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Abstract. In the present paper, by applying variant mountain pass
theorem and Ekeland variational principle we study the existence of multi-
ple nontrivial solutions for a class of Kirchhoff type problems with concave
nonlinearity{−(a + b

∫
Ω

|∇u|2)�u = α(x)|u|q−2u + f(x, u), in Ω,
u = 0, on ∂Ω,

A new existence theorem and an interesting corollary of four nontrivial
solutions are obtained.
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1. Introduction and preliminaries

Consider the Kirchhoff type problems with concave nonlinearity{−(a+ b
∫
Ω

|∇u|2)�u = α(x)|u|q−2u+ f(x, u), in Ω,
u = 0, on ∂Ω, (1.1)

where 0 ≤ α(x) ∈ L∞(Ω), and α �≡ 0; 1 < q < 2,Ω is smooth bounded domain
in RN (N = 1, 2, 3), a, b > 0, and f : Ω × R → R is a Carathéodory function
with f(x, 0) = 0 a.e. x ∈ Ω. Here we explain why it cannot be taken N ≥ 4.
The reason is the Sobolev imbedding H1

0 (Ω) ↪→ Lr(Ω) with r > 4 plays an
important role in our argument, and it is well known that the above Sobolev
imbedding does not hold when N ≥ 4. Therefore we only consider the case of
N = 1, 2, 3 in the present paper.

This Work is supported in partly by the National Natural Science Foundation of China
(10961028), Yunnan NSF Grant No. 2010CD086.
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It is pointed out in [8] that the problem (1.1) models several physical and
biological systems, where u describes a process which depends on the average
of itself (for example, population density). Moreover, this problem is related
to the stationary analogue of the Kirchhoff equation

utt −
(
a+ b

∫
Ω

|∇u|2
)

Δu = g(x, t), (1.2)

which was proposed by Kirchhoff [12] as an extension of the classical D’Alem-
bert’s wave equation for free vibrations of elastic strings. Some early studies
of Kirchhoff equations appeared in Bernstein [3] and Pohoẑaev [18]. However,
Eq. (1.2) received much attention only after Lions [13] proposed an abstract
framework to the problem. Later, P. D’Ancona and S. Spagnolo [10] studied the
global solvability for the degenerate Kirchhoff equation with real analytic data.
Recently, many authors studied the following elliptic Kirchhoff type problems{−(a+ b

∫
Ω

|∇u|2)�u = f(x, u), in Ω;
u = 0, on ∂Ω. (1.3)

Some interesting results were obtained. Alves [1], Ma–Rivera [14] and He–
Zou [11] studied the existence of positive solutions and infinitely many pos-
itive solutions of the problem (1.3) by variational methods, respectively; Pe-
rera and Zhang [17] obtained one nontrivial solutions of (1.3) by Yang index
theory; Mao–Zhang [15], Zhang and Perera [20] got three nontrivial solutions
(a positive solution, a negative solution, a sign changing solution) of (1.3) by
invariant sets of descent flow; Cheng–Wu [6] obtained the existence results of
positive solutions of problem (1.3), also in [7] they used a three critical point
theorem due to Brezis–Nirenberg [4] and a Z2 version of the Mountain Pass
Theorem due to Rabinowitz [19] to study the existence of multiple nontrivial
solutions of problem (1.3) under some weaker assumptions.

In order to establish multiple solutions for problem (1.1), we make the
following assumptions:

(f1) Subcritical growth condition

|f(x, t)| ≤ C(1 + |t|p−1) for some 2 < p < 2∗ =
{

6, if N = 3,
+∞, if N = 1, 2,

where C is a positive constant.
(f2) Supercubic condition

lim
|t|→∞

f(x, t)
t3

= +∞, uniformly for a.e. x ∈ Ω.

(f3) There exists 0 ≤ k(x) ∈ L∞(Ω) such that ‖k‖∞ < λ1 and

lim sup
|t|→0

f(x, t)
at

= k(x), uniformly for a.e. x ∈ Ω,

where λ1 > 0 is the first eigenvalue of (−Δ,H1
0 (Ω)).



Vol. 19 (2012) Kirchhoff type problems 523

(f4) There exists r > 0 such that for all s ∈ [0, 1], one has

rP (x, t) ≥ P (x, st), for a.e. x ∈ Ω, and t ∈ R,

where P (x, t) = f(x, t)t− 4F (x, t), F (x, t) =
∫ t

0
f(x, s) ds.

