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1. Introduction

We consider the homogeneous Neumann initial-boundary value problem on a
half-line for the intermediate long-wave equation (ILW)

⎧
⎨

⎩

ut + uux + Ku = 0, x > 0, t > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0,

(1.1)

where

Ku = − 1
2σ

PV

∫ +∞

0

(

coth
π(x − s)

2σ
− sign(x − s)

)

uss(s, t)ds,

for σ > 0. Here and below PV means the Cauchy principal value of the singular
integral.

The ILW equation describes long internal gravity waves in a stratified
fluid with a finite depth σ [23]. In the shallow water limit σ → 0 ILW equa-
tion reduces to the Korteveg–de Vriez (KdV) equation

ut + uxu + uxxx = 0 (1.2)
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and in the deep water limit, σ → ∞, reduces to the Benjamin-Ono (BO)
equation

ut + uxu +
1
π

PV

∫ +∞

−∞

uss(s, t)
x − s

ds = 0. (1.3)

The remarkable fact is that all three equations are integrable in the sense
that they admit multi-soliton solutions, satisfy the infinite number of conserva-
tion laws and are solvable by the inverse scattering transform (see, for example,
[1]). The Cauchy problem for Benjamin-Ono equation was studied by many
authors. The existence of solutions in the usual Sobolev spaces Hs,0 was proved
in [2,13,21,22,28,30] and the smoothing properties of solutions were studied
in [14,15]. In paper [19] it was obtained asymptotics of small solutions for BO
equations. The well-posedness on the line and the periodic domain for KDV
equation was studied extensively (see, for example, [4,25,26] and references
cited therein). The asymptotic behavior of small solutions was obtained in the
case of the generalized KdV equations in [5,20,29].

As far as we know the initial boundary-value problem for Eq. (1.1) was
not studied up to now. The boundary value problems are more natural for
applications, however their mathematical investigations are more complicated.
For example, it is necessary to answer the question of the well-posedness of the
problem, in particular, how many boundary values should be given in the prob-
lem for its solvability and the uniqueness of the solution. And after that it is
also interesting to study the influence of the boundary data on the qualitative
properties of the solution.

For integrable nonlinear evolution PDEs such as the BO and the KdV
formulated on the line, it is possible to obtain the long time asymptotics of
the solution using the so-called Inverse Scattering transform machinery. In this
direction, the rigorous asymptotic results can be obtained using the so-called
Deift–Zhou approach [6], which is a nonlinear analogue of the classical steepest
descent method. A new method for analyzing initial-boundary value problems,
based on ideas of the inverse scattering method, was introduced in [9] (see also
[10]). Using the Fokas method it is possible, just like the case of problems on
the line, to obtain the long time asymptotics of the solution (see [8]), using
again the Deift–Zhou approach [11]. For a particular class of boundary con-
ditions, called linearisable, the above method can also be used to establish
existence; however, in general it requires certain a priori PDE estimates. The
general theory of the initial-boundary value (IBV) problem for KdV equa-
tion was developed in the book [17]. Dirichlet problem for the Benjamin-Ono
equation on the half- line was considered in paper [18].

In the present paper we consider the Neumann problem (1.1) for ILW
equation on half-line. We study traditionally important problems of a theory
of nonlinear partial differential equations, such as well-posedness and global in
time existence of solutions to the initial-boundary value problem. This type of
existence results play a crucial role in the rigorous investigation of integrable
equations. Our main goal is to obtain the large time asymptotics of solutions.



Vol. 19 (2012) Neumann problem for ILW equation 461

This problem is very difficult. Note that even for the case of the Cauchy prob-
lem for the famous KdV equation the study of the large time asymptotics of
solutions has not been reached completely. From the heuristic point of view
the quadratic nonlinearity of the shallow water type uux is sub critical for
large time: the nonlinear term decays more slowly than the linear part of the
equation. In the case of the Neumann boundary-value problem (1.1) we expect
that the nonlinear term of ILW equation behaves as critical in the contrary to
the corresponding Cauchy problem since the solutions of (1.1) have more rapid
time-decay. Our approach is based on the estimates of the integral equation in
the weighted Sobolev spaces and weighted L2 space is used to get smooth solu-
tions [16]. The main difficulty for nonlocal equation (1.1) on a half-line is that
the equation is dispersive and its symbol K(p) = −p |p| (coth 2σ |p| − 1

2σ|p| ) is
non homogeneous. As far as we know even the case of the Cauchy problem for
Eq. (1.1) was not studied well. Another difficulty is that the symbol is non
analytic, therefore we can not apply the Laplace theory directly. The integral
formula is obtained by using the Hilbert transform with respect to the space
variable. The Hilbert transform requires the boundary data u (0, t) , ux (0, t)
and so u (0, t) should be determined by the given data. To achieve this
we need to solve the nonlinear singular integro-differential equation with
Hilbert kernel.

