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1. Introduction

In this article we present some results about the regularity for the Cauchy
problem of the Gardner Equation (shortly GE){

vt + vxxx + 6σ(v2)x + 2(v3)x = 0 σ, t, x ∈ R,
v(x, 0) = v0(x) ∈ Hs(R), (1.1)

with data in the classical Sobolev space Hs(R) and the orbital stability of its
soliton solutions. In a previous work [1] we faced the problem of finding some
L∞-solutions with nonzero limits at infinity and with geometrical interpreta-
tion of the focusing modified Korteweg–de Vries (shortly mKdV)

ut + uxxx + 2(u3)x = 0, (1.2)

that is, solutions of the type σ + v(x + ct), with c > 0, σ ∈ R and v a travel-
ing wave solution with exponential decay at infinity. When introducing such
ansatz in the focusing mKdV (1.2), the GE (1.1) appears (up to rescaling).
This evolution equation is characterized to be composed by a KdV term (v2)x



504 M. A. Alejo NoDEA

and a positive mKdV term (v3)x. The competition between these two different
nonlinear terms together with the linear dispersive term vxxx allows the exis-
tence of more intricate soliton solutions (see Sect. 3) as well as exact breather
solutions (see [1]). The Gardner equation plays also an important role in the
proof of the L2-stability of the multisoliton solution of KdV, through to the
so called Gardner transform which links H1-solutions of the Gardner equation
with L2-solutions of the KdV equation (see [2]).

Soliton solutions (or equivalently σ-soliton solutions of the mKdV, if their
asymptotic constant is equal to σ) in the focusing and defocusing cases (± sign
respectively in the cubic nonlinearity of (1.2)) are easily related through the
transformation of the asymptotic parameter σ to iσ. Indeed, these solitons can
be explicitly obtained integrating the resulting second order ODE which arises
when we look for traveling wave solutions of (1.1) of the type v(x + ct) with
c > 0 (see Sect. 3).

In this paper we are also interested to prove the orbital stability á la
Zhidkov of these soliton solutions under small perturbations in H1(R). Hence,
we need a global well posedness (GWP for short) result for the initial value
problem (IVP for short) (1.1) in the energy space H1(R), and therefore it is
enough for our aim to prove the local well posedness (LWP for short) of the
IVP (1.1) below the conservation law H1(R). Indeed, we prove the LWP in
Hs(R) with s > 1/4. Note that the Gardner equation is not scaling invari-
ant. This loss of the scale property raises two problems. The first one appears
in the proof of persistence of the solution in the LWP result since the scale
property can not be used and we need introduce a rescaling of the problem in
terms of a new auxiliar function. The second problem is that the proof of the
convexity condition suggested by P. Zhidkov can not be deduced directly and
we need to integrate the Lyapunov functional. As a consequence, we see that
the proof of the stability of solitons in the focusing and defocusing cases are
almost identical. Therefore, we will only show here the focusing case.

The LWP of the IVP for KdV with initial data in Hs(R), s > −3/4 was
obtained by Kenig, Ponce and Vega in [11]. They showed sharp bilinear esti-
mates in the functional space Xs,b, introduced by Bourgain in [5], up to the
index s = −3/4. In [6], Christ, Colliander and Tao proved the LWP of the
IVP for KdV with initial data in Hs(R), s ≥ −3/4, using a modified Miura
transform and the existence theory for the mKdV. They also proved the global
theory for initial data in Hs(R), s > −3/4.

The LWP of the IVP for the focusing mKdV with initial data in the Sobo-
lev space Hs(R), s ≥ 1/4, was given by Kenig, Ponce and Vega in [9], where
they also proved the global well posedness in the energy space Hs(R), s ≥ 1.
The global result below the conservation law was shown, for initial data in
Hs(R), s > 1/4 by Colliander, Keel, Staffilani, Takaoka and Tao in [7], using
the existence theory for KdV and the Miura transform.

In the next sections we present the local well-posedness of the IVP for
the GE (1.1) in the Sobolev space Hs(R), s > 1/4, obtaining bilinear and
trilinear estimates by using the auxiliar space of functions Xs,b(R × R) and
the [k; R]−multiplier theory introduced by Tao [13]. We also cover the energy
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space H1(R) where global well posedness follows from the conservation laws of
the problem. Moreover, we construct solitons of the GE and we prove, under
certain conditions, that this family is orbitally stable in H1(R).

2. Local theory

We are interested in the local (in time, t = T > 0) existence theory for the IVP
of the GE (1.1) with initial data in1 H1/4+

(R). Since the GE is not invariant
under scaling transformations, we can not proceed as usual, i.e., prove the LWP
of (1.1) at time t = 1 and use the scaling transformation to extent the local
time to t = T > 0. So we devise a procedure closely related to the usual one,
introducing an auxiliar function w through a scaling transformation. Next, we
prove the LWP at t = 1 of the associated GE for w at a certain scaling param-
eter λ (to be determined). Finally we use this result and the scaling relation
to obtain directly the LWP of the IVP for the GE (1.1) at t = T > 0.

We make the following scaling transformation:

v(x, t) = λαw(λx, λt), λ > 0, α > 2, (2.1)

where v is a solution of the IVP for the GE (1.1), so that the associated
Gardner equation for the auxiliar function w is⎧⎨

⎩
wt + wxxx + 6σλα−2(w2)x + 2λ2(α−1)

(w3)x = 0, σ, λ > 0, α, t, x ∈ R,
w(x, 0) = w0(x) ∈ Hs(R).

