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1. Introduction

Let Ω be a bounded domain in RN ,N ≥ 3, containing the origin. For T > 0, let
us denote by Q the cylinder Ω×(0, T ), and by Γ the lateral surface ∂Ω×(0, T ).
We will consider the following nonlinear parabolic Cauchy–Dirichlet problem

⎧
⎪⎨

⎪⎩

ut − div (a(x, t, u,∇u)) = λ
u

|x|2 + f in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω,

(1.1)

where λ is a positive constant and f is a function in Lr(0, T ;Lq(Ω)), r ≥ 1,
q ≥ 1. Here a(x, t, σ, ξ) : Q× R × RN → RN is a Caratheodory function (i.e.
it is continuous with respect to (σ, ξ) for a.e. (x, t) ∈ Q, and measurable with
respect to (x, t) for every (σ, ξ) ∈ R × RN ) satisfying

a(x, t, σ, ξ)ξ ≥ �1|ξ|2, �1 > 0, (1.2)

|a(x, t, σ, ξ)| ≤ �2[|ξ| + |σ| + μ(x, t)], �2 > 0, μ ∈ L2(Q), (1.3)

(a(x, t, σ, ξ) − a(x, t, σ, ξ′)) · (ξ − ξ′) > 0, ξ �= ξ′. (1.4)
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This paper analyzes the existence and the regularity of the solutions of these
nonlinear parabolic equations, emphasizing the action of the singular term
u

|x|2 .

The model problem is the following
⎧
⎪⎨

⎪⎩

ut − Δu = λ
u

|x|2 + f in Q,

u(x, t) = 0 on Γ,
u(x, 0) = u0(x) in Ω.

(1.5)

In [7] it is proved that if the data f and u0 are nonnegative and not both iden-
tically zero (otherwise the result is false because u ≡ 0 is a solution) there is a
dimension dependent constant ΛN such that problem (1.5) has no solution for
λ > ΛN . More in details, ΛN =

(
N−2

2

)2
is the optimal constant in the Hardy’s

inequality
∫

Ω

|∇φ|2 dx ≥ ΛN

∫

Ω

|φ|2
|x|2 dx, ∀φ ∈ C∞

0 (Ω), (1.6)

and it is not attained (see for instance [18] and [15]).
Here, under the condition λ < ΛN , that in the general case of problem

(1.1) becomes λ < ρ1ΛN , we prove existence and regularity results for the
general problem (1.1).

The presence of the singular potential has a strong influence on the reg-
ularity of the solutions. Even when the summability coefficients of the datum
f are sufficiently large, namely,

1
r

+
N

2q
< 1, (zone A in Fig. 1 below ) (1.7)

differently from the classical case λ = 0 (see [6]), we cannot expect bounded
solutions because, as proved in [7], every solution of the model problem (1.5)
(if the data f and u0 are nonnegative and not both identically zero) satisfies

u(x, t) ≥ C

|x|α1
, (x, t) ∈ Ω′ × [ε, T ), (1.8)

for every ε ∈ (0, T ) and Ω′ ⊂⊂ Ω, where the constant C depends only on ε
and Ω′ and α1 is the smallest root of α2 − (N − 2)α+ λ = 0. Notice that the
previous result holds true for every choice of 0 < λ < ΛN , and hence also for
small value of λ.

It would be reasonable to expect that if the presence of this singular
potential produces a lack of regularity when the datum is “good”, i.e, so reg-
ular as we want, all the more reason there will be a lack of regularity also for
a less regular datum.

Surprisingly it is not ever the case. Indeed what happens when (1.7) is
not satisfied depends not only on how large are the coefficients of summability
r and q but also, differently from the previous case, on the size of λ.

More in details, (see Theorem 1.3 below), if λ is not too large, i.e. if
0 < λ < λ∗, where λ∗ can be explicitly determined in dependence on N , q,
r and the coercitivity constant ρ1 (see Eq. (1.24)), for every choice of the
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summability exponents r and q, also very small, we obtain the existence of
a solution having the same regularity of the solutions of the same parabolic
problem but with zero singular potential (i.e (1.1) with λ = 0). More in details
there exists a constant γ∗ > 1

2 (see Eq. (1.25)), that can be given explicitly
in dependence on r, q and N , and is the same value determined in [20] (see
Theorem 9.1, chap. 3) and in [14] for λ = 0, such that

[(1 + |u|)γ − 1]sign(u) ∈ V 2(Q) ≡ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

(1.9)

with γ = γ∗. Moreover, if the exponents r and q are sufficiently large, namely,

N

2q
+

1
r

≤ 1 +
N

4
and q ≥ 2N

N + 2
, q ∈ (1,+∞), r ∈ (1,+∞),

(zone 2, 3 and 4 of Fig. 2) (1.10)

then γ∗ > 1 and hence u ∈ V 2(Q).
Notice that the regularity (1.9) implies for example (see Remark 1.9 for

further results) that

u ∈ L2γ∗(0, T ;L2∗γ∗(Ω)), where 2∗ ≡ 2N
N − 2

. (1.11)

The regularity 2∗γ∗ in the space variable that we prove for 0 < λ < λ∗ seems
to be sharp. As a matter of fact, in the case of the model problem (1.5), con-
dition (1.8) implies, assuming for example that the ball B1 of radius one and
centered in the origin is contained in Ω, that

+∞ >

∫ T

T
2

∫

B1

|u(x, t)|2∗γ ≥ T

2

∫

B1

C

|x|α12∗γ
,

and this happens if and only if

α12∗γ < N. (1.12)

For γ = γ∗, (1.12) becomes

0 < λ < λ∗.

If λ is large, that is if λ∗ ≤ λ < ρ1ΛN and r and q satisfy (1.10), we have
again that [(1 + |u|)γ − 1]sign(u) ∈ V 2(Q) with γ > 1 but obviously γ < γ∗
depending now also on the size of λ in a continuous and decreasing way.

Differently from the parabolic case, there is an extensive literature on
elliptic problems with a Hardy potential (see for example [2–5,13,17,23]). How-
ever, it is not known if a similar phenomenon holds true in the stationary case,
i.e., what happens to the regularity of the solutions for λ not too small. Hence
this argument will be treated in a forthcoming paper (see [22]).

Finally, we have thought in a different way to obtain further summability
results (see Sect. 4). Although there aren’t bounded solutions, it is difficult to
believe that more summability properties of the datum f don’t imply more
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summability properties of the solution. It seems to be reasonable to hope that
the case when f ∈ Lr(0, T ;Lq(Ω)), with r and q satisfying

1
r

+
N

2q
< 1, (zone A in Fig. 1 below ) (1.13)

(that, as said before, in absence of a Hardy potential produces the bounded-
ness of all the solutions belonging to the energy space V 2(Q)) produces more
regularity respect to the case when f is less regular.

For sake of simplicity, we have restricted this study to the case of the
model problem (1.5) and we have proved that, as we expect, the regularity of
the solutions increases with the regularity of the datum f . In particular, if the
summability coefficients r and q satisfy (1.13) for every 0 < λ < ΛN , there
exists a solution u of (1.5) satisfying

u|x|α1 ∈ L∞(Q), (1.14)

where, as before, α1 is the smallest root of α2 − (N − 2)α+ λ = 0, i.e.

α1 =
N − 2

2
−

√
(
N − 2

2

)2

− λ. (1.15)

We notice explicitly that the previous regularity result holds without any
restriction on λ.

We denote α2 the other root, that is

α2 =
N − 2

2
+

√
(
N − 2

2

)2

− λ. (1.16)

Such roots appear in the radial solutions |x|−α1 , |x|−α2 to the equation

− Δu− λ
u

|x|2 = 0. (1.17)

Notice that α1 is an increasing and continuous function in λ; hence for 0 ≤
λ ≤ ΛN , we have α1(0) = 0 ≤ α1(λ) ≤ α1(ΛN ) = N−2

2 .
Thus for λ that tends to zero the regularity result (1.14) becomes the

classical boundedness result of [6].
Moreover we have studied also the case when (1.13) is not satisfied and

again we have obtained regularity results that hold true for every choice of λ,
but that obviously are influenced by its size (for details see Sect. 4).

Let us represent the summability of the datum f ∈ Lr(0, T ;Lq(Ω)) in a
diagram with axes 1

q and 1
r . Since r, q ∈ [1,+∞], then all the possible cases

of summability are inside of the square [0, 1] × [0, 1] (we use the notation
1
∞ = 0). We design two squares with different summability cases and that we
will explain in next sections.
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Figure 1. Summability cases

In Fig. 1 the zones A, C and E are defined by

Zone A:
1
r

+
N

2q
< 1,

Zone C:
Nr

N + 2(r − 1)
≤ q <

N

2
r′, where

1
r

+
1
r′ = 1,

Zone E: 1 < q <
Nr

N + 2(r − 1)
,

delimited by the lines

Line B:
1
r

+
N

2q
= 1, Line D: q =

Nr

N + 2(r − 1)
,

Line F: r = ∞, q > 1, Line G: q = 1, r > 1, Line H: r = 1, q > 1.

In Fig. 2, the zones 2 and 3 are separated by the line r = 2 while the zones
2 and 6 are separated by the line N

2q + 1
r = 1 + N

4 . Notice that the zona C in
Fig. 1, can be obtained by the union of the zone 2, 3 and 6 in the Fig. 2, while
the zone E in Fig. 1 can be obtain by putting together the line q = 2N

N+2 and
the zones 4 and 5 in Fig. 2.

Now we enounce our results whose proofs can be found in the following
sections.

1.1. Statement of the results

Before stating our results we recall the definition of a solution to (1.1).

Definition 1.1. We say that u ∈ L∞(0, T ;L1(Ω))∩L1(0, T ;W 1,1
0 (Ω)) is a weak

supersolution (subsolution) to problem (1.1), if a(x, t, u,∇u) ∈ L1(Q), |u|
|x|2 ∈

L1(Q), f ∈ L1(Q) and for all φ ∈ C∞(Q) such that φ = 0 in a neighborhood
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Figure 2. Summability cases

of Γ ∪ {Ω × {T}} and φ ≥ 0 we have
∫ T

0

∫

Ω

{−φtu+ a(x, t, u,∇u)∇φ} dxdt ≥ (≤)

∫ T

0

∫

Ω

(λ
u

|x|2 + f)φdxdt +
∫

Ω

u0φ(x, 0) dx. (1.18)

If u is a super and sub weak solution, then we say that u is a weak solution.

We start studying the following case

N

2q
+

1
r

≤ 1 +
N

4
and q ≥ 2N

N + 2
, q ∈ (1,+∞), r ∈ (1,+∞). (1.19)

Notice that in this case the values
(

1
r ,

1
q

)
belong to the zones 1, 2, 3, 4 of

Fig. 2 and in absence of a singular potential this regularity of the datum f
guarantees the existence of a solution in the energy space V 2(Q). The follow-
ing result states that the same also happens in presence of a Hardy potential.
More in details we have.