To state precisely the results of the present paper we give some notations.
We denote 〈t〉 = 1 + t, {t} = t

〈t〉 . Direct Laplace transformation Lx→ξ is

û (ξ) ≡ Lx→ξu =
∫ +∞

0

e−ξxu (x) dx

and the inverse Laplace transformation L−1
ξ→x is defined by

u (x) ≡ L−1
ξ→xû = (2πi)−1

∫ i∞

−i∞
eξxu (ξ) dξ.

Weighted Lebesgue space Lq,a (R+) = {ϕ ∈ S ′; ‖ϕ‖ Lq,a < ∞}, where

‖ϕ‖ Lq,a =
(∫ +∞

0

〈x〉aq |ϕ (x)|q dx

) 1
q

for a > 0, 1 ≤ q < ∞ and

‖ϕ‖ L∞ = ess. sup
x∈R+

|ϕ (x)| .

Sobolev space

H1
p(R

+) = {ϕ ∈ S ′; ‖〈∂x〉 ϕ‖ Lp < ∞}.

and weighted Sobolev space H1,μ (R+)

H1,μ
p (R+) = {ϕ ∈ S ′;

∥
∥(xμ + x1+μ∂x)ϕ

∥
∥

Lp < ∞}.

Now we state the main results.
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Theorem 1. Suppose that the initial data u0 ∈ L1, 21
4 (R+)∩H1, 7

2
2 (R+) and the

norm

‖u0‖
L1, 21

4
+ ‖u0‖

H
1, 7

2
2

≤ ε,

where ε > 0 is small enough and
∫ +∞

0

xu0(x)dx = θ < 0.

Then there exists a unique solution

u ∈ C([0, + ∞) ,H1, 7
2

2 (R+))

of the initial-boundary value problem (1.1) satisfying the boundary condition
such that ux (0, t) = 0 for t > 0. Moreover the solution has the following
asymptotics

u(x, t) = θ (1 + η log t)−1 (σt)− 2
3 Ai′

(
x

3
√

σt

)

+ O
(
ε2(σt)− 2

3 (1 + η log t)− 6
5

)

for t → +∞ uniformly with respect to x > 0,where

η = −θ

∫ +∞

0

Ai′2(x)dx > 0

and Ai (q) is Airy function

Ai(q) =
1

2πi

∫ i∞

−i∞
e−z3+zqdz.

We note here that solutions of our problem (1.1) decay faster than those
of the linear problem and Ai(2)(0) = 0, then we see that the main term satisfies
the Neumann boundary condition for t > 0.

2. Some notations

2.1. Green operator

Setting

K(p) = −p |p| (coth 2σ |p| − 1
2σ |p| ), K1(p) = − σp3

σp + 1
, (2.1)

K1(k(ξ)) = −ξ,Rek(ξ) > 0 for ξ ∈ C1,

we define the following sectionally analytic functions

I1(z, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy

q − z

1
Y +(q, ξ)

dq, (2.2)

I2(p, ξ) =
ξ

2πi

∫ i∞

−i∞

1
q − z

(
1

Y +(q, ξ)
− 1

Y −(q, ξ)

)
1
q
dq (2.3)

+
K1(p)

p

1
Y −(z, ξ)

.
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Here and below

Y ± = eΓ±
w±, (2.4)

Γ+(p, ξ) and Γ−(p, ξ) are a left and right limiting values of sectionally analytic
function Γ(z, ξ), given by formula

Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
{(

(K(q) + ξ)
K1(q) + ξ

)
w−(q)
w+(q)

}

dq, (2.5)

where

w−(z) =
(

z

z + k(ξ)

) 1
2

, w+(z) =
(

z

z − k(ξ)

) 1
2

.