(2.2)

For s, b ∈ R, the space of functions Xs,b denotes the completion of the
Schwartz space S(R2) with respect to the norm

||f ||Xs,b =
(∫ +∞

−∞

∫ +∞

−∞
(1 + |τ − ξ3|)2b(1 + |ξ|)2s|f̂(ξ, τ)|2 dξ dτ

)1/2

. (2.3)

We invoke the work of Tao [13] about multilinear estimates to define a [k; R]-
multiplier as any function m : Γk(R) → C, where Γk(R) is the hyperplane

Γk(R) := {(ξ1, ξ2, . . . , ξk) ∈ R
k : ξ1 + ξ2 + · · · + ξk = 0}, (2.4)

endowed with the measure∫
Γk(R)

f :=
∫

Rk−1
f(ξ1, . . . , ξk−1,−ξ1 − · · · − ξk − 1) dξ1 dξ2 . . . dξk−1. (2.5)

For ||m||[k;R] we denote the best constant such that the inequality∣∣∣∣∣∣∣
∫

Γk(R)

m(ξ)
k∏

j=1

fj(ξj)

∣∣∣∣∣∣∣
≤ ||m||[k;R]

k∏
j=1

||fj ||L2(R), (2.6)

1In what follows, H1/4+
(R) means Hs(R) with s > 1/4.
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holds for all test functions fi on R. In the sequel, the free operator W (t)
denotes an element of the unitary group {W (t)}+∞

−∞ describing the solution of
the linear IVP associated to (1.1){

vt + vxxx = 0, t, x ∈ R,
v(x, 0) = v0(x),

(2.7)

where

v(x, t) = W (t)v0(x) =
∫

R

eixξ+tξ3
v̂0(ξ) dξ. (2.8)

Finally, let ψ ∈ C∞
0 (R) with ψ ≡ 1 on [−1/2, 1/2] and suppψ ⊆ (−1, 1).

Then, our main results are:

Theorem 2.1. Let be s > 1/4 and σ > 0. Then there exist constants d1 >
0, d2 > 0, λ > 0 and b ∈ (1/2, 1), such that for all w0 ∈ Hs(R), exists a unique
solution w ∈ C([−1, 1] : Hs(R)) of (2.2) with λ and w satisfying

λ ≤ min(d1||w0||
−1

α−2
Hs , d2||w0||

−1
α−1
Hs ), (2.9)

w ∈ C([−1, 1] : Hs(R)), (2.10)

w ∈ Xs,b ⊆ Lp
x, loc(R : L2

t ([−1, 1])), 1 ≤ p ≤ ∞, (2.11)

∂x(w3) ∈ Xs,b−1(R × R) ∧ ∂x(w2) ∈ Xs,b−1(R × R). (2.12)

Theorem 2.2. Let be s > 1/4 and σ > 0. Then there exists b ∈ (1/2, 1), such
that for every v0(x) ∈ Hs(R), there exist a local time T = T (||v0||Hs) > 0 (with
T (ρ) → ∞ when ρ → 0) and a unique solution v(x, t) ≡ v(t) of (1.1) such
that σ + v(t) is the unique solution of (1.2) in the interval [−T, T ] satisfying

v ∈ C([−T, T ] : Hs(R)), (2.13)

v ∈ Xs,b ⊆ Lp
x, loc(R : L2

t ([−T, T ])), 1 ≤ p ≤ ∞, (2.14)

∂x(v3) ∈ Xs,b−1(R × R) ∧ ∂x(v2) ∈ Xs,b−1(R × R). (2.15)

We will resort to the following preliminary estimates for the free operator
W (t), of the unitary group describing the solution of the linear IVP associated
to (1.1) (for proofs of such estimates, see [10]):

Lemma 2.3. Let s > 1/4, 1/2 < b < 1 and 0 < δ < 1. Then, there exists a
constant c > 0 such that:
1. ||ψ(δ−1t)W (t)v0||Xs,b ≤ c δ

1−2b
2 ||v0||Hs .

2. ||ψ(δ−1t)h||Xs,b ≤ c δ
1−2b

2 ||h||Xs,b .

3. ||ψ(δ−1t)
∫ t

0
W (t− t′)w(t′)dt′||Xs,b ≤ c δ

1−2b
2 ||w||Xs,b−1 .

4. ||ψ(δ−1t)
∫ t

0
W (t− t′)w(t′)dt′||Hs ≤ c δ

1−2b
2 ||w||Xs,b−1 .

Moreover, to prove the local theorem we will need the following bilinear
and trilinear estimates:

Lemma 2.4. Let s > 1/4. Then, for all ui = ψ(t)φi(x, t), i = 1, 2, with support
in R × [−1, 1] and b = 1/2 + ε, 0 < ε 
 1, the following inequality holds:

||u1u2||L2(R×R) ≤ c||φ1||Xs,b(R×R)||φ2||X−1/2,1−b(R×R). (2.16)
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Proof. For (2.16) see Proposition 6.2. in [13]. �

Lemma 2.5. Let s > 1/4 and b = 1/2 + ε, 0 < ε 
 1. Then, for all ui =
ψ(t)φi(x, t), i = 1, 2, 3, with support in R × [−1, 1], and c > 0, the following
inequality holds

||∂x(u1u2u3)||Xs,b−1(R×R) ≤ c ||φ1||Xs,b(R×R)||φ2||Xs,b(R×R)||φ3||Xs,b(R×R).

