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Abstract. The hydrodynamic limit for a kinetic model of chemotaxis is
investigated. The limit equation is a non local conservation law, for which
finite time blow-up occurs, giving rise to measure-valued solutions and dis-
continuous velocities. An adaptation of the notion of duality solutions,
introduced for linear equations with discontinuous coefficients, leads to
an existence result. Uniqueness is obtained through a precise definition
of the nonlinear flux as well as the complete dynamics of aggregates, i.e.
combinations of Dirac masses. Finally a particle method is used to build
an adapted numerical scheme.
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1. Introduction

Kinetic frameworks have been investigated to describe the chemotactic move-
ment of cells in the presence of a chemical substance since in the 80’s experi-
mental observations showed that the motion of bacteria (e.g. Escherichia coli)
is due to the alternation of ‘runs and tumbles’. The so-called Othmer–Dunbar–
Alt model [1,12,20,22] describes the evolution of the distribution function of
cells at time t, position x and velocity v, assumed to have a constant modulus
c > 0, as well as the concentration S(t, x) of the involved chemical. A general
formulation for this model can be written as{
∂tfε + v · ∇xfε = 1

ε

∫
|v′|=c

(
T [Sε](v′ → v)fε(v′) − T [Sε](v → v′)fε(v)

)
dv′,

−ΔSε + Sε = ρε(t, x) :=
∫

|v|=c
fε(t, x, v) dv.

(1.1)

The second equation describes the dynamics of the chemical agent which
diffuses in the domain. It is produced by the cells themselves with a rate
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proportional to the density of cells ρ and disappears with a rate proportional
to S. The transport operator on the left-hand side of the first equation stands
for the unbiased movement of cells (‘runs’), while the right-hand side governs
‘tumbles’, that is chemotactic orientation, or taxis, through the turning kernel
T [S](v′ → v), which is the rate of cells changing their velocity from v′ to v.

The parameter ε corresponds to the time interval of information sampling
for the bacteria, usually ε � 1, and when it goes to zero, one expects to recover
the collective behaviour of the population, that is a macroscopic equation for
the density ρ(t, x) of cells. Such derivations have been proposed by several
authors. When the taxis is small compared to the unbiased movement of cells,
the scaling must be of diffusive type, so that the limit equations are of diffusion
or drift-diffusion type, see for instance [9] for a rigorous proof. In [14,21], the
authors show that the classical Patlak–Keller–Segel model can be obtained in
a diffusive limit for a given smooth chemoattractant concentration.

We focus here on the opposite case, that is when taxis dominates the
unbiased movements. This is accounted for in the model by the choice of the
scaling in Eq. (1.1). Moreover, we consider positive chemotaxis, which means
that the involved chemical is attracting cells, and therefore is called chemoat-
tractant. The model has been proposed in [10], several works have been devoted
to the mathematical study of this kinetic system. Existence of solutions has
been obtained for various assumptions on the turning kernel in [9,7,11,15].
Numerical simulations of this system are proposed in [27]. The limit problem
is usually of hyperbolic type, see for instance [13,23,24] for a hyperbolic limit
model which consists in a conservation equation for the cell density and a
momentum balance equation.

It is not difficult to obtain the following formal hydrodynamic limit to
Eq. (1.1), more precisely on the total density of particles ρ = limε ρε:

∂tρ+ divx

(
a[S]ρ

)
= 0, −ΔxxS + S = ρ. (1.2)

Here the macroscopic velocity a[S] depends on the chemoattractant concentra-
tion S through the turning kernel. This system of equations has been obtained
in [10], with a rigorous proof in the two-dimensional setting for a fixed smooth
S, and therefore a bounded density ρ. The aim of this paper is to obtain rig-
orously this limit for the whole coupled system. Severe difficulties arise then
mainly due to the lack of estimates for the solutions to the kinetic model when
ε goes to zero and consequently to the very weak regularity of the solutions to
the limit problem.

It turns out that the limit equation is in some sense a weakly nonlin-
ear conservation equation on the density ρ. Indeed the expected velocity field
depends on ρ, but through S, and therefore in a non local way. Actually it can
be written as a variant of the so-called aggregation equation, for which blow-up
in finite time is evidenced (see e.g. [3]), leading to measure-valued solutions. In
this respect, this equation behaves also like linear equations with discontinu-
ous coefficients. In particular Dirac masses can arise, this is the mathematical
formulation of the aggregation of bacteria. Therefore S is no longer smooth,
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and a major difficulty in this study will be to define properly the velocity field
a = a[S] and the product aρ.

The viewpoint of the aggregation equation has been extensively studied
by Carrillo et al. [8] through optimal transport techniques. Existence and
uniqueness are obtained in a very weak sense, and the dynamics of aggre-
gates is also given. We propose here another approach, based on the notion
of duality solutions, as introduced in the linear case by Bouchut and James
[4]. The main drawback is that presently we have to restrict ourselves to the
one-dimensional case, since the theory in higher dimensions is not complete yet
(see [6]). The approach proposed by Poupaud and Rascle [26], which coincides
with duality in the 1-d case, could also be explored. Notice however, that the
properties of the expected velocity field a in the two-dimensional case are not
obvious either.

More precisely, we propose to proceed in a similar way as in [5], where
the nonlinear system of zero pressure gas dynamics is interpreted as a sys-
tem of two linear conservation equations coupled through the definition of the
product. This last point turns out to be crucial in order to obtain a proper
uniqueness result for the system (1.2). In this work, the product aρ will be
defined thanks to the limiting flux of the kinetic system (1.1) (see also [16] for
another application of the same idea). As we shall see, this is closely related
to the dynamics of aggregates, that is combinations of Dirac masses, which
reflect some kind of collective behaviour of the population. Finally, an impor-
tant application of this aggregate dynamics is the development of a numerical
scheme, based on a particle method. The motion and collapsing of Dirac masses
is clearly evidenced.

The paper is organized as follows. In Sect. 2 we precisely state the model.
Section 3 is devoted to the notion of duality solutions, and contains the main
results of this article. Some technical properties which will be useful for the
rest of the paper are given in Sect. 4. Then we investigate in Sect. 5 the proof
of the existence and uniqueness result of duality solution for system (2.8)–
(2.10) stated in Theorem 3.9. In Sect. 6 we prove the rigorous derivation of
the hydrodynamical system from the kinetic system. Finally, the dynamics of
aggregates and the numerical scheme for the limit equation are described in
the last section, where numerical illustrations are also provided.

2. Modelling

From now on we focus on the one dimensional version of the problem, so that
x ∈ R. We first recall the main assumptions leading to the kinetic equation,
next we proceed to the formal limit.

2.1. Kinetic model

In this work, cells are supposed to be large enough to sense the gradient of
the chemoattractant instantly. Therefore the turning kernel takes the form
(independent on v)
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T [S](v′ → v) = Φ(v′∂xS). (2.1)

The function Φ is the turning rate, obviously it has to be positive. More pre-
cisely, for attractive chemotaxis, the turning rate is smaller if cells swim in a
favourable direction, that is v · ∇xS ≥ 0. Thus Φ should be a non increasing
function. A simplified model for this phenomenon is the following choice for Φ:
we fix a positive parameter α, a mean turning rate φ0 > 0 and take

Φ(x) = φ0

(
1 + φ(x)

)
, (2.2)

where φ is an odd function such that

φ ∈ C∞(R), φ′ ≤ 0, φ(x) =

{
+λ if x < −α,
−λ if x > α,

(2.3)

where 0 < λ < 1 is a given constant.
Now since the transport occurs in R the set of velocities is V = {−c, c},

and the expression of the turning kernel simplifies in such a way that (1.1)
rewrites

∂tfε + v∂xfε =
1
ε
(Φ(−v∂xS)fε(−v) − Φ(v∂xS)fε(v)), v ∈ V. (2.4)

− ∂xxSε + Sε = ρε = fε(c) + fε(−c). (2.5)

The existence of weak solutions in a Lp setting for a slightly different
system in a more general framework has been obtained for instance in [7,15].
Concerning precisely this model, we refer to [27] for the existence theory in
any space dimension. Notice that no uniform L∞ bounds can be expected.
The reader is referred to [27] for some numerical evidences of this phenome-
non, which is the mathematical translation of the concentration of bacteria.
This is some kind of “blow-up in infinite time”, which for ε = 0 leads to actual
blow-up in finite time, and creation of Dirac masses. Moreover the balanced
distribution vanishing the right hand side of (2.4) depends on Sε; thus the
techniques developed e.g. in [9] cannot be applied.