We make a cut in the plane z from point k(ξ) to point −∞ through 0. Owing
to the manner of performing the cut the functions w−(z), K1(z) are analytic
for Re z > 0 and the function w+(z) is analytic for Re z < 0.

Denote by

G(t)φ =
∫ +∞

0

G(x, y, t)φ(y)dy, (2.6)

where the function G(x, y, t) is given by formula

G(x, y, t) = − 1
2πi

1
2πi

∫

C1

dξeξt (2.7)

×
∫ i∞

−i∞
epx Y +(p, ξ)

K(p) + ξ

(

I−
1 (p, ξ, y) − I−

2 (p, ξ)
I−
2 (k(ξ), ξ)

I−
1 (k(ξ), ξ, y)

)

dp.

for x > 0, y > 0, t > 0. The contour C1 is defined as

C1 =
{

p ∈
(
∞e−i( π

2 +ε), 0
)⋃(

0,∞ei( π
2 +ε)

)}
, (2.8)

where ε > 0 can be chosen such that all functions under integration are ana-
lytic and Re k(ξ) > 0 for ξ ∈ C1. All the integrals are understood in the sense
of the principal values.

2.2. Strategy of the proof of Theorem 1

For the convenience of the reader we now state of our strategy of the proof. In
Sect. 3 we construct the integral formula of the solution of the linear problem
corresponding to (1.1)

u(x, t) = G(t)u0 =
∫ +∞

0

G(x, y, t)u0(y)dy, (2.9)

where G(x, y, t) is Green function, given by (2.7). Lemma 1 is devoted to the
study of the asymptotic behavior of solutions to the linear problem by using
the integral formula (2.9). We will show that for t > 1, 0 < δ < 1

G(t)u0 = θ(σt)− 2
3 Ai′

(
x

3
√

σt

)

+ O((σt)− 2+δ
3 ),

where θ =
∫ +∞
0

xu0dx. Therefore the nonlinear term in the equation
ut +uux +Ku = 0 has the same decay rate as linear terms. Section 4 attempts
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to prove a global result and to establish asymptotic formulas of solutions. Here
as in book [16] we change variable u = e−φ(t)v. Then for the new function v
we get the following problem

⎧
⎨

⎩

vt − φtv + e−φ(t)vvx + Kv = 0, t > 0, x > 0,
v(x, 0) = eφ(0)u0(x), x > 0,
vx (0, t) = 0, t > 0.

In order to obtain an additional time decay rate we assume that the real-valued
function φ(t) satisfies the following condition

∫ +∞

0

x
(
−φtv + e−φ(t)vvx

)
dx = 0, φ(0) = 0,

which implies that

eφ(t) = g(t) = 1 + θ−1

∫ t

0

dτ

∫ +∞

0

xvvxdx

= 1 − θ−1

∫ t

0

‖v (τ)‖2
dτ.

We look for the solution v in the neighborhood of the first approximation

G(t)u0 ≈ θ(σt)− 2
3 Ai′

(
x

3
√

σt

)

= θG0.

We put r = v − G(t)u0 then we get the following integral formula
{

r =
∫ t

0
g(τ)−1G(x, t − τ)(G0θ

2 ‖G0‖2 + G0G0x)dτ + R1

g = 1 − θ
∫ t

0
‖G‖2

dτ + R2,

where R1, R2 are considered as remainder terms in our function space defined
later. By Lemma 2 in Sect. 3 we obtain

g(t) =
C

1 + η log(1 + t)
and ‖r‖L∞ ≤ Ct−

2
3 g(t)− 1

5 ,

where under condition θ < 0

η = −θ

∫ +∞

0

Ai′2(z)dz > 0.

Hence from the representation u = v
g = r+Φ

g we get the result of Theorem 1.

3. Preliminaries

We consider the following linear initial-boundary value problem on half-line
⎧
⎨

⎩

ut + Ku = 0, t > 0, x > 0,
u(x, 0) = u0(x), x > 0,
ux(0, t) = 0, t > 0,

(3.1)

where for σ > 0

Ku =
1
2σ

PV

∫ +∞

0

(

coth
π(x − s)

2σ
− sign(x − s)

)

uss(s, t)ds.
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Proposition 1. Let the initial data u0 ∈ L1. Then there exists a unique solu-
tion u(x, t) of the initial-boundary value problem (3.1), which has integral
representation

u(x, t) = G(t)u0, (3.2)

where operator G(t) is given by (2.6).