Theorem 1.2. Assume (1.2)–(1.4). If f ∈ Lr(0, T ;Lq(Ω)) satisfies (1.19), then
there exists a solution u ∈ V 2(Q) to problem (1.1), for all λ < �1ΛN and
u0 ∈ L2(Ω), where �1 is the coercivity constant defined in (1.2) and ΛN is the
optimal Hardy constant defined in (1.6).

Indeed, as just said in the introduction, it is possible to prove further
regularity results when (1.19) holds true. Moreover it is possible to prove the
existence (and the regularity) of solutions also when (1.19) is not satisfied and
λ is not too large. We state these results all together in the following theorem.
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Theorem 1.3. Let us assume (1.2)–(1.4), f∈Lr(0, T ;Lq(Ω)) where r ∈ (1,+∞),
q ∈ (1,+∞) and u0 ∈ L∞(Ω). If

1
r

+
N

2q
≤ 1, (zone A in Fig. 1) (1.20)

then for every 0 < λ < �1ΛN there exists a weak solution u of (1.1) satisfying

[(|u| + 1)γ − 1]sign(u) ∈ V 2(Q) ∩ Lp(0, T ;Ls(Ω)), p =
4γm

N(m− 2)
,

s = γm, ∀ m ∈ [2, 2∗], (1.21)

for every γ < γ∗, where γ∗ > 1 is defined as

γ∗ = γ∗(λ) =
ΛN�1 +

√
ΛN�1(ΛN�1 − λ)
λ

. (1.22)

If otherwise
1
r

+
N

2q
> 1, (zones C and E in Fig. 1) (1.23)

there exists a constant λ∗ ∈ (0, �1ΛN ) given by the following formula

λ∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ1 =�1
N(q − 1)(N − 2q)

2q2
=

�1N
2

q′q∗∗ , if 1<q<
Nr

N + 2(r − 1)
,

λ2 =�1(N−2)2
(

1

q
− 2

r′N

)(
1

q′ +
2

r′N

)

, if
Nr

N + 2(r − 1)
≤ q <

N

2
r′,

(1.24)

such that for every 0 < λ < λ∗ there exists a weak solution u of (1.1) satisfying
(1.21) with γ = γ∗, where γ∗ > 1

2 is defined as follows

γ∗ =

⎧
⎪⎪⎨

⎪⎪⎩

γ2 =
1

2

qrN

Nr − 2q(r − 1)
if

Nr

N + 2(r − 1)
≤ q <

N

2
r′, (zone C in Fig. 1),

γ1 =
1

2

q(N − 2)

N − 2q
=

q∗∗

2∗ if 1 < q <
Nr

N + 2(r − 1)
, (zone E in Fig. 1).

(1.25)

Finally if we assume λ∗ ≤ λ < �1ΛN and

1 <
N

2q
+

1
r

≤ 1 +
N

4
and q ≥ 2N

N + 2
, (zones 2, 3 and 4 in Fig. 2) (1.26)

there exists a weak solution u of (1.1) satisfying (1.21) for every γ < γ∗, where
γ∗ > 1 is as in (1.22).

Here we have used the following notations

q∗ =
qN

N − q
, q∗∗ = (q∗)∗ =

qN

N − 2q
, and

1
r

+
1
r′ = 1.

Remark 1.4. Notice that when λ is not too large, that is if 0 < λ < λ∗, and
(1.23) holds true, the Hardy potential doesn’t influence the regularity of the
solution we have found. As a matter of fact, the regularity (1.21) with γ = γ∗
is the same regularity proved in absence of the Hardy potential (see [14]).
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On the contrary, in all the other cases, i.e. if (1.23) and λ∗ ≤ λ < �1ΛN

hold or if (1.20) is satisfied, the Hardy potential influence the regularity of u.

Remark 1.5. Observe that γ∗ tends to +∞ for λ that tends to zero. Hence if
(1.20) holds true the influence of the Hardy potential decreases with λ and for
λ which goes to zero we get the classical boundedness result of [6].

Remark 1.6. Notice that it results γ∗ ≥ 1 if and only if (1.26) holds true. More-
over if (1.26) is assumed, for λ → λ∗ we get γ∗ → γ∗; hence if (1.26) holds the
exponent γ is a continuous function of λ in all the interval (0, �1ΛN ). Finally
if λ∗ < λ < ρ1ΛN and (1.26) hold true it results γ∗ < γ∗ (since γ∗(λ) is a
decreasing function of λ) and hence also in this case the Hardy potential pro-
duces a reduction of regularity which decrease (in a continuous way) with λ.

Remark 1.7. Notice that the condition γ < γ∗ (with γ∗ as in (1.22) ) seems
sharp since when �1 = 1 it becomes (1.12).

Remark 1.8. For sake of simplicity we have assumed u0 ∈ L∞(Ω) but the
result of Theorem 1.3 holds if u0 ∈ L2γ(Ω), where γ is as above.

Remark 1.9. Notice that choosing m = 2∗ in (1.21), we get the best sum-
mability exponent in the spacial variable (i.e. 2∗γ ) together with the lower
summability exponent in the time variable (i.e. 2γ) that is

u ∈ L2γ(0, T ;L2∗γ(Ω)). (1.27)

In particular if 0 < λ < λ∗ and

if 1 < q <
Nr

N + 2(r − 1)
, (area E in the Fig. 1); (1.28)

we have that (1.27) holds with

2γ = 2γ1 = p1 =
2
2∗ q

∗∗ =
q(N − 2)
(N − 2q)

> q, 2∗γ = 2∗γ1 = s1 ≡ q∗∗,

while if 0 < λ < λ∗ and

if
Nr

N + 2(r − 1)
≤ q <

N

2
r′, (zone C in Fig. 1), (1.29)

(1.27) holds with

2γ = 2γ2 =
qrN

Nr − 2q(r − 1)
, 2∗γ = 2∗γ2 =

qrN2

[Nr − 2q(r − 1)])N − 2)
.

Finally (if 0 < λ < λ∗), choosing m = 2N+2
N in (1.21), we get p = s and hence

u ∈ Ls̄(Q), s̄ = 2γ
N + 2
N

, (1.30)

that is

s̄ = s̄1 ≡ q(N2 − 4)
N(N − 2q)

,

if (1.28) holds.
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Otherwise (i.e. if (1.29) holds) we have

u ∈ Ls̄(Q), s̄ = s̄2 ≡ qr(N + 2)
Nr + 2q − 2qr

.

Moreover in this last case (zone C in Fig. 1), choosing m = 2 + 4 q′

r′N , we get

u ∈ Lp2(0, T ;Ls2(Ω)), p2 = ρr′, s2 = ρq′, ρ =
rN(q − 1) + 2q(r − 1)

r(N − 2q) + 2q
.

(1.31)

Remark 1.10. We observe that summability results for Du are proved in the
proof of Theorem 1.3. In particular, if (1.23) is satisfied but (1.26) does not
hold (i.e. in zones 5 and 6 of Fig. 2) we have that

Du ∈ (LM (Q))N , ∀0 < λ < λ∗,

where M > 1 is defined by M = 1 +
√

1 − N(1−γ∗)
γ∗(N+2) , with γ∗ as in (1.25) (for

details, see Remark 3.2).

In the following section we give some preliminary results while in Sect. 3
we prove the previous results. Finally, further regularity results can be found
in Sect. 4.

2. Preliminary results

We recall some embedding properties we will use in the following.

Lemma 2.1. Let v be a function in W 1,h
0 (Ω) ∩ Lρ(Ω), with h ≥ 1 and ρ ≥ 1.

Then there exists a positive constant C1, depending only on N,h and ρ, such
that

‖v‖Lη(Ω) ≤ C1‖∇v‖θ
Lh(Ω)‖v‖1−θ

Lρ(Ω), (2.1)

for every η and θ satisfying

0 ≤ θ ≤ 1, 1 ≤ η < +∞,
1
η

= θ

(
1
h

− 1
N

)

+
1 − θ

ρ
.

Proof. See [21], Lecture II. �

A first and immediate consequence of the previous lemma is the following
embedding result

∫

Q

|v|σ ≤ C

[

sup
[0,T ]

∫

Ω

|u|ρ dx
] h

N ∫

Q

|∇v|h,

which holds for every function v ∈ Lh(0, T ;W 1,h
0 (Ω)) ∩ L∞(0, T ;Lρ(Ω)), with

h ≥ 1, ρ ≥ 1 and σ = h(N+ρ)
N (see [17], Proposition 3.1).

For h = 2, we get the following result.
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Lemma 2.2. Let v be a function in L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;Lρ(Ω)), with

ρ ≥ 1. Then v belongs to Lm(Q), with m = 2N+ρ
N .

A second consequence of (2.1) is the following immersion property.

Lemma 2.3. Every function v belonging to V 2(Q) belongs also to Lδ(0, T ;
Lη(Ω)) for every η ∈ [2, 2∗] and δ = 4η

N(η−2) , where we use the notation
1
0 = +∞.

Proof. Consider inequality (2.1) with h = ρ = 2. Thus it results 1
η = 1

2 − θ
N for

every fixed θ ∈ [0, 1]. Elevating to the power δ = 2
θ = 4η

N(η−2) and integrating
in the time variable we deduce

(∫ T

0

‖v‖δ
Lη(Ω)dt

) 1
δ

≤
[

C

∫ T

0

‖∇v‖θδ
2 ‖v‖(1−θ)δ

2

] 1
δ

≤ C
1
δ ‖v‖1−θ

L∞(0,T ;L2(Ω))

[∫ T

0

‖∇v‖θδ
2 dt

] 1
δ

,

from which the assert follows recalling the definition of δ. �
Let s ∈ R and denote Lr

s(Ω) the following set,

Lr
s(Ω) = {f measurable, such that

∫

Ω

|x|−rs|f |r dx < ∞}.

Moreover, we define W 1,r
0,s (Ω) as the closure of C∞

c (Ω) with the norm

‖f‖r
Lr

s(Ω) =
∫

Ω

|x|−rs|∇f |r dx < ∞,

and we denote V 2
α1

(Q) ≡ L∞(0, T ;L2
α1

(Ω)) ∩ L2(0, T ;W 1,2
0,α1

(Ω)). We have the
following immersion properties.

Proposition 2.4 (Caffarelli–Kohn–Nirenberg). Let be N ≥ 3 and suppose that
p, q, r, s, k, σ and a are real constants and p, q ≥ 1, r > 0, 0 ≤ θ ≤ 1 satisfying

1
p

+
s

N
> 0 and

1
q

+
k

N
> 0.

