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Nonlinear diffusion equations driven
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Abstract. This paper is concerned with nonlinear diffusion equations
driven by the p(·)-Laplacian with variable exponents in space. The well-
posedness is first checked for measurable exponents by setting up a sub-
differential approach. The main purposes are to investigate the large-time
behavior of solutions as well as to reveal the limiting behavior of solutions
as p(·) diverges to the infinity in the whole or in a subset of the domain.
To this end, the recent developments in the studies of variable exponent
Lebesgue and Sobolev spaces are exploited, and moreover, the spatial
inhomogeneity of variable exponents p(·) is appropriately controlled to
obtain each result.
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1. Introduction

Nonlinear elliptic operators with non-standard growth have been attracting
more attention in the studies of nonlinear PDEs. The reader can overview
the recent development of this field in [28]. Here we particularly treat the
p(·)-Laplace operator Δp(·) given by

Δp(·)φ(x) := ∇ ·
(
|∇φ(x)|p(x)−2∇φ(x)

)

with a measurable function p(·) from Ω ⊂ R
N into (1,∞). The p(·)-Laplacian

with a variable exponent p(·) is deeply related to generalized Lebesgue and
Sobolev spaces, Lp(·) and W 1,p(·), which have been vigorously studied and
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whose theory has been ripe for applications to PDEs (see [20]). There have
been many contributions to nonlinear elliptic problems associated with the
p(·)-Laplacian from various view points (see [28] for a survey). On the other
hand, there seem to be less contributions to parabolic problems.

Let Ω ⊂ R
N be a bounded domain with smooth boundary ∂Ω. In this

paper, we deal with a solution u = u(x, t) for the following initial-boundary
value problem:

∂tu = Δp(·)u+ f in Ω × (0,∞), (1.1)
u = 0 on ∂Ω × (0,∞), (1.2)

u(·, 0) = u0 in Ω, (1.3)

where ∂tu = ∂u/∂t and f : Ω×(0,∞) → R and u0 : Ω → R are given functions.
Equation (1.1) can be regarded as a sort of nonlinear diffusion equation, whose
diffusion coefficient is of the form |∇u(x, t)|p(x)−2 by analogy with Fick’s diffu-
sion model. Hence the nonlinear diffusion driven by (1.1) strongly depends on
the gradient of the density u(x, t), and moreover, it might be inhomogeneous
in space even though the gradient has the same norm over Ω. The constant
exponent p(·) ≡ p is particularly known to have a threshold between two dras-
tically different types of nonlinear diffusion, and moreover, the limit of p → ∞
exhibits a peculiar phenomena called fast/slow diffusion.

Parabolic equations involving the p(·)-Laplacian have been proposed in
the study of image restoration (see [17]) as well as in some model of electro-
rheological fluids (see [19,21,34]). A mathematical analysis was also done for
such problems by Acerbi and Mingione [1,2] and by Acerbi et al. [3]. In [27],
some nonlinear parabolic problem proposed by [17] was studied in a weak for-
mulation and an existence result for weak solutions was established. Antontsev
and Shmarev studied parabolic equations involving anisotropic p(·, ·)-Laplace
operators with log-Hölder continuous (x, t)-dependent exponents and proved
the existence, uniqueness, extinction in finite time and blow-up of solutions
in [7–10]. Equation (1.1) was also studied by Bendahmane et al. [15], where
the well-posedness is proved for renormalized solutions in an L1-framework
for continuous variable exponents. Moreover, the existence and uniqueness of
entropy solutions and the equivalence between two notions of solutions are
discussed for log-Hölder continuous variable exponents in [38] by Zhang and
Zhou (see also [36] for an elliptic counterpart).

The main purpose of this paper is to observe specific properties of
solutions for the nonlinear diffusion equation (1.1)–(1.3) with a variable expo-
nent p(·). To be concrete, we shall investigate asymptotic behaviors of solutions
u = u(x, t) as t → ∞ when f ≡ 0, and we shall also find out the limiting behav-
ior of solutions for pn(·)-Laplacians as pn(·) → ∞. To do so, we work in an
L2-framework and set up a subdifferential approach to (1.1). In Sect. 2, we
recall the definition of variable exponent Lebesgue spaces, Lp(·)(Ω), as well
as Sobolev spaces, W 1,p(·)(Ω). Moreover, some properties of these spaces will
be also exhibited to be used later. In Sect. 3, we discuss the well-posedness
of the Cauchy-Dirichlet problem (1.1)–(1.3) with measurable exponents p(·)
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by using a standard theory of evolution equations governed by subdifferen-
tial operators. It is noteworthy that our well-posedness result is completely
free from continuity assumptions on variable exponents. Indeed, it has been
an open question whether the (log-Hölder) continuity of variable exponent is
necessary for the well-posedness (see p. 4560 of [28]).

Section 4 is devoted to revealing asymptotic behaviors as t → ∞ of
solutions for (1.1)–(1.3) without source (i.e., f ≡ 0). For the fully degenerate
case, inf p(·) > 2, solutions decay and converge to 0 as t → ∞. On the other
hand, for the fully singular case, sup p(·) < 2, one can observe the extinction
of solutions, namely, every solution vanishes at a finite time, which is called
extinction time. We estimate the decay rate and the extinction rate of solu-
tions from above and below. Moreover, we also establish an estimate for the
extinction time in terms of initial data.

In contrast to constant exponent cases, where decay and extinction rates
are homogeneous in space, variable exponents might turn them inhomoge-
neous. Moreover, when p(x) ≡ p, the non-increase in t of the Rayleigh quotient
‖∇u(·, t)‖Lp/‖u(·, t)‖L2 plays a crucial role to obtain decay/extinction rates
of solutions. However, in variable exponent cases, it would be somewhat dif-
ficult to obtain the non-increase of the corresponding Rayleigh quotient with
Lp(·)(Ω)-norm, due to the lack of homogeneity of the modular in Lp(·)(Ω)-space.

In Sect. 5, we investigate the fast/slow diffusion limit, that is, the limit as
n → ∞ of solutions un = un(x, t) for the nonlinear diffusion (1.1)–(1.3) with a
sequence of variable exponents pn(·) → ∞. The constant exponent version of
fast/slow diffusion limit arises from some macroscopic model of a critical-state
of type-II superconductors and a model of sandpile growth (see [6,11,13]).
Moreover, the variable exponent case could be a natural extension to these
physical models. Since the diffusion coefficient for the pn(·)-Laplacian is in the
form |∇u(x, t)|pn(x)−2 with the density u(x, t) at the position x and the time
t, one can expect that the speed of diffusion diverges as pn(x) → ∞ at (x, t)
where |∇u(x, t)| is greater than 1 and no diffusion will occur at (x, t) where
|∇u(x, t)| is less than 1. Such a limiting diffusion is called fast/slow diffusion
in [11]. Compared to the constant exponent case, the speed of the divergence of
pn(·) might not be uniform over Ω in our setting. We prove the convergence of
solutions as n → ∞ and find out a limiting problem, which is an evolutionary
variational inequality with a constraint set of the form,

K = {w ∈ H1
0 (Ω); ‖∇w‖L∞(Ω) ≤ 1},

under an appropriate control of the fastest and slowest speeds of pn(·) → ∞
over Ω. Our analysis is based on a gradient structure of (1.1) and the notion of
Mosco convergence for convex functionals is employed to investigate the limit
of Lyapunov functionals.

In the final section, we treat a more peculiar case, where pn(·) diverges
only on a subset of Ω. More precisely, we consider the case that
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pn(x) =

{
qn(x) → ∞ for x ∈ D,

q(x) < ∞ for x ∈ Ω \D as n → ∞

with an open subset D of Ω and measurable functions qn(·), q(·) with values in
(1,∞). From an analogue to the former case, one can expect that the fast/slow
diffusion can be observed in D by letting n → ∞, and moreover, an inhomo-
geneous nonlinear diffusion driven by the q(·)-Laplacian occurs in Ω \D. This
situation is particular to the variable exponent case and never happens in the
constant exponent case. We finally obtain a mixed problem which consists of an
evolutionary quasi-variational inequality in D and a nonlinear diffusion equa-
tion involving the q(·)-Laplacian in Ω \ D as a limiting problem. In contrast
to the preceding case, the constraint set of the quasi-variational inequality
depends on the unknown.