Proof. To derive an integral representation for the solutions of the problem
(3.1) we suppose that there exists a solution u(x, t) of problem (3.1), which is
continued by zero outside of x > 0 :

u(x, t) = 0 for all x < 0.

Let φ(p) be a function of the complex variable p, which obeys the Hölder
condition for all finite p and tends to 0 as p → ±i∞. We define the operator

Pφ(z) = − 1
2πi

∫ i∞

−i∞

1
q − z

φ(q)dq.

We have for the Laplace transform

L{Ku} = P

{

K(p)
(

L{u} − u(0, t)
p

− ux(0, t)
p2

)}

,

where K(p) = −p |p| (coth 2σ |p| − 1
2σ|p| ).

Since L{u} is analytic for all Re q > 0 we have

û(p, t) = L{u} = Pû(p, t). (3.3)

Therefore applying the Laplace transform with respect to x to problem
(3.1) we obtain for t > 0

P
−
{

ût + K(p)
(

û(p, t) − u(0, t)
p

− 1
p2

ux(0, t)
)}

= 0. (3.4)

We rewrite the Eq. (3.4) in the form

ût + K(p)
(

û(p, t) − u(0, t)
p

− 1
p2

ux(0, t)
)

= Φ(p, t), (3.5)

with some function Φ(p, t) = O(〈p〉−1) such that

P
− {Φ(p, t)} = 0. (3.6)

Applying the Laplace transformation with respect to time variable to problem
(3.5) we find for Re p > 0

̂̂u(p, ξ) = 1
K(p)+ξ

(
û0(p) + K(p) û(0,ξ)

p + K(p)
p2 ûx(0, ξ) + Φ̂(p, ξ)

)
. (3.7)

Here the functions ̂̂u(p, ξ), Φ̂(p, ξ), û(0, ξ) and ûx(0, ξ) are the Laplace trans-
forms for û(p, t),Φ(p, t), u(0, t) and ux(0, t) with respect to time, respectively.
We will find the function Φ̂(p, ξ) using the analytic properties of function ̂̂u in
the right-half complex planes Re p > 0 and Re ξ > 0. We have for Re p = 0

̂̂u(p, ξ) = − 1
πi

V P

∫ i∞

−i∞

1
q − p

̂̂u(q, ξ)dq. (3.8)
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Taking into account the assumed condition (3.6) and making use of
Sokhotzki–Plemelj formula we perform the condition (3.8) in the form of non-
homogeneous Riemann problem

Ω+(p, ξ) =
K(p) + ξ

ξ
Ω−(p, ξ) − K(p)Λ+(p, ξ), (3.9)

where the sectionally analytic functions functions Ω(z, ξ) and Λ(z, ξ) given by
formulas

Ω(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

K(q)
K(q) + ξ

Φ̂(q, ξ)dq, (3.10)

Λ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

1
K(q) + ξ

(

û0(q) +
K(q)

q
û(0, ξ) +

K(q)
q2

ûx(0, ξ)
)

dq.

(3.11)

It is required to find two functions for some fixed point ξ, Re ξ > 0:
Ω+(z, ξ), analytic in Re z < 0 and Ω−(z, ξ), analytic in Re z > 0, which
satisfy on the contour Re p = 0 the relation (3.9).

Note that bearing in mind formula (3.10) we can find unknown function
Φ̂(p, ξ) which involved in the formula (3.7) by the relation

Φ̂(p, ξ) =
K(p) + ξ

K(p)
(
Ω+(p, ξ) − Ω−(p, ξ)

)
. (3.12)

Setting

K1(p) = − σp3

σp + 1
we introduce the function

W̃ (p, ξ) =
(

K(p) + ξ

K1(p) + ξ

)
w−(p, ξ)
w+(p, ξ)

,

where w± were defined by (2.5). We observe that the function W̃ (p, ξ) given on
the contour Re p = 0, satisfies the Hölder condition and under the assumption
Re K1(p) > 0 does not vanish for any Re ξ > 0. Also we have

Ind.W̃ (p, ξ) =
1

2πi

∫ i∞

−i∞
d ln W̃ (p, ξ) = 0.