Denote m = θσ + (1 − θ)k. There exists a positive constant C such that for
every u ∈ C∞

0 (RN ) we have that

‖|x|mu‖Lr(RN ) ≤ C ‖|x|s|∇u|‖θ
Lp(RN )

∥
∥|x|ku∥∥1−θ

Lq(RN )
, (2.2)

if and only if the following equalities hold
1
r

+
m

N
= θ

(
1
p

+
s− 1
N

)

+ (1 − θ)
(

1
q

+
k

N

)

,

0 ≤ s− σ if θ > 0,

and

s− σ ≤ 1 if θ > 0 and
1
r

+
m

N
=

1
p

+
s− 1
N

. (2.3)
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Notice that by density arguments the previous result holds with R
N

replaced by Ω in (2.2) if u ∈ Lq
−k(Ω) ∩ W p

0,−s(Ω). A consequence of Prop-
osition 2.4 is the following immersion property.

Lemma 2.5. Every function v belonging to V 2
α1

(Q) belongs also to Lδ(0, T ;
Lη

α1
(Ω)) for every η ∈ [2, 2∗] and δ = 4η

N(η−2) .

Proof. Consider inequality (2.3) with p = q = 2, m = s = k = −α1 and r = η.
Thus it results 1

η = 1
2 − θ

N for every fixed θ ∈ [0, 1]. Elevating (2.2) (written
in Ω) to the power δ = 2

θ = 4η
N(η−2) and integrating in the time variable we

deduce
(∫ T

0

‖|x|−α1v‖δ
Lη(Ω)dt

) 1
δ

≤
[

C

∫ T

0

‖|x|−α1∇v‖θδ
2 ‖|x|−α1v‖(1−θ)δ

2

] 1
δ

≤ C
1
δ ‖v‖1−θ

L∞(0,T ;L2
α1

(Ω))

[∫ T

0

‖|x|−α1∇v‖θδ
2 dt

] 1
δ

,

from which the assert follows recalling the definition of δ. �

As a consequence of the Caffarelli–Kohn–Nirenberg inequalities in Prop-
osition 2.4, we have also the following Sobolev’s weight inequality.

Theorem 2.6 (Sobolev’s weight inequality). Let u ∈ W 1,2
0,γ (Ω) with γ < N−2

2 .
Then there exists a positive constant CSob = C(N, γ) such that

⎛

⎝

∫

Ω

|u|2∗ |x|−2∗γdx

⎞

⎠

1/2∗

≤ CSob

⎛

⎝

∫

Ω

|∇u|2|x|−2γdx

⎞

⎠

1/2

, (2.4)

where 2∗ = 2N
N−2 . Notice that for γ = 0, we have the classical Sobolev inequality

⎛

⎝

∫

Ω

|u|2∗
dx

⎞

⎠

1/2∗

≤ CS

⎛

⎝

∫

Ω

|∇u|2dx
⎞

⎠

1/2

. (2.5)

We recall a very well known lemma, useful to handle L∞ estimates, proved
by Stampacchia in [25].

Lemma 2.7. Let us suppose that ϕ is a real, non negative and non increasing
function verifying

ϕ(h) ≤ C

(h− k)δ
[ϕ(k)]ν ∀h > k > k0, (2.6)

where C and δ are positive constants and ν > 1. Then there exists a positive
constant d such that

ϕ(k0 + d) = 0.

We conclude with the classical compactness result of Simon.
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Lemma 2.8 (cf. [24], Corollary 4, p. 85). Let X,B, and Y be Banach spaces
such that

X ⊂ B ⊂ Y,

with compact imbedding X → B. Let F be bounded in Lq(0, T ;X) where 1 ≤
q < ∞, and ∂F

∂t = {∂f/∂t : f ∈ F} be bounded in L1(0, T ;Y ). Then F is
relatively compact in Lq(0, T ;B).

We notice explicitly that in all the paper the use of the test functions
can be made rigorous by means of Steklov averaging process (see for example
chapter 1 of [17]).

3. Proof of Theorems 1.2 and 1.3

3.1. Proof of Theorem 1.2

For every n ∈ N let us consider un ∈ V 2(Q) ∩ L∞(Q) the solution to the
approximated problem

⎧
⎪⎪⎨

⎪⎪⎩

(un)t − div (a(x, t, un,∇un)) = λ
un

|x|2 + 1
n

+ Tn(f) in Q,

un(x, t) = 0 on ∂Ω × (0, T ),

un(x, 0) = u0(x) in Ω,

(3.1)

where Tn is the truncation function, i.e.

Tn(s) =

⎧
⎨

⎩

s, if |s| ≤ n,

s

|s|n, if |s| > n.
(3.2)

We prove now the following estimate

‖un‖L∞(0,T ;L2(Ω)) + ‖∇un‖L2(Q) ≤ c0, (3.3)

where c0 is a constant independent on n.
Take un as a test function in (3.1). For every t ∈ (0, T ) we have

1
2

∫

Ω

|un|2(t) dx+ �1

∫ t

0

∫

Ω

|∇un|2 dx dτ

≤ λ

∫ t

0

∫

Ω

|un|2
|x|2 dx dτ +

∫ t

0

∫

Ω

fun dx dτ +
1
2

∫

Ω

|u0(x)|2dx. (3.4)

Let us estimate the first term on the right hand of (3.4). Since λ < �1ΛN ,
there exists κ0 ∈ (0, �1) such that λ = (�1 − κ0)ΛN . Thus applying Hardy’s
inequality we have

λ

∫ t

0

∫

Ω

|un|2
|x|2 dx dτ ≤ (�1 − κ0)

∫ t

0

∫

Ω

|∇un|2 dx dτ,

that with (3.4) gives

1
2

∫

Ω

|un|2(t) dx+κ0

∫ t

0

∫

Ω

|∇un|2 dx dτ≤
∫ t

0

∫

Ω

fun dx dτ+
1
2

∫

Ω

|u0(x)|2dx.
(3.5)
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If f ∈ Lr(0, T ;Lq(Ω)) with q′ ≤ 2 we have

∫ t

0

∫

Ω

fun dx dτ ≤
(∫ t

0

(∫

Ω

|f |qdx

) r
q

dτ

) 1
r

⎛

⎝

∫ t

0

(∫

Ω

|un|q′
dx

) r′
q′

dτ

⎞

⎠

1
r′

≤ c1

⎛

⎝

∫ t

0

(∫

Ω

|un|2dx

) r′
2

|Ω|1− q′
2 dτ

⎞

⎠

1
r′

≤ c1|Ω|
(

1− q′
2

)
1
r′ ‖un‖L∞(0,T ;L2(Ω))

≤ 1

4
‖un‖2

L∞(0,T ;L2(Ω)) + 2c2
1|Ω| 2−q′

r′ , (3.6)

where c1 = ‖f‖Lr(0,T ;Lq(Ω)). By (3.6) and (3.5) it follows (3.3).
If f ∈ Lr(0, T ;Lq(Ω)), with q′ > 2 and r ≥ 2, that is r′ ≤ 2 and

2 < q′ ≤ 2∗ (as we are assuming q ≥ 2N
N+2 ), applying Hölder’s inequality

we get

∫ t

0

∫

Ω

fun dx dτ ≤
(∫ t

0

(∫

Ω

|f |qdx

) r
q

dτ

) 1
r

⎛

⎝

∫ t

0

(∫

Ω

|un|q′
dx

) r′
q′

dτ

⎞

⎠

1
r′

≤ c1

⎛

⎝

∫ t

0

(∫

Ω

|un|2∗
dx

) r′
2∗

dτ

⎞

⎠

1
r′

≤ c1T
1− r′

2

(∫ t

0

(∫

Ω

|un|2∗
dx

) 2
2∗

dτ

) 1
2

ε‖un‖2
L2(0,T ;L2∗

(Ω)) + c2, (3.7)

where c1 is as before, c2 = c21
T 2−r′

ε and ε = κ0
2 C

2
S , with CS the Sobolev

constant in (2.5). From (3.5) and (3.7), we get

1
2

∫

Ω

|un|2(t) dx+
κ0

2

∫ t

0

∫

Ω

|∇un|2 dx dτ ≤ c2 +
1
2

∫

Ω

|u0(x)|2dx, (3.8)

and hence (3.3) holds true.
Finally, if f ∈ Lr(0, T ;Lq(Ω)) with r < 2 and q′ > 2 using the Interpola-

tion’s inequalities with θ ∈ (0, 1), 1
q′ = θ

2∗ + (1−θ)
2 , observing that assumption

(1.19) is equivalent to require r′θ ≤ 2 and by means of Young inequality, we
have

∫ t

0

∫

Ω

fun dx dτ ≤
(∫ T

0

(∫

Ω

|f |qdx
) r

q

dτ

) 1
r

⎛

⎝

∫ t

0

(∫

Ω

|un|q′
dx

) r′
q′
dτ

⎞

⎠

1
r′

≤ c1

(∫ t

0

‖un‖θr′
L2∗ (Ω)‖un‖(1−θ)r′

L2(Ω) dτ

) 1
r′

≤ c1

⎡

⎣

(∫ t

0

‖un‖2
L2∗ (Ω)

) θr′
2

(∫ t

0

‖un‖(1−θ)r′( 2
θr′ )′

L2(Ω) dτ

)1− θr′
2

⎤

⎦

1
r′

≤ c1

(
1
C2

S

∫ t

0

∫

Ω

|∇un|2
) θ

2

‖un‖1−θ
L∞(0,T ;L2(Ω))T

(
1− θr′

2

)
1
r′
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≤ ε1‖∇un‖2
L2(Ω) + c3‖un‖

2(1−θ)
2−θ

L∞(0,T ;L2(Ω))T
( 1

r′ − θ
2 )

2
2−θ

≤ ε1‖∇un‖2
L2(Ω) + ε2‖un‖2

L∞(0,T ;L2(Ω)) + c4, (3.9)

where c3 is a constant depending only on ε1, c1 and Cθ
S , ε1 = κ0

2 , ε2 = 1
4 and

c4 = c(κ0, f, CS , T, r, θ). From (3.9) and (3.5) it follows that (3.3) holds true.
By (3.3), the assert follows by means of standard converging arguments (see
also the proof of Theorem 1.3). �
3.2. Proof of Theorem 1.3

Let un be as in (3.1). The proof proceeds in two steps. In the first one we
prove that the regularity property (1.21) is uniformly satisfied (in n) by un. In
the second step we will conclude the proof passing to the limit in the approxi-
mating solutions un and showing that the limit u satisfies the assertions of the
Theorem.

First step. As noticed above, we prove here that there exists a constant C,
independent of n, such that

‖[(|un| + 1)γ − 1]sign(un)‖V 2(Q)∩Lp(0,T ;Ls(Ω)) ≤ C, p =
4γm

N(m− 2)
,

s = γm, ∀m ∈ [2, 2∗], (3.10)

where γ is as in the statement of the Theorem 1.3 an exponent that depends
on λ and on the regularity exponents r and q of f (thus all the different cases
considered in Theorem 1.3 will be studied here).