(2.17)

Proof. 2 We emphasize that essentially the proof appears in the work of Tao
[13] (it is worth to note that it also works for s = 1/4), but we present here
for the sake of completeness. We summarize the proof in three steps:

1. By the duality of the spaces Xs,b−1(R×R),X−s,1−b(R×R) and using
Plancherel, we obtain that∫

R

∫
R

f̄∂x(u1u2u3) dx dt =
∫

R

∫
R

ˆ̄f(−ξ,−τ) ̂∂x(u1u2u3)(ξ, τ) dξ dτ

=
∫

R

∫
R

(iξ) ˆ̄f(−ξ,−τ)û1u2u3(ξ, τ) dξ dτ. (2.18)

Then, taking into account that ξ3 = ξ−ξ1 −ξ2, τ3 = τ −τ1 −τ2, the expression
(2.18) reduces to∫

R

∫
R

f̄∂x(u1u2u3) dx dt

=
∫

Γ3+1(R×R)

i(ξ1 + ξ2 + ξ3) ·
⎛
⎝ 3∏

j=1

ûj(ξj , τj)

⎞
⎠ · ˆ̄f(ξ4, τ4). (2.19)

Resorting to Lemma 2.3 (2) and in terms of the Xs,b norm, we have∣∣∣∣∣∣
∫

Γ3+1(R×R)

(ξ1 + ξ2 + ξ3) ·
⎛
⎝ 3∏

j=1

ûj(ξj , τj)

⎞
⎠ · ˆ̄f(ξ4, τ4)

∣∣∣∣∣∣
≤ c

∥∥∥∥∥
(ξ1 + ξ2 + ξ3) 〈ξ4〉s 〈

τ4 − ξ34
〉b−1

∏3
j=1 〈ξj〉s 〈

τj − ξ3j
〉b

∥∥∥∥∥
[3+1;R×R]

·
⎛
⎝ 3∏

j=1

||φj ||Xs,b

⎞
⎠ ||f ||X−s,1−b . (2.20)

So, denoting b = 1/2 + ε, for 0 < ε 
 1, it is enough to prove that∥∥∥∥∥
(ξ1 + ξ2 + ξ3) 〈ξ4〉s 〈

τ4 − ξ34
〉b−1

∏3
j=1 〈ξj〉s 〈

τj − ξ3j
〉b

∥∥∥∥∥
[3+1;R×R]

� 1. (2.21)

2In this proof we follow the notation of [13]. Here ·̂ denotes the Fourier transform.
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2. Since ξ4 = −ξ1 − ξ2 − ξ3 implies |ξ1 + ξ2 + ξ3| ∼ ξ4, and applying the
inequality

〈ξ4〉s+1 � 〈ξ4〉1/2
3∑

j=1

〈ξj〉s+1/2, (2.22)

(2.21) simplifies as follows:∥∥∥∥∥
(ξ1 + ξ2 + ξ3)〈ξ4〉s〈τ4 − ξ34〉b−1∏3

j=1〈ξj〉s〈τj − ξ3j 〉b

∥∥∥∥∥
[3+1;R×R]

∼
∥∥∥∥∥

〈ξ4〉s+1〈τ4 − ξ34〉b−1∏3
j=1〈ξj〉s〈τj − ξ3j 〉b

∥∥∥∥∥
[3+1;R×R]

�
∥∥∥∥∥

〈ξ4〉1/2
∑3

i=1〈ξi〉s+1/2〈τ4 − ξ34〉b−1∏3
j=1〈ξj〉s〈τj − ξ3j 〉b

∥∥∥∥∥
[3+1;R×R]

. (2.23)

3. Assuming now (w.l.g.) that dual variable ξ2 is the greater one, we use the
following estimate: ∑3

j=1〈ξj〉s+1/2

〈ξ2〉s
� 〈ξ2〉1/2.

Then (2.23) remains as∥∥∥∥∥
〈ξ4〉1/2〈ξ2〉1/2〈ξ1〉−s〈ξ3〉−s〈τ4 − ξ34〉b−1

〈τ2 − ξ32〉1−b
∏2

i=1〈τ2i−1 − ξ32i−1〉b

∥∥∥∥∥
[3+1;R×R]

. (2.24)

Selecting m as

m(ξ1, ξ2) =
〈ξ1〉−s〈ξ2〉1/2

〈τ2 − ξ32〉1−b〈τ1 − ξ31〉b
,

it is possible to rewrite (2.24) as∥∥∥m(ξ1, ξ2) ·m(−ξ3,−ξ4)
∥∥∥

[3+1;R×R]
= ‖m(ξ1, ξ2)‖2

[2+1;R×R],

where we have used the estimate TT ∗ given in [13, p.8]. In concluding, we need
that

‖m(ξ1, ξ2)‖[2+1;R×R] =
∥∥∥∥ 〈ξ1〉−s〈ξ2〉1/2

〈τ2 − ξ32〉1−b〈τ1 − ξ31〉b

∥∥∥∥
[2+1;R×R]

� 1, (2.25)

which is proved in Lemma 2.4. �

By using the same steps than in the proof of (2.17), it is straightforward
to prove the following:

Lemma 2.6. Let s > 0 and b = 1/2 + ε, 0 < ε 
 1. Then for all ui =
ψ(t)φi(x, t), i = 1, 2, with support in R × [−1, 1], and c > 0, the following
inequality holds:

||∂x(u1u2)||Xs,b−1(R×R) ≤ c ||φ1||Xs,b(R×R)||φ2||Xs,b(R×R). (2.26)
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Proof of Theorem 2.1. We denote the Hs(R) norm of the initial data w0(x) as

||w0||Hs = rw. (2.27)

For w0 ∈ Hs(R) with s > 1/4, the localized Duhamel operator is

Φ1,w0(w) ≡ Φ1(w)

= ψ(t)W (t)w0 − 6σλα−2ψ(t)
∫ t

0

W (t− t′)∂x[(ψ(t′)w(t′))2] dt′

−2λ2(α−1)ψ(t)
∫ t

0

W (t− t′)∂x[(ψ(t′)w(t′))3] dt′.

