Ω

|(u − k)−|pj |ξ′
j |pj ξj dx+|Bk,QN

ρ
|1− 1

m

⎤

⎦ ,

N∑

i=1

∫

Ω

|∂i(u−k)+|piξ dx≤C

⎡

⎣
N∑

j=1

∫

Ω

|(u − k)+|pj |ξ′
j |pj ξj dx+|Ak,QN

ρ
|1− 1

m

⎤

⎦ ,

for any i = 1, . . . , N , instead of (3.1) and (3.2). Moreover we have to substitute
the assumption (4.1) with the following

ω

2λ
> ρ1− N

mp .

But this fact does not substantially change the proofs. In fact, if it is not
true we always have that the oscillation of u is comparable to the “radius” of
the set that we are considering and so there is nothing to prove. Moreover, by
the assumption on m, we also have

ω

2λ
> ρ

and it ensures that

Qρ, ω

2λ ,(pi) ⊂ QN
ρ ,

and the starting point of the iteration process that leads to the main result is
satisfied.

References

[1] Acerbi, E., Fusco, N.: Partial regularity under anisotropic (p, q) growth
conditions. J. Differ. Equ. 107, 46–67 (1994)

[2] Acerbi, E., Mingione, G.: Gradient estimates for the p(x)-Laplacean system.
J. Reine Angew. Math. 584, 117–148 (2005)

[3] Alberico, A.: Boundedness of solutions to anisotropic variational problems.
Commun. Partial Differ. Equ. 36, 470–486 (2011)
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[16] Fragalà, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for
anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincaré Anal. Non
Linéaire 21, 715–734 (2004)

[17] Fusco, N., Sbordone, C.: Local boundedness of minimizers in a limit case. Manu-
scr. Math. 69, 19–25 (1990)

[18] Fusco, N., Sbordone, C.: Some remarks on the regularity of minima of anisotropic
integrals. Commun. Partial Differ. Equ. 18, 153–167 (1993)

[19] Giaquinta, M.: Growth conditions and regularity, a counter example. Manuscr.
Math. 59, 245–248 (1987)

[20] Kruzhkov, S.N., Kolodii, I.M.: On the theory of embedding of anisotropic Sobo-
lev spaces. Russian Math Surv. 38, 188–189 (1983)

[21] Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equa-
tions. Academic Press, New York (1968)

[22] Leonetti, F.: Higher differentiability for weak solutions of elliptic systems with
nonstandard growth conditions. Ricerche di Mat. 42, 101–122 (1993)

[23] Leonetti, F.: Higher integrability for minimizers of integral functionals with non-
standard growth. J. Differ. Equ. 112, 308–324 (1994)



Vol. 20 (2013) Local Hölder continuity of weak solutions 485

[24] Leonetti, F., Mascolo, E., Siepe, F.: Everywhere regularity for a class of vecto-
rial functionals under subquadratic general growth conditions. J. Math. Anal.
Appl. 287, 593–608 (2003)

[25] Leray, J., Lions, J.L.: Quelques résultats de Vǐsik sur les problèmes non
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[28] Liskevich, V., Skrypnik, I.I.: Hölder continuity of solutions to an anisotropic
elliptic equation. Nonlinear Anal. 71, 1699–1708 (2009)

[29] Marcellini, P.: Regularity of minimizers of integrals of the calculus of variations
with non standard growth conditions. Arch. Rational Mech. Anal. 105, 267–
284 (1989)

[30] Marcellini, P.: Regularity and existence of solutions of elliptic equations with
p,q-growth conditions. J. Differ. Equ. 90, 1–30 (1991)

[31] Marcellini, P.: Regularity for elliptic equations with general growth conditions. J.
Differ. Equ. 105, 296–333 (1993)

[32] Marcellini, P.: Un exemple de solution discontinue d’un problème variationel
dans le cas scalaire. #11 Int. Mat. U. Dini, Firenze (1987, preprint)
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