To this aim, define for s ∈ R

Ψ(s) =
∫ s

0

[(1 + |y|)2γ−1 − 1]sign(y) dy,

where γ is a positive constant verifying γ > 1
2 that will be chosen later as in

the statement of the Theorem 1.3. It results

Ψ(s) =
(1 + |s|)2γ − 1

2γ
− |s|, ∀s ∈ R. (3.11)

Moreover, since 2γ > 1, by Young inequality we get

|s| ≤ 1
4γ

(1 + |s|)2γ + c1,

where c1 = 21/(2γ−1)

(2γ)′ . Hence from the previous inequality and (3.11), we deduce

Ψ(s) ≥ 1
4γ

(1 + |s|)2γ − c2, ∀s ∈ R, (3.12)

with c2 = c1+ 1
2γ . Let un be as (3.1) and choose vn = [(1+|un|)2γ−1−1]sign(un)

as a test function in (3.1). Recalling that un(x, 0) = u0(x), we get
∫

Ω

Ψ(un(x, t)) dx+ �1(2γ − 1)
∫ t

0

∫

Ω

|∇un|2 (1 + |un|)(2γ−2) dx dτ

≤
∫ t

0

∫

Ω

|f | |vn| dxdτ + λ

∫ t

0

∫

Ω

(1 + |un|)2γ

|x|2 + 1
n

dx dτ +
∫

Ω

[1 + |u0(x)|]2γdx,
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where 0 < t ≤ T . We estimate now the terms in the estimate above. We have

λ

∫ t

0

∫

Ω

(1 + |un|)2γ

|x|2 + 1
n

dx dτ = λ

∫ t

0

∫

Ω

[(1 + |un|)γ − 1 + 1]2

|x|2 + 1
n

dx dτ

≤ λ

∫ t

0

∫

Ω

[(1 + |un|)γ − 1]2

|x|2 dx dτ + 2λ
∫ t

0

∫

Ω

[(1 + |un|)γ − 1]
|x|2 dx dτ

+λ
∫ t

0

∫

Ω

1
|x|2 dx dτ.

Notice that it results

2λ

∫ t

0

∫

Ω

[(1+|un|)γ − 1]

|x|2 dx dτ ≤ ε

∫ t

0

∫

Ω

[(1+|un|)γ − 1]2

|x|2 dx dτ+c3

∫ t

0

∫

Ω

1

|x|2 dx dτ,

where ε will be determined later and c3 = λ2

ε . Hence from the previous inequal-
ities and by means of Hardy’s inequality, we get

λ

∫ t

0

∫

Ω

(1 + |un|)2γ

|x|2 + 1
n

dx dτ

≤ (λ+ ε)
∫ t

0

∫

Ω

[(1 + |un|)γ − 1]2

|x|2 dx dτ + (λ+ c3)
∫ t

0

∫

Ω

1
|x|2 dx dτ

≤ λ+ ε

ΛN

∫ t

0

∫

Ω

|∇{[(1 + |un|)γ − 1]sign(un)}|2 dx dτ

+(λ+ c3)
∫ t

0

∫

Ω

1
|x|2 dx dτ.

Applying Hölder’s inequality, (3.12) and the previous inequalities, we obtain

1
4γ

sup
[0,T ]

∫

Ω

(1 + |un|)2γ dx

+
(
�1(2γ − 1)

γ2
− λ+ ε

ΛN

) ∫ T

0

∫

Ω

|∇ {[(1 + |un|)γ − 1] sign(un)} |2 dx dτ

≤ ‖f‖Lr(0,T ;Lq(Ω))

⎛

⎝

∫ T

0

[∫

Ω

(1 + |un|)(2γ−1)q′
dx

] r′
q′
dτ

⎞

⎠

1
r′

+c4 + (λ+ c3)
∫ T

0

∫

Ω

1
|x|2 dx dτ

≤ c5 + cf

(∫ T

0

‖(1 + |un|)‖(2γ−1)r′

L(2γ−1)q′dτ

) 1
r′

, (3.13)

where c4 = c2|Ω| +
∫

Ω
(1 + |u0|)2γ , c5 = c4 + (λ + c3)

∫ T

0

∫

Ω
1

|x|2 dx dτ and
cf = ‖f‖Lr(0,T ;Lq(Ω)). Denoting by

A =

(∫ T

0

‖(1 + |un|)‖(2γ−1)r′

L(2γ−1)q′ dτ

) 1
r′

,
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and thanks to Sobolev’s inequality, we get

sup
[0,T ]

∫

Ω
(1 + |un|)2γ dx ≤ 4γ(c5 + cf A), (3.14)

∫ T

0

[∫

Ω
[(1 + |un|)γ − 1]2

∗
dx

] 2
2∗

dτ ≤ C−2
S

(
�1(2γ − 1)

γ2
− λ + ε

ΛN

)−1

(c5 + cf A).

Moreover it is easy to prove the existence of two positive constants c6 and c7
(for example c6 = c7 = 22∗

) such that

[(1 + |un|)γ − 1]2
∗ ≥ c6(1 + |un|)2∗γ − c7.

Hence assuming that

�1(2γ − 1)
γ2

− λ

ΛN
> 0, (3.15)

and choosing ε such that

�1(2γ − 1)
γ2

− λ+ ε

ΛN
> 0, (3.16)

we can conclude that
∫ T

0

[∫

Ω

(1 + |un|)2∗γ dx

] 2
2∗

dτ ≤ c8 + c9A, (3.17)

where c8 =
(

1
c6

) 2
2∗
C−2

S

[
�1(2γ−1)

γ2 − λ+ε
ΛN

]−1

c5 +
(

c7
c6

) 2
2∗
T , and c9 =

(
1
c6

) 2
2∗

C−2
S

[
�1(2γ−1)

γ2 − λ+ε
ΛN

]−1

cf . We distinguish now different cases depending on
the size of q.

First case: Assume that

1 < q <
Nr

N + 2(r − 1)
, (zone E in Fig. 1). (3.18)

Notice that it results

1 < q <
Nr

N + 2(r − 1)
⇒

⎧
⎨

⎩

q < r
r′

q′ <
2
2∗ .

(3.19)

Hence, we can apply Hölder’s inequality to estimate A and we get

A ≤ T
1
r′ − 2∗

2q′

[∫ T

0

(∫

Ω

(1 + |un|)(2γ−1)q′
dx

) 2
2∗

dτ

] 2∗
2q′

. (3.20)

Thus from (3.17), we deduce that
∫ T

0

[∫

Ω
[(1 + |un|)2∗γ ] dx

] 2
2∗

dτ ≤c8+c10

[∫ T

0

(∫

Ω
(1 + |un|)(2γ−1)q′

dx

) 2
2∗

dτ

] 2∗
2q′

,

where c10 = c9T
1
r′ − 2∗

2q′ . Since q < N
2 it results 2∗

2q′ < 1. If we choose 2∗γ =

(2γ − 1)q′, that is, γ = γ1 = 1
2 · q(N−2)

(N−2q) , (3.15) becomes
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λ < λ1 ≡ �1(2γ1 − 1)
γ2
1

ΛN ,

and we get
∫ T

0

(∫

Ω

(1 + |un|)(2γ1−1)q′
dx

) 2
2∗

dτ ≤ c11, (3.21)

where c11 depends only on c8, c10, N and q. Since obviously, it results

(1 + |un|)2γ ≥ |[(1 + |un|)γ − 1] sign(un)|2,
using (3.21), (3.20) in (3.13) and by Lemma 2.5 we deduce that (3.10) holds
with γ = γ∗ and λ < λ∗ when (3.18) holds true. Notice that (3.21) is equivalent
to

‖1 + |un|‖Lp(0,T ;Lq∗∗ (Ω)) ≤ c12,

with p = q(N−2)
(N−2q) > q and c12 = c

1
q∗∗
11 . Hence it follows

‖un‖Lp(0,T ;Lq∗∗ (Ω)) ≤ c12.

If otherwise

2∗γ > (2γ − 1)q′,

that is

γ < γ1, (3.22)

proceeding as above we get again that (3.10) holds for every γ and λ satisfying
(3.22) and (3.15). Notice that (3.15) is equivalent to require

ΛN�1 − √
ΛN�1(ΛN�1 − λ)
λ

< γ <
ΛN�1 +

√
ΛN�1(ΛN�1 − λ)
λ

. (3.23)

Moreover it results

ΛN�1 − √
ΛN�1(ΛN�1 − λ)
λ

< γ1,

if λ ≥ ΛN �1
γ1

or if λ < min{ΛN �1
γ1

, λ1}. Observe that the condition ΛN �1
γ1

≤ λ <

ΛN�1 can be fullfilled only if γ1 > 1, that is if

q >
2N
N + 2

. (3.24)

Finally notice that

γ1 ≥ ΛN�1 +
√

ΛN�1(ΛN�1 − λ)
λ

⇔ λ ≥ λ1. (3.25)

Hence we can conclude that if
2N
N + 2

< q <
Nr

N + 2(r − 1)
, (zone 4 in Fig. 2), (3.26)
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and λ1 = max{ΛN �1
γ1

, λ1} < λ < ΛN�1, (3.10) is satisfied for every γ < γ∗ ≡
ΛN �1+

√
ΛN �1(ΛN �1−λ)

λ = min
{

γ1,
ΛN �1+

√
ΛN �1(ΛN �1−λ)

λ

}

. We point out that

γ∗ > 1, being λ < ΛN�1.

Second case: Assume now that
Nr

N + 2(r − 1)
≤ q <

N

2
r′, (zone C in Fig. 1). (3.27)

In this case we will choose γ satisfying

2γ ≤ (2γ − 1)q′ ≤ 2∗γ, (3.28)

and we define θ ∈ (0, 1) as
1

(2γ − 1)q′ =
1 − θ

2γ
+

θ

2∗γ
. (3.29)

Then it follows

‖(1 + |un|)‖r′(2γ−1)
L(2γ−1)q′ ≤ ‖(1 + |un|)‖(1−θ)r′(2γ−1)

L2γ ‖(1 + |un|)‖θr′(2γ−1)
L2∗γ

≤ ‖(1 + |un|)‖(1−θ)r′(2γ−1)
L∞(0,T ;L2γ(Ω))

(∫

Ω
(1 + |un|)2∗γ dx

) θr′(2γ−1)
2∗γ

.