2.2. Formal hydrodynamic limit

We formally let ε go to 0 assuming that Sε and fε admit a Hilbert expansion

fε = f0 + εf1 + · · · , Sε = S0 + εS1 + · · ·
Multiplying (2.4) by ε and taking ε = 0, we find

Φ(−c∂xS0)f0(−c) = Φ(c∂xS0)f0(c). (2.6)

Summing Eq. (2.4) for c and −c, we obtain

∂t(fε(c) + fε(−c)) + c∂x(fε(c) − fε(−c)) = 0. (2.7)

Moreover, from Eq. (2.6) we deduce that

f0(c) − f0(−c) =
Φ(−c∂xS0) − Φ(c∂xS0)
Φ(−c∂xS0) + Φ(c∂xS0)

(f0(c) + f0(−c)).
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The density at equilibrium is defined by ρ := f0(c) + f0(−c). Taking ε = 0 in
(2.7) we finally obtain

∂tρ+ ∂x(a(∂xS0)ρ) = 0,

where a is defined by

a(∂xS0) = c
Φ(−c∂xS0) − Φ(c∂xS0)
Φ(−c∂xS0) + Φ(c∂xS0)

= −c φ(c∂xS0),

and we have used (2.2) for the last identity. Notice that a is actually a macro-
scopic quantity, since it is the simplified formulation of

a(∂xS0) = −
∫

V
vΦ(v∂xS0) dv∫

V
Φ(v∂xS0) dv

in the one-dimensional context.
We couple this equation with the limit of the elliptic problem (2.5)

for the chemoattractant concentration, so that, in summary, and dropping
the index 0, the formal hydrodynamic limit is the following system

∂tρ+ ∂x(a(∂xS)ρ) = 0, (2.8)
a(∂xS) = −c φ(c∂xS), (2.9)
−∂xxS + S = ρ, (2.10)

complemented with the boundary conditions

ρ(t = 0, x) = ρini(x), lim
x→±∞ ρ(t, x) = 0, lim

x→±∞S(t, x) = 0. (2.11)

We now give the precise formulation of the limit system in terms of aggre-
gate equation. Noticing that a solution to (2.10) has the explicit expression

S(t, x) = K ∗ ρ(t, .)(x), where K(x) =
1
2
e−|x|, (2.12)

the macroscopic conservation equation for ρ (2.8) can be rewritten

∂tρ+ ∂x(a(∂xK ∗ ρ)ρ) = 0.

When a is the identity function, this is exactly the so-called aggregation equa-
tion, and since the potential is non-smooth, blow-up in finite time is expected.
We refer the reader to e.g. [3,8], and [17] in the context of chemotaxis.

Similar problems were encountered for instance in [18], where the authors
investigate the high field limit of the Vlasov–Poisson–Fokker–Planck model in
one space dimension. The limit system is a scalar conservation law coupled
to the Poisson equation, and a proper definition of the product is needed to
pass to the limit. This definition has been extended in two dimensions by
Poupaud [25] using defect measures but losing uniqueness.
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3. Duality solutions

3.1. Notations

Let C0(Y,Z) be the set of continuous functions from Y to Z that vanish at
infinity and Cc(Y,Z) the set of continuous functions with compact support
from Y to Z. All along the paper, we denote Mloc(R) the space of local
Borel measures on R. For ρ ∈ Mloc we denote by |ρ|(R) its total variation.
We will denote Mb(R) the space of measures in Mloc(R) whose total var-
iation is finite. From now on, the space of measure-valued function Mb(R)
is always endowed with the weak topology σ(Mb, C0). We denote SM :=
C([0, T ];Mb(R) − σ(Mb, C0)).

We recall that if a sequence of measure (μn)n∈N in Mb(R) satisfies
supn∈N |μn|(R) < +∞, then we can extract a subsequence that converges for
the weak topology σ(Mb, C0).

The coupled system (2.8)–(2.9)–(2.10) is interpreted in this context as
a linear conservation equation (2.8), the velocity b of which depends on the
solution S to the elliptic equation (2.10), b = a(∂xS). This actually means that
Eq. (2.8) is somehow nonlinear. One convenient tool to handle such conserva-
tion equations

∂tρ+ ∂x(bρ) = 0, b being a given function, (3.1)

whose solutions eventually are measures in space, is the notion of duality solu-
tions, introduced in [4].

3.2. Linear conservation equations

Duality solutions are defined as weak solutions, the test functions being
Lipschitz solutions to the backward linear transport equation

∂tp+ b(t, x)∂xp = 0, p(T, .) = pT ∈ Lip(R). (3.2)

A key point to ensure existence of smooth solutions to (3.2) is that the velocity
field has to be compressive, in the following sense.

Definition 3.1. We say that the function b satisfies the so-called one-sided
Lipschitz condition (OSL condition) if

∂xb(t, .) ≤ β(t) for β ∈ L1(0, T ) in the distributional sense. (3.3)

A formal computation shows that ∂t(pρ) + ∂x[b(t, x)pρ] = 0, and thus

d

dt

(∫
R

p(t, x)ρ(t, dx)
)

= 0, (3.4)

which defines the duality solutions for suitable p’s. It is now quite classical
that (3.3) ensures existence for (3.2), but not uniqueness, which is of great
importance here to obtain stability results and make a convenient use of (3.4).

Therefore, the corner stone in the construction of duality solutions is the
introduction of the notion of reversible solutions to (3.2). A complete state-
ment of the definitions and properties of reversible solutions would be too long
in the present context, so that merely a few hints are given. Let L denote the
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set of Lipschitz continuous solutions to (3.2), and define the set of exceptional
solutions:

E =
{
p ∈ L such that pT ≡ 0

}
.

The possible loss of uniqueness corresponds to the case where E is not reduced
to zero.

Definition 3.2. We say that p ∈ L is a reversible solution to (3.2) if p is locally
constant on the set

Ve =
{

(t, x) ∈ [0, T ] × R; ∃ pe ∈ E , pe(t, x) �= 0
}
.

This definition leads quite directly to the uniqueness results of [4]. It
turns out that the class of reversible solutions is also stable by perturbations
of the coefficient b.

We now restrict ourselves to those p’s in (3.4). More precisely, we state
the following definition.

Definition 3.3. We say that ρ ∈ SM := C([0, T ];Mb(R) − σ(Mb, C0)) is a
duality solution to (3.1) if for any 0 < τ ≤ T , and any reversible solution p to
(3.2) with compact support in x, the function t 
→ ∫

R
p(t, x)ρ(t, dx) is constant

on [0, τ ].

Remark 3.4. A similar notion of duality solution for the transport equation is
available ∂tu + b∂xu = 0, and ρ is a duality solution of (3.1) iff u =

∫ x
ρ is a

duality solution to transport equation (see [4]).

We shall need the following facts concerning duality solutions.

Theorem 3.5. (Bouchut, James [4])
1. Given ρ◦ ∈ Mb(R), under the assumptions (3.3), there exists a unique

ρ ∈ SM, duality solution to (3.1), such that ρ(0, .) = ρ◦.
Moreover, if ρ◦ is nonnegative, then ρ(t, ·) is nonnegative for a.e. t ≥ 0.
And we have the mass conservation

|ρ(t, ·)|(R) = |ρ◦|(R), for a.e. t ∈]0, T [.

