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1. Introduction

We study uniqueness and nonuniqueness of bounded solutions to nonlinear
Cauchy problems with variable density of the following form:{

a ∂tu = Δg

[
φ(u)

]
in H

n × (0, T ] =: HT

u = u0 in H
n × {0} ; (1.1)

here H
n is the n-dimensional hyperbolic space (n ≥ 2), Δg is the Laplace–

Beltrami operator in H
n, a, referred to as a density, is a positive function

of the space variables, u0 is bounded. A typical choice for the function φ is
φ(u) = |u|m−1u with m ≥ 1. More precisely, we always assume the following:

(H0)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i) a ∈ C(Hn) , a > 0 in H
n ;

(ii) φ ∈ C1(R), φ(0) = 0, φ′(s) > 0 for any s ∈ R \ {0} ,
φ′ decreasing in (−δ, 0) and increasing in (0, δ),
if φ′(0) = 0 (δ > 0) ;

(iii) u0 ∈ C(Hn), u0 is bounded.
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The Cauchy problem (1.1) can be regarded as the counterpart in H
n of

the Cauchy problem
⎧⎨
⎩
a ∂tu = Δ

[
φ(u)

]
in R

n × (0, T ]

u = u0 in R
n × {0},

(1.2)

which has been the object of detailed investigations (e.g., see [2,4,6,13,18,21]).
It is worth mentioning that problem (1.2) arises in situations of physical inter-
est (see [15]) in a wide variety of fields that involve diffusion processes. When
such diffusion processes are considered on the hyperbolic space H

n, then it is
natural to introduce problem (1.1) to describe them.

In the literature, the case of linear diffusion has been particularly
addressed. In fact, problem (1.1) with a ≡ 1 and φ(u) = u has been largely
studied (e.g., see [5,7–10] and references therein) by means of analytical and
probabilistic methods.

Notice that also qualitative properties of solutions to semilinear elliptic
equations on H

n have been investigated (see [3,16]). Of course, parabolic and
elliptic equations on the hyperbolic space have attracted so much attention,
since H

n is the model of complete Riemannian manifolds with constant nega-
tive sectional curvature (see [1,8]).

Recall that, as is well-known, problem (1.2) is well-posed in the class of
bounded solutions when a is bounded and n ≤ 2 (see [11]), or when n ≥ 3
and a is constant (see [2,4,12]). Moreover, for n ≥ 3, uniqueness of bounded
solutions to problem (1.2), not satisfying any extra constraints at infinity, has
been showed if a(x) → 0 slowly, or a(x) is bounded from below by a positive
constant or it goes to infinity as |x| → ∞ (see [13,19]).

On the contrary, for n ≥ 3, existence of bounded solutions to problem
(1.2), satisfying at infinity some additional conditions, has been proved, if
a(x) → 0 sufficiently fast as |x| → ∞ (see [6,13,14,19,21]). Clearly, these
existence results imply nonuniqueness of bounded solutions to the Cauchy
problem (1.2).

Such uniqueness and nonuniqueness results have also a deep probabilistic
interpretation in the case φ(u) = u. In fact, uniqueness for problem (1.2) holds
true, when the Markov process associated to the operator 1

aΔ starting from
any point of R

n is recurrent (see [8]), thus, loosely speaking, it cannot attain
the infinity, therefore we cannot prescribe conditions at infinity. Instead, when
this Markov process is transient, and so it can reach the infinity, we can pre-
scribe some conditions at infinity in a proper sense, whence nonuniqueness
follows.

The aim of this paper is to prove the following:

(i) uniqueness of bounded solutions to problem (1.1) not satisfying at infinity
any additional constraints, when a(x) is bounded from below by a positive
constant or it goes to infinity as x tends to infinity and n ≥ 2;

(ii) existence of bounded solutions to problem (1.1) satisfying at infinity some
extra conditions, when a(x) goes to zero as x tends to infinity and n ≥ 2.
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Such results extend to the nonlinear problem (1.1) those already estab-
lished, in [17], for problem (1.1) with φ(u) = u and n ≥ 2, by means of different
methods which cannot be applied to the nonlinear problem (1.1) with general
φ. Moreover, for a(x) ≡ 1, φ(u) = u and n ≥ 2, uniqueness of bounded solu-
tions to the Cauchy problem (1.1) has already been obtained in [8]. Finally,
let us mention that support properties of solutions to problem (1.1) has been
studied in [20], provided that supp u0 is compact.

The paper is organized as follows. In Sect. 2 we state the uniqueness and
nonuniqueness results, while in Sect. 3 we introduce some preliminary notions
of hyperbolic geometry which will be used in the sequel. Finally, in Sects. 4
and 5 we shall prove uniqueness and nonuniqueness results, respectively.