We also have to mention an elliptic counterpart of the limiting problems
treated here. In [31], Manfredi et al. studied the limits as pn(x) → ∞ of pn(x)-
harmonic functions, i.e., solutions of −Δpn(·)un = 0 in Ω. They finally proved
that the limit of un solves an elliptic equation involving the so-called infinity-
Laplace operator under more restrictive assumptions of pn(x) → ∞ than ours
(see also Remark 5.4 in Sect. 5). Moreover, in [30], they also treated the case
that pn(x) → ∞ only in a subdomain of Ω (see also [37]). However, we empha-
size that the elliptic limit would be essentially different from parabolic ones.
In parabolic cases, due to the presence of the time-derivative term, one can-
not normalize both sides of equations when pn(x) diverges to the infinity, and
hence, the limiting problems are described as variational inequalities instead
of PDEs involving explicit differential operators such as the infinity-Laplacian.

Notation. We write (s)+ := max{s, 0} for s ∈ R. Let ‖ · ‖q denote the usual
norm of Lq(Ω)-spaces for 1 ≤ q ≤ ∞. Moreover, (·, ·)L2 denotes the usual inner
product of the Hilbert space L2(Ω), i.e., (u, v)L2 =

∫
Ω
u(x)v(x)dx.

2. Preliminaries

This section is devoted to some preliminary results on Lebesgue and Sobolev
spaces with variable exponents (see [22,23,25,29] for a good introduction to
this field and [20] for a complete collection of up-to-date results). Let Ω be
a domain in R

N . Throughout this section, we assume that p is a measurable
function from Ω to [1,∞). We write

p+ := ess sup
x∈Ω

p(x), p− := ess inf
x∈Ω

p(x).

Define the Lebesgue space with a variable exponent p(·), which is the so-called
Nakano space and a special sort of Musielak–Orlicz spaces (see [32]), as follows:

Lp(·)(Ω) :=
{
u : Ω → R; measurable in Ω and

∫

Ω

|u(x)|p(x)dx < ∞
}
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with a Luxemburg-type norm

‖u‖p(·) := inf

{
λ > 0;

∫

Ω

∣∣∣∣
u(x)
λ

∣∣∣∣
p(x)

dx ≤ 1

}
.

The following proposition plays an important role to establish energy estimates
(see, e.g., Theorem 1.3 of [25] for a proof).

Proposition 2.1. It holds that

σ−(‖w‖p(·)) ≤
∫

Ω

|w(x)|p(x)dx ≤ σ+(‖w‖p(·)) for all w ∈ Lp(·)(Ω)

with the strictly increasing functions

σ−(s) := min{sp−
, sp+}, σ+(s) := max{sp−

, sp+} for s ≥ 0.

We next define variable exponent Sobolev spaces W 1,p(·)(Ω) as follows:

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω);

∂u

∂xi
∈ Lp(·)(Ω) for all i = 1, 2, . . . , N

}

with the norm

‖u‖W 1,p(·)(Ω) :=
(
‖u‖2

p(·) + ‖∇u‖2
p(·)
)1/2

,

where ‖∇u‖p(·) denotes the Lp(·)(Ω)-norm of |∇u|. Furthermore, let W 1,p(·)
0 (Ω)

be the closure of C∞
0 (Ω) in W 1,p(·)(Ω). Here we note that the space W 1,p(·)

0 (Ω)
is usually defined in a slightly different way for the variable exponent case.
However, both definitions are equivalent under (2.1) given below (see [20]
and also [39] for an unusual phenomenon of discontinuous exponents). In this
paper, we use the notation of W 1,p(·)

0 (Ω) only when (2.1) is satisfied.
The following proposition is concerned with the uniform convexity of

Lp(·)- and W 1,p(·)-spaces.

Proposition 2.2. ([20]) If p− > 1 and p+ < ∞, then Lp(·)(Ω) and W 1,p(·)(Ω)
are uniformly convex Banach spaces. Hence they are reflexive.

Let us exhibit the Poincaré and Sobolev inequalities (see [24,26,35] and
references therein for more details). To do so, we introduce the log-Hölder
condition:

|p(x) − p(x′)| ≤ A

log(e+ 1/|x− x′|) for all x, x′ ∈ Ω (2.1)

with some constant A > 0 (see [20]). This condition follows from the Hölder
continuity of p over Ω and it implies p ∈ C(Ω) and p+ < ∞.

Proposition 2.3. ([20]) Let Ω be a bounded domain in R
N with smooth boundary

∂Ω. Assume that (2.1) holds.
(i) There exists a constant C ≥ 0 such that

‖w‖p(·) ≤ C‖∇w‖p(·) for all w ∈ W
1,p(·)
0 (Ω).
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In particular, the space W 1,p(·)
0 (Ω) has a norm ‖ · ‖1,p(·) given by

‖w‖1,p(·) := ‖∇w‖p(·) for w ∈ W
1,p(·)
0 (Ω),

which is equivalent to ‖ · ‖W 1,p(·)(Ω).

(ii) Let q : Ω → [1,∞) be a measurable and bounded function and suppose
that q(x) ≤ p∗(x) := Np(x)/(N −p(x))+ for a.e. x ∈ Ω. Then W 1,p(·)(Ω)
is continuously embedded in Lq(·)(Ω).

In particular, if Ω is bounded and smooth, p− ≥ 2N/(N + 2) and (2.1)
holds, then there exists a constant Cp(·),2 > 0 such that

‖w‖2 ≤ Cp(·),2‖w‖1,p(·) for all w ∈ W
1,p(·)
0 (Ω). (2.2)

This fact will be frequently used in Sect. 4.
Let us introduce the following amalgam space with a variable exponent:

Xp(·)(Ω) :=
{
u ∈ L2(Ω); ∂u/∂xi ∈ Lp(·)(Ω) for i = 1, 2, . . . , N

}

equipped with the norm

‖u‖Xp(·)(Ω) :=
(
‖u‖2

2 + ‖∇u‖2
p(·)
)1/2

for u ∈ Xp(·)(Ω).

Moreover, set a subspace of Xp(·)(Ω) by

X
p(·)
0 (Ω) := Xp(·)(Ω) ∩W 1,p−

0 (Ω)

with ‖u‖
X

p(·)
0 (Ω)

:= ‖u‖Xp(·)(Ω). Assume that 1 < p− and p+ < ∞. Then since

L2(Ω) and Lp(·)(Ω) are reflexive Banach spaces, one can observe that Xp(·) is
a reflexive Banach space, and X

p(·)
0 (Ω) is as well, since Xp(·)

0 (Ω) is a closed
subspace of Xp(·)(Ω).

If Ω is bounded and smooth, then it follows that

W 1,p+
(Ω) ∩ L2(Ω) ↪→ Xp(·)(Ω) ↪→ W 1,p−

(Ω) ∩ L2(Ω) (2.3)

with continuous canonical injections. Indeed, Xp+
(Ω) ↪→ Xp(·)(Ω) ↪→ Xp−

(Ω)
continuously by p− ≤ p(·) ≤ p+, and moreover, Xp−

(Ω) ↪→ W 1,p−
(Ω) con-

tinuously by usual Sobolev’s embedding theorem. Since W 1,p+
(Ω) ∩L2(Ω) ↪→

Xp+
(Ω) clearly, we obtain (2.3). It also follows that

W 1,p+

0 (Ω) ∩ L2(Ω) ↪→ X
p(·)
0 (Ω) ↪→ W 1,p−

0 (Ω) ∩ L2(Ω). (2.4)

Furthermore, we have:

Proposition 2.4. Assume that Ω is bounded and smooth. If p(·) satisfies (2.1),
then Xp(·)(Ω) and Xp(·)

0 (Ω) coincide with W 1,p(·)(Ω)∩L2(Ω) and W 1,p(·)
0 (Ω)∩

L2(Ω), respectively.

Proof. By Corollary 8.2.6 of [20], there exists a constant C such that

‖u− 〈u〉Ω‖p(·) ≤ C‖∇u‖p(·) for u ∈ L1
loc(Ω) satisfying |∇u| ∈ Lp(·)(Ω),

where 〈u〉Ω stands for the mean value of u over Ω. Hence
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Xp(·)(Ω) ⊂ W 1,p(·)(Ω) ∩ L2(Ω).

The inverse inclusion is straightforward.
Besides, by Theorem 11.2.7 of [20], it follows that

W 1,p(·)(Ω) ∩W 1,p−
0 (Ω) = W

1,p(·)
0 (Ω).