Integrating on time we obtain
∫ T

0

‖(1 + |un|)‖r′(2γ−1)

L(2γ−1)q′ dτ

≤ ‖(1 + |un|)‖2γμ1
L∞(0,T ;L2γ(Ω))

∫ T

0

(∫

Ω

(1 + |un|)2∗γ dx

) 2
2∗ μ2

dτ, (3.30)

with

μ1 =
(1 − θ)r′(2γ − 1)

2γ
and μ2 =

θr′(2γ − 1)
2γ

. (3.31)

We need

μ2 ≤ 1 ⇔ θ ≤ 2γ
r′(2γ − 1)

. (3.32)

By (3.29) we know that

θ =
[

1
2γ

− 1
(2γ − 1)q′

]

Nγ, (3.33)

hence the condition (3.32) becomes

2γ[Nq′r′ −Nr′ − 2q′] ≤ q′r′N. (3.34)

Since N ≥ 3, it results

Nq′r′ −Nr′ − 2q′ ≤ 0 ⇔ q ≥ N

2
r′. (3.35)

Recall that we are assuming q < N
2 r

′; thus (3.34) is satisfied if (and only if )

γ ≤ 1
2

· qrN

Nr − 2q(r − 1)
= γ2. (3.36)
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With such a choice we get
∫ T

0

‖(1 + |un|)‖r′(2γ−1)

L(2γ−1)q′ dτ

≤ c13

(

sup
[0,T ]

∫

Ω

(1 + |un|)2γ dx

)μ1
(∫ T

0

[∫

Ω

(1 + |un|)2∗γ dx

] 2
2∗

dτ

)μ2

,

with μ2 ≤ 1 and c13 = T 1−μ2 . By estimates (3.14) and (3.17) and the previous
one, we obtain

Ar′ ≤ c13[4γ(c5 + cfA)]μ1(c8 + c9A)μ2 ≤ c14 + c15A
β ,

with β = μ1 + μ2 = r′ (2γ−1)
2γ < r′ and c14 and c15 positive constants indepen-

dent on n. Therefore it follows

∫ T

0

(∫

Ω

(1 + |un|)(2γ−1)q′
dx

) r′
q′
dτ ≤ c16, (3.37)

where c16 is independent on n and with γ satisfying (3.15) and (3.36). Observe
that the previous inequality implies

∫ T

0

(∫

Ω

|un|(2γ−1)q′
dx

) r′
q′
dτ ≤ c16.

Using (3.37) and proceeding as in the previous case, it follows that (3.10) holds
true for every γ satisfying (3.15) and (3.36). Notice that if we choose γ = γ2

(that is, the larger value that we can choose for γ when the summability expo-
nents of f are in the zone C), condition (3.36) is obviously satisfied and (3.15)
becomes λ < λ2. Thus (3.10) is proved with γ = γ∗ (γ∗ as in (1.25)) when
λ < λ∗ and (3.27) holds true.

As noticed, condition (3.15) is equivalent to (3.23). Moreover, it results

ΛN�1 − √
ΛN�1(ΛN�1 − λ)
λ

< γ2,

if λ ≥ ΛN �1
γ2

or if λ < min{ΛN �1
γ2

, λ2}. Observe that the condition ΛN �1
γ2

≤ λ <

ΛN�1 can be fulfilled only if γ2 > 1, that is if

q >
2Nr

Nr + 4(r − 1)
, (zones 2 and 3 in Fig. 2). (3.38)

Finally, notice that

γ2 ≥ ΛN�1 +
√

ΛN�1(ΛN�1 − λ)
λ

⇔ λ ≥ λ2. (3.39)

Hence we can conclude that if (3.27) and (3.38) hold and λ2= max{ΛN �1
γ2

, λ2}<
λ < ΛN�1, then (3.10) is satisfied for every γ < γ∗ ≡ ΛN �1+

√
ΛN �1(ΛN �1−λ)

λ =
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min
{

γ2,
ΛN �1+

√
ΛN �1(ΛN �1−λ)

λ

}

where, as noticed before, γ∗ > 1 being λ <

ΛN�1.

Third case: Assume that (1.20) holds true, that is,

q ≥ N

2
r′, (zone A in Fig. 1). (3.40)

In this case, by (3.35) it follows that (3.34) is satisfied for every value of
γ > 1

2 and proceeding as in the previous case, we deduce that (3.10) is
satisfied for every γ and λ satisfying (3.15), that is for every 0 < λ < ΛN�1

and for every γ ∈
(

1
2 ,

ΛN �1+
√

ΛN �1(ΛN �1−λ)

λ

)

. Notice that the subset
(

1
2 ,

ΛN �1+
√

ΛN �1(ΛN �1−λ)

λ

)

is nonempty, being ΛN �1+
√

ΛN �1(ΛN �1−λ)

λ > 1.

Hence we have proved that (3.10) holds for every γ as in the statement
of Theorem 1.3.

Second step. As said before, the assertion will follow once proved that the
sequence un tends to a solution u of (1.1) and that it is possible to pass to the
limit on n in (3.10). To this aim, we notice that if (1.20) or (1.26) holds true
and 0 < λ < ΛN�1, being in these cases γ > 1, by (3.10) we deduce that ∇un

is equibounded in (L2(Q))N . Otherwise, i.e. if both the inequalities (1.20) and
(1.26) are not satisfied and 0 < λ < λ∗, by Young inequality, we deduce that

∫

Q

|∇un|M dx dt ≤
∫

Q

|∇un|2 (1 + |un|)2(γ∗−1) dx dt

+
∫

Q

(1 + |un|) 2(1−γ∗)
M(2−M) dx dt, (3.41)

from which follows that there exists a constant C independent of n such that
∫

Q

|∇un|M dx dt ≤ C, (3.42)

if we choose 2(1−γ∗)
M(2−M) = 2γ∗ N+2

N , that is, M = 1 +
√

1 − N(1−γ∗)
γ∗(N+2) (since by

(3.10) with such a choice, the right hand side of (3.41) is equibounded). Notice
that it results M > 1. Defining

M =

⎧
⎨

⎩

2, if (1.26) or (1.20) holds true and 0 < λ < ΛN�1

M, otherwise, i.e. if both the inequalities
(1.20) and (1.26) are not satisfied and 0 < λ < λ∗

(3.43)

the previous estimates on ∇un become
∫

Q

|∇un|M dx dt ≤ C. (3.44)

Hence, by the assumption (1.3) it follows that also a(x, t, u,∇u) is equibounded
in LM (Q).



Vol. 20 (2013) Summability and existence results 85

Finally notice that estimate (3.10) implies also the following

λ
un

|x|2 is equibounded in Lh(Q), ∀ 1 ≤ h <
2γN

2(2γ − 1) +N
. (3.45)

As a matter of fact it results
∫∫

Q

(
λ|un|
|x|2

)h

≤ λh

[∫∫

Q

|un|2γ

|x|2 +
∫∫

Q

1
|x|δ

]

,

where δ = 2h(2γ−1)
2γ−h and the two integrals in the right hand side are finite by

(3.10) if h is as in (3.45).
Hence applying Lemma 2.8 (with X = W 1,M

0 (Ω), B =LM (Ω) and Y =
W−1,α(Ω), where α = min{h∗,M}) we deduce that there exists a subsequence
of un, that we denote again un, such that the following limits hold true

un → u, strongly in LM (Q),
un → u, a.e. in Q,

a(x, t, un,∇un) ⇀ χ, weakly in LM (Q),

λ
|un|
|x|2 ⇀ λ

|u|
|x|2 , weakly in Lh(Q).

To conclude the proof we need to show the a.e. convergence of ∇un to ∇u
in Q. This allows (together with the previous convergences) to pass to the
limit in (3.1) and to conclude that u is a solution of (1.1) which satisfies the
regularity properties in Theorem 1.3. To this aim, we observe that if M = 2
it is sufficient to apply Theorem 4.1 in [12]. If otherwise M = M < 2, taking
Tk(un) as a test function in (3.1) (where Tk is the truncation function defined
in (3.2)) and using (3.45) we deduce that

Tk(un) is equibounded in L2(0, T ;H1
0 (Ω)).

Hence the convergence a.e. of the gradients follows proceeding as in [9]. �

Remark 3.1. Notice that λ1 = λ2 if and only if q = Nr
N+2(r−1) , that is, there is

continuity in the results.
Observe also that

C(γ, λ) =
(

(2γ − 1)
γ2

− �1λ

ΛN

)

is an increasing function in γ if γ > 1 and a decreasing function in γ if γ < 1.
We have γ1(q) ≥ 1 if and only if q ≥ 2N

N+2 and γ2(q) ≥ 1 if and only if
N
2q + 1

r ≤ 1+ N
4 . Since 1 ≤ γ2(q) ≤ γ1(q) in zone 2 and 3 of Fig. 2, λ1(1) = 0 and

λ1( 2N
N+2 ) = �1

(
N−2

2

)2
, it follows that in zone 2, 3, and 4 of Fig. 2, u ∈ V 2(Q),

for all 0 < λ < �1ΛN .

Remark 3.2. By the estimate (3.44) it follows that ∇u ∈ (L2(Q))N if (1.26) or
(1.20) holds true and 0 < λ < ΛN�1; otherwise (i.e. in all the other cases con-

sidered here) ∇u ∈ (LM (Q))N , withM as in (3.42), i.e.M = 1+
√

1 − N(1−γ∗)
γ∗(N+2) .
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Remark 3.3. We notice that all the results of Theorems 1.2 and 1.3 are
true if we replace in (1.1) the Hardy potential λ u

|x|2 with the nonlinear term
g(x, t, u,∇u) where g(x, t, σ, ξ) : Q×R×RN → R is a Caratheodory function
satisfying

|g(x, t, s, ξ)| ≤ λ
|s|
|x|2 .

As a matter of fact, in this case it is sufficient to replace the approximating
problems (3.1) with

⎧
⎨

⎩

(un)t − div (a(x, t, un,∇un)) = gn(x, t, un,∇un) + Tn(f) in Q,
un(x, t) = 0 on ∂Ω × (0, T ),
un(x, 0) = u0(x) in Ω,

(3.46)

where

gn(x, t, σ, ξ) =
g(x, t, σ, ξ)

1 + 1
n |g(x, t, σ, ξ)| , (3.47)

and since it results

|gn(x, t, σ, ξ)| ≤ n, (3.48)

and

|gn(x, t, σ, ξ)| ≤ |g(x, t, σ, ξ)| ≤ λ
|s|
|x|2 , (3.49)

both the proofs of Theorems 1.2 and 1.3 can easily adapted to this more general
case.

4. A different point of view for further regularity results

In this section we give further regularity results. For simplicity, we consider
the model problem (1.5), i.e.

⎧
⎪⎨

⎪⎩

ut − Δu = λ
u

|x|2 + f in Q,

u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = 0 in Ω.

(4.1)

As just noticed, differently from the case λ = 0, the presence of the singular
potential in (4.1) produces unbounded solutions for every choice of regular
(nonzero) and nonnegative datum f .

Anyway, the regularity of f influences the regularity of u and in partic-
ular, it may cause the boundedness of |x|α1u (for sufficiently summable f)
where α1 is as before (see (1.8)). As a matter of fact we have the following
result.