2. Results

To state our results, we need to introduce some notations. For any r > 0 let
Br := {x ∈ R

n | |x| < r} ; here and hereafter | · | denotes the standard euclidian
norm.

In the sequel we shall consider the Poincaré ball model of the hyperbolic
space H

n. To be specific, we set H
n ≡ B1 endowed with the Riemannian metric

gij :=
4

(1 − |x|2)2 δij (x ∈ B1; i, j = 1, . . . , n); (2.3)

moreover, let

gij := (gij)−1, g := det(gij) (i, j = 1, . . . , n).

As usual (see [1]), we set

∂B1 ≡ ∂∞H
n ≡ {∞}. (2.4)

2.1. Uniqueness results

At first, let us state a standard existence result of solutions to problem (1.1).

Theorem 2.1. Let assumption (H0) be satisfied. Then there exists a bounded
solution of problem (1.1).

The following uniqueness result will be proved.

Theorem 2.2. Let assumption (H0) be satisfied. Moreover, suppose that

(H1)
{

there exist C1 > 0 and α ≥ 0 such that
a(x) ≥ C1(1 − |x|)−α for any x ∈ H

n.

Then there exists at most one bounded solution of problem (1.1).

Remark 2.3. Hypothesis (H1) can be expressed also as follows:{
there exist C1 > 0 and α ≥ 0 such that
a(x) ≥ C1e

αρ(x) for any x ∈ H
n ;

here ρ(x) denotes the geodesic distance in H
n of x ∈ H

n from 0 (see (3.1)
below).
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Remark 2.4. In Theorem 2.2 hypothesis (H1) can be replaced by the following
weaker condition

(H1)∗

⎧⎨
⎩

there exist ε̂ ∈ (0, 1) and a ∈ C([0, ε̂]; [0,+∞)) such that
(i) a(x) ≥ a(1 − |x|) > 0 for any x ∈ B1−ε̂, and
(ii)

∫ ε̂

0
a(η)

η dη = ∞.

2.2. Nonuniqueness results

We shall prove the following result which regards existence of solutions to
problem (1.1) satisfying additional conditions at infinity (see (2.4)).

Theorem 2.5. Let assumption (H0) be satisfied and A ∈ Lip([0, T ]) with
A(0) = 0 . Moreover, suppose that

(H2)
{

there exist C2 > 0 and α < 0 such that
a(x) ≤ C2(1 − |x|)−α for any x ∈ H

n.

Then there exists a bounded solution u of problem (1.1) such that

lim
|x|→1

|U(x, t) − A(t)| = 0 (2.5)

uniformly with respect to t ∈ [0, T ]; here

U(x, t) :=
∫ t

0

φ(u(x, τ)) dτ ((x, t) ∈ HT ) . (2.6)

Remark 2.6. Hypothesis (H2) can be expressed also as follows:{
there exist C2 > 0 and α < 0 such that
a(x) ≤ C2e

αρ(x) for any x ∈ H
n ;

here ρ(x) denotes the geodesic distance in H
n of x ∈ H

n from 0 (see (3.1)
below).

Consider the following condition:

(H∗
2 ) there exists x0 ∈ H

n such that
∫

Hn

Gg(x0, y)a(y) dμ(y) < ∞,

where Gg is the Green function for Δg in H
n (see [8]) and dμ is the Riemannian

volume element (see (3.6) below).

Remark 2.7. If assumption (H2)∗ is satisfied, then we have
∫

Hn Gg(x, y)a(y) dμ
(y) < ∞ for any x ∈ H

n (see [7]). Furthermore, since

Gg(0, x) =
∫ ∞

ρ(x)

dξ

(sinh ξ)n−1
(x ∈ H

n \ {0}),

it is direct to see that hypothesis (H2) implies (H2)∗.

If in Theorem 2.5 assumption (H2) is replaced by the weaker condition
(H2)∗, then we obtain next
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Theorem 2.8. Let assumptions (H0), (H2)∗ be satisfied and A ∈ Lip([0, T ])
with A(0) = 0. Then there exists a sequence {xm} ⊆ H

n, |xm| → 1 as m → ∞
and a bounded solution u of problem (1.1) satisfying

lim
m→+∞ |U(xm, t) − A(t)| = 0 (2.7)

uniformly with respect to t ∈ [0, T ], with U defined in (2.6).

Remark 2.9. Clearly, both Theorems 2.5 and 2.8 imply nonuniqueness of
bounded solutions to problem (1.1).