2. Backward flow and push-forward: the duality solution satisfies

∀ t ∈ [0, T ],∀φ ∈ C0(R),
∫

R

φ(x)ρ(t, dx) =
∫

R

φ(X(t, 0, x))ρ0(dx), (3.5)

where the backward flow X is defined as the unique reversible solution to

∂tX + b(t, x)∂xX = 0 in ]0, s[×R, X(s, s, x) = x.

3. For any duality solution ρ, we define the generalized flux corresponding
to ρ by bΔρ = −∂tu, where u =

∫ x
ρ dx.

There exists a bounded Borel function b̂, called universal representative

of b, such that b̂ = a almost everywhere, and for any duality solution ρ,

∂tρ+ ∂x(̂bρ) = 0 in the distributional sense.
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4. Let (bn) be a bounded sequence in L∞(]0, T [×R), such that bn ⇀ b in
L∞(]0, T [×R) − w�. Assume ∂xbn ≤ αn(t), where (αn) is bounded in
L1(]0, T [), ∂xb ≤ α ∈ L1(]0, T [). Consider a sequence (ρn) ∈ SM of
duality solutions to

∂tρn + ∂x(bnρn) = 0 in ]0, T [×R,

such that ρn(0, .) is bounded in Mb(R), and ρn(0, .) ⇀ ρ◦ ∈ Mb(R).
Then ρn ⇀ ρ in SM, where ρ ∈ SM is the duality solution to

∂tρ+ ∂x(bρ) = 0 in ]0, T [×R, ρ(0, .) = ρ◦.

Moreover, b̂nρn ⇀ b̂ρ weakly in Mb(]0, T [×R).

The set of duality solutions is clearly a vector space, but it has to be noted
that a duality solution is not a priori defined as a solution in the sense of dis-
tributions. However, assuming that the coefficient b is piecewise continuous,
we have the following equivalence result:

Theorem 3.6. Let us assume that in addition to the OSL condition (3.3), b is
piecewise continuous on ]0, T [×R where the set of discontinuity is locally finite.
Then there exists a function b̂ which coincides with b on the set of continuity
of b.

With this b̂, ρ ∈ SM is a duality solution to (3.1) if and only if ∂tρ +
∂x(̂bρ) = 0 in D′(R). Then the generalized flux bΔρ = b̂ρ. In particular, b̂ is a
universal representative of b.

This result comes from the uniqueness of solutions to the Cauchy problem
for both kinds of solutions (see Theorem 4.3.7 of [4]).

3.3. Main results

We are now in position to give the definition of duality solutions for the limit
system (2.8)–(2.10).

Definition 3.7. We say that (ρ, S) ∈ C([0, T ];Mb(R)) × C([0, T ];W 1,∞) is a
duality solution to (2.8)–(2.10) if there exists b ∈ L∞((0, T ) × R) and α ∈
L1

loc(0, T ) satisfying ∂xb ≤ α in D′, such that

1. for all 0 < t1 < t2 < T

∂tρ+ ∂x(bρ) = 0 in the sense of duality on ]t1, t2[,

2. (2.9) is satisfied in the weak sense:

∀ψ ∈ C1(R), ∀ t ∈ [0, T ],
∫

R

(∂xS∂xψ + Sψ)(t, x) dx =
∫
ψ(x) ρ(t, dx),

3. b = a(∂xS) a.e.

Remark 3.8. For S in C([0, T ];W 1,∞) and φ as in (2.3), we have a(∂xS) ∈
C([0, T ];L∞(R)). Therefore Eq. (2.8) is meaningful in the duality sense. The
key property is then the one-sided Lipschitz condition.
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Unfortunately, Definition 3.7 does not ensure uniqueness, as we shall
evidence in Sect. 5. This is due to the fact that the product a(∂xS)ρ is not
properly defined yet. Indeed the relevant definition of this product relies on a
proper definition of the flux of the system, which we introduce now. Let A be
an antiderivative of a such that A(0) = 0, we set

J = −∂x(A(∂xS)) + a(∂xS)S. (3.6)

This choice is justified first since this definition holds true when S is regu-
lar. Indeed we have ∂x(A(∂xS)) = a(∂xS)∂xxS, so that we can write J =
a(∂xS)(−∂xxS + S) = a(∂xS)ρ. On the other hand, a more physical reason
relies on the fact that the above J is the correct flux for the kinetic model,
and passes to the limit when ε goes to zero, see Sect. 6.

We can now establish the following uniqueness theorem:

Theorem 3.9. Let us assume that ρini ≥ 0 is given in Mb(R). Then, for all
T > 0 there exists a unique duality solution (ρ, S) with ρ ≥ 0 of (2.8)–(2.10)
which satisfies in the distributional sense:

∂tρ+ ∂xJ = 0, (3.7)

where J is defined in (3.6). It means that the universal representative in
Theorem 3.5 satisfies

b̂ρ = J, in the sense of measures.

Moreover, we have ρ = X#ρ
ini where X is the backward flow corresponding to

a(∂xS).

The second result concerns the rigorous proof of hydrodynamical limit for
the kinetic model. Let (fε, Sε) be a solution of the system (2.4)–(2.5), comple-
mented with null boundary condition at infinity and with the following initial
data:

fε(0, ·, ·) = f ini
ε , (3.8)

such that ρini
ε = ηε ∗ ρini where ηε is a mollifier and ρini is given in Mb(R).

We recall that for fixed ε > 0, there exists (fε, Sε) such that fε belongs to
C([0, T ] × R × V ) and therefore Sε ∈ C([0, T ];C2(R)), see [7], or [27] in the
present context.

Theorem 3.10. Let us assume that ρini ≥ 0 is given in Mb(R). Let (fε, Sε)
be a solution to the kinetic–elliptic equation (2.4)–(2.5) with initial data (3.8).
Then, as ε → 0, (fε, Sε) converges in the following sense:

ρε := fε(c) + fε(−c) ⇀ ρ in SM := C([0, T ];Mb(R) − σ(Mb, C0)),

Sε ⇀ S in C([0, T ];W 1,∞(R)) − weak,

where (ρ, S) is the unique duality solution of the system (2.8)–(2.10) satisfying

b̂ρ = J, in the sense of measures.
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4. Properties of S

We gather in this section a set of properties for the solution S to (2.10) that
will be used throughout the paper.

4.1. One-sided estimates

The estimates presented in this part rely only on Eq. (2.10).

Lemma 4.1. Let ρ ∈ C([0, T ],Mb(R)). Then the solution S of Eq. (2.10)
satisfies
1. ρ ≥ 0 =⇒ S ≥ 0
2. one-sided estimate: ∂xxS ≤ S if and only if ρ ≥ 0
3. for all p ∈ [1,+∞], S ∈ C([0, T ], Lp(R)) and ∂xS ∈ C([0, T ], Lp(R))

Proof. The first two items are easy consequences of the expression (2.12) for
the first one, of the Eq. (2.10) for the second. For the third item, from convo-
lution properties, we have for any p ∈ [1,+∞]

‖S(t, .)‖Lp(R) =
1
2
‖e−|·| ∗ ρ(t, .)‖Lp(R) ≤ |ρ(t, .)|(R)

1
2
‖e−|·|‖Lp(R)

=
1
2

sup
t∈[0,T ]

|ρ(t, ·)|(R),

where |ρ|(R) stands for the total mass of the nonnegative measure ρ. We pro-
ceed in the same way for ∂xS. �

As mentioned above, the key point to use the duality solutions is that
the velocity field satisfies the OSL condition (3.3).