By the assumptions (f1)–(f4), we can derive the following simple facts:
(1) (f1) and (f2) imply that p > 4.
(2) If f is sufficiently regular, (f2) implies that P is not identically zero.

Indeed, if P = 0, then, differentiating 4 times,

tf ′′′′(x, t) = 0 for a.e. x ∈ Ω, ∀ t ∈ R,

therefore f(x, t) = a(x)t3 for some function a(x), and this contra-
dicts (f2).

(3) If f is sufficiently regular, (f3) implies that

‖∂tf(x, 0)‖∞ = sup
x∈Ω

|f(x, t)| < aλ1.

(4) P (x, 0) = 0 by the definition of P ; therefore, by (f4) (take s = 0), one
has

P (x, t) ≥ 0 for a.e. x ∈ Ω, ∀ t ∈ R.

(5) We are not assuming that tf(x, t) ≥ 0. For example,

f(x, t) = −t3 + t5 (�)

satisfies the four hypotheses (f1)–(f4), and f < 0 for t > 0 small.
(6) If f , close to t = 0, is

f(x, t) =
5∑

n=0

ant
n +O(t6) as t → 0,

then (f3)–(f4) imply that a0 = a1 = a2 = a4 = 0, a5 ≥ 0, a3 ∈ R. Hence the
example (�) is “less special” than how one might think.

The assumptions (f1)–(f3) are sufficient to guarantee the corresponding
energy functional with problem (1.1) has a mountain pass geometry, (f4) is
used to establish the boundedness of Cerami sequence, and then it possess a
convergent subsequence. Moreover, there are functions f satisfying all the four
hypotheses, for example, f(x, t) = μ|t|p−2t with μ > 0 or f(x, t) in (�).

Thanks to the nonlinearity contains the concave nonlinearity α(x)|u|q−2u,
and the function f is a Carathéodory function which is assumed to be supercu-
bic near infinity. Then the right hand side nonlinearity of the problem (1.1),
exhibits the combined effects of “convex” and “concave”nonlinearities. Hence
the problem (1.1) is more complicated than (1.3). In the present paper, we
are subject to obtain a existence theorem and an interesting corollary of four
solutions for the problem (1.1) without using the PS condition.

Let X := H1
0 (Ω) be the Sobolev space equipped with the inner product

and the norm

(u, v) =
∫

Ω

∇u · ∇v dx, ‖u‖ = (u, u)
1
2 .
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Throughout the paper, let X ′ denote the dual of X and 〈·, ·〉 be the
duality pairing between X ′ and X, we denote by | · |r the usual Lr-norm. Since
Ω is a bounded domain, it is well known that X ↪→ Lr(Ω) continuously for
r ∈ [1, 2∗], compactly for r ∈ [1, 2∗). Hence, for r ∈ [1, 2∗], there exists γr such
that

|u|r ≤ γr‖u‖, ∀ u ∈ X. (1.4)

Recall that a function u ∈ X is called a weak solution of (1.1) if

(a+ b‖u‖2)
∫

Ω

∇u · ∇v dx =
∫

Ω

[
α(x)|u|q−2uv + f(x, u)v

]
dx, ∀ v ∈ X.

Seeking a weak solution of problem (1.1) is equivalent to find a critical
point of C1 functional Φ : X �→ R defined by

Φ(u) :=
a

2
‖u‖2 +

b

4
‖u‖4 − Ψ(u),

where

Ψ(u) :=
∫

Ω

[
1
q
α(x)|u|q + F (x, u)

]
dx, ∀ u ∈ X,

Moreover,

〈Φ′(u), v〉 = (a+ b‖u‖2)
∫

Ω

∇u∇v dx−
∫

Ω

[
α(x)|u|q−2uv + f(x, u)v

]
dx,

∀ u, v ∈ X.

Our assumptions lead us to consider the eigenvalue problems{−�u = λu, in Ω
u = 0, on ∂Ω, (1.5)

Denote by 0 < λ1 < λ2 < · · · < λk < · · · the distinct eigenvalues of the
problem (1.5). It is well known that λ1 can be characterized as

λ1 = inf{‖u‖2 : u ∈ X, |u|2 = 1},
and λ1 is achieved by the first eigenfunction ϕ1 > 0.
We need the following concept, which was introduced by Cerami [5]and

is a weak version of the (PS) condition.