3. Mathematical background

The geodesic distance between any x ∈ H
n and 0 is given by

ρ(x) :=
∫ |x|

0

2
1 − s2

ds = log
(

1 + |x|
1 − |x|

)
(x ∈ H

n ≡ B1) ; (3.1)

therefore

|x| = tanh
(
ρ(x)

2

)
,

2
1 − |x|2 = 2

[
cosh

(
ρ(x)

2

)]2

(x ∈ H
n ). (3.2)

For any r > 0 define

Br := {x ∈ H
n | ρ(x) < r} , Sr := {x ∈ H

n | ρ(x) = r }. (3.3)

Hence for any r ∈ (0, 1)

Br = Blog( 1+r
1−r ). (3.4)

Let (ρ, θ) be polar geodesic coordinates in H
n. Then we have

ds2 :=
n∑

i,j=1

gij dxidxj = dρ2 + (sinh ρ)2 dθ;

moreover,

Δg =
∂2

∂ρ2
+ (n− 1) coth ρ

∂

∂ρ
+

1
(sinh ρ)2

Δθ, (3.5)

where Δθ is the Laplace–Beltrami operator on the (n−1)−dimensional sphere
of R

n.
In H

n the Riemannian volume element is defined by

dμ :=
√
g dx1dx2 . . . dxn =

2n

(1 − |x|2)n
dx1 . . . dxn, (3.6)

dx1dx2 . . . dxn ≡ dx being the Lebesgue measure in R
n. Furthermore, let dμ′

be the Riemannian area element on submanifold of H
n of codimension 1. We

have for any r > 0

μ′(Sr) = ωn(sinh r)n−1, (3.7)

where ωn is the area of the unit sphere of R
n.
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For every x ∈ H
n, let TxH

n denote the tangent space to H
n at x. As

usual, let
(

∂
∂x1

, . . . , ∂
∂xn

)
be the standard basis of TxH

n. The inner Riemannian
product 〈·, ·〉g for every x ∈ H

n is given by:

〈β, ξ〉g ≡ 〈β, ξ〉g,x =
n∑

i,j=1

gij βi ξj (3.8)

for any β, ξ ∈ TxH
n, with β =

∑n
i=1 βi

∂
∂xi

and ξ =
∑n

i=1 ξi
∂

∂xi
for some

(β1, . . . , βn) ∈ R
n and (ξ1, . . . , ξn) ∈ R

n.
Recall that the gradient ∇gu ≡ (

(∇gu)1, . . . , (∇gu)n

)
is given by

(∇gu)i :=
n∑

j=1

gij ∂u

∂xj
(i = 1, . . . , n) ; (3.9)

furthermore,

‖ν‖g :=
√

〈ν, ν〉g (ν ∈ TxH
n, x ∈ H

n).

Let us make the following definition.

Definition 3.1. A solution of problem (1.1) is a function u ∈ C (Hn × (0, T ])
such that∫ τ

0

∫
Ω1

{
a u ∂tψ + φ(u)Δgψ

}
dμdt =

∫
Ω1

a
[
u(x, τ)ψ(x, τ) − u0(x)ψ(x, 0)

]
dμ

+
∫ τ

0

∫
∂Ω1

φ(u)〈∇gψ, ν〉gdμ
′ dt (3.10)

for any precompact set Ω1 ⊆ H
n with smooth boundary ∂Ω1 , Ω1 ⊆ H

n, τ ∈
(0, T ], ψ ∈ C2,1(Ω1 × [0, τ ]), ψ ≥ 0, ψ = 0 in ∂Ω1 × [0, τ ]; ν denotes the outer
normal to Ω1 satisfying ‖ν‖g = 1.

Supersolutions (subsolutions) of (1.1) are defined replacing “=” by “≤”
(“≥”, respectively) in (3.10).

4. Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. The conclusion follows by the same argument as in the
proof of Theorem 2.5 in [18]. �

In what follows we regard B1−ε (ε ∈ (0, 1)) as a subset of H
n, in view

of the identification H
n ≡ B1. For any ε ∈ (0, 1) the operator Δg is uniformly

elliptic in B1−ε, hence there exists a unique classical solution ψε of the elliptic
problem: ⎧⎨

⎩
Δg U = −F in B1−ε

U = 0 on ∂B1−ε ,
(4.1)

where F ∈ C∞
0 (B1). In the proof of Theorem 2.2 we will use next lemma.
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Lemma 4.1. Let assumption (H0) be satisfied, ε0 ∈ (0, 1). For any ε ∈ (0, ε0) let
ψε be the solution to problem (4.1) with F ∈ C∞(B1), F ≥ 0, suppF ⊆ B1−ε0 .
Then the following statements hold true:
(i) for any ε1, ε2 ∈ (0, ε0), ε1 ≥ ε2 we have