Hence we conclude that

X
p(·)
0 (Ω) = Xp(·)(Ω) ∩W 1,p−

0 (Ω)

= W 1,p(·)(Ω) ∩ L2(Ω) ∩W 1,p−
0 (Ω) = W

1,p(·)
0 (Ω) ∩ L2(Ω).

�

3. Well-posedness

In this section, we discuss the well-posedness of (1.1)–(1.3) in an L2-framework
by using a subdifferential approach. Subdifferential is a generalized notion of
functional derivative for convex functionals. Let H be a Hilbert space with an
inner product (·, ·)H and let φ : H → (−∞,∞] be a proper (i.e., φ �≡ ∞) lower
semicontinuous convex functional with the effective domain D(φ) := {u ∈
H; φ(u) < ∞}. Then the subdifferential operator ∂φ : H → H of φ is defined
by

∂φ(u) := {ξ ∈ H; φ(v)−φ(u)≥(ξ, v − u)H for all v ∈ D(φ)} for u ∈ D(φ)

with the domain D(∂φ) := {u ∈ D(φ); ∂φ(u) �= ∅}. It is well known that
subdifferential operators are maximal monotone in H.

In [8] and [38], the well-posedness of (1.1)–(1.3) was proved by impos-
ing the log-Hölder continuity assumption on variable exponents (see also [5]).
Moreover, in [15], the well-posedness is also proved for renormalized solutions
by assuming only the continuity of exponents with 1 < p− ≤ p+ < N. Here we
emphasize that our well-posedness result is completely free from the continuity
assumption of variable exponents, and moreover, it can cover even discontin-
uous variable exponents. Such a fairly general framework will be essentially
required in Sect. 6 (see Remark 6.2).

Throughout this paper, we always assume that Ω is bounded and smooth.
Let us begin with the definition of solutions for (1.1)–(1.3).

Definition 3.1. A function u ∈ C([0,∞);L2(Ω)) is said to be a solution of
(1.1)–(1.3), if the following conditions are all satisfied:

• u ∈ W 1,2
loc (0,∞;L2(Ω)) ∩ C((0,∞);Xp(·)

0 (Ω)) and Δp(·)u ∈ L2
loc(0,∞;

L2(Ω)),
• u(0) = u0,

• For all w ∈ X
p(·)
0 (Ω), it holds that

∫

Ω

∂tu(x, t)w(x)dx+
∫

Ω

|∇u(x, t)|p(x)−2∇u(x, t) · ∇w(x)dx =
∫

Ω

f(x, t)w(x)dx

for a.e. t > 0.
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We reduce the initial-boundary value problem (1.1)–(1.3) into the Cau-
chy problem for an abstract evolution equation. Let H := L2(Ω) and define
ϕ : H → [0,∞] by

ϕ(w) =

⎧
⎨
⎩

∫
Ω

1
p(x) |∇w(x)|p(x)dx if w ∈ X

p(·)
0 (Ω),

∞ otherwise.
(3.1)

In order to prove the well-posedness for (1.1)–(1.3), the most crucial point
lies in checking the lower semicontinuity of the functional ϕ in H = L2(Ω).

Lemma 3.2. Suppose that 1 < p− and p+ < ∞. The function ϕ is proper,
convex and lower semicontinuous in H.

Proof. It is obvious that ϕ is proper and convex in H. So, it remains to prove
the lower semicontinuity of ϕ in H. Let μ ∈ R be fixed and set

[ϕ ≤ μ] := {u ∈ H;ϕ(u) ≤ μ}.
Let (un) be a sequence on [ϕ ≤ μ] such that un → u strongly in H. By
Proposition 2.1, it follows that

1
p+
σ− (‖∇un‖p(·)

) ≤ 1
p+

∫

Ω

|∇un(x)|p(x)dx ≤ ϕ(un) ≤ μ.

Hence (un) is bounded in Xp(·)
0 (Ω) for all n ∈ N. Since Xp(·)

0 (Ω) is reflexive by
1 < p− and p+ < ∞, we can take a subsequence of (n) denoted by the same
letter again such that un → u weakly in Xp(·)

0 (Ω).
Let ϕ̂ be the restriction of ϕ to X

p(·)
0 (Ω). Then ϕ̂ is continuous in

X
p(·)
0 (Ω), and moreover, ϕ̂ is convex. Hence ϕ̂ becomes weakly lower semi-

continuous in X
p(·)
0 (Ω). Therefore we have lim infn→∞ ϕ̂(un) ≥ ϕ̂(u) = ϕ(u),

which together with the fact that ϕ̂(un) = ϕ(un) ≤ μ implies that u ∈ [ϕ ≤ μ].
Thus we conclude that [ϕ ≤ μ] is closed in H, and therefore, ϕ is lower semi-
continuous in H. �

One can verify the following proposition as in the constant variable case.

Proposition 3.3. The restriction ϕ̂ of ϕ to Xp(·)
0 (Ω) is Gâteaux differentiable,

and the Gâteaux derivative dϕ̂(u) of ϕ̂ at u coincides with −Δp(·)u furnished
with u|∂Ω = 0 in the sense of distribution.

Since ∂ϕ(u) ⊂ ∂ϕ̂(u) = dϕ̂(u), we have ∂ϕ(u) = −Δp(·)u with u|∂Ω = 0
for all u ∈ D(∂ϕ). Thus the initial-boundary value problem (1.1)–(1.3) is
reduced into the following Cauchy problem:

du

dt
(t) + ∂ϕ(u(t)) = f(t) in H for t > 0, (3.2)

u(0) = u0. (3.3)

Such an abstract evolution equation was well studied in 1970s and fundamental
results were established by H. Brézis (see Chap. III of [16]). Hence we have:
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Theorem 3.4. (Well-posedness) Let p(·) be a measurable function from Ω into
(1,∞). Assume that 1 < p− and p+ < ∞. Then for all f ∈ L2

loc([0,∞);L2(Ω))
and u0 ∈ L2(Ω), there exists a unique solution u = u(x, t) of the initial-bound-
ary value problem (1.1)–(1.3).

In particular, if u0 belongs to X
p(·)
0 (Ω), then u ∈ W 1,2

loc ([0,∞);L2(Ω)) ∩
C([0,∞);Xp(·)

0 (Ω)).
Furthermore, the unique solution u of (1.1)–(1.3) continuously depends

on initial data u0 and f in the following sense: Let ui be the unique solution
of (1.1)–(1.3) with u0 = u0,i ∈ L2(Ω) and f = fi ∈ L2

loc([0,∞);L2(Ω)) for
i = 1, 2. Then it follows that

‖u1(t) − u2(t)‖2 ≤ ‖u0,1 − u0,2‖2 +
∫ t

0

‖f1(τ) − f2(τ)‖2 dτ for all t ≥ 0.

(3.4)

Proof. By the well-posedness result due to Brézis, the Cauchy problem (3.2),
(3.3) admits a unique strong solution u ∈ W 1,2

loc (0,∞;L2(Ω)) such that ∂ϕ(u(·))
belongs to L2

loc(0,∞;L2(Ω)) and ϕ(u(·)) is absolutely continuous in (0,∞).
Here we only prove u ∈ C((0,∞);Xp(·)

0 (Ω)), which is a direct consequence
from a standard property of uniformly convex Banach spaces in the constant
variable case.

Define a functional ρ : (Lp(·)(Ω))N → [0,∞) by

ρ(u) :=

⎧
⎨
⎩

∫

Ω

1
p(x)

|u(x)|p(x)dx if u ∈ (Lp(·)(Ω))N ,

∞ else.

Then ρ becomes a uniformly convex continuous modular in (Lp(·)(Ω))N . Since
ϕ(u(·)) is continuous in (0,∞), for each t > 0, it follows that

ρ(∇u(s)) → ρ(∇u(t)) as s → t,

and moreover, we have

∇u(s) → ∇u(t) weakly in (Lp(·)(Ω))N .

Hence by Lemma 2.4.17 of [20], we deduce that

ρ(∇u(s) − ∇u(t)) → 0 as s → t,

which implies ∇u(s) → ∇u(t) strongly in (Lp(·)(Ω))N as s → t at each t > 0.
Therefore u ∈ C((0,∞);Xp(·)

0 (Ω)). �

In much the same way as in the case of constant exponent p-Laplacians,
one can also prove the comparison principle for (1.1)–(1.3). For the reader’s
convenience, let us show its proof.