Definition 1. Let I ∈ C1(X,R). We say that I satisfies the Cerami condition
at the level c ∈ R ((C)c for short) if any sequence {un} ⊂ X along with

I(un) → c and (1 + ‖un‖)I ′(un) → 0, as n → ∞
possesses a convergent subsequence; I satisfies the (C) condition if I

satisfies (C)c for all c ∈ R.
Let us mention that Cerami condition is much weaker than (PS)

condition, and in our proofs there exists a (C)c sequence of Φ, thus to find a
critical point it is sufficient to establish the (C)c sequence has a convergent
subsequence. Therefore, we use the Cerami condition instead of the classical
(PS) condition.
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In the present paper, the following Proposition 1.1, variant Mountain
Pass Theorem, which can been seen in [2] for the original version Mountain
Pass Theorem, and Proposition 1.2 (Ekeland variational principle) are our
main tools, which can be found in [9] and [16], respectively.

Proposition 1.1. Suppose that I ∈ C1(X,R) satisfies

max{I(0), I(u1)} ≤ α < β ≤ inf
‖u‖=ρ

I(u)

for some α < β, ρ > 0 and u1 ∈ X with ‖u1‖ > ρ. Let

Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = u1}
and

c = inf
γ∈Γ

max
τ∈[0,1]

I(γ(τ)).

Then c ≥ β > α and there exists a sequence {un} ⊂ X such that

I(un) −→ c, (1 + ‖un‖)‖I ′(un)‖ −→ 0, as n → ∞.

Moreover, if I satisfies the (C)c condition, then c is a critical value of I.

Proposition 1.2. Let M be a complete metric space with metric d and let I :
M �→ (−∞,+∞] be a lower semicontinuous function, bounded from below and
not identical to +∞. Let ε > 0 be given and u ∈ M be such that

I(u) ≤ inf
M
I + ε.

Then there exists v ∈ M such that

I(v) ≤ I(u), d(u, v) ≤ 1,

and for each w ∈ M, one has

I(v) ≤ I(w) + ε d(v, w).

Our main results are as follows:

Theorem 1. Let conditions (f1) − (f4) hold. For any given ε > 0, set

A = A(ε) = inf{c > 0 : |f(x, t)| ≤ a(‖k‖∞ + ε)|t| + c|t|p−1,∀ (x, t) ∈ Ω × R}
and

α0 =
(
b

4

) p−q
p−4

⎡
⎣γq

q

q

(
p(4 − q)γq

q

A(p− 4)qγp
p

) q−4
p−q

+
Aγp

p

p

(
p(4 − q)γq

q

A(p− 4)qγp
p

) p−4
p−q

⎤
⎦

− p−q
p−4

.

If ‖α‖∞ ∈ (0, α0), then the problem (1.1) has at least four nontrivial solutions:
two positive and two negative solutions.

Corollary 2. Let a, b, λ and μ > 0, 1 < q < 2, 4 < p < 2∗. For any given ε > 0,
set

A′ = A′(ε) = inf{c > 0 : μ|t|p−1 ≤ aε|t| + c|t|p−1,∀ t ∈ R}
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and

λ0 =
(
b

4

) p−q
p−4

⎡
⎣γq

q

q

(
p(4 − q)γq

q

A′(p− 4)qγp
p

) q−4
p−q

+
A′γp

p

p

(
p(4 − q)γq

q

A′(p− 4)qγp
p

) p−4
p−q

⎤
⎦

− p−q
p−4

.

If λ ∈ (0, λ0), then the following Kirchhoff type problem with concave and
convex nonlinearity{−(a+ b

∫
Ω

|∇u|2)�u = λ|u|q−2u+ μ|u|p−2u, in Ω,
u = 0, on ∂Ω, (1.6)

has at least four nontrivial solutions: two positive and two negative solutions.

2. Proof of Theorem 1

We divide the proof of Theorem 1 into two subsections, the first one for the
fist positive solution, the second one for the other three solutions.

2.1. The first positive solution

In this subsection, we will devote to obtain the first positive solution of the
problem (1.1) by using variant Mountain Pass Theorem.

Set

f(x, t) =
{

0, if t ≤ 0;
f(x, t), if t > 0,

and

F (x, t) =
∫ t

0

f(x, s) ds.