Theorem 4.1. Assume 0 < λ ≤ ΛN and f ∈ Lr(0, T ;Lq(Ω)) with r, q satisfying
1
r

+
N

2q
= 1 − χ1, χ1 ∈ (0, 1), (zone A in Fig. 1). (4.2)

If u ∈ V2(Q) is a solution to (4.1), then |x|α1u ∈ L∞(Q).
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Remark 4.2. The proof of Theorem 4.1 is not linear in nature. As a matter
of fact, it works also replacing the linear problem (4.1) with the following
nonlinear problem

⎧
⎨

⎩

ut − Δu = g(x, t, u,∇u) + f in Q,
u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = 0 in Ω,

(4.3)

where g(x, t, σ, ξ) : Q×R×RN → R is as in Remark 3.3, i.e. a Caratheodory
function satisfying

|g(x, t, s, ξ)| ≤ λ
|s|
|x|2 . (4.4)

Moreover the result of the Theorem 4.1, still holds for nonzero initial data
u0(x) satisfying |x|α1u0 ∈ L∞(Ω).

Moreover, if f is less summable, we have the following result.

Theorem 4.3. Assume 0 < λ ≤ ΛN and |x|−hf ∈ Lr(0, T ;Lq(Ω)), where

1
r

+
N

2q
> 1, r ∈ (1,+∞], q ∈ (1,+∞), (4.5)

and

h =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

h2 =
α1

γ′
2

if
Nr

N + 2(r − 1)
≤ q <

N

2
r′, ( zone C in Fig. 1),

h1 = α1
2N − q(N + 2)

q(N − 2)
if 1 < q <

Nr

N + 2(r − 1)
, (zone E in Fig. 1).

Then there exists a weak solution u of (4.1) satisfying

[(1 + |x|α1 |u|)γ − 1]sign(u) ∈ V 2
α1

(Q) ∩ Lδ(0, T ;Lm
α1

(Ω)), (4.6)

where γ > 1
2 is as in (1.25), i.e.

γ = γ∗ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ2 =
1

2

qrN

Nr − 2q(r − 1)
if

Nr

N + 2(r − 1)
≤ q <

N

2
r′, (zone C in Fig. 1),

γ1 =
1

2

q(N − 2)

N − 2q
=

q∗∗

2∗ if 1 < q < Nr
N+2(r−1)

, (zone E in Fig. 1),

(4.7)

m ∈ [2, 2∗] and δ = 4m
N(m−2) . Moreover it results γ2 ≥ 1 if and only if

1
r

+
N

2q
≤ 1 +

N

4
, (zones 2, 3 in Fig. 2), (4.8)

and γ1 ≥ 1 if and only if q ≥ 2N
N+2 (zone 4 in Fig. 2) and hence in this case it

follows that u ∈ V 2(Q).
In particular, choosing m = 2∗, we get the best summability exponent in

the spacial variable (i.e. 2∗γ ) together with the lower summability exponent in
the time variable, (i.e. 2γ) and we obtain

|x|−hu ∈ L2γ(0, T ;L2∗γ(Ω)),
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that is

2γ = 2γ1 = p1 =
2
2∗ q

∗∗ =
q(N − 2)
(N − 2q)

> q, 2∗γ = 2∗γ1 = s1 ≡ q∗∗,

h = h1 = α1
2N − q(N + 2)

q(N − 2)
,

if 1 < q <
Nr

N + 2(r − 1)
, (zona E in the Fig. 1); (4.9)

and

2γ = 2γ2 =
qrN

Nr − 2q(r − 1)
, 2∗γ = 2∗γ2 =

qrN2

[Nr − 2q(r − 1)])N − 2)
,

h = h2 =
−α1

γ′
2

,

if
Nr

N + 2(r − 1)
≤ q <

N

2
r′, (zone C in Fig. 1). (4.10)

Choosing m = 2N+2
N , we get

u ∈ Ls̄(Q), s̄ = 2γ
N + 2
N

, (4.11)

that is

s̄ = s̄1 ≡ q(N2 − 4)
N(N − 2q)

,

if (4.9) holds. Otherwise (i.e. if (4.10) holds), then

s̄ = s̄2 ≡ qr(N + 2)
Nr + 2q − 2qr

.

Moreover in this last case (zone C in Fig. 1), choosing m = 2 + 4 q′

r′N , we get

|x|−hu∈Lp2(0, T ;Ls2(Ω)), p2 =ρr′, s2 =ρq′, ρ=
rN(q − 1)+2q(r − 1)

r(N−2q)+2q
.

(4.12)

Remark 4.4. We recall that for a nonnegative function f , the assumption

|x|−α1f ∈ L1(Q), (4.13)

is not only a sufficient condition to guarantee the existence of a solution of
(4.1) but also a necessary condition as proved in [7]. Moreover, we notice that
when f is in the zone A in Fig. 1, then q ≥ 2N

N+2 and hence f satisfies this
necessary and sufficient condition (4.13).

Remark 4.5. We notice that also the proof of Theorem 4.3 is not linear in
nature. As a matter of fact, it works also replacing the linear problem (4.1)
with the nonlinear problem (4.3) with g a Caratheodory function satisfying
(4.4). For further details see Remark 5.3.
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Remark 4.6. We notice that if λ → 0+ then α1 → 0 and the regularity property
(4.6) becomes the same regularity proved in absence of the Hardy potential
(see [14]).

The proof of the previous results can be found in the next section.

5. Proof of the further results

5.1. Proof of Theorem 4.1

Consider the following notations,

Ak = {(x, t) ∈ Ω × (0, T ) : |x|α1 |u(x, t)| > k},
At

k = {x ∈ Ω : |x|α1 |u(x, t)| > k}. (5.1)

Taking |x|−α1(|x|α1 |u| − k)+sign(u) as a test function in (4.1) and integrating
in the cylinder (0, t) × Ω, t ≤ t1, where t1 will be chosen later, we get

∫

Ω

ϕ(u(x, t)) dx+
∫ t

0

∫

Ω

∇u∇[|x|−α1(|x|α1 |u| − k)+sign(u)] dx dz

≤ λ

∫ t

0

∫

Az
k

u(x, z)(|x|α1 |u(x, z)| − k)+ sign(u)
|x|2+α1

dx dz

+
∫ t

0

∫

Az
k

|x|−α1 |f |(|x|α1 |u| − k)+ dx dz, a.e. t ∈ (0, t1), (5.2)

where ϕ(s) =
∫ s

0
|x|−2α1(|x|α1 |σ| − k)+sign(σ) dσ. Notice that it results,

∫ t

0

∫

Ω

∇u∇[|x|−α1(|x|α1 |u| − k)+sign(u)] dx dz

=
∫ t

0

∫

Ω

[∇u∇(|x|−α1)](|x|α1 |u| − k)+sign(u) dx dz

+
∫ t

0

∫

Ω

∇u|x|−α1∇[(|x|α1 |u| − k)+sign(u)] dx dz. (5.3)

Since λ = α1((N − 2) − α1), we have

0 =
∫ t

0

∫

Ω

div [(∇|x|−α1)u(|x|α1 |u| − k)+sign(u)] dx dz

=
∫ t

0

∫

Ω

(∇|x|−α1)u∇[(|x|α1 |u| − k)+sign(u)] dx dz

+
∫ t

0

∫

Ω

div [(∇|x|−α1)u](|x|α1 |u| − k)+sign(u) dx dz

=
∫ t

0

∫

Ω

(∇|x|−α1)u∇[(|x|α1 |u| − k)+sign(u)] dx dz
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−λ
∫ t

0

∫

Ω

u

|x|α1+2
(|x|α1 |u| − k)+sign(u) dx dz

+
∫ t

0

∫

Ω

[∇u∇|x|−α1 ](|x|α1 |u| − k)+sign(u) dx dz,

then we deduce
∫ t

0

∫

Ω

[∇u∇(|x|−α1)](|x|α1 |u| − k)+sign(u) dx dz

+
∫ t

0

∫

Ω

(∇|x|−α1)u∇[(|x|α1 |u| − k)+sign(u)] dx dz

= λ

∫ t

0

∫

Ω

u

|x|α1+2
(|x|α1 |u| − k)+sign(u) dx dz. (5.4)

Since |x|−2α1∇(|x|α1u) = |x|−α1∇u−u∇|x|−α1 , using (5.3) and (5.4) in (5.2),
it follows that

sup
t∈(0,t1)

∫

Ω
ϕ(u(x, t)) dx +

∫ t1

0

∫

Ω
|x|−2α1 |∇(|x|α1 |u| − k)+sign(u)|2 dx dz

≤
∫ t1

0

∫

Az
k

|x|−α1 |f |(|x|α1 |u| − k)+ dx dz.
(5.5)

Moreover, there exists a positive constant C such that
∫

At
k

ϕ(u(x, t)) dx ≥ C

∫

At
k

|x|−2α1(|x|α1 |u(x, t)| − k)2+ dx,

and therefore it follows

C(‖(|x|α1 |u| − k)+‖2
L∞(0,t1;L2

α1
(Ω)) + ‖(|x|α1 |u| − k)+sign(u)‖2

L2(0,t1;W
1,2
0,α1

(Ω))

≤
∫ t1

0

∫

Az
k

|x|−α1 |f | (|x|α1 |u| − k)+ dx dz. (5.6)

Notice that the term of the right hand in (5.6) can be estimated as follows,
∫ t1

0

∫

Az
k

|x|−α1 |f | (|x|α1 |u| − k)+ dx dz

≤
∫ t1

0

∫

Az
k

|x|−2α1 |f |(|x|α1 |u| − k)2+ dx dz +
∫ t1

0

∫

Az
k

|f | dx dz. (5.7)

Let us study each member of the previous inequality.
On the one hand, applying Hölder’s inequality, we have

∫ t1

0

∫

Az
k

|x|−2α1 |f |(|x|α1 |u| − k)2+ dx dz

≤ ‖f‖Lr(0,t1;Lq(Ω))

⎛

⎜
⎝

∫ t1

0

[∫

Az
k

|x|−2α1q′
(|x|α1 |u| − k)2q′

+ dx

] r′
q′

dz

⎞

⎟
⎠

1
r′

≤ Cf

(∫ t1

0

‖(|x|α1 |u| − k)+‖2r′

L2q′
α1
dz

) 1
r′

,
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where Cf = ‖f‖Lr(0,T ;Lq(Ω)). Let us define,

r̄ = 2r′, q̄ = 2q′, r̂ = r̄(1 + χ), q̂ = q̄(1 + χ), χ =
2χ1

N
. (5.8)

Notice that assumption (4.2) is equivalent to require 1
r̂ + N

2q̂ = N
4 . Hence it

results (N − α1q̂) > 0, which implies that |x|−α1q̂ ∈ L1(Ω). Denote μ(k) =
∫ t1
0