Therefore the function W̃ (p, ξ) can be uniquely represented as the ratio of
the functions X+(p) and X−(p), constituting the boundary values of func-
tions, X+(z) and X−(z), analytic in the left and right complex semi-plane
and having in these domains no zero

W̃ (p, ξ) =
X+(p, ξ)
X−(p, ξ)

. (3.13)

These functions are determined by formula

X±(p, ξ) = eΓ±(p,ξ), Γ(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln W̃ (q, ξ)dq.
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Now we return to the nonhomogeneous Riemann problem (3.9). Multi-
plying and dividing the expression K(p)+ξ

ξ by 1
K1(p)+ξ

w−(p)
w+(p) and making use of

the formula (3.13) we get

K(p) + ξ

ξ
=

Y +(p, ξ)
Y −(p, ξ)

(
K1(p) + ξ

ξ

)

, (3.14)

where

Y ±(p, ξ) = X±(p, ξ)w±(p).

Replacing in Eq. (3.9) the coefficient of the Riemann problem by (3.14)
we reduce the nonhomogeneous Riemann problem (3.9) in the form

Ω+
1 (p, ξ)

Y +(p, ξ)
+ U+(p, ξ) =

Ω−
1 (p, ξ)

Y −(p, ξ)
+ U−(p, ξ). (3.15)

where

U(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

g1(q, ξ)dq. (3.16)

g1(p, ξ) =
(

1
Y +(p, ξ)

− 1
Y −(p, ξ)

)(

û0(p) − ξ

q
û(0, ξ) − ξ

q2
ûx(0, ξ)

)

, (3.17)

Ω+
1 (p, ξ) = Ω+(p, ξ) − ξΛ+(p, ξ), (3.18)

Ω−
1 (p, ξ) = (K1(p) + ξ)

(
ξ−1Ω−(p, ξ) − Λ−

2 (p, ξ)
)− Λ−

3 (p, ξ). (3.19)

Λ2(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

K1(q) − K(q)
(K(q) + ξ)(K1(q) + ξ)

(

û0(q) − ξ

q
û(0, ξ) − ξûx(0, ξ)

q2

)

dq. (3.20)

Λ3(z, ξ) = −k′(ξ)
(

K1(z) + ξ

z − k(ξ)

)

(

û0(k(ξ)) − ξ

k(ξ)
û(0, ξ) − ξ

k(ξ)2
ûx(0, ξ)

)

. (3.21)

Here k(ξ) is one of roots of equation K1(z) = −ξ such that Re k(ξ) > 0 for all
Re ξ > 0.

The relation (3.15) indicates that the function Ω+
1

Y + + U+, analytic in

Re z < 0, and the function Ω−
1

Y − + U−, analytic in Rez > 0, constitute the ana-
lytic continuation of each other through the contour Re z = 0. Consequently,
they are branches of unique analytic function in the entire plane. According
to Liouville theorem this function is some arbitrary constant A. Thus, bearing
in mind the representations (3.18) and (3.19) we get

Ω+(p, ξ) = Y +
(
A − U+

)
+ ξΛ+, (3.22)

Ω−(p, ξ) =
ξ

K1(p) + ξ
Y − (A − U−)+ ξ

(
Λ+

3 + Λ−
2

)
.
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Since there exists only one root k(ξ) of equation K1(z) = −ξ such that
Re k(ξ) > 0 for all Re ξ > 0, in the expression for the function Ω−(z, ξ)
the factor ξ

K1(z)+ξ has a pole in the point z = k(ξ). Also the function ξΛ+
1 has

a pole in the point z = k(ξ). Thus the problem (3.9) is soluble only when the
functions U−(z, ξ) and ξΛ+

1 satisfies additional conditions

Resp=k(ξ)

{
1

K1(p) + ξ
Y − (A − U−)+ Λ+

3 (p, ξ)
}

= 0, (3.23)

where Λ+
3 (p, ξ) was defined by (3.21). Multiplying the last relation by 1

Y −(k(ξ),ξ)

and taking limit ξ → ∞ we get that A = 0. This implies that for solubility
of the non-homogeneous problem (3.9) it is necessary and sufficient that the
following condition is satisfied