Define the energy functional Φ : X �→ R by

Φ(u) :=
a

2
‖u‖2 +

b

4
‖u‖4 − 1

q

∫
Ω

α(x)(u+)q dx−
∫

Ω

F (x, u) dx,

where u± = max{±u, 0}. By virtue of the hypotheses, it is easy to see that Φ
is a C1 functional.

Following, we divide it into four steps to obtain the first positive solution.
Step 1. There exist ρ > 0, β > 0 such that Φ(u) ≥ β for all u ∈ X with

‖u‖ = ρ.
Indeed, for any ε > 0, by conditions (f1) and (f3), then we know

A = A(ε) > 0 is well defined and

f(x, t) ≤ a(‖k‖∞ + ε)t+ +A(t+)p−1. (2.1)

So, by (2.1), it follows that

F (x, t) ≤ a

2
(‖k‖∞ + ε)(t+)2 +

A

p
(t+)p. (2.2)
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Choosing ε > 0 such that (‖k‖∞ + ε) < λ1 then for all u ∈ X, the combination
of (1.4) and (2.2) implies that

Φ(u) =
a

2
‖u‖2 +

b

4
‖u‖4 − 1

q

∫
Ω

α(x)(u+)q dx−
∫

Ω

F (x, u) dx (2.3)

≥ a

2
‖u‖2+

b

4
‖u‖4− 1

q
‖α‖∞|u|qq− a

2
(‖k‖∞ + ε)

∫
Ω

(u+)2dx− A

p

∫
Ω

(u+)p dx

≥ a

2
‖u‖2 +

b

4
‖u‖4 − 1

q
‖α‖∞γq

q‖u‖q − a

2

(‖k‖∞ + ε

λ1

)
‖u‖2 − A

p
γp

p‖u‖p

≥
(
b

4
− 1
q
‖α‖∞γq

q‖u‖q−4 − A

p
γp

p‖u‖p−4

)
‖u‖4

Set

g(t) =
1
q
‖α‖∞γq

q t
q−4 +

A

p
γp

pt
p−4, t > 0.

Note that 1 < q < 2, 4 < p < 2∗, then we have

lim
t→+∞ g(t) = lim

t→0+
g(t) = +∞.

Therefore g is bounded below. It achieves its minimum at the point t0 such
that g′(t0) = 0, namely

t0 =
(
p(4 − q)‖α‖∞γq

q

A(p− 4)qγp
p

) 1
p−q

.

Hence,

g(t0)=
1
q
‖α‖∞γq

q

(
p(4−q)‖α‖∞γq

q

A(p−4)qγp
p

) q−4
p−q

+
A

p
γp

p

(
p(4−q)‖α‖∞γq

q

A(p−4)qγp
p

) p−4
p−q

.

(2.4)

Since

‖α‖∞ < α0 =
(
b

4

) p−q
p−4

⎡
⎣γq

q

q

(
p(4 − q)γq

q

A(p− 4)qγp
p

) q−4
p−q

+
Aγp

p

p

(
p(4 − q)γq

q

A(p− 4)qγp
p

) p−4
p−q

⎤
⎦

− p−q
p−4

,

then by (2.4), it follows that

g(t0) <
b

4
. (2.5)

Take

ρ = ρ(‖α‖∞) = t0 =
(
p(4 − q)‖α‖∞γq

q

A(p− 4)qγp
p

) 1
p−q

> 0,
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Therefore, the combination of (2.3)and (2.5) implies that

Φ(u) ≥
(
b

4
− g(ρ)

)
ρ4 =: β > 0, (2.6)

whenever u ∈ X with ‖u‖ = ρ.
Step 2. There exists u1 ∈ X with ‖u1‖ > ρ such that Φ(u1) < 0.
In fact,according to condition (f2), we have

lim
t→+∞

f(x, t)
t3

= +∞, uniformly for a.e. x ∈ Ω. (2.7)

By (2.7), for every M > 0, there exists TM > 0 such that

f(x, t) ≥ M(t)3 ∀ t ≥ TM , for a.e. x ∈ Ω;

f is continuous as a function of t, so f −Mt3 has a minimum on [0, TM ]; and
f −M(t+)3 = 0 for all t < 0, hence

f(x, t) ≥ M(t+)3 − CM , for a.e. x ∈ Ω and ∀ t ∈ R

for some CM > 0. It implies that

F (x, t) ≥ 1
4
M(t+)4 − CM t+. (2.8)

Choose φ ∈ X with φ(x) > 0 a.e. x ∈ Ω and |φ|4 = 1, (2.8) implies that

lim inf
t→+∞

∫
Ω

F (x,tφ)
t4 dx ≥ lim inf

t→+∞
∫
Ω

[
1
4M(φ(x))4 − CM φ(x)

t3

]
dx

≥ lim inf
t→+∞

(
1
4M − CM

t3 |φ|1
)

= 1
4M.