Then, the proof of the theorem is summarized in four steps. Indeed, in the first
two we prove that Φ1 is a contraction in the following ball of Xs,b(R × R):

B ≡ B(3c0rw) := {w ∈ Xs,b : ||w||Xs,b ≤ 3c0rw}. (2.28)

1. If w ∈ B, α > 2 and combining (1), (3), (2.6), (2.5), the following inequalities
hold:

||Φ1(w)||Xs,b ≤ c0||w0||Hs + c1σλ
α−2||ψ(t)2∂x(w2(x, t))||Xs,b−1

+ c2λ
2(α−1)||ψ(t)3∂x(w3(x, t))||Xs,b−1

≤ c0||w0||Hs + c · c1σλα−2||w(x, t)||2Xs,b

+ c · c2λ2(α−1)||w(x, t)||3Xs,b

≤ c0rw + c · c1σλα−2(3c0rw)2 + c · c2λ2(α−1)(3c0rw)3

≤ c0rw{1 + c0λ
α−2rw + c20λ

2(α−1)r2w}
≤ 3c0rw, (2.29)

where the last inequality is verified by choosing λ which satisfy the following
two conditions:

rwλ
α−2c0 ≤ 1/4, (2.30a)

r2wλ
2(α−1)c20 ≤ 1/4. (2.30b)

Then, if we select λ0 as the minimum value of (2.30) and choose λ as

λ ≤ λ0 = min
(
d1||w0||

−1
α−2
Hs , d2||w0||

−1
(α−1)

Hs

)
, (2.31)

d1 =
(

1
4c0

) 1
α−2

, d2 =
(

1
4c20

) 1
2(α−1)

, α > 2. (2.32)

the conditions (2.30) will be satisfied. In concluding,

Φ1(B) ⊆ B. (2.33)
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2. With the same ideas as above (that is, combining (1), (2), (3), (2.6), (2.5
and (2.29)), if w, w̃ ∈ B then we have

||Φ1(w) − Φ1(w̃)||Xs,b ≤ c0σλ
α−2||ψ(t)2∂x(w2(x, t) − w̃2(x, t))||Xs,b−1

+ cλ2(α−1)||ψ(t)3∂x(w3(x, t) − w̃3(x, t))||Xs,b−1

= c0σλ
α−2||ψ(t)2∂x[(w(x, t) − w̃(x, t))(w(x, t) + w̃(x, t))]||Xs,b−1

+ cλ2(α−1)||ψ(t)3∂x (2.34)
[(w(x, t) − w̃(x, t))(w(x, t)2 + w̃2(x, t) + w(x, t)w̃(x, t))]||Xs,b−1 .

Now taking into account

(i) Bilinear estimate: given u1 = w − w̃, u2 = w + w̃ , we have, using the
bilinear estimate (see Lemma 2.6)

||ψ(t)2∂x(w2(x, t) − w̃2(x, t))||Xs,b−1 = ||ψ(t)2∂x[u1u2]||Xs,b−1

≤ c1||u1||Xs,b ||u2||Xs,b ≤ c1||w − w̃||Xs,b{||w||Xs,b + ||w̃||Xs,b}
≤ 3 · 2c0c1 · rw||w − w̃||Xs,b . (2.35)

(ii) Trilinear estimate: given u1 = w − w̃, v1 = w, v2 = w̃, u2 = w + w̃, we
have

||ψ(t)3∂x(w3(x, t) − w̃3(x, t))||Xs,b−1

= ||ψ(t)3∂x[(w − w̃)(w2 + w̃2 + ww̃)]||Xs,b−1

= ||ψ(t)3∂x[(w − w̃)(w + w̃)2 − (w − w̃)ww̃]||Xs,b−1

= ||ψ(t)3∂x[u1u2u2] − ψ(t)3∂x[u1v1v2]||Xs,b−1 .

and using the trilinear estimate (see Lemma 2.5), we obtain

||ψ(t)3∂x(w3(x, t) − w̃3(x, t))||Xs,b−1

= ||ψ(t)3∂x[u1u2u2] − ψ(t)3∂x[u1v1v2]||Xs,b−1

≤ c2||u1||Xs,b ||u2||2Xs,b + c2||u1||Xs,b ||v1||Xs,b ||v2||Xs,b

≤ c2||u1||Xs,b{(||w||Xs,b + ||w̃||Xs,b)2 + ||w||Xs,b ||w̃||Xs,b}
≤ c2||w − w̃||Xs,b{2(3c0 · rw)2 + (3c0 · rw)2}
= 27c20c2 · r2w||w − w̃||Xs,b . (2.36)

Hence (2.34) simplifies as

||Φ1(w) − Φ1(w̃)||Xs,b ≤ 6c c0 c1 · σλα−2rw||w − w̃||Xs,b

+ 27c c20 c2λ
2(α−1)r2w||w − w̃||Xs,b

≤ (c0λα−2rw + c20λ
2(α−1)r2w)||w − w̃||Xs,b

≤ 1
2
||w − w̃||Xs,b , (2.37)

where the last inequality holds whenever we choose λ less than the minimum
value λ0 in (2.31). Therefore, Φ1 is a contraction in B and then, there exists a
unique w ∈ B(3c0rw) which satisfies
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ψ(t)w(t) = ψ(t){W (t)w0 − 6σλα−2