Proposition 3.5. (Comparison principle) Assume that p(·) satisfies (2.1) and
p− > 1. Let u1 be a subsolution for (1.1) in the L2(Ω)-sense, that is, u1 ∈
C([0,∞);L2(Ω)) ∩W 1,2

loc ((0,∞);L2(Ω)), u1(t) ∈ W
1,p(·)
0 (Ω) for a.e. t > 0, and

it holds that
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∫

Ω

∂tu1(x, t)φ(x)dx+
∫

Ω

|∇u1|p(x)−2∇u1(x, t) · ∇φ(x)dx ≤
∫

Ω

f(x, t)φ(x)dx

for every non-negative function φ ∈ W
1,p(·)
0 (Ω) ∩L2(Ω) and for a.e. t > 0. Let

u2 be a supersolution for (1.1) in the L2(Ω)-sense, which is analogously defined
to the above. If u1(x, 0) ≤ u2(x, 0) for a.e. x ∈ Ω and γ(u1(·, t)−u2(·, t))+(x) =
0 for a.e. x ∈ ∂Ω and t > 0, where γ stands for the trace operator from
W 1,p−

(Ω) into W 1−1/p−,p−
(∂Ω), then it follows that

u1(x, t) ≤ u2(x, t) for a.e. x ∈ Ω, t > 0.

Proof. Let j be a function in R given by

j(s) =
s2

2
for s ≥ 0; j(s) = 0 for s < 0

and define a functional ψ on H := L2(Ω) by

ψ(v) :=
∫

Ω

j(v(x))dx for v ∈ H.

Then ψ is proper, lower semicontinuous and convex in H. Moreover, ∂ψ(v) =
(v(·))+ ≥ 0. Here we also note that ∂ψ(v) ∈ W 1,p(·)(Ω) if v ∈ W 1,p(·)(Ω).

Put w := u1 − u2. Subtracting the inequality for the supersolution u2

from that for the subsolution u1, we obtain(
dw

dt
(t), φ

)

L2

+
∫

Ω

(
|∇u1|p(x)−2∇u1(x, t) − |∇u2|p(x)−2∇u2(x, t)

)
· ∇φ(x)dx

≤ 0 for every non-negative φ ∈ W
1,p(·)
0 (Ω) ∩ L2(Ω) and for a.e. t ≥ 0.

One can put φ = ∂ψ(w(t)) = (w(·, t))+. Indeed, since γ(w(·, t))+(x) = 0 for
a.e. x ∈ ∂Ω and t > 0, we find by (2.1) that φ ∈ W

1,p(·)
0 (Ω). Applying the

chain rule for subdifferentials, we get
d

dt
ψ(w(t))

≤ −
∫

Ω

(
|∇u1|p(x)−2∇u1(x, t) − |∇u2|p(x)−2∇u2(x, t)

)
· ∇(w(x, t))+dx

= −
∫

Ω

(
|∇u1|p(x)−2∇u1(x, t) − |∇u2|p(x)−2∇u2(x, t)

)
· ∇w(x, t)

× sgn(w(x, t)) dx
≤ 0 for a.e. t > 0,

where sgn(s) = 0 for s ≤ 0 and sgn(s) = 1 for s > 0. Therefore

ψ(w(t)) ≤ ψ(w(0)) = 0 for all t ≥ 0,

which implies w(x, t) ≤ 0 for a.e. x ∈ Ω and t > 0. �

Remark 3.6. In [5], the existence of periodic solutions is also proved, provided
that p− ≥ 2N/(N + 2) and p(·) satisfies (2.1). Furthermore, it is also proved
that the solution u(t) converges to a stationary solution φ strongly in L2(Ω)
and ϕ(u(t)) → ϕ(φ) (hence u(t) → φ strongly in W

1,p(·)
0 (Ω) as t → ∞) when
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p− > 2N/(N + 2), (2.1) holds, f(t) → f∞ weakly in L2(Ω) as t → ∞ and
f(·) − f∞ ∈ L2(0,∞;L2(Ω)). Moreover, the convergence rate of u(t) in L2(Ω)
is also estimated from above if p− ≥ 2.

4. Decay and extinction properties

In this section, we are concerned with decay and extinction properties of
solutions for (1.1)–(1.3) with f ≡ 0 as t → ∞. In case p(·) is constant,
these properties are well known, and moreover, the optimal decay rate and
the extinction rate of solutions have been revealed for the degenerate case
(p > 2) and the fast diffusion case (p < 2), respectively (see [14,18,33]). As
for the variable exponent case, Antontsev and Shmarev [7,9] also observed
the extinction property of solutions without estimate for the rate of extinction
when exponents are variable both in space and time. Throughout this section,
the Sobolev–Poincaré inequality (2.2) plays an important role, so we always
assume that

p satisfies (2.1) and 2N/(N + 2) ≤ p− (4.1)

(then Xp(·)
0 (Ω) coincides with W 1,p(·)

0 (Ω), by Propositions 2.3 and 2.4).
Our main results of this section are stated in the following: For the fully

degenerate case, p− > 2, it holds that

Theorem 4.1. (Decay property) In addition to (4.1), assume p− > 2. Let
u0 ∈ W

1,p(·)
0 (Ω) \ {0} and let u = u(x, t) be the unique solution of (1.1)–(1.3)

with f ≡ 0. Then there exists a constant c > 0 such that

c−1(t+ 1)−1/(p−−2) ≤ ‖u(t)‖2 ≤ c(t+ 1)−1/(p+−2) for all t ≥ 0. (4.2)

For the fully singular case, p+ < 2, we have:

Theorem 4.2. (Extinction property) In addition to (4.1), assume p+ < 2. Let
u0 ∈ W

1,p(·)
0 (Ω) \ {0} and let u = u(x, t) be the unique solution of (1.1)–(1.3)

with f ≡ 0. Then there exist a finite time t∗ > 0 and a constant c > 0 such
that

c−1(t∗ − t)1/(2−p−)
+ ≤ ‖u(t)‖2 ≤ c(t∗ − t)1/(2−p+)

+ for all t ≥ 0. (4.3)

Hence the solution u = u(x, t) vanishes at t∗, which is called extinction time
of u.

Our proof is based on the following two fundamental energy identities:
1
2
d

dt
‖u(t)‖2

2 +
∫

Ω

|∇u(x, t)|p(x)dx = 0, (4.4)
∥∥∥∥
du

dt
(t)
∥∥∥∥

2

2

+
d

dt
ϕ(u(t)) = 0 (4.5)

for a.e. t ∈ (0,∞). The first identity follows from the multiplication of (1.1)
by u and the integration over Ω, and the second one can be obtained by mul-
tiplying (3.2) by du(t)/dt in L2(Ω) and using a chain rule for subdifferentials
(see Lemma 3.3 of [16]). Then we have,
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Lemma 4.3. (Upper estimates) Assume (4.1). In case p+ > 2, there exists
c0 > 0 such that

‖u(t)‖2 ≤ c0(t+ 1)−1/(p+−2) for all t ≥ 0.

In case p+ < 2, the solution vanishes at a finite time t∗ > 0.

Proof. By Proposition 2.1, it follows from (4.4) that

1
2
d

dt
‖u(t)‖2

2 + σ− (‖u(t)‖1,p(·)
) ≤ 0 for a.e. t > 0,

and hence, by (2.2),

1
2
d

dt
‖u(t)‖2

2 + σ−
(
C−1

p(·),2‖u(t)‖2

)
≤ 0 for a.e. t > 0. (4.6)

Now, let us solve the Cauchy problem for the following ODE:

y′(t) + 2σ−
(
C−1

p(·),2y(t)
1/2
)

= 0 for t > 0, y(0) = ‖u0‖2
2 > 0. (4.7)

Then by comparison principle, ‖u(t)‖2
2 ≤ y(t) for all t ≥ 0. In case y(0) =

‖u0‖2
2 > C2

p(·),2, one can write

y′(t) +
2

Cp−
p(·),2

y(t)p−/2 = 0 for t ∈ [0, t1)

with t1 := sup{τ > 0; y(t) > C2
p(·),2 for all t ∈ [0, τ ]} > 0. Then it follows

that σ−(C−1
p(·),2y(t)

1/2) = y(t)p−/2/Cp−

p(·),2 for t ∈ [0, t1), and hence we have,

y(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎝‖u0‖2−p−

2 − 2 − p−

Cp−
p(·),2

t

⎞
⎠

2/(2−p−)

if p− �= 2,

‖u0‖2
2 exp

(
− 2
C2

p(·),2
t

)
if p− = 2

for all t ∈ [0, t1),

which implies

0 < t1 < ∞ and y(t1) = C2
p(·),2.