Thanks to the arbitrariness of M, we can conclude that

lim
t→+∞

1
t4

∫
Ω

F (x, tφ) dx = +∞. (2.9)

Consequently, (2.9) implies that

lim
t→+∞

Φ(tφ)
t4

= lim
t→+∞

(
a‖φ‖2

2t2
+
b‖φ‖4

4
− tq

qt4

∫
Ω

α(x)|φ|q dx

− 1
t4

∫
Ω

F (x, tφ) dx
)

= −∞,

which implies that there exists u1 ∈ X with ‖u1‖ > ρ such that Φ(u1) < 0.
From the facts of step 1 and step 2, we have

max{Φ(0), Φ(u1)} ≤ 0 < β ≤ inf
‖u‖=ρ

Φ(u).

Define

Γ = {γ ∈ C([0, 1],X) : γ(0) = 0, γ(1) = u1},

c = inf
γ∈Γ

max
τ∈[0,1]

Φ(γ(τ)).
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By Proposition 1.1 we know that c ≥ β > 0 and there exists a sequence
{un} ⊂ X such that

Φ(un) −→ c, (1 + ‖un‖)‖Φ
′
(un)‖ −→ 0, as n → ∞. (2.10)

Step 3. The sequence {un} satisfying (2.10) is bounded in X.
First, we show {u−

n } is bounded in X. Indeed,

|〈Φ′
(un),−u−

n 〉| = (a+ b‖un‖2)‖u−
n ‖2 ≥ a‖u−

n ‖2;

By Cauchy–Schwartz inequality and (2.10),

|〈Φ′
(un),−u−

n 〉| ≤ ‖Φ
′
(un)‖‖u−

n ‖ ≤ ‖Φ
′
(un)‖(1+‖u−

n ‖) → 0, as n → ∞.

(2.11)

Therefore u−
n → 0, as n → ∞, and hence for large n, it has

‖u−
n ‖ ≤ 1. (2.12)

Following, we will prove {u+
n } is bounded in X. By contradiction, we

assume that ‖u+
n ‖ → +∞, as n → ∞. Set ωn = u+

n

‖u+
n ‖ , then ‖ωn‖ = 1 and

ωn ≥ 0 for all n ≥ 1. Since X is a reflexive Banach space, we can assume that
there exists ω ∈ X such that

ωn ⇀ ω in X, ωn → ω in Lr(Ω), ωn(x) → ω(x) for a.e. x ∈ Ω, (2.13)

as n → ∞, where r ∈ [1, 2∗). Observe that un = u+
n − u−

n , (2.10) and (2.11)
imply that

|〈Φ′
(un), u+

n 〉| =
∣∣∣〈Φ′

(un), un〉 − 〈Φ′
(un),−u−

n 〉
∣∣∣ ≤ |〈Φ′

(un), un〉|
+|〈Φ′

(un),−u−
n 〉| → 0

as n → ∞. Therefore for large n, it has∣∣∣∣A−B −
∫

Ω

f(x, un)u+
n dx

∣∣∣∣ ≤ 1, (2.14)

where

A :=a‖u+
n ‖2+b‖u+

n ‖4+b‖u+
n ‖2‖u−

n ‖2, B :=
∫

Ω

α(x)(u+
n )q dx, A≥0, B≥0.

Then

−1 ≤ A−B −
∫

Ω

f(x, un)u+
n dx ≤ 1,

hence ∫
Ω

f(x, un)u+
n dx ≤ A−B + 1 ≤ A+ 1.

So,for large n, by (2.12),it follows that∫
Ω

f(x, un)u+
n dx ≤ a‖u+

n ‖2 + b‖u+
n ‖4 + b‖u+

n ‖2 + 1. (2.15)
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By virtue of (1.4) and (2.15), we conclude that
∫

Ω

f(x, u+
n )

‖u+
n ‖3

ωn(x) dx ≤ 1
‖u+

n ‖4
+

a

‖u+
n ‖2

+
b

‖u+
n ‖2

+ b. (2.16)

Set Ω1 = {x ∈ Ω : ω(x) > 0}, thus u+
n (x) → +∞ a.e. x ∈ Ω1, as n → ∞.