∫ t

0

W (t− t′)∂x[(ψ(t′)w(t′))2]dt′

−2λ2(α−1)

∫ t

0

W (t− t′)∂x[(ψ(t′)w(t′))3]dt′}, (2.38)

and in the temporal interval [−1, 1], w(·) is solution of the IVP (2.2). Recall
that with the same argument as in (2.37) it is also possible to prove that

||w − w̃||Xs,b ≤ c ||w0 − w̃0||Hs . (2.39)

3. Before proving the property of persistence (2.13), we must show that the
solution w goes to the initial data w0 in the classical Hs norm, when t → 0. In
this way, we must check that the integral terms on the right of the following
inequality go to 0 when t → 0:

||w(t) − ψ(t)W (t)w0||Hs ≤ 6σλα−2||ψ(t)
∫ t

0

W (t− t′)∂x[(ψ(t′)w(t′))2] dt′||Hs

+ 2λ2(α−1)||ψ(t)
∫ t

0

W (t− t′)∂x[(ψ(t′)w(t′))3] dt′||Hs , (2.40)

To this end, we rewrite such terms in order to apply Lemma 2.3 (4) and analyze
the behavior when η → 0 of the following general expression:

||ψ(η)
∫ η

0

W (η − t′)F (·, t′) dt′||Hs . (2.41)

Taking t′′ = t′
η , recalling t′′ ≡ t′ and with the change (w.l.g.) of the cut off

function from ψ(η) to ψ(1), the expression (2.41) is rewritten as follows:

||ψ(1)
∫ 1

0

W (η(1 − t′))F (·, ηt′)η dt′||Hs

=
(∫

|ψ(1)
∫ 1

0

W (η(1 − t′))(DsF (·, ηt′))(x)η dt′|2 dx
)1/2

. (2.42)

With the change of variable x = η1/3y, we rewrite (2.42) as
(∫

|ψ(1)
∫ 1

0

W (η(1 − t′))(DsF (·, ηt′))(η1/3y)η dt′|2η1/3 dy

)1/2

= η1+ 1
6

(∫
|ψ(1)

∫ 1

0

W (η(1 − t′))(DsF (·, ηt′))(η1/3y) dt′|2dy
)1/2

. (2.43)

Now, we analyze the integrand W (η(1 − t′))(DsF (·, ηt′))(η1/3y) of (2.43). For
that, we define

G1(y, ηt′)=DsF (η1/3y, ηt′)≡DsFη(y, t′), where Fη(y, t′)=F (η1/3y, ηt′).
(2.44)

In this way, W (1 − t′)G1(·, ηt′)(y) = W (η(1 − t′))(DsF (·, ηt′))(η1/3y). Define

G2(y, t′) = G1(y, ηt′), (2.45)
G3(y, t′) = D−sG2(y, t′). (2.46)
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so that

DsW (1 − t′)G3(·, t′) = W (1 − t′)DsG3(·, t′) = W (1 − t′)G2(·, t′)
= W (1 − t′)G1(·, ηt′), (2.47)

Now, we are able to apply the estimate Lemma 2.3 (4), to obtain

η1+ 1
6

(∫
|ψ(1)

∫ 1

0

W (η(1 − t′))(DsF (·, ηt′))(η1/3y) dt′|2 dy
)1/2

= η1+ 1
6 ‖ψ(1)

∫ 1

0

W (1 − t′)G3(·, t′) dt′‖Hs ≤ cη1+ 1
6 ‖G3‖Xs,b−1

= cη1+ 1
6 ‖D−sG2‖Xs,b−1 = cη1+ 1

6 ‖G2‖X0,b−1 = cη1+ 1
6 ‖DsFη‖X0,b−1

= cη1+ 1
6 ‖Fη‖Xs,b−1 . (2.48)

Therefore, we must calculate ‖Fη‖Xs,b−1 = ‖F (η1/3y, ηt′)‖Xs,b−1 .

‖F (η1/3y, ηt′)‖Xs,b−1

=
(∫

R

∫
R

(1+|τ−ξ|)2(b−1)(1+|ξ|)2s| ̂F (η1/3y, ηt′)(ξ, τ)
)

|2 dξ dτ)1/2. (2.49)

Since ̂F (η1/3y, ηt′)(ξ, τ) = η−4/3F̂ (η−1/3ξ, η−1τ),

‖F (η1/3y, ηt′)‖Xs,b−1

=
(∫

R

∫
R

(1+|τ−ξ|)2(b−1)(1+|ξ|)2s|η−4/3F̂ (η−1/3ξ, η−1τ)|2 dξ dτ
)1/2

.

(2.50)

With the change of variables, ξ′ = η−1/3ξ, τ ′ = η−1τ, the above expression
simplifies as follows

‖F (η1/3y, ηt′)‖Xs,b−1

=
(∫

R

∫
R

(1+η|τ ′−ξ′|)2(b−1)(1+η1/3|ξ′|)2s|F̂ (ξ′, τ ′)|2η−8/3η4/3 dξ′ dτ ′
)1/2

=η−2/3

(∫
R

∫
R

(1+η|τ ′−ξ′|)2(b−1)(1+η1/3|ξ′|)2s|F̂ (ξ′, τ ′)|2 dξ′ dτ ′
)1/2

.

(2.51)

Now, we must consider the following different cases,

(1)
{
η1/3|ξ′| ≤ 1,
η|τ ′ − ξ′| ≤ 1.