Lemma 4.2. Let ρ ∈ SM. Then the coefficient a(∂xS) defined by (2.9)–(2.10)
satisfies the OSL condition (3.3) if and only if ρ ≥ 0

Proof. Straightforward computations lead to

∂x(a(∂xS)) = −c2φ′(c∂xS)∂xxS.

With (2.10) and since φ is a nonincreasing function, we deduce from the one-
sided estimate of Lemma 4.1

∂x(a(∂xS)) ≤ max{c2‖φ′‖L∞S, 0}.
We conclude thanks to the bound on S in L∞. �

Finally, we turn to a convergence result for a sequence of such functions S.

Lemma 4.3. Let (ρn)n∈N be a sequence of measures that converges weakly
towards ρ in SM as n goes to +∞. Let Sn(t, x) = (K ∗ ρn(t, ·))(x) and
S(t, x) = (K ∗ ρ(t, ·))(x), where K is defined in (2.12). Then when n → +∞
we have

∂xSn(t, x) −→ ∂xS(t, x) for a.e. t ∈ [0, T ], x ∈ R,
∂xSn(t, x) ⇀ ∂xS(t, x) in L∞

t,x weak − ∗.
Proof. The proof of this result is obtained by regularization of the convolution
kernel (see Lemma 3.1 of [17]). �
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4.2. Entropy estimates

In this subsection, we consider now that (ρ, S) satisfy (3.7)–(3.6) in the sense
of distributions. We prove first that S satisfies a nonlinear nonlocal equation.
Next, following the strategy of [19], we prove that the above one-sided estimate
implies some kind of entropy inequality for ∂xS.

Lemma 4.4. Assume (ρ, S) ∈ C([0, T ];Mb(R))×C([0, T ];W 1,∞) satisfy (3.7)–
(3.6), then ∂xS ∈ C([0, T ], L1(R))∩L∞([0, T ], BV (R)) and S is a weak solution
of

∂tS − ∂xK ∗ ∂x(A(∂xS)) + ∂xK ∗ (a(∂xS)S) = 0. (4.1)

Proof. We have ρ ∈ SM and ∂xxS = S − ρ. Then ∂xS ∈ C([0, T ], L1(R)) ∩
L∞([0, T ], BV (R)). We recall that we have S = K ∗ ρ where K(x) = 1

2e
−|x|.

Thus taking the convolution by K of (3.7)–(3.6), we get that S is a weak
solution of (4.1). �

Lemma 4.5. Let S be a weak solution in C([0, T ];W 1,1(R)) of (4.1) with initial
data Sini. We assume moreover that ∂xS belongs to L∞([0, T ];BV (R)) and
that the one-sided estimate ∂xxS ≤ S holds in the distributional sense. Then
for any twice continuously differentiable convex function η we have

∂tη(∂xS) + ∂x(q(∂xS)) − η′(∂xS)a(∂xS)S
+η′(∂xS)[K ∗ (−∂xA(∂xS) + a(∂xS)S)] ≤ 0, (4.2)

where the entropy flux q is defined by

q(x) =
∫ x

0

η′(y)a(y) dy.

Proof. From Lemma 4.4, S satisfies (4.1). By differentiation, and using the
property ∂xxK = K − δ0, we get

∂t∂xS + ∂xA(∂xS) − a(∂xS)S +K ∗ (−∂xA(∂xS) + a(∂xS)S) = 0. (4.3)

Consider a sequence of mollifiers ζn(x) = nζ(nx), with n ∈ N, ζ ∈ C∞
0 (R),

ζ ≥ 0 and
∫

R
ζ(x) dx = 1. We set Sn = ζn ∗ S. Then we have

∂t∂xSn + ∂x(A(∂xS) ∗ ζn) − ζn ∗ (a(∂xS)S) +K ∗ ζn ∗ (−∂xA(∂xS)
+a(∂xS)S) = 0.

We define the commutators Rn and Qn as follows:

A(∂xS) ∗ ζn = A(∂xSn) +Rn(t, x),
Qn(t, x) = −ζn ∗ (a(∂xS)S) +K ∗ ζn ∗ (−∂xA(∂xS) + a(∂xS)S)

+a(∂xSn)Sn −K ∗ (−∂xA(∂xSn) + a(∂xSn)Sn),

so that the regularized solution satisfies

∂t∂xSn + ∂x(A(∂xSn) +Rn) − a(∂xSn)Sn +K ∗ (−∂xA(∂xSn) + a(∂xSn)Sn)
+Qn = 0. (4.4)
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Let us consider η a twice continuously differentiable convex function and let q
be the corresponding entropy flux. Multiplying Eq. (4.4) by η′(∂xSn), we get

∂tη(∂xSn) + ∂x(q(∂xSn) + η′(∂xSn)Rn) +Hn = −η′(∂xSn)Qn

+Rn∂x(η′(∂xSn)), (4.5)

where

Hn := −η′(∂xSn)a(∂xSn)Sn + η′(∂xSn)[K ∗ (−∂xA(∂xSn) + a(∂xSn)Sn)].

Due to properties of the convolution product, we have

Rn → 0, Qn → 0 in
p

L
loc

((0,∞) × R), 1 ≤ p < +∞,

so that in the sense of distribution, we have straightforwardly

∂x(η′(∂xSn)Rn) → 0, η′(∂xSn)Qn → 0

and

Hn → H := −η′(∂xS)a(∂xS)S + η′(∂xS)[K ∗ (−∂xA(∂xS) + a(∂xS)S)],

which is precisely the desired term in the limit equation. Now we deal with
the term Rn∂x(η′(∂xSn)) on the right-hand side, and we notice that Rn ≥ 0
thanks to the Jensen inequality and the convexity of A. Therefore, since η is
convex, we have

Rn∂x(η′(∂xSn)) = Rnη
′′(∂xSn)∂xxSn ≤ Rnη

′′(∂xSn)Sn,

where we have used the one-sided estimate ∂xxSn ≤ Sn to obtain the last
inequality. Since Sn is bounded in L∞ independently of n, we can pass to
the limit in this last identity thanks to the Lebesgue dominated convergence
theorem to get

Rnη
′′(∂xSn)Sn → 0 in

1

L
loc

((0,∞) × R).

Finally, letting n going to +∞ in (4.5), we deduce that (4.2) holds in the
distributional sense. �

Remark 4.6. This equation relies strongly on the definition of the flux J in
(3.6). This fact has already been noticed by the authors in [16], which can be
viewed as a particular case of the one studied in this paper by replacing the
elliptic equation (2.10) for S by the Poisson equation −∂xxS = ρ. In this case,
the product of a(∂xS) by ρ is naturally defined by a(∂xS)ρ = −∂xA(∂xS), so
that equation on S corresponding to (4.3) is given by

∂t∂xS + ∂xA(∂xS) = 0.

This equation is a nonlinear hyperbolic conservation law which is local, con-
trary to (4.3). Therefore uniqueness is ensured by entropy conditions. Since
∂xS is monotonous (−∂xxS = ρ ≥ 0), this can be formulated as a chord
condition on A (see [5]). If in addition A is convex or concave (i.e. if a is
non-decreasing or non-increasing), this selects only increasing or decreasing
shocks.
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5. Existence and uniqueness for the hydrodynamical problem

In this Section, we focus on the proof of Theorem 3.9, which can be split in
3 steps. The first one consists in obtaining the dynamics of aggregates, or in
other words of combinations of Dirac masses. Next we obtain the existence of
duality solutions in the sense of Definition 3.7 by proving first that aggregates
define such a solution, then proceeding to the general case by approximation.
This is exactly the same strategy as for the pressureless gases in [5]. Finally,
uniqueness follows from a careful definition of the flux of the equation. In this
respect, we first underline with an example that Definition 3.7 as it stands
does not give uniqueness, and how the proper definition of the flux singles out
a unique solution.