(∫

At
k
|x|−α1q̂dx

) r̂
q̂

dt. Applying Hölder’s inequality, we obtain
∫ t1

0

∫

Az
k

|x|−2α1 |f |(|x|α1 |u| − k)2+ dx dz

≤ Cf

(∫ t1

0

‖(|x|α1 |u| − k)+‖r̄
L

q̄
α1 (Az

k)
dz

) 2
r̄

= Cf

⎡

⎣

∫ t1

0

(∫

Az
k

|x|−α1
q̂

1+χ |(|x|α1 |u| − k)+| q̂
1+χ dx

) r̂
q̂

dz

⎤

⎦

2(1+χ)
r̂

≤ Cf

⎡

⎣

∫ t1

0

(∫

Az
k

|x|−q̂α1 |(|x|α1 |u| − k)+|q̂ dx

) r̂
q̂(1+χ)

(∫

Az
k

dx

) χ
1+χ

r̂
q̂

dz

⎤

⎦

2(1+χ)
r̂

≤ Cf

⎡

⎣

∫ t1

0

(∫

Az
k

|x|−q̂α1 |(|x|α1 |u| − k)+|q̂ dx

) r̂
q̂

dz

⎤

⎦

2
r̂
⎡

⎣

∫ t1

0

(∫

Az
k

dx

) r̂
q̂

dz

⎤

⎦

2χ
r̂

≤ C1Cf‖(|x|α1 |u| − k)+‖2

Lr̂(0,t1;L
q̂
α1 (Az

k))
·
(∫ t1

0

(

∫

Az
k

|x|−α1 q̂dx)
r̂
q̂ dz

) 2χ
r̂

= C1Cf‖(|x|α1 |u| − k)+‖2

Lr̂(0,t1;L
q̂
α1 (Az

k))
· μ(k)

2χ
r̂ .

Applying Proposition 2.4 with θ = N
2 − N

q̂ , we have
∫ t1

0

∫

Az
k

|x|−2α1 |f |(|x|α1 |u| − k)2+ dx dz

≤ C2Cf μ(k)
2χ

r̂

(∫ t1

0
‖∇[(|x|α1 |u| − k)+sign(u)]‖r̂θ

L2
α1

· ‖(|x|α1 |u| − k)+‖(1−θ)r̂
L2

α1

dz

) 2
r̂

≤ C2Cf μ(k)
2χ

r̂ ‖(|x|α1 |u| − k)+‖2(1−θ)
L∞(0,t1;L2

α1
(Az

k
))

·
(∫ t1

0
‖∇[(|x|α1 |u| − k)+sign(u)]‖r̂θ

L2
α1

dz

) 2
r̂

.

Thus, applying Young’s inequality, we get
∫ t1

0

∫

Az
k

|x|−2α1 |f |(|x|α1 |u| − k)2+ dx dz

≤ C2Cfμ(k)
2χ
r̂ ‖(|x|α1 |u| − k)+‖2

L∞(0,t1;L2
α1

(Ω))

+C2Cfμ(k)
2χ
r̂ θ

(∫ t1

0

‖∇[(|x|α1 |u| − k)+sign(u)]‖r̂θ
L2

α1
dz

) 2
r̂θ

.
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Since r̂ and q̂ satisfy (5.8), then r̂θ = 2 and we obtain,
∫ t1

0

∫

Az
k

|x|−2α1 |f |(|x|α1 |u| − k)2+ dx dz

≤ C2Cfμ(k)
2χ
r̂

[
‖(|x|α1 |u| − k)+‖2

L∞(0,t1;L2
α1

(Ω))

+‖∇[(|x|α1 |u| − k)+sign(u)]‖2
L2(0,t1;L2

α1
(Ω))

]
.

On the other hand, the second term on the right hand in (5.7) satisfies
∫ t1

0

∫

Az
k

|f | dx dz =

∫ t1

0

∫

Az
k

|x|2α(1+χ)|x|−2α(1+χ)|f | dx dz

≤ C3

⎛

⎝

∫ t1

0

(∫

Az
k

|f |q dx

) r
q

dz

⎞

⎠

1
r

·
⎛

⎝

∫ t1

0

(∫

Az
k

|x|−αq̂ dx

) r̂
q̂

dz

⎞

⎠

1
r′

= C3Cf μ(k)
2(1+χ)

r̂ .

Denoting

|(|x|α1 |u| − k)+|2At
k

= ‖(|x|α1 |u| − k)+‖2
L∞(0,t;L2

α(Ω))

+‖∇[(|x|α1 |u| − k)+sign(u)]‖2
L2(0,t;L2

α(Ω)),

from (5.6), we conclude that

C|(|x|α1 |u| − k)+|2
A

t1
k

≤ C2Cf |(|x|α1 |u| − k)+|2
A

t1
k

· μ(k)
2χ
r̂ + C3Cfμ(k)

2(1+χ)
r̂ .

Let us choose t1 small enough such that

C2Cf t
2χ
r̂

1 ‖|x|−α1‖
2χ
q̂

Lq̂(Ω)
< C. (5.9)

Thus again by Proposition 2.4, we deduce that there exist C4 and C5 satisfying

C5‖(|x|α1 |u| − k)+‖2
Lr̂(0,t1;L

q̂
α(Ω))

≤ C4|(|x|α1 |u| − k)+|2
A

t1
k

≤ Cfμ(k)
2(1+χ)

r̂ .

Consider h > k > 0, hence it results Ah ⊂ Ak, where Ah is as in (5.1), and

μ(h) ≤ C6

(h− k)r̂
μ(k)1+χ.

Applying Lemma 2.7, we conclude that there exists a constant d, depending
only on q, r, ‖f‖Lr(0,T ;Lq(Ω)) and α1, such that μ(d) = 0, that is

‖|x|α1u‖L∞(Ω×[0,t1]) ≤ d.

Iterating this procedure in the sets Ω×[t1, 2t1], . . . ,Ω×[jt1, T ], where T−jt1 ≤
t1, (notice that the process works since in all these sets (5.9) is verified), we
can conclude that L∞ bound holds true in Q. To conclude, notice that by the
previous proof we also deduce that (|x|α1 |u| − k)+sign(u) ∈ V 2

α1
(Q). �
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5.2. Proof of Theorem 4.3

For every n ∈ N, let us consider un ∈ V 2(Q) ∩ L∞(Q), the solution to the
approximated problem

⎧
⎪⎨

⎪⎩

unt − Δun = λ
un

|x|2 + 1
n

+ Tn(f) in Ω × (0, T ),

un(x, t) = 0 on ∂Ω × (0, T ),
un(x, 0) = 0 in Ω,

(5.10)

where Tn is as in (3.2). Reasoning as in the proof of Theorem 1.3 the assertion
follows showing that the sequence [(1 + |x|α1 |un|γ − 1]sign(un) is equibound-
ed in V 2

α1
(Q) ∩ Lδ(0, T ;Lm

α1
(Ω)). To this aim we start proving the following

estimate.

Lemma 5.1. There exists a positive constant C0, depending only on Ω and
‖f‖L1(Q), thus independent of n, such that

‖|x|−α1un‖L∞(0,T ;L1(Ω)) ≤ C0. (5.11)

Proof of Lemma 5.1. Let us define

ψ1(s) =
∫ s

0

T1(σ)dσ.

Notice that it results

|s| − 1
2

≤ ψ1(s) ≤ |s|, ∀s ∈ R. (5.12)

Hence taking |x|−α1T1(un) as a test function in (5.10), using the previous
inequality and the definition of α1 we obtain that (5.11) holds true. �

Using the previous lemma, we can now prove the thesis of Theorem 4.3.
Define for s ∈ R

Ψ(s) =
∫ s

0

|x|−α1 [(1 + |x|α1 |y|)2γ−1 − 1] dy,

where γ is a positive constant satisfying γ >
1
2

that will be chosen later as in
the statement of the Theorem 4.3. It results

Ψ(s) ≥ |x|−2α1
(1 + |x|α1 |s|)2γ − 1

2γ
− |x|−α1 |s|, ∀s ∈ R. (5.13)

Choose vn = |x|−α1 [(1+|x|α1 |un|)2γ−1−1] sign(un) as a test function in (5.10).
Recalling that un(x, 0) = 0, we obtain
∫

Ω

Ψ(un(x, t)) dx+
∫ t

0

∫

Ω

∇un∇{|x|−α1 [(1+|x|α1 |un|)2γ−1−1]sign(un)} dx dτ

≤ λ

∫ t1

0

∫

Ω

|un|
|x|α1+2

[(1 + |x|α1 |un|)2γ−1 − 1] dx dτ +
∫ t

0

∫

Ω

|f | |vn| dxdτ,

where 0 < t ≤ T .
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Thanks to the divergence theorem, we have that

∫ t1

0

∫

Ω

[∇un∇|x|−α1
]
[(1 + |x|α1 |un|)2γ−1 − 1]sign(un) dx dt

+
∫ t1

0

∫

Ω

(∇|x|−α1)un∇[((1 + |x|α1 |un|)2γ−1 − 1)sign(un)] dx dt

= λ

∫ t1

0

∫

Ω

|un|
|x|α1+2

[(1 + |x|α1 |un|)2γ−1 − 1] dx dt. (5.14)

Since |x|−2α1(∇|x|α1un) = |x|−α1∇un − un∇|x|−α1 , we get
∫

Ω
Ψ(un(x, t)) dx +

∫ t

0

∫

Ω
|x|−2α1∇(|x|α1un)∇[{(1 + |x|α1 |un|)2γ−1 − 1}sign(un)] dx dτ

≤
∫ t

0

∫

Ω
|f | |vn| dxdτ,

where 0 < t ≤ T . Therefore, it results

∫

Ω

Ψ(u(x, t)) dx+ (2γ−1)
∫ t

0

∫

Ω

|x|−2α1 |∇|x|α1un|2 (1+|x|α1 |un|)(2γ−2) dx dτ

≤
∫ t

0

∫

Ω

|f | |vn| dxdτ.

Applying Hölder’s inequality, (5.13) and Lemma 5.1, we get

1

2γ
sup
[0,T ]

∫

Ω
|x|−2α1(1 + |x|α1 |un|)2γ dx

+
(2γ − 1)

γ2

∫ T

0

∫

Ω
|x|−2α1 |∇ {[(1 + |x|α1 |un|)γ − 1]sign(un)} |2 dx dt

≤ ‖|x|−hf‖Lr(0,T ;Lq(Ω))

(∫ T

0

[∫

Ω
|x|(h−α1)q′

(1+|x|α1 |un|)(2γ−1)q′
dx

] r′
q′

dt

) 1
r′

+
1

2γ
|Ω| + ‖|x|−α1un‖L∞(0,T ;L1(Ω)) = C1 + Cf

×
(∫ T

0
‖|x|(h−α1)(1 + |x|α1 |un|)(2γ−1)‖r′

Lq′ (Ω)dt

) 1
r′

, (5.15)

where C1 = |Ω|
2γ + C0, with C0 as in (5.11) and Cf = ‖|x|−hf‖Lr(0,T ;Lq(Ω)).