Moreover, By (2.7), for any M > 0, there exists CM > 0 such that

f(x, t) ≥ M(t+)3 − CM , for a.e. x ∈ Ω and ∀ t ∈ R,

hence

f(x, u+
n ) ≥ M(u+

n )3 − CM , for a.e. x ∈ Ω and ∀ n ∈ N, (2.17)

Combining (2.13) and (2.17), one has

lim
n→∞

∫
Ω

f(x, u+
n )

‖u+
n ‖3

ωn(x) dx = lim
n→∞

∫
Ω

f(x, u+
n )

(u+
n (x))3

(ωn(x))4 dx

≥ lim
n→∞

(
M

∫
Ω

(ωn(x))4 dx− CM

‖u+
n ‖3

∫
Ω

ωn(x) dx
)

= M

∫
Ω1

(ω(x))4 dx.

If the measure of Ω1, m(Ω1) > 0, we infer that
∫

Ω

f(x, u+
n )

‖u+
n ‖3

ωn(x) dx → +∞, as n → ∞. (2.18)

Noticing that ‖u+
n ‖ → +∞, so (2.16) contradicts (2.18) by passing to limit in

(2.16) as n → ∞. Hence, m(Ω1) = 0 and ω(x) = 0, for a.e. x ∈ Ω. Moreover,
by (f1), (2.13) and Lebesgue dominated convergence theorem, one has

lim
n→∞

∫
Ω

F (x, ωn) dx = 0. (2.19)

For any given positive integer m ≥ 1, set

gn(x) = ‖u+
m‖ωn(x) ∀ x ∈ Ω and n ≥ 1.

Similarly to (2.19), we can conclude that

lim
n→∞

∫
Ω

F (x, gn) dx = 0. (2.20)

Note that ‖u+
n ‖ → +∞, then for suitable subsequence {u+

n }, still denoted by
{u+

n } such that

0 ≤ sn : =
‖u+

m‖
‖u+

n ‖ ≤ 1.

Define

Φ(ηnu
+
n ) := max

η∈[0,1]
Φ(ηu+

n ).
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By virtue of (1.4), (2.13) and (2.20), then for large n we can conclude that

Φ(ηnu
+
n ) ≥ Φ(snu

+
n ) = Φ(gn)

=
a

2
‖gn‖2 +

b

4
‖gn‖4 − 1

q

∫
Ω

α(x)|gn|q dx−
∫

Ω

F (x, gn) dx

≥ a

2
‖gn‖2 +

b

4
‖gn‖4 − ‖α‖∞

q
γq

q‖gn‖q −
∫

Ω

F (x, gn) dx

≥ b

8
‖u+

m‖4, (2.21)

which implies that

Φ(ηnu
+
n ) → +∞, as n → ∞. (2.22)

Moreover, according to (2.12) and (f1), we have

Φ(u+
n )=Φ(un)−Φ(−u−

n ) − 1
q

∫
Ω

α(x)|u+
n |q dx− b

2
‖u+

n ‖2‖u−
n ‖2<D, ∀n∈N

(2.23)

for some constant D > 0. Therefore, the combination of (2.22) and (2.23)
implies that ηn ∈ (0, 1) and

〈Φ′
(ηnu

+
n ), ηnu

+
n 〉 = 0,

that is,

∫
Ω

f(x, ηnu
+
n )ηnu

+
n dx = aη2

n‖u+
n ‖2+bη4

n‖u+
n ‖4−

∫
Ω

α(x)(ηnu
+
n )q dx. (2.24)

Hence, for large n, the combination of (2.21) and (2.24) implies that

∫
Ω

[
1
4
f(x, ηnu

+
n )ηnu

+
n − F (x, ηnu

+
n )

]
dx

=
∫

Ω

[
1
4
f(x, ηnu

+
n )ηnu

+
n − F (x, ηnu

+
n )

]
dx

=
a

4
η2

n‖u+
n ‖2 +

b

4
η4

n‖u+
n ‖4 − 1

4

∫
Ω

α(x)(ηnu
+
n )q dx−

∫
Ω

F (x, ηnu
+
n ) dx

= Φ(ηnu
+
n ) +

(
1
q

− 1
4

)∫
Ω

α(x)(ηnu
+
n )q dx− a

4
η2

n‖u+
n ‖2

≥ b

8
‖u+

m‖4 − a

4
‖u+

n ‖2.
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Therefore, for large n, by (f4), it follows that

∫
Ω

[
1
4
f(x, u+

n )u+
n − F (x, u+

n )
]
dx

=
∫

Ω

1
4
P (x, u+

n ) dx

≥
∫

Ω

1
4r
P (x, ηnu

+
n ) dx (2.25)

=
1
r

∫
Ω

[
1
4
f(x, ηnu

+
n )ηnu

+
n − F (x, ηnu

+
n )

]
dx

≥ b

8r
‖u+

m‖4 − a

4r
‖u+

n ‖2.