Indeed, let us consider (2.8)–(2.10) with boundary condition (2.11) where
the initial datum is assumed to be a Dirac mass in 0: ρini = δ0. We have that
(δ0,K ∗ δ0) is a solution to (2.8)–(2.10) with initial data δ0. Actually, the pair

ρ1(t, x) = δx1(t)(x); S1(t, x) = K ∗ ρ1(t, x) =
1
2
e−|x−x1(t)|. (5.1)

turns out to define a solution in the sense of duality in Definition 3.7 for sev-
eral choices of curves x1 with x1(0) = 0. Set b1(t, x) = a(∂xS1)(t, x), and
notice first that, according to Remark 3.4, ρ1 is a duality solution if u1 :=∫ x

ρ1 dx = H(x− x1(t)) is a duality solution of the transport equation. Now,
from Lemma 4.2, b1 satisfies the OSL condition, therefore u1 is a duality solu-
tion of the transport equation as soon as it is solution in the sense of distri-
butions. As detailed in [4], Section 3, this holds true only if u satisfies some
admissibility conditions, namely, the characteristics of the velocity field have
to enter the discontinuity on both side. Since limx→x+

1
b1(x) = a(−1/2) and

limx→x−
1
b1(x) = a(1/2), the velocity of the shock should satisfy a(1/2) >

x′
1(t) > a(−1/2), which furnishes an infinity of solution.

For any of the previous solutions, the generalized flux given by Theo-
rem 3.5–3 is b1Δρ1 = −∂tu1 = −x′

1(t)δx1(t). On the other hand, let us compute
the flux J defined by (3.6). For simplicity, we set here α = 0 in the definition
(2.3) of Φ. With this convention, we get

a(∂xS1)(t, x) =

{−λc, x < x1(t),

λc, x > x1(t),

A(∂xS1)(t, x) =
1
2

{−λcex−x1(t), x < x1(t),

−λce−x+x1(t), x > x1(t).

Obviously we have J = 0, so that the condition âρ = J selects x′
1(t) = 0,

which finally implies x1 ≡ 0 since x1(0) = 0.

5.1. Dynamics of aggregates

Let us first consider the motion of aggregates. We assume that ρini
n is given

by a finite sum of Dirac masses: ρini
n =

∑n
i=1miδx0

i
where x0

1 < x0
2 < · · · < x0

n

and the mi-s are nonnegative. We look for a couple (ρn, Sn) solving in the
distributional sense ∂tρn + ∂xJn = 0 where the flux Jn is given by (3.6) and
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Sn solves (2.10). We recall that it means that Sn = K ∗ ρn where K is defined
in (2.12). Let us set ρn(t, x) =

∑n
i=1miδxi(t). Such a function is a solution in

the sense of distributions of (3.7) if the function un defined by

un(t, x) :=
∫ x

ρn dx =
n∑

i=1

miH(x− xi(t)), (5.2)

where H denotes the Heaviside function, is a distributional solution to

∂tun − ∂xA(∂xSn) + a(∂xSn)Sn = 0. (5.3)

We have

Sn(t, x) =
n∑

i=1

mi

2
e−|x−xi(t)|,

∂xSn(t, x) = −
n∑

i=1

mi

2
sign (x− xi(t))e−|x−xi(t)|. (5.4)

Straightforward computations prove that we have in the distributional sense

∂xA(∂xSn) = a(∂xSn)Sn +
n∑

i=1

[A(∂xSn)]xi
δxi
, (5.5)

where [f ]xi
= f(x+

i ) − f(x−
i ) is the jump of the function f at xi. Injecting

(5.2) and (5.5) in (5.3), we find

−
n∑

i=1

mix
′
i(t)δxi(t) =

n∑
i=1

[A(∂xSn)]xi
δxi
.

Thus the dynamics of aggregates is finally given by

mix
′
i(t) = −[A(∂xSn)]xi(t), for i = 1, . . . , n.

We complement this system of ODEs by the initial data xi(0) = x0
i . More

precisely, recalling that K(x) = 1
2e

−|x|, using (5.4) this latter system can be
rewritten:

mix
′
i(t)=A

⎛
⎝mi

2
+

∑
j �=i

mj∂xK(xj − xi)

⎞
⎠−A

⎛
⎝−mi

2
+

∑
j �=i

mj∂xK(xj − xi)

⎞
⎠.

(5.6)

Recall that, from the definition of the coefficient a in (2.9) with (2.3), a is
nondecreasing and odd, so that A is a convex function. This implies that for
i = 1, . . . , n − 1, x′

i ≥ x′
i+1, therefore, aggregates can collapse in finite time

but an aggregate cannot split. This is a direct consequence of the fact that we
are considering positive chemotaxis, i.e. a is nondecreasing. If there exists a
time t1 for which we have for instance xi(t1) = xi+1(t1), then the dynamics
for t > t1 is defined as above except that we replace mi by mi + mi+1 and
xi(t) = xi+1(t) for t > t1. Moreover A is even, then when n = 1, we have
x′

1 = 0 and x1(t) = x0
1. Thus if aggregates collapse such that they form a
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single aggregate of mass
∑

imi, then this aggregate does not move for larger
times.

5.2. Existence of duality solutions

We have constructed (ρn, Sn) which is a solution of (3.7)–(3.6)–(2.10) in the
distributional sense for the given initial data ρini

n . We recall the following result
due to Vol’pert [28] (see also [2]): if u belongs to BV (R) and f ∈ C1(R) with
f(0) = 0, then v = f ◦ u belongs to BV (R) and

∃ fu with fu = f ′(u) a.e. such that (f ◦ u)′ = fuu
′.

Together with the fact that A is an antiderivative of a such that A(0) = 0,
this result implies that there exists a function ân such that

Jn := −∂x(A(∂xSn)) + a(∂xSn)Sn = ânρn, and ân = a(∂xSn) a.e.

Thus ρn is a solution in the distributional sense of

∂tρn + ∂x(ânρn) = 0.

Moreover, we deduce from (5.4) that a(∂xSn) is piecewise continuous with
the discontinuity lines defined by x = xi, i = 1, . . . , n. We can apply Theo-
rem 3.6 which gives that ρn is a duality solution and that ân is a universal
representative of a(∂xSn). Then the flux is given by a(∂xSn)Δρn = Jn.

Let us yet consider the case of any initial data ρini ∈ Mb(R). We approxi-
mate ρini by ρini

n =
∑n

i=1miδx0
i

with ρini
n ⇀ ρini in Mb(R). By the same token

as above, we can construct a solution (ρn, Sn = K∗ρn) with ρn(t = 0) = ρini
n =∑n

i=1miδx0
i
, which solves in the sense of duality

∂tρn + ∂x(a(∂xSn)ρn) = 0,

in the sense of distributions

∂tρn + ∂xJn = 0, Jn = −∂xA(∂xSn) + a(∂xSn)Sn,

and which satisfies

ânρn = Jn, ân = a(∂xSn) a.e.

Moreover, since ∂xSn is bounded in L∞ uniformly with respect to n by con-
struction, we can extract a subsequence of (a(∂xSn))n that converges in L∞ −
weak∗ towards b. Since from Lemma 4.2, a(∂xSn) satisfies the OSL condition,
we deduce from Theorem 3.5–(4) that, up to an extraction, ρn ⇀ ρ in SM and
ânρn ⇀ âρ weakly in Mb(]0, T [×R), ρ being a duality solution of the scalar
conservation law with coefficient b. With Lemma 4.3, we deduce that ∂xSn →
∂xS a.e., it implies in particular that Jn → J := −∂xA(∂xS) + a(∂xS)S in
D′(R) and that a(∂xSn) → a(∂xS) a.e. By uniqueness of the weak limit, we
have b = a(∂xS). Moreover J = âρ a.e. and ρ satisfies then (3.7). Then (ρ, S)
is a solution as in Theorem 3.9, this concludes the proof of the existence.
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5.3. Uniqueness of solutions

Let us consider yet the study of the uniqueness. As shown above, Definition 3.7
is not sufficient to ensure uniqueness. Therefore, we will use the fact that we
have a duality solution ρ that satisfies (3.7) in D′([0, T ] × R) with the ini-
tial data ρini and with the flux J given by (3.6). This equation leads to the
non-local evolution equation on S (4.1) as stated in Lemma 4.4.