Therefore we deduce that

‖u(t1)‖2
2 ≤ C2

p(·),2.

In case y(0) = ‖u0‖2
2 ≤ C2

p(·),2, since y(t) is non-increasing by (4.7), we have

y′(t) +
2

Cp+

p(·),2
y(t)p+/2 = 0 for t ≥ 0.

Then as in the last case, for any p+ �= 2, we can obtain

‖u(t)‖2
2 ≤ y(t) =

⎛
⎝‖u0‖2−p+

2 − 2 − p+

Cp+

p(·),2
t

⎞
⎠

2/(2−p+)

+

for all t ≥ 0. (4.8)
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Combining these facts, we conclude that: in case p+ < 2, the solution u(t)
vanishes at some finite time t∗ > 0; in case p+ > 2, the solution u(t) converges
to zero as t → ∞ such that

‖u(t)‖2 ≤ c0(t+ 1)−1/(p+−2) for all t ≥ 0

with some constant c0 > 0. This completes our proof. �

In constant exponent cases, one can use the fact that the Rayleigh
quotient t �→ R(t) := ‖∇u(t)‖p/‖u(t)‖2 is non-increasing. However, in vari-
able exponent cases, its analogue is not obvious, because of a gap between the
norm ‖∇w‖p(·) and the modular ρ(w) =

∫
Ω

|∇w(x)|p(x)dx in Lp(·)(Ω). Here,
to derive the lower and upper estimates for ‖u(t)‖2, we set up the following
lemma, where a modified Rayleigh quotient involving a Lyapunov energy ϕ is
introduced.

Lemma 4.4. The function

t �→ R̃(t) :=
ϕ(u(t))

‖u(t)‖p−
2

is non-increasing on the interval I := {t ≥ 0; ‖u(t)‖2 > 0}.
Proof. By (4.5), it follows that

d

dt
R̃(t) =

−‖u′(t)‖2
2‖u(t)‖p−

2 − ϕ(u(t)) d
dt‖u(t)‖p−

2

‖u(t)‖2p−
2

for all t ∈ I.

Here we note by (4.4) that

d

dt
‖u(t)‖p−

2 =
p−

2
‖u(t)‖p−−2

2

d

dt
‖u(t)‖2

2.

Hence

d

dt
R̃(t) =

−‖u′(t)‖2
2‖u(t)‖2

2 − ϕ(u(t))p−

2
d
dt‖u(t)‖2

2

‖u(t)‖p−+2
2

.

By (4.4),

ϕ(u(t)) =
∫

Ω

1
p(x)

|∇u(x, t)|p(x)dx

≤ 1
p−

∫

Ω

|∇u(x, t)|p(x)dx = − 1
2p−

d

dt
‖u(t)‖2

2.

Thus since (d/dt)‖u(t)‖2
2 ≤ 0 by (4.4), it holds that

d

dt
R̃(t) ≤ −‖u′(t)‖2

2‖u(t)‖2
2 +

(
1
2

d
dt‖u(t)‖2

2

)2

‖u(t)‖p−+2
2

=
−‖u′(t)‖2

2‖u(t)‖2
2 + (u′(t), u(t))2L2

‖u(t)‖p−+2
2

for all t ∈ I,

which implies that
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d

dt
R̃(t) ≤ 0 for all t ∈ I.

Therefore the function R̃(·) is non-increasing on I. �

Now, we are in a position to give a proof of Theorem 4.1.

Proof of Theorem 4.1. The upper estimate has already been proved in Lemma
4.3. Hence let us prove the lower estimate. Recalling (4.4) and using the defi-
nition of p+, we find that

d

dt
‖u(t)‖2

2 + 2p+ϕ(u(t)) ≥ 0 for all t ≥ 0.

By Lemma 4.4, we note that

ϕ(u(t)) = R̃(t)‖u(t)‖p−
2 ≤ R̃(0)‖u(t)‖p−

2 if ‖u(t)‖2 > 0. (4.9)

Hence we obtain
d

dt
‖u(t)‖2

2 + 2p+R̃(0)‖u(t)‖p−
2 ≥ 0 for a.e. t > 0.

By solving the following ODE:

y′(t) + κ−y(t)p−/2 = 0 for t > 0, y(0) = ‖u0‖2
2 > 0

with κ− := 2p+R̃(0) and by using the comparison principle, we deduce by
p− > 2 that

‖u(t)‖2 ≥
(
‖u0‖2−p−

2 + (p− − 2)p+R̃(0)t
)−1/(p−−2)

for all t ≥ 0,

which implies our desired result. �

We next prove Theorem 4.2.

Proof of Theorem 4.2. Let us derive the upper estimate for ‖u(t)‖2. As in the
proof of Theorem 4.1, by the definition of p+ and Lemma 4.4, one can obtain

d

dt
‖u(t)‖2

2 + 2p+R̃(0)‖u(t)‖p−
2 ≥ 0 for a.e. t ∈ (0, t∗),

which implies
2

2 − p−
d

dt
‖u(t)‖2−p−

2 ≥ −2p+R̃(0).

The integration of both sides over (t, t∗) leads us to

‖u(t)‖2 ≤
{

(2−p−)p+R̃(0)
}1/(2−p−)

(t∗−t)1/(2−p−)
+ for all t ≥ 0. (4.10)

We next prove the lower estimate. Set t1 := inf{τ ≥ 0; ‖u(τ)‖2 ≤ Cp(·),2}.
Then 0 ≤ t1 < t∗ and σ−(C−1

p(·),2‖u(t)‖2) = ‖u(t)‖p+

2 /Cp+

p(·),2 for all t ≥ t1.

Moreover, by (4.8) in the proof of Lemma 4.3, we find that

0 ≤ t1 ≤
⎛
⎝C

p+

p(·),2‖u0‖2−p+

2 − C2
p(·),2

2 − p+

⎞
⎠

+

. (4.11)
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It then follows from (4.6) that

2
2 − p+

d

dt
‖u(t)‖2−p+

2 ≤ − 2

Cp+

p(·),2
for a.e. t > t1.

Integrating both sides over (t, t∗), we have

‖u(t)‖2 ≥
⎛
⎝2 − p+

Cp+

p(·),2

⎞
⎠

1/(2−p+)

(t∗ − t)1/(2−p+)
+ for all t ≥ t1. (4.12)

As for the case that t1 > 0 (hence ‖u(t1)‖2 = Cp(·),2), taking a positive con-

stant c1 := ‖u(t1)‖2/t
1/(2−p+)
∗ , we observe

‖u(t)‖2 ≥ ‖u(t1)‖2 = c1t
1/(2−p+)
∗ ≥ c1(t∗ − t)1/(2−p+) for all t ∈ [0, t1].

Thus we have proved this theorem. �

One can also obtain the following corollary, which provides some estimate
for the extinction time in terms of initial data.

Corollary 4.5. (Estimates for extinction times) In addition to (4.1), assume
that p+ < 2. For each u0 ∈ W

1,p(·)
0 (Ω) \ {0} and f ≡ 0, let u = u(x, t) be the

unique solution of (1.1)–(1.3) with the extinction time t∗ = t∗(u0) > 0. Then
it follows that

1
2 − p−

‖u0‖2
2

p+ϕ(u0)
≤ t∗(u0) ≤

Cp+

p(·),2
2 − p+

‖u0‖2−p+

2 . (4.13)

Proof. The lower estimate follows immediately from (4.10) with t = 0. More-
over, recall that

‖u(t1)‖2 ≤ Cp(·),2,

where t1 is estimated by (4.11). Substitute t = t1 in (4.12) to get

‖u(t1)‖2 ≥
⎛
⎝2 − p+

Cp+

p(·),2

⎞
⎠

1/(2−p+)

(t∗ − t1)1/(2−p+),

which together with (4.11) implies the upper estimate. �

Remark 4.6. One can also estimate the W 1,p(·)
0 (Ω)-norm of u(t) from above

and below by using (2.2) and the fact that

σ− (‖u(t)‖1,p(·)
) ≤ p+ϕ(u(t)) ≤ p+ ϕ(u0)

‖u0‖p−
2

‖u(t)‖p−
2 .