On the other hand, for large n, by virtue of (2.10) and (2.23), there exists
some constant M ′ > 0 such that

∫
Ω

[
1
4
f(x, u+

n )u+
n −F (x, u+

n )
]
dx =

∫
Ω

[
1
4
f(x, u+

n )ηnu
+
n − F (x, u+

n )
]
dx

=Φ(u+
n )− 1

4
〈Φ′

(un), u+
n 〉+C1

∫
Ω

α(x)(u+
n )q dx

+
b

4
‖u+

n ‖2‖u−
n ‖2 − a

4
‖u+

n ‖2

≤ M ′ + C1

∫
Ω

α(x)(u+
n )q dx+

b

a
‖u+

n ‖2

≤ M ′ + C2‖u+
n ‖q +

b

a
‖u+

n ‖2 (2.26)

where C1 = (1
q − 1

4 ), C2 = C1γ
q
q‖α‖∞. For large n, the combination of (2.25)

and (2.26) implies that

b

8r
‖u+

m‖4 ≤ M ′ + C2‖u+
n ‖q +

b

a
‖u+

n ‖2 +
a

4r
‖u+

n ‖2.

This is a contradiction due to q < 4 and the arbitrariness of m. Hence, {u+
n }

is bounded in X. Consequently, {un} is bounded in X.
Step 4. The sequence {un} satisfying (2.10) has a convergent subsequence

in X.
Indeed, from step 3, there exists a positive constant B such that ‖un‖ ≤

B. By the reflexivity of X, we can assume that there exists u ∈ X such that

un ⇀ u in X, un → u in Lr(Ω), un(x) → u(x) for a.e. x ∈ Ω,
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as n → ∞, where r ∈ [1, 2∗). Hence, by (f1), we know that there is C3 > 0
such that

∫
Ω

f(x, un)(u− un) dx ≤
(∫

Ω

|f(x, un)| p
p−1 dx

) p−1
p

(∫
Ω

|u− un|p dx
) 1

p

≤ 2C
[∫

Ω

(|un|p + 1) dx
] p−1

p

· |u− un|p
≤ C3|u− un|p → 0, as n → ∞.

and
∫

Ω

α(x)(u+
n )q−1(un − u) dx ≤ ‖α‖∞

(∫
Ω

(u+
n )q dx

) q−1
q

(∫
Ω

|un − u|q dx
) 1

q

= ‖α‖∞(Bγq)q−1|un − u|q → 0, as n → ∞.

Moreover,

(a+ b‖un‖2)
∫

Ω

∇un∇(u− un) dx−
∫

Ω

[α(x)(u+
n )q−1(u− un)

+f(x, un)(u− un)] dx = 〈Φ′
(un), (u− un)〉 → 0,

as n → ∞. Then it has

‖un‖ −→ ‖u‖, as n → ∞.

Hence, un → u in X due to the uniform convexity of X.
Now, since Φ ∈ C1, we have

Φ
′
(u) = 0, and Φ(u) = c ≥ β > 0.

Hence u is a nontrivial critical point of Φ. Moreover, u(x) > 0 for all x ∈ Ω.
Indeed,

(a+b‖u‖2)
∫

Ω

∇u∇u− dx−
∫

Ω

[
α(x)(u+)q−1u− + f(x, u)u−]

dx=0. (2.27)

Thus, it is easy to see that (2.27) implies ‖u−‖ = 0. So u(x) ≥ 0, x ∈ Ω. Now it
follows from the strong maximum principle that u(x) > 0 for all x ∈ Ω. Hence
we have

Φ′(u) = 0, and Φ(u) = c ≥ β > 0,

that is, u is a positive solution of the problem (1.1).

2.2. The other three solutions

In this subsection we will devote to obtain the other three solutions. First, we
will apply the Ekeland variational principle to obtain another positive solution
of the problem (1.1).