Another key point is the one-sided estimate ∂xxS ≤ S. In fact, if we
consider for instance ρini = 0, then it is obvious that ρ = 0 is a solution of
(2.8)–(2.10). However, if we allow ρ to be nonpositive, i.e. if the correspond-
ing chemoattractant concentration S does not satisfy the one-sided estimate
∂xxS ≤ S, then we can build a simple example of non-uniqueness. Indeed we
have that

ρ(t, x) = δ−x1(t)(x) − 2δ0(x) + δx1(t)(x)

is a duality solution of (2.8)–(2.10) which satisfies (3.7), provided x1(0) = 0
and (5.6) is satisfied. This readily gives

x′
1(t) = A

(
1
2

+ e−x1 +
1
2
e−2x1

)
−A

(
−1

2
+ e−x1 +

1
2
e−2x1

)
.

Here by convexity of A, we have x′
1 ≥ 0.

Theorem 5.1. Let S1 and S2 be two weak solutions in C([0, T ];W 1,1(R)) of
(4.1) with initial data Sini

1 and Sini
2 respectively. If we assume moreover that

∂xS1 and ∂xS2 belongs to L∞([0, T ];BV (R)) and that the one-sided estimate

∂xxSi ≤ Si, i = 1, 2,

holds in the distributional sense. Then there exists a nonnegative constant C
such that

‖S1 − S2‖L∞([0,T ];W 1,1(R)) ≤ C‖Sini
1 − Sini

2 ‖W 1,1(R).

Proof. We start from the entropy inequality (4.2) of Lemma 4.5. Using stan-
dard regularization arguments, it is well-known that we can apply this inequal-
ity to the family of Kružkov entropies ηκ(u) = |u − κ|. Then, the doubling
of variables technique developed by Kružkov allows to justify the following
computation. Assume S1 and S2 are two weak solutions of (4.1), then in the
distributional sense, we have

∂t|∂x(S1 − S2)| + ∂x( sign(∂xS1 − ∂xS2)(A(∂xS1) −A(∂xS2)))

≤ sign(∂xS1 − ∂xS2)
(
∂xK ∗ (A(∂xS1) −A(∂xS2)) + a1S1 − a2S2

−K ∗ (a1S1 − a2S2)
)
,

where we denote a1 = a(∂xS1) and a2 = a(∂xS2). Integrating with respect to
x and using the properties of the convolution product, we deduce
d

dt

∫
R

|∂x(S1 − S2)| dx ≤ ‖∂xK‖∞
∫

R

|A(∂xS1) −A(∂xS2)| dx+ (1 + ‖K‖∞)∫
R

|a1S1 − a2S2| dx.
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The function a being regular, we have
d

dt

∫
R

|∂x(S1 − S2)| dx ≤ C0

∫
R

|∂x(S1 − S2)| dx+ C1

∫
R

|S1 − S2| dx. (5.7)

In the same way as for Eq. (4.1), this leads to
d

dt

∫
R

|S1 − S2| dx ≤ C2

∫
R

|∂x(S1 − S2)| dx+ C3

∫
R

|S1 − S2| dx. (5.8)

Summing (5.8) and (5.7), we deduce that there exists a nonnegative constant
C such that

d

dt
‖S1 − S2‖W 1,1(R) ≤ C‖S1 − S2‖W 1,1(R).

Applying the Gronwall Lemma allows to conclude the proof. �
Proof of uniqueness in Theorem 3.9. Let us assume that we have two

duality solutions (ρ1, S1) and (ρ2, S2) such as in Theorem 3.9. Therefore, from
Lemma 4.4, S1 and S2 are weak solutions of (4.1). Using Theorem 5.1, we
conclude that S1 = S2. Thus ρ1 = K ∗ S1 = K ∗ S2 = ρ2. �

6. Convergence for the kinetic model

In this section we investigate the rigorous derivation of (2.8)–(2.10) from the
microscopic model (2.4). First we state some estimates on the moments of the
solution of the kinetic problem.

Lemma 6.1. Let (fε, Sε) be a solution of the kinetic problem (2.4)–(2.5). Then
for all t ∈ [0, T ] and all ε > 0 we have∫

R

∫
V

|v|kfε dxdv = |v|k|ρini|(R) , k ∈ N.

Proof. Since v ∈ V = {−c, c}, |v| is constant therefore∫
R

∫
V

|v|kfε dxdv = |v|k
∫

R

ρε dx.

The result follows then directly from the mass conservation in (2.4). �
Proof of Theorem 3.10. Let (fε, Sε) be a solution of (2.4)–(2.5). For fixed
ε > 0, we have fε ∈ C([0, T ] × R × V ). Define ρε :=

∫
V
fε dv, Jε :=

∫
V
vfε dv

and a(∂xSε) = −cφ(c∂xSε). We can rewrite the kinetic equation (2.4) as

∂tfε + v∂xfε =
1
ε
(Φ(−v∂xSε)ρε − 2fε).

Taking the zeroth and first order moments, we get

∂tρε + ∂xJε = 0, (6.1)

∂tJε + v2∂xρε =
2
ε
(a(∂xSε)ρε − Jε). (6.2)

From (6.1), we deduce that ∀ t ∈ [0, T ], |ρε(t, ·)|(R) = |ρini|(R).
Therefore, for all t ∈ [0, T ] the sequence (ρε(t, ·))ε is relatively compact in
Mb(R) − σ(Mb(R), C0(R)). Moreover, there exists uε ∈ L∞([0, T ], BV (R))
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such that ρε = ∂xuε. From (6.1), we get that ∂tuε = −Jε and thanks to
Lemma 6.1 we deduce that uε is bounded in Lip([0, T ], L1(R)). This implies
the equicontinuity in t of (ρε)ε. Thus the sequence (ρε)ε is relatively compact
in SM and we can extract a subsequence still denoted (ρε)ε that converges
towards ρ in SM.

We recall that Sε(t, x) = (K ∗ρε(t, ·))(x) where K(x) = 1
2e

−|x|. Denoting
S(t, x) := (K ∗ ρ(t, ·))(x), since ρ ∈ SM, we have ∂xS ∈ L∞([0, T ];BV (R)).
From Lemma 4.3, the sequence (∂xSε)ε converges in L∞w− ∗ and a.e. to ∂xS
as ε goes to 0. Lemma 4.2 ensures that both a(∂xSε) and a(∂xS) satisfy the
OSL condition.

From (6.1)–(6.2), we have in the distributional sense

∂tρε + ∂x(a(∂xSε)ρε) = ∂x(a(∂xSε)ρε − Jε) =
ε

2
∂x(∂tJε + v2∂xρε) = Rε.

(6.3)

Now, for all ψ ∈ C2
c ((0, T ) × R), we deduce from Lemma 6.1∣∣∣∣

∫
(∂tJε+v2∂xρε)∂xψ dxdt

∣∣∣∣≤|v||ρini|(R)‖∂t∂xψ‖L∞ +|v|2|ρini|(R)‖∂xxψ‖L∞ .

This implies that the limit in the distributional sense of the right-hand side
Rε of (6.3) vanishes.