Then in case p− > 2, it follows that

c̃−1(t+1)−1/(p−−2) ≤‖u(t)‖1,p(·) and σ− (‖u(t)‖1,p(·)
)1/p−

≤ c̃(t+1)−1/(p+−2);
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in case p+ < 2, we have

c̃−1(t∗−t)1/(2−p−)
+ ≤ ‖u(t)‖1,p(·) and σ− (‖u(t)‖1,p(·)

)1/p−
≤ c̃(t∗ − t)1/(2−p+)

+

with some constant c̃ > 0. Since σ−(s) = sp+
for all s ∈ [0, 1], the decay rate

(resp., the extinction rate) will be equal to or faster than (t+1)−p−/{p+(p+−2)}

as t → ∞ (resp., (t∗ − t)p−/{p+(2−p+)} as t → t∗).

5. Fast/slow diffusion limit

Let (pn(·)) be a sequence of measurable functions from Ω into (1,∞) such that

pn(x) → ∞ for a.e. x ∈ Ω.

In this section, we shall investigate the limiting behavior as n → ∞ of the
solutions un = un(x, t) for

∂tun = Δpn(·)un + fn in Ω × (0, T ), (5.1)
un = 0 on ∂Ω × (0, T ), (5.2)

un(·, 0) = u0,n in Ω (5.3)

with T > 0 and sequences (u0,n) and (fn) in L2(Ω) and L2(0, T ;L2(Ω)), respec-
tively, satisfying

u0,n → u0 strongly in L2(Ω),

fn → f strongly in L2(0, T ;L2(Ω)).

The limit of solutions un as n → ∞ has been studied in the constant exponent
case, i.e., pn(·) ≡ pn, and such a problem arises from a critical-state model of
type-II superconductors (see [4,6,13]) and a growing sandpile model (see [11]).
Particularly, in [4], the first author characterized the limit of solutions for
(5.1)–(5.3) by employing the notion of Mosco convergence of a sequence (ψn)
of functionals associated with pn-Laplacians:

ψn(w) :=

⎧
⎨
⎩

1
pn

∫
Ω

|∇w(x)|pndx if w ∈ W 1,pn

0 (Ω),

∞ otherwise,

and by exploiting a general theory for the convergence as n → ∞ of solutions
for abstract evolution equations governed by subdifferential operators ∂ψn of
ψn in a Hilbert space H:

dun

dt
(t) + ∂ψn(un(t)) � fn(t) in H for t ∈ (0, T ), un(0) = u0,n.

In this section we also follow the same strategy to investigate the limit
of solutions for (5.1)–(5.3) with the sequence (pn(·)) of variable exponents as
n → ∞. Before starting our analysis let us briefly review the notion of Mosco
convergence and recall the convergence result due to Attouch [12] for evolution
equations governed by subdifferential operators in the next subsection.
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5.1. Mosco convergence and evolution equations

The Mosco convergence of convex functionals is defined as follows:

Definition 5.1. (Mosco convergence) Let H be a Hilbert space and denote by
Φ(H) the set of all proper (i.e., φ �≡ ∞), lower semicontinuous and convex
functionals φ from H into (−∞,∞]. Let (φn) be a sequence in Φ(H) and let
φ ∈ Φ(H). Then φn → φ on H in the sense of Mosco as n → ∞ if the following
conditions are all satisfied:

(i) For all u ∈ D(φ), there exists a sequence (un) in H such that un → u
strongly in H and φn(un) → φ(u).

(ii) Let (un) be a sequence in H such that un → u weakly in H. Then
lim inf
n→∞ φn(un) ≥ φ(u).

Attouch [12] investigated the limit as n → ∞ of solutions for the following
Cauchy problems:

dun

dt
(t) + ∂φn(un(t)) � fn(t) in H for t ∈ (0, T ), (5.4)

un(0) = u0,n. (5.5)

Proposition 5.2. (Theorem 3.74 of [12]) Let φn, φ ∈ Φ(H) be such that

φn → φ on H in the sense of Mosco as n → +∞.

Moreover, let fn, f ∈ L2(0, T ;H) be such that

fn → f strongly in L2(0, T ;H)

and let u0,n ∈ D(φn) and u0 ∈ D(φ) be such that

u0,n → u0 strongly in H.

Then the solutions un of (5.4), (5.5) converge to u as n → ∞ in the following
sense:

un → u strongly in C([0, T ];H),
√
t
dun

dt
→ √

t
du

dt
strongly in L2(0, T ;H).

Moreover, the limit u is the unique solution of
du

dt
(t) + ∂φ(u(t)) � f(t) in H, 0 < t < T, u(0) = u0.

In addition, if φn(u0,n) → φ(u0) < ∞, then

un → u strongly in W 1,2(0, T ;H),

φn(un(·)) → φ(u(·)) uniformly on [0, T ].

5.2. Limit of solutions for the pn(·)-Laplacian

Let us return to our issue of the fast/slow diffusion limit. Here and thereafter,
we write

p+
n := ess sup

x∈Ω
pn(x), p−

n := ess inf
x∈Ω

pn(x).

Our result is stated as follows:
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Theorem 5.3. (Convergence of solutions) Let (pn(·)) be a sequence of measur-
able functions from Ω into (1,∞) such that

p−
n → ∞ and (p+

n )1/p−
n → 1 as n → ∞, (5.6)

where the latter is equivalently rewritten into

log p+
n

p−
n

→ 0 as n → ∞.

Let fn ∈ L2(0, T ;L2(Ω)) and u0,n ∈ L2(Ω) be such that

fn → f strongly in L2(0, T ;L2(Ω)), (5.7)

u0,n → u0 strongly in L2(Ω) (5.8)

and let un be the solutions of (5.1)–(5.3). Then there exists a function u ∈
C([0, T ];L2(Ω)) ∩W 1,2

loc ((0, T ];L2(Ω)) such that∫

Ω

(f(x, t) − ∂tu(x, t)) (v(x) − u(x, t)) dx ≤ 0 for a.e. t ∈ (0, T ),

and all v ∈ K,

u(t) ∈ K for a.e. t ∈ (0, T ) and u(·, 0) = u0 in Ω,

where K := {v ∈ H1
0 (Ω); ‖∇v‖∞ ≤ 1}, and

un → u strongly in C([0, T ];L2(Ω)), (5.9)
√
t
dun

dt
→ √

t
du

dt
strongly in L2(0, T ;L2(Ω)). (5.10)

In addition, if
∫
Ω
(1/pn(x))|∇u0,n(x)|pn(x)dx → 0, then it also holds that

un → u strongly in W 1,2(0, T ;L2(Ω)). (5.11)

Remark 5.4. (Comparison to an elliptic case) In [31], Manfredi et al. studied
the limit of solutions un = un(x) for the Dirichlet problem

−Δpn(·)un = 0 in Ω, un = f on ∂Ω

with some given function f = f(x). They proved that un uniformly converges
to the unique viscosity solution u of

−Δ∞u− |∇u|2 ln |∇u|ξ · ∇u = 0 in Ω, u = f on ∂Ω,

where Δ∞u = (D2u∇u) · ∇u, under the assumption that

∇pn(x)
pn(x)

→ ξ(x) uniformly in Ω,

which always implies (5.6). In this elliptic case, in order to avoid the diver-
gence of each term as pn(x) → ∞, one can carry out a normalization of the
expanded form of the equation,

0 = Δpn(·)un(x)

= |∇un(x)|pn(x)−2Δun(x) + (pn(x) − 2)|∇un(x)|pn(x)−4Δ∞un(x)

+ |∇un(x)|pn(x)−2 ln |∇un(x)|∇pn(x) · ∇un(x),
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by dividing both sides by pn(x)|∇un(x)|pn(x)−4 beforehand. On the other hand,
in parabolic cases, such a normalization cannot be applied due to the presence
of the term ∂tu. Then the limiting problem is essentially different from that
of the elliptic case, and it is described as a variational inequality.

To prove this theorem, define the functionals ϕn : H := L2(Ω)→ [0,∞] by

ϕn(w) =

⎧
⎨
⎩

∫
Ω

1
pn(x) |∇w(x)|pn(x)dx if w ∈ X

pn(·)
0 (Ω),

∞ otherwise.
(5.12)

Then as in Sect. 3, problem (5.1)–(5.3) is transcribed into the Cauchy problem
(5.4), (5.5) with φn replaced by ϕn in H = L2(Ω).

We next verify the Mosco convergence of ϕn as pn(·) → ∞ to a convex
function ϕ∞ on L2(Ω) under an appropriate control of the fastest and slowest
speeds of pn(·) → ∞ over Ω.