0 < ψε1 ≤ ψε2 in B1−ε1 ; (4.2)

(ii) there exists C > 0 such that for any ε ∈ (0, ε0/2) we have

− C

(
1 − |x|2

2|x|
)n−1

≤ 〈∇gψε , νε〉g < 0 for any x ∈ ∂B1−ε (4.3)

νε denoting the outer normal to B1−ε at ∂B1−ε, with ‖νε‖g = 1 ;
(iii) there exist C̄ > 0 and ε̄ ∈ (0, ε0) such that

ψ0(x) ≥ C̄(1 − |x|2)n−1 for any x ∈ B1 \B1−ε̄ , (4.4)

where

ψ0 := lim
ε→0

ψε in B1. (4.5)

Proof. (i) By the strong maximum principle ψε > 0 in B1−ε for any ε ∈
(0, ε0); hence the function ψε1 − ψε2 (0 < ε2 ≤ ε1 < ε0) is a subsolution
of problem ⎧⎨

⎩
Δg U = 0 in B1−ε1

U = 0 on ∂Bε1 .
(4.6)

Then again by the maximum principle we get (4.2).
(ii) Clearly, by the strong maximum principle there holds 〈∇ψε , νε〉Rn < 0

on ∂Bε for any ε ∈ (0, ε0/2). Hence

〈∇gψ, νε〉g < 0. (4.7)

It is well-known that (see [8])

ψ0(x) =
∫

Hn

Gg(x, y)F (y) dμ(y) (x ∈ H
n ≡ B1) ,

where ψ0 is defined in (4.5). From (i), for any ε ∈ (0, ε0), we have

ψε ≤ ψ0 in B1−ε. (4.8)

For any ε ∈ (0, ε0) let us introduce the problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δg U = 0 inB1−ε \B1−ε0

U = 0 on ∂B1−ε

U = M on ∂B1−ε0 ,

(4.9)

where M := max
∂B1−ε0

ψ0.

Observe that (see [8], Sect. 4.2) the function

Ž(x) :=
∫ +∞

ρ(x)

1
(sinh ξ)n−1

dξ (x ∈ H
n)
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solves

ΔgŽ = 0 in H
n \ {0}. (4.10)

Define

Z(x) ≡ Z(ρ(x)) := Cε

[∫ +∞

ρ(x)

1
(sinh ξ)n−1

dξ −
∫ +∞

ρ̃(1−ε)

1
(sinh ξ)n−1

dξ

]

(x ∈ B1−ε \B1−ε0),

where

Cε :=
M∫ +∞

ρ̃(1−ε0)
1

(sinh ξ)n−1 dξ − ∫ +∞
ρ̃(1−ε)

1
(sinh ξ)n−1 dξ

,

ρ̃(s) := log
(

1 + s

1 − s

)
(s ∈ [0, 1)).

From (4.10) immediately follows that Z is a supersolution to prob-
lem (4.9) for any ε ∈ (0, ε0/2). On the other hand, ψε (ε ∈ (0, ε0)) is
a subsolution to the same problem. By comparison principles we get for
any ε ∈ (0, ε0/2)

Z ≥ ψε in ;B1−ε \B1−ε0 .

Since for any ε ∈ (0, ε0/2)

Z = ψε = 0 on ∂B1−ε,

we can infer that

〈∇gψε, νε〉g ≥ 〈∇gZ, νε〉g =
∂Z(ρ)
∂ρ

= − Cε

[sinh(ρ(x))]n−1

≥ −Cε0/2

(
1 − |x|2

2|x|
)n−1

(x ∈ ∂B1−ε),

This combined with (4.7) gives (4.3).
(iii) Let 0 < ε1 < ε2 < ε0. Clearly, the function ψε1 is a supersolution to

problem ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δg U = −F in B1−ε1 \B1−ε2

U = 0 on ∂B1−ε1

U = m on ∂B1−ε2 ,

(4.11)

where m := min
∂B1−ε2

ψε1 . From (i) it follows that for any 0 < ε < ε1

ψε ≥ ψε1 in B1−ε1 \B1−ε2 .
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Then, for any ε ∈ (0, ε2), ψε is a supersolution to problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Δg U = −F in B1−ε \B1−ε2

U = 0 on ∂B1−ε

U = m on ∂B1−ε2 .