Now we multiply Eq. (2.5) by a(∂xSε) and use again the antiderivative
A of a to obtain

a(∂xSε)ρε = −∂x(A(∂xSε)) + a(∂xSε)Sε, (6.4)

so that we can rewrite the conservation equation (6.3) as follows, in D′(R):

∂tρε + ∂x (−∂xA(∂xSε) + a(∂xSε)Sε) =
ε

2
∂x(∂tJε + v2∂xρε). (6.5)

Taking the limit ε → 0 of Eq. (6.5) in the sense of distributions, we get

∂tρ+ ∂x (−∂xA(∂xS) + a(∂xS)S) = 0 in D′(R), (6.6)

where S(t, x) = (K ∗ ρ(t, ·))(x). Therefore the pair (ρ, S) satisfies (3.7)–(3.6).
In addition, ρ is nonnegative as a limit of nonnegative measures, so that
Lemma 4.1 implies the one-sided estimate ∂xxS ≤ S. Thus we are in posi-
tion to apply Lemma 4.4 and Theorem 5.1, which give uniqueness for S, and
consequently for ρ. Therefore the whole sequence ρε converges to ρ in SM. We
recall that we have chosen the initial data such that ρini

ε = ηε ∗ ρini where ηε

is a mollifier. Therefore ρini
ε ⇀ ρini in Mb(R) − σ(Mb(R), C0(R)).

Thus we have constructed a solution that satisfies (6.6) in the distribu-
tional sense, in other words, we have defined a solution of the problem (2.8)–
(2.10) thanks to its flux. A natural question is to know whether we can define
a velocity corresponding to this flux. From the theory of duality solutions (see
Theorem 3.5), it boils down to show that the above constructed solution is a
duality solution. From Vol’pert calculus [28] we infer the existence of aS such
that aS = a(∂xS) a.e. and

∂x(A(∂xS)) = aS∂xxS.
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Therefore

− ∂x(A(∂xS)) + a(∂xS)S = aSρ a.e. , with aS = a(∂xS) a.e. (6.7)

Using Eq. (6.6) we have in the distributional sense

∂tρ+ ∂x(aSρ) = 0. (6.8)

However, we have proved in Sect. 5.3 that such a solution is unique. We deduce
that the solution (ρ, S) obtained by the hydrodynamical limit above is the
duality solution of Theorem 3.9. It concludes the proof of Theorem 3.10. �

Remark 6.2. In the proof above, the macroscopic flux J defined in (3.6) appears
to be the limit of the microscopic flux Jε. Indeed from (6.2) and (6.4) we deduce
that, in the distributional sense,

Jε −→ J := −∂xA(∂xS) + a(∂xS)S.

This natural definition of the flux allows to get the uniqueness of the solu-
tions of the coupled system (2.8)–(2.10) thanks to equations (4.1)–(4.3). Such
a technique to establish the hydrodynamic limit has been proposed in [18].
But the authors do not state that their limit is a duality solution and do not
define a velocity and therefore a flow corresponding to their flux. In the limit
of the Vlasov–Poisson–Fokker–Planck system, this result has been investigated
in [16].

7. Numerical issue

7.1. Finite time of collapse

Before focusing on the numerical simulations, let us clarify the dynamics of
the model. In the case of n Dirac masses, mi ≥ 0 for i = 1, . . . , n, located
at positions x1 < · · · < xn, we recall that the time evolution is governed by
system (5.6):

mix
′
i(t)=A

⎛
⎝mi

2
+

∑
j �=i

mj∂xK(xj − xi)

⎞
⎠−A

⎛
⎝−mi

2
+

∑
j �=i

mj∂xK(xj − xi)

⎞
⎠ ,

(7.1)

for i = 1, . . . , n, where we recall that A is an antiderivative of a such that
A(0) = 0. We deduce that for all t > 0, and for i = 1, . . . , n,

∃ γi ∈
⎛
⎝−mi

2
+

∑
j �=i

mj∂xK(xj − xi),
mi

2
+

∑
j �=i

mj∂xK(xj − xi)

⎞
⎠

such that x′
i(t) = a(γi(t)).

(7.2)

Proposition 7.1. Let us assume that there exists n ∈ N
∗ such that

ρini(x) =
n∑

i=1

m0
i δx0

i
(x),
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with m0
i ≥ 0, for i = 1, . . . , n. We assume in addition that a is a nondecreas-

ing and odd real function. Then the duality solution ρ of Theorem 3.9 has the
following properties:

1. If n = 1, x1(t) = x0
1 for all t > 0. Then ρ(t) = ρini for all t > 0.

2. For i = 1, . . . , n− 1, x′
i(t) ≥ x′

i+1(t) therefore xi+1 − xi ≤ x0
i+1 − x0

i .
3. There exists c∗ ∈ [x0

1, x
0
n] and T ∗ > 0 such that ρ(t, x) = δc∗(x) for all

t > T ∗.

Proof. The first point is a direct consequence of the even character of A
whereas the second point comes from the convexity of A. Let us then prove
the third point. By convexity of the function A and with (7.1), we have

m1x
′
1 ≥ A

⎛
⎝m1

2
+

n∑
j=2

mj

2
ex0

1−x0
j

⎞
⎠ −A

⎛
⎝−m1

2
+

n∑
j=2

mj

2
ex0

1−x0
j

⎞
⎠ > 0,

and

mnx
′
n ≤ A

⎛
⎝−

n−1∑
j=1

mj

2
ex0

j−x0
n +

mn

2

⎞
⎠ −A

⎛
⎝−

n−1∑
j=1

mj

2
ex0

j−x0
n − mn

2

⎞
⎠ < 0.

As for (7.2), we can rewrite these last inequalities as :

x′
1(t) ≥ a(γ1(0)) > 0, x′

n ≤ a(γn(0)) < 0.

We deduce that there exists a time T ∗ > 0 such that all masses collapse for
t = T ∗ in a single Dirac mass. �

Remark 7.2. Notice that we have in addition the following estimate for T ∗:

T ∗ < (x0
n − x0

1)/(a(γ1(0)) − a(γn(0))).

Corollary 7.3. Let us assume that 0 ≤ ρini ∈ Cc(R) with compact support
[0, L]. Let us denote ρ the duality solution of Theorem 3.9 with initial data
ρini. Then there exists c∗ ∈ [0, L] and T ∗ > 0 such that ρ(t, x) = δc∗(x) for all
t > T ∗.

Proof. Let us approximate ρini by

ρini
n (x) =

n∑
i=1

m0
i δx0

i
(x),

with x0
i = (i − 1)L/n, for i = 1, . . . , n and m0

i =
∫ x0

i+1

x0
i

ρini(dx). From Prop-
osition 7.1, we deduce that there exists c∗n ∈ [0, L] and T ∗

n > 0 such that the
duality solution of Theorem 3.9 with initial data ρini

n is such that ρn(t, x) = δc∗
n

for all t > T ∗
n . Moreover, we have T ∗

n < L/(a(γn
1 (0))−a(γn

n(0))) where we recall
that

−m0
1 +

n∑
j=1

m0
j

2
e−(j−1)L/n < γn

1 (0) <
n∑

j=1

m0
j

2
e−(j−1)L/n, (7.3)
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and

−
n∑

j=1

m0
j

2
e(j−n)L/n < γn

n(0) < m0
n −

n∑
j=1

m0
j

2
e(j−n)L/n. (7.4)

By stability results on duality solutions in Theorem 3.5 (see also Sect. 5.1), we
deduce that ρn ⇀ ρ in SM as n → +∞. Taking the limit in (7.3) and (7.4),
we deduce by continuity of ρini that

lim
n→+∞ γn

1 (0) =
∫ L

0

ρini(x)e−x dx

and

lim
n→+∞ γn

n(0) = −
∫ L

0

ρini(x)e−L+x dx.

Moreover, since ρini is continuous with compact support in [0, L] we have
ρini(0) = ρini(L) = 0. We deduce that the sequence (T ∗

n)n∈N∗ is bounded. Thus
there exists a time T ∗ independent of n such that ρn(t) = δc∗

n
for all t > T ∗.