Denoting by

A =

(∫ T

0

‖|x|(h−α1)(1 + |x|α1 |un|)(2γ−1)‖r′

Lq′ (Ω)
dt

) 1
r′

,

we have

sup
[0,T ]

∫

Ω

|x|−2α1(1 + |x|α1 |un|)2γ dx ≤ 2γ(C1 + CfA). (5.16)



Vol. 20 (2013) Summability and existence results 95

Thanks to Sobolev’s weight inequality, we get
∫ T

0

[∫

Ω

[|x|−α1((1 + |x|α1 |un|)γ − 1)]2
∗
dx

] 2
2∗

dt

≤ C2
Sob

(
(2γ − 1)
γ2

)−1

(C1 + CfA).

Moreover it is easy to prove the existence of two positive constants C2

and C3, independent on k, (for example C2 = C3 = 22∗
), such that

[|x|−α1((1 + |x|α1 |un|)γ − 1)]2
∗ ≥ C2|x|−2∗α1(1 + |x|α1 |un|)2∗γ − C3.

Hence we can conclude that
∫ T

0

[∫

Ω

|x|−2∗α1(1 + |x|α1 |un|)2∗γ dx

] 2
2∗

dt ≤ C4 + C5A, (5.17)

where C4 =
(

2
C2

) 2
2∗
C2

Sob

[
(2γ−1)α

γ2

]−1

C1 +
(

2C3
C2

) 2
2∗
T , and C5 =

(
2

C2

) 2
2∗

C2
Sob

[
(2γ−1)α

γ2

]−1

Cf . We proceed analogously to the proof of Theorem 1.3
distinguishing now two cases depending on the size of q.

First case: 1 < q < Nr
N+2(r−1) , that is the zone E in Fig. 1. In this case (3.19)

holds true and hence, we can apply Hölder’s inequality to estimate A and we
get

A ≤ T
1
r′ − 2∗

2q′

[∫ T

0

(∫

Ω

|x|(h−α1)q
′
(1 + |x|α1 |un|)(2γ−1)q′

dx

) 2
2∗

dt

] 2∗
2q′

.(5.18)

Thus from (5.17), we deduce that
∫ T

0

[∫

Ω

[|x|−2∗α1(1 + |x|α1 |un|)2∗γ ] dx
] 2

2∗

dt

≤ C4 + C6

[∫ T

0

(∫

Ω

|x|(h−α1)q
′
(1 + |x|α1 |un|)(2γ−1)q′

dx

) 2
2∗

dt

] 2∗
2q′

,

(5.19)

where C6 = C5T
1
r′ − 2∗

2q′ . We choose 2∗γ = (2γ−1)q′, that is, γ = γ1 = 1
2 · q(N−2)

(N−2q)

and (h− α1)q′ = −2∗α1, namely, h = α1
2N−q(N+2)

q(N−2) . Notice that since q < N
2

it results 2∗
2q′ < 1 and thus we get

∫ T

0

(∫

Ω

|x|(h−α1)q
′
(1 + |x|α1 |un|)(2γ1−1)q′

dx

) 2
2∗

dt ≤ C7, (5.20)

where C7 depends only on C4, C6, N , 2∗γ1 = q∗∗ and q. As obviously, it results

(1 + |x|α1 |un|)2γ ≥ |(1 + |x|α1 |un|)γ − 1|2,
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using (5.20) and (5.18) in (5.15), since 2∗(γ1 − 1)α1 = −hq∗∗ and 2∗γ1 = q∗∗

by (5.20) the assert follows. In particular, we deduce

‖|x|−hu‖Lp(0,T ;Lq∗∗ (Ω)) ≤ C8,

with p = q(N−2)
(N−2q) > q and C8 = C

1
q∗∗
7 .

Second case: Nr
N+2(r−1) ≤ q <

N

2
r′, that is zone C in Fig. 1.

In this case we will choose γ satisfying (3.28) and we define θ ∈ (0, 1) as
in (3.29). Then it follows

‖|x|
(h−α1)
(2γ−1) (1 + |x|α1 |un|)‖r′(2γ−1)

L(2γ−1)q′

≤ ‖|x|
(h−α1)
(2γ−1) (1 + |x|α1 |un|)‖(1−θ)r′(2γ−1)

L2γ ‖(|x|
(h−α1)
(2γ−1) (1 + |x|α1 |un|))‖θr′(2γ−1)

L2∗γ

≤ ||x|
(h−α1)
(2γ−1) (1 + |x|α1 |un|)‖(1−θ)r′(2γ−1)

L∞(0,T ;L2γ(Ω))

×
(∫

Ω
|x|

(h−α1)
(2γ−1) (1 + |x|α1 |un|)2∗γ dx

) θr′(2γ−1)
2∗γ

.

Integrating on time we obtain

Ar′
=

∫ T

0

‖|x| (h−α1)
(2γ−1) (1 + |x|α1 |un|)‖r′(2γ−1)

L(2γ−1)q′ dt

≤ ‖|x| (h−α1)
(2γ−1) (1 + |x|α1 |un|)‖2γμ1

L∞(0,T ;L2γ(Ω))

×
∫ T

0

(∫

Ω

|x| (h−α1)
(2γ−1) 2∗γ(1 + |x|α1 |un|)2∗γ dx

) 2
2∗ μ2

dt, (5.21)

with μ1 and μ2 as in (3.31). The proof now is similar at all to that of Theo-
rem 1.3. Again we need that (3.32) holds true and since from (3.29) we know
that (3.33) holds, the condition (3.32) becomes (3.34). Since N ≥ 3, (3.35) is
satisfied. Thus since we are assuming q < N

2 r
′, (3.34) is satisfied if (and only

if) (3.36) holds true. With such a choice we get

Ar′
=

∫ T

0

‖|x| (h−α1)
(2γ−1) (1 + |x|α1 |un|)‖r′(2γ−1)

L(2γ−1)q′ dt

≤ C8

(

sup
[0,T ]

∫

Ω

|x|2γ
(h−α1)
(2γ−1) (1 + |x|α1 |un|)2γ dx

)μ1

×
(∫ T

0

[∫

Ω

|x|2∗γ
(h−α1)
(2γ−1) (1 + |x|α1 |un|)2∗γ dx

] 2
2∗

dt

)μ2

,

with μ2 ≤ 1 and C8 = T 1−μ2 . Choose (h−α1)γ
(2γ−1) = −α1, namely, h = α1(1−γ)

γ .
From estimates (5.16) and (5.17) and the previous one, we obtain

Ar′ ≤ C8[2γ(C1 + CfA)]μ1(C4 + C5A)μ2 ≤ C9 + C10A
β ,

with β = μ1 + μ2 = r′ (2γ−1)
2γ < r′. Therefore it follows

∫ T

0

(∫

Ω

|x|−α1
γ (2γ−1)q′

(1 + |x|α1 |un|)(2γ−1)q′
dx

) r′
q′
dt ≤ C11, (5.22)
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with γ satisfying (3.28) and (4.7). Since (2γ − 1)q′α1(1 − 1
γ ) = −h(2γ − 1)q′,

then the previous inequality implies

∫ T

0

(∫

Ω

|x|−h(2γ−1)q′ |un|(2γ−1)q′
dx

) r′
q′
dt ≤ C11.

Using (5.22) and proceeding as in the previous case, the assert follows as soon
as we show that it is possible to choose γ = γ2, where γ2 is as in (4.7). To this
aim, notice that condition (3.28) is equivalent to require

{
2γ ≥ q,
2γ(N − 2q) ≤ q(N − 2). (5.23)

Hence if q ≥ N
2 , condition (5.23) is satisfied for every choice of γ ≥ q

2 , while if
q < N

2 , condition (5.23) is verified just for q
2 ≤ γ < γ1 = 1

2 · q(N−2)
N−2q .

Therefore, if q ≥ N
2 , condition (5.23) together with restriction (4.7) gives

that it is sufficient to choose, q
2 ≤ γ ≤ γ2 = 1

2 · qrN
Nr−2q(r−1) . If otherwise q < N

2 ,
then condition (5.23) and (4.7) are satisfied when q

2 ≤ γ ≤ min{γ1, γ2}. Since
γ2 ≤ γ1 if and only if q ≥ Nr

N+2(r−1) , and γ2 ≥ q
2 , we have that it is sufficient

to choose γ = γ2 in order to satisfy conditions (3.28) and (4.7). Notice that it
results

(2γ2 − 1)r′ =
rN(q − 1) + 2q(r − 1)

r(N − 2q) + 2q
r′,

(2γ2 − 1)q′ =
rN(q − 1) + 2q(r − 1)

r(N − 2q) + 2q
q′.

Hence the assertion is proved. �

Remark 5.2. Notice that for α1 = 0, namely, the Heat equation, it follows that
h = 0 and we have the regularity result in [14].
Observe that in the first case, that is, zones 4, 5, it follows that h < 0 if and
only if q > 2N

N+2 , i.e, zone 4. Therefore, in this case, it is sufficient to consider
f

|x||h| ∈ Lr(0, T ;Lq(Ω)) and we get u
|x||h| ∈ Lp(0, T ;Lq∗∗

(Ω)).
Analogously in the second case, that is, zones 2, 3, 6, it follows that h < 0

if and only if γ2 > 1 (zones 2,3). Therefore, in this case, it is sufficient to
consider f

|x||h| ∈ Lr(0, T ;Lq(Ω)) and we get u
|x||h| ∈ L2γ2(0, T ;L2∗γ2(Ω)).

Notice that for q = 2N
N+2 and γ2 = 1, namely, in zones 2, 3, 4, it follows

that for f ∈ Lr(0, T ;Lq(Ω)) and λ ≤ ΛN , then the solution u to problem (1.5),
satisfies u ∈ V 2(Q).

Finally, notice that there is continuity in the results since h1 = h2 on
q = Nr

N+2(r−1) .

Remark 5.3. As noticed in Remark 4.5, the results of Theorem 4.3 hold true
also replacing the linear problem (4.1) with the nonlinear problem (4.3), where
g is a Caratheodory function satisfying (4.4). As a matter of fact, in this case
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it is sufficient to replace the approximating problems (5.10) with
⎧
⎪⎪⎨

⎪⎪⎩

unt − Δun = gn(x, t, un,∇un) + Tn(f) in Ω × (0, T ),

un(x, t) = 0 on ∂Ω × (0, T ),

un(x, 0) = 0 in Ω,

(5.24)

where gn is as in Remark 3.3 and to observe that all the estimates in the
proof of Theorem 4.3 remain true since gn satisfies the inequality (3.49) in
Remark 3.3.
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