(4.12)

Observe that

ψ̃ε := m

∫ +∞
ρ(x)

1
(sinh ξ)n−1 dξ − ∫ +∞

ρ̃(1−ε)
1

(sinh ξ)n−1 dξ∫ +∞
ρ̃(1−ε2)

1
(sinh ξ)n−1 dξ − ∫ +∞

ρ̃(1−ε)
1

(sinh ξ)n−1 dξ
(x ∈ B1−ε \B1−ε2),

is a subsolution to problem (4.12). By comparison principles we have

ψ̃ε ≤ ψε in B1−ε \B1−ε2 .

Sending ε → 0 we obtain

m∫ +∞
ρ̃(1−ε2)

1
(sinh ξ)n−1 dξ

∫ +∞

ρ(x)

1
(sinh ξ)n−1

dξ ≤ ψ0 in B1 \B1−ε2 .

Then easy computations yield (4.4) with ε̄ = ε2.
�

Let us prove the following

Lemma 4.2. Let assumptions (H0), (H1)∗ be satisfied. Let v1, v2 be any two
bounded solutions of problem (1.1) such that v1 ≥ v2 in HT . Then

lim inf
ε→0

εn−1

∫ T

0

∫
∂B1−ε

{φ(v1) − φ(v2)} dμ′ dt = 0. (4.13)

Proof. From problem (1.1) we have⎧⎨
⎩
a (∂tv1 − ∂tv2) = Δ

[
φ(v1) − φ(v2)

]
in HT

v1 − v2 = 0 in H
n × {0}.

(4.14)

Then equality (3.10) with Ω1 = B1−ε (ε ∈ (0, ε0/2)), τ ∈ (0, T ] yields∫
B1−ε

a(x)
[
v1(x, τ)−v2(x, τ)

]
ψε(x) dμ+

∫ τ

0

∫
B1−ε

[
φ(v1)−φ(v2)

]
F (x) dμ dt

= −
∫ τ

0

∫
∂B1−ε

{
φ(v1)−φ(v2)

}〈∇gψε, νε〉g dμ
′ dt

(4.15)

where ψε denotes the solution of problem (4.1). Set

ϕ(ε) :=
∫ T

0

∫
∂B1−ε

{φ(v1) − φ(v2)} dμ′ dt (ε ∈ (0, ε0/2)) .

Suppose, by absurd, that

lim inf
ε→0

εn−1ϕ(ε) ≥ γ
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for some γ > 0; then there exists ε̌ ∈ (0, ε0/2) such that

εn−1ϕ(ε) ≥ γ

2
for any ε ∈ (0, ε̌). (4.16)

Let M := max{supHT
|v1|, supHT

|v2|}. Since F ≥ 0, v1 ≥ v2 and (H0) − (ii)
holds true, from (4.3) and (4.15) we have

∫ T

0

∫
B1−ε

a(x) [v1(x, τ) − v2(x, τ)]ψε(x) dμdτ

≤
∫ T

0

∫ τ

0

∫
∂B1−ε

{φ(v1) − φ(v2)} |〈∇gψε, νε〉g| dμ′dtdτ

≤ 2 max
−M≤r≤M

|φ(r)|
∫ T

0

∫ τ

0

∫
∂B1−ε

|〈∇gψε, νε〉g| dμ′dtdτ

≤ 2 max
−M≤r≤M

|φ(r)|T 2μ′(∂B1−ε)C
[

(2 − ε)ε
2(1 − ε)

]n−1

= 2 max
−M≤r≤M

|φ(r)|T 2Cμ′(Slog( 2−ε
ε ))

[
(2 − ε)ε
2(1 − ε)

]n−1

= 2 max
−M≤r≤M

|φ(r)|T 2Cωn

[
2(1 − ε)
(2 − ε)ε

]n−1 [
(2 − ε)ε
2(1 − ε)

]n−1

= 2 max
−M≤r≤M

|φ(r)|T 2Cωn

(4.17)

for any ε ∈ (0, ε0/2); here use of (3.7) has been made.
Letting ε → 0 in (4.17), by (4.2), (4.5) and the monotone convergence

theorem we have
∫ T

0

∫
Ω

a(x) [v1(x, τ) − v2(x, τ)]ψ0(x) dxdτ≤2 max
−M≤r≤M

|φ(r)|T 2Cωn. (4.18)

On the other hand, we have

∫ T

0

∫
B1

a(x) [v1(x, τ) − v2(x, τ)]ψ0(x) dμdτ

≥ 1
L

∫ T

0

∫
B1\B1−ε

a(x) [φ(v1) − φ(v2)] ψ0(x) dμ dτ ;
(4.19)

here ε̃ := min{ε̂, ε̄, ε̌}, L := max
s∈[−M,M ]

φ′(s) .