Taking the limit when n → +∞, we conclude that there exists c ∈ [0, L] such
that ρ(t) = δc for all t > T ∗. �
Remark 7.4. Taking a = Id, therefore A(x) = x2/2, we deduce from (7.1) that

x′
i =

∑
j �=i

mj∂xK(xj − xi).

We recover the dynamics of the aggregation equation as noticed by Carrillo et
al. in [8]. These authors prove in particular the concentration in finite time of
the total mass in the center of mass. In the framework of the present work,
which is focused on applications to chemotaxis, a is not assumed to be the
identity function, so that the center of mass is not conserved. A numerical
evidence of this phenomenon will be proposed in the last subsection of this
paper.

7.2. Discretization

The numerical resolution of system (2.8)–(2.10) is far from obvious. A first
naive idea consists in applying a standard splitting method where we treat
separately the scalar conservation law (2.8) and the elliptic equation (2.10).
It turns out that such a scheme is unable to recover the correct definition of
the flux and therefore of the product a(∂xS) by ρ. In particular, it leads to
stationary Dirac masses.

A second idea consists in solving the distributional conservation law (3.7)
by a finite volume method. It involves a discretization of the flux J on the inter-
face of each cell of the mesh, and thus one could expect a correct computation
of the flux, and therefore a convenient interpretation of the product. However,
this definition of the flux involves the calculation of two derivatives of S. Using
a centered scheme to discretize this quantity induces spurious oscillations as
it is usually noticed for centered scheme on scalar conservation laws. We can
then upwind the scheme depending on the sign of a(∂xS) computed at previ-
ous iteration. But in doing so, we actually specify a value for a(∂xS) in the
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definition of the product a(∂xS) with ρ, and this can lead to capture wrong
solutions.

Next, one can think of solving Eq. (4.1) on S, motivated by the fact that
it plays a key part in the uniqueness, and that ρ can be recovered readily from
S. However the equation is non local and its numerical resolution appears to
be quite complicated and with a high computational cost (even in the one
dimensional setting).

Thus we prefer to use a method based on the dynamics of aggregates,
detailed in Sect. 5.1. We use the principle of a particle method in which we
approximate the density by a sum of Dirac masses. Then the motion of these
pseudo-particles is approximated by discretizing system (5.6) with an explicit
Euler scheme. More precisely, let us assume that we have an approximation of
ρ at time tn = nΔt, given by

ρn(x) =
In∑
i=1

mn
i δyn

i
(x), (7.5)

where mn
i > 0 is the mass allocated to the pseudo-particle at the position yn

i

with yn
1 < yn

2 < · · · < yn
In for In ∈ N

∗. Then an approximation of the potential
at time tn is given by

Sn(x) =
In∑
i=1

mn
i e

−|x−yn
i |.

Using an explicit Euler scheme, we compute the new position

yn+1
i = yn

i +
Δt
mn

i

A

⎛
⎝−

i−1∑
j=1

mn
j

2
eyn

j −yn
i +

mn
i

2
+

In∑
j=i+1

mn
j

2
eyn

i −yn
j

⎞
⎠

− Δt
mn

i

A

⎛
⎝−

i−1∑
j=1

mn
j

2
eyn

j −yn
i − mn

i

2
+

In∑
j=i+1

mn
j

2
eyn

i −yn
j

⎞
⎠ .

Next, we test if some pseudo-particles have collided during the time step Δt.
If yn+1

j+1 ≤ yn+1
j for j ≥ 1, then the pseudo-particles j and j + 1 have collapsed

and form a unique pseudo-particle which has the mass mn
j +mn

j+1. In this case,
we decide to set this pseudo-particle at the position 1

2 (yn+1
j+1 + yn+1

j ) and set
mn+1

j = mn
j + mn

j+1, moreover we have therefore In+1 = In − 1. Finally, for
given initial sequences (y0

i )i=1,...,I0 and (m0
i )i=1...,I0 of size I0, we can construct

(yn
i ) and (mn

i ) of size In as above.
Using well-known result on the convergence of Euler scheme, we deduce

that, for given initial data (y0
i )i=1,...,I0 , (m0

i )i=1...,I0 and I0, yn
i defined above

converges to the solution xi(t) of (5.6) when Δt tends to 0 such that tn → t.
Using the convergence result in Sect. 5.2, we deduce that the function ρn in
(7.5) converges in SM to the unique duality solution of Theorem 3.9. Then
the method introduced above is convergent provided we discretize the initial
data ρini in such a way that ρ0(x) :=

∑I0

i=1m
0
i δy0

i
(x) converges in Mb to ρini.
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Moreover, we verify easily that we have

I0∑
i=1

m0
i =

In∑
i=1

mn
i , and In ≤ I0, for all n ∈ N,

and that the approximation ρn of ρ(tn) is nonnegative.

7.3. Numerical results

In this Section, we present numerical simulations of model (2.8)–(2.10) using
the algorithm described above. We first approximate the initial data ρini ≥ 0,
which is assumed to be compactly supported for numerical purpose, in the
following way: we introduce a discretization xj = x0 + jΔx of the bounded
domain which includes the compact support of ρini and we define

m0
i =

∫ xi+
Δx
2

xi− Δx
2

ρini(x) dx.

Then the sequence (y0
j )j is defined by the nodes (xi) for which m0

i is not
zero, and I0 correspond to the number of i ∈ N such that m0

i is not zero. We

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

de
ns

ity
 ρ

t = 0 s

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

po
te

nt
ia

l S

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

de
ns

ity
 ρ

t = 0.8 s

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

10

20

30

40

po
te

nt
ia

l S

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

de
ns

ity
 ρ

t = 6.4 s

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

20

40

60

po
te

nt
ia

l S

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

de
ns

ity
 ρ

t = 16 s

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

20

40

60

po
te

nt
ia

l S

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

de
ns

ity
 ρ

t = 27.2 s

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

20

40

60

po
te

nt
ia

l S

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

de
ns

ity
 ρ

t = 40 s

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
0

20

40

60

80

po
te

nt
ia

l S

Figure 1. Dynamics of the density ρ (top) and of the
potential S (bottom) for an initial density given by the sum
of two Gaussian
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construct then the approximation of ρini by

ρ0(x) :=
I0∑

i=1

m0
i δy0

i
(x).

We present in Fig. 1 the dynamics of the density ρ and of the chemo-
attractant concentration S for an initial data ρini given by the sum of two
Gaussian functions, more precisely

ρini(x) = e−20(x−0.5)2 + e−20(x+0.5)2 .
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Figure 2. Dynamics of the density ρ (top) and of the
potential S (bottom) for an initial density given by the sum
of three Gaussian
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Figure 3. Dynamics of the density ρ (top) and of the
potential S (bottom) with the dynamics of the center of mass
represented by a red square. The center of mass moves

As expected, we first observe the formation of two Dirac masses at the position
where ∂xS initially vanishes. Then, the two aggregates collapse in the center.
Looking at the time evolution, we notice that the first step of formation of
aggregates is fast compared to the time of collapse.

In Fig. 2 we display the dynamics for an initial data given by the sum of
three Gaussian functions:

ρini(x) = e−10(x−1)2 + e−20(x−0.2)2 + e−20(x+0.5)2 .

We observe the formation of three Dirac masses that moves according to the
dynamical system (7.1). They collapse then in finite time.

Finally, as we have already noticed, we evidence that the center of mass
is not fixed. For instance, Fig. 3 represents the dynamics of the density and of
the potential for an initial data made of one big bump with one small bump:

ρini(x) = 5e−20(x−1)2 + 0.5e−20(x+0.5)2 .

The square shows the time dynamics of the center of mass. We observe that the
center of mass at the final time is not located at the same position as at the
initial time.
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