Proposition 5.5. (Mosco convergence) Under the same assumptions of pn(·)
as in Theorem 5.3, ϕn converges to ϕ∞ on L2(Ω) in the sense of Mosco as
n → ∞, where ϕ∞ denotes the indicator function over the closed convex subset
of L2(Ω),

K := {u ∈ H1
0 (Ω); ‖∇u‖∞ ≤ 1},

that is, ϕ∞ is a function from L2(Ω) to [0,∞] given by

ϕ∞(w) :=
{

0 if w ∈ K,
∞ otherwise.

Proof. Let u ∈ D(ϕ∞) = K be fixed. We then set a sequence un ≡ u in D(ϕ∞)
and observe that

0 ≤ ϕn(un) =
∫

Ω

1
pn(x)

|∇u(x)|pn(x)dx ≤ |Ω|
p−

n
→ 0 as n → ∞.

Here we also used the fact that un = u ∈ D(ϕn) for each n ∈ N. Indeed, since
u ∈ H1

0 (Ω) and ∇u ∈ (L∞(Ω))N , we have u ∈ W 1,r
0 (Ω) for any r ∈ [1,∞),

which implies u ∈ X
pn(·)
0 (Ω) = D(ϕn). Hence ϕn(un) → ϕ∞(u) as n → ∞.

Thus (i) of Definition 5.1 follows.
As for (ii) of Definition 5.1, let (un) be a sequence in L2(Ω) such that

un → u weakly in L2(Ω). We then claim that

lim inf
n→∞ ϕn(un) ≥ ϕ∞(u). (5.13)

Indeed, for the case where the liminf of ϕn(un) is infinite, (5.13) follows imme-
diately. For the case where the liminf is finite, up to a subsequence, it follows
that

ϕn(un) ≤ C
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for some constant C independent of n. Then we observe that

1 ≥ ϕn(un)
C

=
∫

Ω

{
1

(pn(x)C)1/pn(x)
|∇un(x)|

}pn(x)

dx

≥
∫

Ω

{
1

(p+
nC)1/p−

n

|∇un(x)|
}pn(x)

dx for large n,

which implies

‖∇un‖pn(·) ≤ (p+
nC)1/p−

n .

Thus, since p−
n − 1 < pn(x) for a.e. x ∈ Ω, by Hölder’s inequality (see Lemma

3.2.20 of [20]), we have
∫

Ω

|∇un(x)|p−
n −1dx ≤ 2

∥∥∥|∇un(x)|p−
n −1

∥∥∥
pn(·)/(p−

n −1)
‖1‖rn(·),

where rn : Ω → (1,∞) is defined by

p−
n − 1
pn(x)

+
1

rn(x)
= 1.

Here we observe∥∥∥|∇un(x)|p−
n −1

∥∥∥
pn(·)/(p−

n −1)

= inf

{
λ > 0;

∫

Ω

( |∇un(x)|
λ1/(p−

n −1)

)pn(x)

dx ≤ 1

}
= ‖∇un‖p−

n −1

pn(·) .

Moreover, since rn(·) = pn(·)/(pn(·) − p−
n + 1) > 1, we find that ‖1‖rn(·) ≤

max{1, |Ω|} (see Lemma 3.2.11 of [20]). Therefore it follows that
∫

Ω

|∇un(x)|p−
n −1dx ≤ 2max{1, |Ω|}‖∇un‖p−

n −1

pn(·)

≤ 2max{1, |Ω|}(p+
nC)(p

−
n −1)/p−

n . (5.14)

On the other hand, it follows that

‖∇un‖q ≤ (|Ω| + 1)1/q‖∇un‖p−
n −1

for an arbitrary q ∈ [1, p−
n − 1). Since the right-hand side is bounded in n by

(5.14) and assumption, for each q > 1, up to a subsequence, we see

∇un → ∇u weakly in (Lq(Ω))N as n → ∞
and u ∈ H1

0 (Ω). Hence passing to the limit as p−
n → ∞ with the assumption

that (p+
n )1/p−

n → 1, we derive

‖∇u‖q ≤ lim inf
n→∞ ‖∇un‖q

≤ lim
n→∞(|Ω| + 1)1/q (2max{1, |Ω|})1/(p−

n −1) (p+
nC)1/p−

n

= (|Ω| + 1)1/q.
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Then letting q → ∞, we find that

‖∇u‖∞ ≤ 1.

Thus it follows by ϕn ≥ 0 that

ϕ∞(u) = 0 ≤ lim inf
n→∞ ϕn(un).

Therefore (5.13) holds. Consequently, ϕn → ϕ∞ on L2(Ω) in the sense of
Mosco as n → ∞. �

We are now in position to prove Theorem 5.3.

Proof of Theorem 5.3. Due to Propositions 5.2 and 5.5, the solutions un con-
verge to a limit u and it uniquely solves

du

dt
(t) + ∂ϕ∞(u(t)) � f(t), 0 < t < T, u(0) = u0.

From the definition of subdifferential, the evolution equation above can be
rewritten by the following variational inequality:(
f(t) − du

dt
(t), v − u(t)

)

L2

≤ ϕ∞(v) − ϕ∞(u(t)) = 0 for all v ∈ D(ϕ∞) = K

and u(t) ∈ K for a.e. t ∈ (0, T ). �

6. Partial fast/slow diffusion limit

We finally discuss the case that pn(·) diverges only in a subset of Ω as n → ∞.
More precisely, we address ourselves to the following case:

pn(x) =
{
qn(x) → ∞ if x ∈ D,
q(x) < ∞ if x ∈ Ω \D as n → ∞, (6.1)

where D is a non-empty open subset of Ω satisfying |D|, |Ω \ D| > 0 and
q : Ω \D → (1,∞) and qn : D → (1,∞) are measurable, and we shall discuss
the convergence of solutions for (5.1)–(5.3) as n → ∞. In this case, the limiting
problem will be described as a mixture of two problems, a nonlinear diffusion
equation involving the q(·)-Laplacian in Ω \D and an evolutionary quasi-var-
iational inequality over D. Moreover, it is noteworthy that the constraint set
of the quasi-variational inequality depends on the unknown function (cf. the
set K is independent of u in Sect. 5).

Our basic strategy here is also based on the Mosco convergence of the
functionals ϕn associated with pn(·)-Laplacians as in the last section (see
(5.12)). Throughout this section, we write

q+ := ess sup
x∈Ω\D

q(x) and q− := ess inf
x∈Ω\D

q(x),

q+n := ess sup
x∈D

qn(x) and q−
n := ess inf

x∈D
qn(x)

and suppose that

1 < q−
n , q

− and q+n , q
+ < ∞ for all n ∈ N. (6.2)



58 G. Akagi and K. Matsuura NoDEA

For each function w : Ω → R, we simply use the same letter w for the restric-
tion of w onto a subset of Ω if no confusion can arise.

Now, our main result here reads,

Theorem 6.1. (Convergence of solutions) Let (pn(·)) be a sequence given in
(6.1) such that (6.2) and the following hold :

q−
n → ∞ and (q+n )1/q−

n → 1 as n → ∞. (6.3)

Moreover, let fn ∈ L2(0, T ;L2(Ω)) and u0,n ∈ L2(Ω) be such that (5.7) and
(5.8) hold. Let un be the solutions of (5.1)–(5.3). Then there exists a function
u ∈ C([0, T ];L2(Ω))∩W 1,2

loc ((0, T ];L2(Ω)) such that (5.9) and (5.10) hold, and
moreover, the limit u satisfies

u(t) ∈ W 1,q−
0 (Ω), u(t) ∈ Xq(·)(Ω \D) for a.e. t ∈ (0, T ), (6.4)

u(·, 0) = u0 in Ω (6.5)

and solves the following mixed problem for a.e. t ∈ (0, T ): a nonlinear diffusion
equation on Ω \D driven by the q(·)-Laplacian,

∂tu(·, t) − Δq(·)u(·, t) = f(·, t) in D ′(Ω \D) (6.6)

and an evolutionary quasi-variational inequality over D,

‖∇u(t)‖L∞(D) ≤ 1, (6.7)∫

D

(f(x, t) − ∂tu(x, t))(z(x) − u(x, t))dx ≤ 0 for all z ∈ KD(u(t)), (6.8)

where KD(w) is given for each w ∈ W 1,q−
0 (Ω) by

KD(w) :=
{
z ∈ W 1,∞(D); z − w ∈ W 1,q−

0 (D) and ‖∇z‖L∞(D) ≤ 1
}
.