Clearly, we have:

∫
B1−ε

dμ =
∫ 1−ε

0

∫
∂Br

2
1 − r2

dr dμ′, (4.20)

where dμ′ is the Riemannian area element on ∂Br (0 < ε < 1, 0 < r < 1 − ε).
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By (H1)∗, (4.16) and (4.20) we have

1
L

∫ T

0

∫
B1\B1−ε̃

a(x)
[
φ(v1) − φ(v2)

]
ψ0(x) dμdτ

≥ C̄

L

∫ T

0

∫
B1\B1−ε̃

a(1 − |x|)[φ(v1) − φ(v2)
]
(1 − |x|2)n−1 dμdτ

=
2C̄
L

∫ ε̃

0

∫
∂B1−ε

a(ε)
ε(2 − ε)

(2 − ε)n−1 εn−1

∫ T

0

[φ(v1) − φ(v2)] dμ′dεdτ

=
2C̄
L

∫ ε̃

0

a(ε)
ε

(2 − ε)n−2 εn−1 ϕ(ε) dε ≥ (2 − ε̃)n−2C̄γ

L

∫ ε̃

0

a(ε)
ε

dε = ∞.

The previous inequalities and (4.19) yield∫ T

0

∫
B1

a(x)
[
v1(x, τ) − v2(x, τ)

]
ψ0(x) dμ dτ = ∞,

in contrast with (4.18). Hence (4.13) follows. The proof is complete. �

For any ε ∈ (0, ε0/2) consider the auxiliary problem⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ut = Δg

[
φ(u)

]
in B1−ε × (0, T ] =: Hε,T

u = ζ in ∂B1−ε × (0, T )

u = u0 in B1−ε × {0},

(4.21)

where ζ ∈ L∞(∂B1−ε × (0, T )).

Definition 4.3. A supersolution of problem (4.21) is a function u ∈ C
(
B1−ε ×

(0, T ]
)

such that∫ τ

0

∫
Ω1

{a u ∂tψ + φ(u)Δgψ} dμdt ≤
∫

Ω1

a [u(x, τ)ψ(x, τ) − u0(x)ψ(x, 0)] dμ

+
∫ τ

0

∫
∂Ω1∩∂B1−ε

φ(ζ)〈∇gψ, ν〉gdμ
′ dt

for any open set Ω1 ⊆ B1−ε with smooth boundary ∂Ω1, τ ∈ (0, T ], ψ ∈
C2,1(Ω1 × [0, τ ]), ψ ≥ 0, ψ = 0 in ∂Ω1 × [0, τ ]; here ν denotes the outer normal
to Ω1 with ‖ν‖g = 1. Solutions and subsolutions are defined accordingly.

Since Δg is a uniformly elliptic operator in B1−ε for any ε ∈ (0, 1), exis-
tence, uniqueness and comparison results for problem (4.21) can be proved by
standard methods.

Now we can prove Theorem 2.2.
Proof of Theorem 2.2. We give the proof replacing (H1) by the weaker con-
dition (H1)∗, introduced in Remark 2.4.

Let u1, u2 be any two bounded solutions of problem (1.1); set

M := max{ sup
HT

|u1|, sup
HT

|u2|}.
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For any ε ∈ (0, ε0/2) let uε be the unique solution of problem (4.21) with
ζ ≡ −M . By comparison results we have:

−M ≤ uε ≤ u1 and −M ≤ uε ≤ u2 in Hε,T . (4.22)

By usual compactness arguments there exists a subsequence {uεm
} ⊆ {uε}

which converges uniformly in any compact subset of H
n × (0, T ]. Set

u := lim
m→∞uεm

in H
n × (0, T ].

The function u is a solution of problem (1.1); moreover, from (4.22) we obtain

−M ≤ u ≤ u1 and −M ≤ u ≤ u2 in HT . (4.23)

Set w = u1 or w = u2 for simplicity. The conclusion will follow, if we show
that ∫ T

0

∫
Hn

[φ(w) − φ(u)] F dμdt = 0 (4.24)

for any F ∈ C∞
0 (Hn).