In this case, ‖Fη‖Xs,b−1 ≤ η−2/3‖F‖Xs,b−1 .

(2)
{
η1/3|ξ′| ≤ 1,
η|τ ′ − ξ′| ≥ 1.

In this case, ‖Fη‖Xs,b−1 ≤ ηb−1−2/3‖F‖Xs,b−1 .

(3)
{
η1/3|ξ′| ≥ 1,
η|τ ′ − ξ′| ≤ 1.

In this case, ‖Fη‖Xs,b−1 ≤ ηs/3−2/3‖F‖Xs,b−1 .

(4)
{
η1/3|ξ′| ≥ 1,
η|τ ′ − ξ′| ≥ 1.

In this case, ‖Fη‖Xs,b−1 ≤ ηs/3+b−1−2/3‖F‖Xs,b−1 .
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Recall that 1/2 < b < 1. We use the more restrictive upper bound which cor-
responds to the second case to conclude that the estimate (2.48) remains as
follows:

cη1+1/6‖Fη‖Xs,b−1 ≤ cη1+1/6+b−1−2/3‖F‖Xs,b−1

= cηb−1/2‖F‖Xs,b−1 . (2.52)

Then, (2.41) goes to 0 when η → 0 and, using the continuity of the free oper-
ator W (t),

lim
t→0

||w(t) − ψ(t)W (t)w0||Hs = 0. (2.53)

4. We now prove the persistence property (2.13), i.e., w ∈ C([−1, 1] : Hs(R)).
First, we need to prove the continuity of the norm of the Xs,b space but this
follows a similar argument as in the proof of the continuity of the initial data in
the Hs norm 2.40, therefore it will be omitted. From this, the persistence prop-
erty in Hs is a direct consequence of the embedding Xs,b ⊂ CtH

s for b > 1/2
(see [p.156, corollary 7.3][12]). �

Proof of Theorem 2.2. From the unicity and local existence, at time t = T > 0
of the IVP (2.2) for w, we get unicity and local existence, at time T = λ−3,
of the IVP (1.1) for v, whenever we determine for which values of λ, depend-
ing on ||v0||Hs , conditions (2.30a) and (2.30b) are verified. In this way, we
must calculate the norm rw = ||w0||Hs , taking now into account that w0(x) =
λ−αv0(λ−1x), using (2.1). By definition

rw = ||w0||Hs =
(∫

R

(1 + |ξ|)2s|ŵ0(x)(ξ)|2dξ
)1/2

, (2.54)

where,

ŵ0(x)(ξ) =
∫

R

e−ixξw0(x) dx =
∫

R

e−ixξλ−αv0(λ−1x) dx

=
∫

R

e−i(λ−1x)λξλ−αv0(λ−1x)λ d(λ−1x)

= λ1−α

∫
R

e−i(λ−1x)λξv0(λ−1x) d(λ−1x)

= λ1−αv̂0(λξ).

Then, (2.54) is rewritten as follows

rw =
(∫

R

(1 + |ξ|)2s|ŵ0(x)(ξ)|2 dξ
)1/2

=
(∫

R

(1 + |ξ|)2s|λ1−αv̂0(λξ)|2 dξ
)1/2

= (λ1−α

∫
R

(1 + λ−1|λξ|)2s|v̂0(λξ)|2λ−1d(λξ))1/2

= λ1−1/2−α

(∫
R

(1 + λ−1|λξ|)2s|v̂0(λξ)|2 d(λξ)
)1/2

= λ1/2−α

(∫
R

(1 + λ−1|λξ|)2s|v̂0(λξ)|2 d(λξ)
)1/2

. (2.55)
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Now denoting rv = ||v0||Hs , the norm rw = ||w0||Hs can be estimated in terms
of rv, splitting first the last integral in (2.55) and estimating next:

(a) λ1/2−α

(∫
λ−1|η|≤1

|v0(η)|2 dη
)1/2

≤ λ1/2−α||v0||L2(R) ≤ λ1/2−αrv,

(b) λ1/2−α−s

(∫
λ−1|η|≥1

|η|2s|v0(η)|2 dη
)1/2

≤ λ1/2−α−s||v0||Ḣs(R)

≤ λ1/2−α−srv. (2.56)

Now, taking into account the latter bounds for the norm rw when λ−1|η| ≤ 1
and λ−1|η| ≥ 1 respectively and recalling that s > 1/4, we determine for which
values of λ the conditions (2.30) are satisfied.

(i) Condition (2.30a): rwλα−2c0 ≤ 1/4.
(i.a)

λ1/2−αrvλ
α−2c0 ≤ 1/4 → λ−3/2 ≤ 1

4c0rv
.

(i.b)

λ1/2−α−srvλ
α−2c0 ≤ 1/4 → λ−3/2−s ≤ 1

4c0rv
.

(ii) Condition (2.30b): r2wλ
2(α−1)c20 ≤ 1/4.

(ii.a)

λ1−2αr2vλ
2(α−1)c20 ≤ 1/4 → λ−1 ≤ 1

4c20(rv)2
.

(ii.b)

λ1−2α−2sr2vλ
2(α−1)c20 ≤ 1/4 → λ−1−2s ≤ 1

4c20(rv)2
.

In this way, we distinguish two different cases:
1.

1
4c0rv

≤ 1

From (i), if (i.a) is satisfied, (i.b) will also be satisfied. Then,

λ−3/2 ≤ 1
4c0rv

.