In addition, if
∫

Ω

1
pn(x)

|∇u0,n(x)|pn(x)dx →
∫

Ω\D

1
q(x)

|∇u0(x)|q(x)dx, (6.9)

then (5.11) holds and

un → u strongly in Lr(0, T ;Xq(·)(Ω \D)) for each r ∈ [1,∞). (6.10)

Remark 6.2. 1. Roughly speaking, the constraint set of the evolutionary
quasi-variational inequality requires all test functions z in (6.8) to coin-
cide with u(·, t) on the boundary ∂D at each time t.

2. From the assumptions, q(·) < ∞ in Ω \ D and q−
n → ∞, the exponents

pn(·) must be discontinuous on ∂D for n ∈ N large enough. So we need
work in the framework of discontinuous exponents (see Sect. 3).

To prove this theorem, we first show the Mosco convergence of ϕn.
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Proposition 6.3. (Mosco convergence) Suppose that (6.3) holds. Then ϕn

Mosco-converges on L2(Ω) to the functional ϕD : L2(Ω) → [0,∞] given by

ϕD(w) :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∫

Ω\D

1
q(x)

|∇w(x)|q(x)dx if w ∈ W 1,q−
0 (Ω), w ∈ Xq(·)(Ω \D)

and ‖∇w‖L∞(D) ≤ 1,

∞ otherwise
as n → ∞.

Proof. Let u ∈ D(ϕD) be fixed and set un = u for all n ∈ N. Then u ∈ L2(Ω),
and it also holds that ∂u/∂xi ∈ Lpn(·)(Ω) for i = 1, 2, . . . , N. Moreover, since

p−
n = q− for any n ∈ N large enough, we have W 1,q−

0 (Ω) = W
1,p−

n
0 (Ω). Hence

u ∈ X
pn(·)
0 (Ω) = D(ϕn) for sufficiently large n ∈ N. We observe that

ϕn(un) =
∫

D

1
qn(x)

|∇u(x)|qn(x)dx+
∫

Ω\D

1
q(x)

|∇u(x)|q(x)dx

→
∫

Ω\D

1
q(x)

|∇u(x)|q(x)dx = ϕD(u),

since it follows from (6.3) that
∫

D

1
qn(x)

|∇u(x)|qn(x)dx ≤ |D|
q−
n

→ 0.

Thus (i) of Definition 5.1 holds for ϕn.
We next prove (ii) of Definition 5.1. Let un ∈ D(ϕn) be such that un → u

weakly in L2(Ω). It is sufficient to treat the case that

lim inf
n→∞ ϕn(un) < ∞.

Then, up to a subsequence, we have ϕn(un) ≤ C, which brings us two obser-
vations. The first one reads,∫

Ω\D

1
q(x)

|∇un(x)|q(x)dx ≤ C, (6.11)

which implies, up to a subsequence, ∇un → ∇u weakly in (Lq(·)(Ω \ D))N .
Hence u ∈ Xq(·)(Ω \D). The second one is the following:∫

D

1
qn(x)

|∇un(x)|qn(x)dx ≤ C. (6.12)

Repeating the same argument as in the proof of Proposition 5.5, since q−
n −1 >

q− for sufficiently large n ∈ N, one can also derive

‖∇un‖Lq− (D) ≤ C,

which together with (6.11) yields the boundedness of (∇un) in (Lq−
(Ω))N . By

Poincaré’s inequality for usual Sobolev spaces, (un) is bounded in W 1,q−
0 (Ω),

and therefore, up to a subsequence, un → u weakly in W 1,q−
0 (Ω) and u ∈

W 1,q−
0 (Ω). Moreover, it can be also proved by (6.12) as in Sect. 5 that
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‖∇u‖L∞(D) ≤ 1.

Thus combining these facts, we deduce that u ∈ D(ϕD).
Since the functional u �→ ∫

Ω\D
(1/q(x))|∇u(x)|q(x)dx is weakly lower

semicontinuous in L2(Ω), it follows that

ϕD(u) =
∫

Ω\D

1
q(x)

|∇u(x)|q(x)dx

≤ lim inf
n→∞

∫

Ω\D

1
q(x)

|∇un(x)|q(x)dx

≤ lim inf
n→∞ ϕn(un).

Consequently, (ii) of Definition 5.1 follows. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. One can prove the convergence of un and observe that
the limit u uniquely solves

du

dt
(t) + ∂ϕD(u(t)) � f(t) in H = L2(Ω), u(0) = u0 (6.13)

by applying Proposition 5.2 with φn = ϕn and φ = ϕD. Hence the main task
of our proof is to obtain a representation of (6.13). We first claim that

ξ = −Δq(·)w in D ′(Ω \D) if ξ ∈ ∂ϕD(w). (6.14)

By the definition of subdifferentials,

ϕD(v) − ϕD(w) ≥
∫

Ω

ξ(x) (v(x) − w(x)) dx for all v ∈ D(ϕD). (6.15)

In particular, put

v(x) =
{
w(x) in D,
w(x) + he(x) in Ω \D

with arbitrary h ∈ R and e ∈ C∞
0 (Ω \D). Then v belongs to D(ϕD) and we

observe that∫

Ω\D

1
q(x)

|∇w(x) + h∇e(x)|q(x)dx−
∫

Ω\D

1
q(x)

|∇w(x)|q(x)dx

≥ h

∫

Ω\D

ξ(x)e(x)dx.

Thus we derive∫

Ω\D

|∇w(x)|q(x)−2∇w(x) · ∇e(x)dx =
∫

Ω\D

ξ(x)e(x)dx

for all e ∈ C∞
0 (Ω \D), and therefore, ξ = −Δq(·)w in D ′(Ω \D).

We next claim that∫

D

ξ(x) (z(x) − w(x)) dx ≤ 0 for all z ∈ KD(w) if ξ ∈ ∂ϕD(w). (6.16)



Vol. 20 (2013) Nonlinear diffusion equations with p(·)-Laplacians 61

Indeed, let z ∈ KD(w) and substitute the following to (6.15):

v(x) =
{
z(x) in D,
w(x) in Ω \D.

Here we remark that v ∈ D(ϕD), because obviously v ∈ Xq(·)(Ω \ D) and
‖∇v‖L∞(D) ≤ 1; the zero extension z − w of z−w ∈ W 1,q−

0 (D) into Ω belongs

to W 1,q−
0 (Ω) and hence v = z − w + w ∈ W 1,q−

0 (Ω). Then (6.16) follows.
Consequently, by (6.14) and (6.16), the Cauchy problem (6.13) is rewritten to
(6.4)–(6.8).

We finally prove (6.10) under (6.9). Since ϕn(un(·)) → ϕD(u(·)) uni-
formly on [0, T ] by Proposition 5.2, we observe∫

Ω\D

1
q(x)

|∇u(x, t)|q(x)dx = ϕD(u(t))

= lim
n→∞ϕn(un(t))

≥ lim sup
n→∞

∫

Ω\D

1
q(x)

|∇un(x, t)|q(x)dx.

Recall ∇un → ∇u weakly in (Lq(·)(Ω \D))N and note that

lim inf
n→∞

∫

Ω\D

1
q(x)

|∇un(x, t)|q(x)dx ≥
∫

Ω\D

1
q(x)

|∇u(x, t)|q(x)dx.

Hence as in the proof of Theorem 3.4, it follows that un(t) → u(t) strongly
in Xq(·)(Ω \ D) for every t ∈ [0, T ]. Since ϕn(un(t)) is uniformly bounded
over [0, T ] for all n ∈ N, by Lebesgue’s dominated convergence theorem, un

converges to u strongly in Lr(0, T ;Xq(·)(Ω \D)) for any r ∈ [1,∞). �
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Linéaire 21, 25–60 (2004)

[4] Akagi, G.: Convergence of functionals and its applications to parabolic equa-
tions. Abstr. Appl. Anal. 2004, 907–933 (2004)



62 G. Akagi and K. Matsuura NoDEA

[5] Akagi, G., Matsuura, K.: Well-posedness and large-time behaviors of solutions
for a parabolic equation involving p(x)-Laplacian. “The Eighth International
Conference on Dynamical Systems and Differential Equations,” a supplement
volume of Discrete and Continuous Dynamical Systems, pp.22–31 (2011)
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