In fact, in view of assumption (H0) − (ii) and the arbitrariness of F ,
(4.24) implies

u1 = u = u2 in HT , (4.25)

whence the conclusion.
Let us prove equality (4.24). Without loss of generality, we suppose

suppF ⊆ (B1−ε0), F ≥ 0, F �≡ 0.
In view of the inequality w ≥ u (see (4.23)), arguing as in the proof of

Lemma 4.2, we obtain∫
B1−ε

a(x) [w(x, τ) − u(x, τ)]ψε(x) dμ+
∫ τ

0

∫
B1−ε

[φ(w) − φ(u)]F (x) dμ dt

= −
∫ τ

0

∫
∂B1−ε

{φ(w) − φ(u)} 〈∇gψε, νε〉g dμ
′ dt (4.26)

where ψε denotes the solution of (4.1), ε ∈ (0, ε0/2), τ ∈ (0, T ]. Since F ≥ 0,
ψε ≥ 0, w ≥ u and (H0) − (ii) holds true, equality (4.26) with τ = T gives∫ T

0

∫
B1

[φ(w) − φ(u)]F (x) dμ dt

≤ lim inf
ε→0

∣∣∣∣∣
∫ T

0

∫
∂B1−ε

{φ(w) − φ(u)} 〈∇gψε, νε〉g dμ
′ dt

∣∣∣∣∣ . (4.27)

Hence, if we can prove that

lim inf
ε→0

∣∣∣∣∣
∫ T

0

∫
∂B1−ε

{φ(w) − φ(u)} 〈∇gψε, νε〉g dμ
′ dt

∣∣∣∣∣ = 0 , (4.28)

the conclusion follows.
Equality (4.28) is just a consequence of (4.13) with v1 = w and v2 = u

together with (4.3). The proof is complete. �
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5. Proof of Theorem 2.5

We shall consider equation

Δg V = −a in H
n. (5.1)

Let us give the following

Definition 5.1. A supersolution to equation (5.1) is a function U ∈ C(B1) such
that ∫

Ω1

U Δgψ dμ ≤
∫

∂Ω1

U 〈∇gψ, ν〉g dμ
′ −

∫
Ω1

aψ dμ (5.2)

for any open set Ω1 ⊆ B1 with smooth boundary ∂Ω1 , Ω1 ⊆ B1, ψ ∈
C2(Ω1), ψ ≥ 0, ψ = 0 in ∂Ω1; here ν denotes the outer normal to Ω1, ‖ν‖g = 1.
Subsolutions and solutions of equation (5.1) are defined accordingly.

The following lemma will be used.

Lemma 5.2. Let assumption (H2) be satisfied. Then there exists a positive su-
persolution V to equation (5.1) such that

lim
|x|→1

V (x) = 0. (5.3)

Proof of Lemma 5.2. Let

β ∈
(

0,min
{
n− 1

2
,−α

}]
, C :=

2C2

β
. (5.4)

Define

V (x) := C(1 − |x|2)β (x ∈ H
n).

For any x ∈ H
n we have:

∂V (x)
∂xi

= −2Cβ(1 − |x|2)β−1xi ,

∂2V (x)
∂xi∂xj

= 2Cβ(1 − |x|2)β−2
[
2(β − 1)xixj − (1 − |x|2)δij

]
,

where i, j = 1, . . . , n. From (5.4) and the fact that n ≥ 2 we obtain:

ΔgV (x) =
C

2
β(1 − |x|2)β

[
2(β − 1)|x|2 − n(1 − |x|2) − 2(n− 2)|x|2]

≤ C

2
β(1 − |x|2)β

[
(2β + 2 − n)|x|2 − n

]

≤ C

2
β(1 − |x|2)β

[
(2β + 1 − n)|x|2 − n+ 1

]
≤ −C2(1 − |x|2)β .

This inequality, combined with hypothesis (H2) and (5.4), implies that

ΔgV (x) ≤ −a(x) for any x ∈ H
n.

Moreover, clearly, condition (5.3) is satisfied. Hence the proof is complete. �
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Observe that for any A ∈ Lip([0, T ]) the derivative A′ exists almost
everywhere in [0, T ] and belongs to L∞((0, T )).

For any ε ∈ (0, ε0/2) we will make use of the following auxiliary problems⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a ∂tu = Δg [φ(u)] in Hε,T

u = φ−1(A′) in ∂B1−ε × (0, T )

u = u0 in B1−ε × {0}

(5.5)

and ⎧⎨
⎩

ΔgU = f in B1−ε

U = γ in ∂B1−ε,
(5.6)

where f ∈ C(B1−ε) and γ ∈ C(∂B1−ε).

Definition 5.3. A supersolution of problem (5.6) is a function U ∈ C(B1−ε)
such that∫

Ω1

U Δgψ dμ ≤
∫

Ω1

f ψ dμ+
∫

∂Ω1∩∂B1−ε

γ 〈∇gψ, ν〉g dμ
′

for any open set Ω1 ⊆ B1−ε with smooth boundary ∂Ω1, ψ ∈ C2(Ω1), ψ ≥
0, ψ = 0 in ∂Ω1; here ν denotes the outer normal to Ω1 with ‖ν‖g = 1. Solu-
tions and subsolutions are defined accordingly.