By virtue of (2.3) and (2.6), it is easy to see that

inf
Bρ

Φ > −∞, and inf
∂Bρ

Φ ≥ β > 0,
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where Bρ is the open ball in X of radius ρ and ∂Bρ denotes its boundary. Take
0 ≤ φ ∈ C1

0 (Ω)\{0} with
∫
Ω
α(x)|φ|q dx > 0 and t ∈ (0, 1), we have

Φ(tφ) =
at2

2
‖φ‖2 +

bt4

4
‖φ‖4 − tq

q

∫
Ω

α(x)|φ|q dx−
∫

Ω

F (x, tφ) dx

≤ at2

2
‖φ‖2 +

bt4

4
‖φ‖4 − tq

q

∫
Ω

α(x)|φ|q dx,

which implies that

Φ(tφ) < 0, for t ∈ (0, 1) small

due to 1 < q < 2. Consequently,

−∞ < inf
Bρ

Φ < 0.

Set 1
n ∈ (0, inf

∂Bρ

Φ − inf
Bρ

Φ), n ∈ N, there is vn ∈ Bρ such that

Φ(vn) ≤ inf
Bρ

Φ +
1
n
, (2.28)

by Proposition 1.2 (Ekeland variational principle), then

Φ(vn) ≤ Φ(u) +
1
n

‖u− vn‖, for all u ∈ Bρ. (2.29)

while

Φ(vn) ≤ inf
Bρ

Φ + ε < inf
∂Bρ

Φ.

So vn ∈ Bρ. Define ψn : X �→ R by

ψn(u) = Φ(u) +
1
n

‖u− vn‖.
By (2.29), we have vn ∈ Bρ minimizes ψn on Bρ. Therefore, for all φ ∈ X with
‖φ‖ = 1, take t > 0 such that vn + tφ ∈ Bρ, then

ψn(vn + tφ) − ψn(vn)
t

≥ 0. (2.30)

(2.30) implies that

Φ(vn + tφ) − Φ(vn)
t

+
1
n

≥ 0,

which implies

〈Φ′
(vn), φ〉 ≥ − 1

n
.

Hence,

‖Φ
′
(vn)‖ ≤ 1

n
. (2.31)

Passing to the limit in (2.28) and (2.31), we conclude that

Φ(vn) → inf
Bρ

Φ, and ‖Φ
′
(vn)‖ → 0, as n → ∞. (2.32)
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Since ‖vn‖ < ρ, then (2.32) implies

Φ(vn) → inf
Bρ

Φ, and (1 + ‖vn‖)‖Φ
′
(vn)‖ → 0, as n → ∞. (2.33)

As same as step 4 in the Sect. 2.1, we can obtain {vn} has a convergent sub-
sequence, still denoted by {vn}, and vn → v ∈ Bρ, as n → ∞. Consequently,
by (2.33), one has

Φ(v) = inf
Bρ

Φ, and Φ
′
(v) = 0.

Next, we claim that 0 �≡ v �≡ u. Indeed,

Φ(v) = inf
Bρ

Φ < 0 = Φ(0) < β ≤ c = Φ(u).

Therefore, v is a nontrivial critical point of Φ. Similarly, we can obtain v is
another positive solution of the problem (1.1).

Lastly, in order to seek two negative solutions, we truncate f as following

f(x, t) =
{

0, if t > 0;
f(x, t), if t ≤ 0,

and

F (x, t) =
∫ t

0

f(x, s) ds.

Define Φ : X �→ R defined by

Φ(u) :=
a

2
‖u‖2 +

b

4
‖u‖4 − 1

q

∫
Ω

α(x)(u−)q −
∫

Ω

F (x, u) dx.

By virtue of the hypotheses, it is easy to see that Φ is a C1 functional. Then
two negative solutions of the problem (1.1) are obtained in a similar arguments
of obtaining two positive solutions. This completes the proof of Theorem 1.

3. Proof of Corollary 2

Set

f(x, t) = μ|t|p−2t, α(x) ≡ λ, for all (x, t) ∈ Ω × R.

then it is easy to verify f satisfies (f1) − (f4). Moreover, by virtue of (f1) and
(f3), we know that A′ = A′(ε) > 0 is well defined, then the conclusion directly
follows from Theorem 1 with replacing A and α0 by A′ and λ0, respectively.
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