From (ii), if (ii.a) is satisfied, (ii.b) will also be satisfied. So that

λ−1 ≤ 1
4c20(rv)2

⇒ λ−3/2 ≤ 1
2c20r2v(4c0rv)

Comparing these two estimates on λ, the most restrictive is

λ−1 ≤ 1
4c20(rv)2

. (2.57)
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2.
1

4c20(rv)2
≥ 1

From (i), if (i.b) is satisfied, (i.a) will also be satisfied. Therefore,

λ−3/2−s ≤ 1
4c0rv

.

From (ii), if (ii.b) is satisfied, (ii.a) will also be satisfied. Then,

λ−1−2s ≤ 1
4c20(rv)2

.

From these two estimates on λ, the most restrictive is

λ−3/2−s ≤ 1
4c0rv

. (2.58)

Hence, whenever λ satisfies (2.57) or (2.58), the application ΦT=λ−3 is
contractive in Bv, the ball associated to the ball B given in (2.28) through
the scaling relation. So, there exists a unique v ∈ Bv solution of the IVP (1.1).
Note that the local existence time is explicit from the relation λT = 1 and
from the values of λ (2.57) and (2.58). That is,

T = λ−3 ≤
(

1
4c20||v0||2Hs

)3

, ||v0||Hs ≥ 1, (2.59)

T = λ−3 ≤
(

1
4c0||v0||Hs

) 6
3+2s

, ||v0||Hs ≤ 1. (2.60)

With the same argument used in (2.37), it verifies that

||v − ṽ||Xs,b ≤ c ||v0 − ṽ0||Hs . (2.61)

The property of persistence (2.13) for v, i.e.,

v ∈ C([−T, T ] : Hs(R)),

follows directly from the property of persistence for the auxiliar function w.
This complete the proof. �

2.1. Global theory

The global well-posedness for the IVP of the GE (1.1) with initial data in
H1(R) is stated in the following theorem:

Theorem 2.7. Let be u0 ∈ H1(R) and u the corresponding local solution for the
IVP of the GE (1.1) given by the Theorem 2.2. Then we extend the solution
for all t > 0, that is

u ∈ C(R : H1(R)). (2.62)

Proof. It follows using the local existence result and standard techniques of
Gagliardo–Nirenberg inequalities and conservation of the energy. �
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3. Stability of solitons

We consider here the question of the stability of solitons of the Gardner equa-
tion (1.1) under small perturbations in H1(R). Since the mKdV and Gardner
equations are closely related, this question is equivalent to study the stability
under small perturbations in H1(R) of solitons with non bounded mean of the
focusing and defocusing mKdV (positive/negative nonlinearity, respectively),

∂

∂t
k(x, t) +

∂

∂x3
k(x, t) ± 2

∂

∂x
(k3(x, t)) = 0. (3.1)

In this section, we compute necessary conditions, given by Zhidkov (see [15]) in
a general framework, to obtain the stability of solitons. In such work, Zhidkov
states a general theorem about the stability of solitons of the gKdV equation in
H2(R), vanishing in the boundary. In our case, the stability result is centered
on the stability of solitons of the Gardner equation.

3.1. Existence of travelling wave solutions

We look for solutions of the focusing mKdV
∂

∂t
k(x, t) +

∂

∂x3
k(x, t) + 2

∂

∂x
(k3(x, t)) = 0, (3.2)

of the following type

k(x, t) = σ + φ(x− cσt), cσ > 0, φ(±∞) = 0. (3.3)

Introducing this ansatz in (3.2), we obtain −cσφ′ + φ
′′

+ 2((σ + φ)3)′ = 0.
Integrating and taking into account that φ(±∞) = 0, we arrive to{

φ
′′

+ 2φ3 + 6σφ2 + (6σ2 − cσ)φ = 0
φ(±∞) = 0.

(3.4)

Now multiplying (3.4) by the integrating factor φ′, we arrive to

(φ′)2 + φ4 + 4σφ3 + (6σ2 − cσ)φ2 = 0. (3.5)

This ODE can be solved explicitly and we obtain (see Fig. 1)

φσ,c0(x− cσ(σ, c0)t) =
c0

2σ +
√

4σ2 + c0 cosh(
√
c0(x− (6σ2 + c0)t))

. (3.6)

cσ(σ, c0) = 6σ2 + c0.

We can also characterize the soliton of the Gardner equation as the min-
imum of the following Lyapunov functional: if we denote

E(f) =
∫

R

{f2
x − f4 − 4σf3} dx,

F(f) =
1
2

∫
R

f2 dx, (3.7)

as the energy and the L2 norm of the soliton of the Gardner equation (2.2),
perturbing the Lyapunov functional (3.8)

E(ξ)=E(ξ)+2(cσ−6σ2)F(ξ)=
∫

R

{ξ2x − ξ4−4σξ3+(cσ − 6σ2)ξ2} dx, (3.8)
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Figure 1. Left Profile of σ + φσ,c0 with σ = 0.35, c0 = 0.23.
Right Comparison between humps of the soliton of mKdV
(dashed line, φσ=0,c0) and the soliton of GE (solid line, φσ,c0)
with σ = 0.35, and both with c0 = 0.23.

around its critical point, we obtain the linearized operator L and the ODE
satisfied by the soliton of the Gardner equation,

L = −∂xx + cσ − 6(σ + φσ,c0)
2. (3.9)

−φ′′
σ,c0

− 2φ3
σ,c0

− 6σφ2
σ,c0

+ (cσ − 6σ2)φσ,c0 = 0. (3.10)

The main results of this section are the following:

Theorem 3.1. (focusing case) Let σ ∈ R, c0 ∈ (0,∞) and uσ,c0(x, t) = σ +
φσ,c0(x − cσ(σ, c0)t) ∈ Ḣ1(R), cσ(σ, c0) = c0 + 6σ2, a solution of the focus-
ing mKdV (3.2), where φσ,c0 ∈ H1(R) satisfies (3.4). Then ∀ε > 0,∃δ ≡
δ(ε, σ, c0) > 0 and a function C2(R), r : R → R, such that if ||u0 − (σ +
φσ,c0)||H1(R) < δ, then

sup
t>0

‖u(·, t) − uσ,c0(· + r(t))‖H1(R) < ε,

where u(x, t) is the unique solution of the focusing mKdV equation with initial
data u0 = u(x, 0) ∈ Ḣ1(R) and where supt |r′(t) + (c0 + 6σ2)| ≤ Kε,K > 0.

Theorem 3.2. (defocusing case). Let σ ∈ R, c0 ∈ (0, 4σ2) and uσ,c0(x, t) =
σ − ϕσ,c0(x + cσ(σ, c0)t) ∈ Ḣ1(R), cσ(σ, c0) = 6σ2 − c0, a solution of the de-
focusing mKdV, where ϕσ,c0 ∈ H1(R) is solution of the defocusing Gardner
equation. Then ∀ε > 0,∃δ ≡ δ(ε, σ, c0) > 0 and a function C2(R), r : R → R,
such that if ||u0 − (σ − ϕσ,c0)||H1(R) < δ, then

sup
t>0

‖u(·, t) − uσ,c0(· + r(t))‖H1(R) < ε,

where u(x, t) is the unique solution of the focusing mKdV equation with initial
data u0 = u(x, 0) ∈ Ḣ1(R) and where supt |r′(t) + (c0 − 6σ2)| ≤ Kε,K > 0.

Before explaining the main ideas behind the proof of this result, some
remarks are in order.
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Remarks. (i) We will fix the parameter σ and we will choose the parameter
c0 in the interval c0 ∈ (0,∞) since we are only interested in real regular
solutions. In this way, the application

c0 ∈ (0,∞) Φ−→ φσ,c0 ∈ H1(R) (3.11)

is C1(R+ : H1(R)).
(ii) The soliton solution of the defocusing mKdV equation is easily obtained

from the explicit expression (3.6) in the focusing case, with the change σ
to iσ.

Proof of Theorem 3.1. We use the standard techniques given by Weinstein
[14], Zhidkov [15] and Angulo [3,4] and then we do not give the details here.
We only comment two main results in the proof:
1. Convexity of the function d(c0) : d′′(c0) > 0,∀c0 ∈ (0,∞), where

d(c0) =
∫

R

{∂2
xφσ,c0 − φ4

σ,c0
− 4σφ3

σ,c0
+ (cσ − 6σ2)φ2

σ,c0
} dx. (3.12)

Since the Gardner equation is not invariant under scaling transforma-
tions, we can not proceed as usual to prove the convexity of the function
(3.12). But we know explicitly the soliton solution φσ,c0 of the Gardner
equation [see (3.6)] and then by its relative simplicity, we can integrate
directly (maybe with the help of a handbook of integrals, e.g., [8]) obtain-
ing

d′′(c0) = 2
∫

R

φσ,c0∂c0φσ,c0 ds =
√
c0

4σ2 + c0
> 0, ∀c0 ∈ (0,∞).

2. The phase r(t) and its velocity r′(t). Define the function F : R
2 → R

given by,

F (r, t) =
1
2

∫
R

{u(x, t) − (σ + φσ,c0(x+ r))}2 dx

=
1
2

∫
R

{ψ(x, t) − φσ,c0(x+ r)}2 dx. (3.13)

Since φσ,c0 ∈ H∞(R), F is a C∞ function in the r variable and C1 in the
t variable. With these properties for F we define the following associated
function,

G(r, t) =
∂F

∂r
= −

∫
R

{u(x, t) − (σ + φσ,c0(x+ r))}∂xφσ,c0(x+ r) dx

= −
∫

R

u(x, t)∂xφσ,c0(x+ r) dx. (3.14)

It is easy to see that G(0, 0) = 0 and ∂G
∂r |(0,0) ≥ 0. Then, applying the

implicit function theorem to the function G, there exist T > 0 and a
C2((−T, T ) : R), function r : (−T, T ) → R, r(0) = 0, such that (from G
and its time derivatives, we check that the function r(t) is C2)

G(r(t), t) = 0, ∀t ∈ (−T, T ). (3.15)
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We choose T in a maximal way. Then derivating implicitly (3.15), we get
d

dt
G(r(t), t) = 0 =

∂G

∂r
r′(t) +

∂G

∂t
⇒

r′(t) = −
∂G
∂t
∂G
∂r

. (3.16)

Then, once we calculate ∂G
∂t ,

∂G
∂r , and substituting in (3.16), we obtain

the ODE satisfied by the phase r(t){
r′(t) = −(c0 + 6σ2) −

∫
R

h{−12v(v′)2+6hvv′′+2h2v′′} dx∫
R
{−(v′)2+hv′′} ,

r(0) = 0,
(3.17)

where, h(x, t) = u(x, t) − (σ + φσ,c0(x + r(t))) and v(x, t) = σ + φσ,c0

(x+ r(t)).
�

Proof of Theorem 3.2. It follows the same steps than in the focusing case (up
to the obvious change in the linearized operator and the speed of the soli-
ton), with the important difference of the existence interval for the parameter
c0 ∈ (0, 4σ2). �
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