Proof of Theorem 2.5. For any ε ∈ (0, ε0/2) let uε be the unique solution to
problem (5.5); then by comparison results we have

|uε| ≤ sup
Hn

|u0| + max
−‖A′‖∞≤r≤‖A′‖∞

|φ−1(r)| =: M in Hε,T . (5.7)

By usual compactness arguments there exists a subsequence {uεm
} ⊆ {uε},

which converges uniformly in any compact subset of H
n × (0, T ] to a solution

u of problem (1.1).
Define U as in (2.6) and

Uε(x, t) :=
∫ t

0

φ(uε(x, τ))dτ ((x, t) ∈ Hε,T ) . (5.8)

Observe that Uεm
→ U in H

n × (0, T ] as m → ∞.
It is straightforward to show that for any t ∈ (0, T ] the function Uε(·, t)

satisfies the problem (5.6) with f = −ρ[u0 − u(·, t)], γ = A(t). In fact, by
Definition 4.3 we obtain∫

Ω1

Uε(x, t)Δgψ(x) dx =
∫

Ω1

a(x) [uε(x, t) − u0(x)]ψ(x) dμ

+
∫

∂Ω1∩∂B1−ε

A(t) 〈∇gψ(x), ν(x)〉g dμ
′ (5.9)

for any Ω1 and ψ = ψ(x) as in Definition 5.3 and t ∈ (0, T ].
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We shall prove that

− 2MV (x) +A(t) ≤ U(x, t) ≤ 2MV (x) +A(t) ((x, t) ∈ HT ) , (5.10)

where V is the supersolution introduced in Lemma 5.2.
From (5.3) and (5.10) the equality (2.5), thus the conclusion follows.
It remains to prove (5.10). It is easily seen that for any fixed t ∈ (0, T ] the

function 2MV −Uε+A is a supersolution, while the function −2MV −Uε+A is
a subsolution of problem (5.6) with f = γ ≡ 0 for any ε ∈ (0, ε0/2). In fact, fix
any Ω1, ψ as in Definition 5.3 and t ∈ (0, T ]. Then by (5.9) and (5.2) we have∫

Ω1

(2MV − Uε +A)Δgψ dx ≤
∫

∂Ω1\∂B1−ε

(2MV − Uε +A)〈∇gψ, ν〉g dμ
′

+
∫

∂Ω1∩∂B1−ε

2MV 〈∇gψ, ν〉g dμ
′ −

∫
Ω1

(2M + uε − u0)aψ dx =
(5.11)

for any ε ∈ (0, ε0).
Notice that

2MV ≥ 0 on ∂B1−ε , 2M ≥ u0 − uε in Ω1 (5.12)

for any ε ∈ (0, ε0). Moreover, it is easily checked that

〈∇gψ, ν〉g ≤ 0 on ∂Ω1. (5.13)

From (5.11) to (5.13) we obtain∫
Ω1

(2MV −Uε+A)Δgψ dμ ≤
∫

∂Ω1\∂B1−ε

(2MV −Uε+A)〈∇gψ, ν〉g dμ
′ (5.14)

for any ε ∈ (0, ε0). This shows that the function 2MV − Uε + A is a superso-
lution to problem (5.6) with f = γ ≡ 0 for any ε ∈ (0, ε0) (see Definition 5.3).
It is similarly seen that −2MV −Uε +A is a subsolution of the same problem
for any ε ∈ (0, ε0).

By comparison principles we obtain

−2MV (x) +A(t) ≤ Uε(x, t) ≤ 2MV (x) +A(t) ((x, t) ∈ [Hε,T )

for any ε ∈ (0, ε0). This implies (5.10), thus the proof is complete. �
To prove Theorem 2.8 we need a preliminary result.

Lemma 5.4. Let there exist a nonnegative supersolution to equation (5.1) such
that

inf
Hn

V = 0. (5.15)

Then there exists a sequence {xm} ⊆ H
n, |xm| → 1 as m → ∞ such that

lim
m→∞V (xm) = 0.

Lemma 5.4 can be proved arguing as in the proof Lemma 2.6 in [18].
Proof of Theorem 2.8. The function

V (x) :=
∫

Hn

Gg(x, y) a(y) dμ(y)− inf
x∈Hn

(∫
Hn

Gg(x, y) a(y) dμ(y)
)

(x∈H
n)
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is a nonnegative solution to equation (5.1) satisfying condition (5.15) (see [8]).
Then by Lemma 5.4 there exists a sequence {xm} ⊆ H

n, |xm| → 1 as m → ∞
such that V (xm) → 0 as m → ∞. The conclusion follows repeating the proof
of Theorem 2.5. �
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