Y −(k(ξ), ξ)U−(k(ξ), ξ) − û0(k(ξ)) +
ξ

k(ξ)
û(0, ξ) +

ξ

k2(ξ)
ûx(0, ξ) = 0. (3.24)

Thus we need to put in the problem (3.1) only one boundary data. The
rest boundary data can be find from condition (3.24). In the case of Neumann
problem we put ux(0, t) = 0. Then solving last equation, after some calculation
we obtain for the Laplace transform of u(0, t)

û(0, ξ) = −Ψ−1(ξ)
1

2πi
Y −(k(ξ), ξ)

∫ i∞

−i∞

û0(q)
q − k(ξ)

1
Y +(q, ξ)

dq, (3.25)

where

Ψ(ξ) =
ξ

k(ξ)
− ξ

2πi
Y −(k(ξ), ξ)

∫ i∞

−i∞

1
q − k(ξ)

1
q

(
1

Y +(q, ξ)
− 1

Y −(q, ξ)

)

dq.

Now we return to problem (3.9). From (3.22) under the condition (3.25) the
difference limiting values of solution of (3.9) are given by formula

Ω+(p, ξ) − Ω−(p, ξ) = − K(p)
K(p) + ξ

Y +(p, ξ)U+(p, ξ) (3.26)

Replacing the difference Ω+(p, ξ) − Ω−(p, ξ) in the relation (3.12) by
formula (3.26) we get

Φ̂(p, ξ) = −Y +(p, ξ)U+(p, ξ)

It is easily to observe that Φ̂(p, ξ) is boundary value of the function analytic in
the left complex semi-plane and therefore satisfies our basic assumption (3.6).
Having determined the function Φ̂(p, ξ) from (3.7) we determine required func-
tion ̂̂u

̂̂u =
1

K1(p) + ξ

(

û0(p) +
K1(p)

p
û(0, ξ) − Y −U−

)

. (3.27)

Under condition (3.25) the function ̂̂u is the limiting value of an analytic func-
tion in Re z > 0. Note the fundamental importance of the proven fact, that the
solution ̂̂u constitutes an analytic function in Re z > 0 and, as a consequence,
its inverse Laplace transform vanish for all x < 0.
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Taking inverse Laplace transform of (3.27) with respect to time and
inverse Fourier transform with respect to space variables we obtain

u(x, t) = G(t)u0 =
∫ ∞

0

G(x, y, t)u0(y)dy,

where the function G(x, y, t) was defined by formula (2.7). Proposition 1. �
Now we collect some preliminary estimates of the Green operator G (t),

given by (2.7).

Lemma 1. The estimates are valid for m ≥ 0, t > 0
∥
∥
∥(·)m

2 ∂(n)
x G (t) f

∥
∥
∥
L2

(3.28)

≤ C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−
4+2n

6 ‖f‖
H

0, m+3
2

1

+ t−
3+2n−m

6 ‖f‖H0,1
1

+ t−
3+3n

6 ‖f‖
H

0, m+2+n
2

1

,

t−
n+1

3 ‖f‖
H

0, m+1
2

1

+ t−
1+2n−m

6 ‖f‖L1

+t−
3n+2

6 + 1
12 ‖f‖

H
0, m+2+n

2 − 3
4

1

+ t−
3+2n−m

6 ‖f‖H0,1
1

+ 〈t〉−γ (t−
1
2 ( 1

2 − m
2 +n) ‖f‖L1 + t−

1
2 ( 1

2+n) ‖f‖
H

0. m
2

1

) (3.29)

if n = 1, 2, γ > 0 and
∥
∥x

m
2 G (t) f

∥
∥
L2 (3.30)

≤ C

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t−
2
3 ‖f‖

H
0, m+3

2
1

+ t−
3−m

6 ‖f‖H0,1
1

+ t−
3
4 ‖f‖

H
0, m+2

2 + 3
4

1

,

t−
1
3 ‖f‖

H
0, m+1

2
1

+ t−
1−m

6 ‖f‖L1

+t−
1
2 ‖f‖

H
0, m+2

2
1

+ t−
3−m

6 ‖f‖H0,1
1

+ 〈t〉−γ (t−
1
2 ( 1

2 − m
2 ) ‖f‖L1 + t−

1
4 ‖f‖

H
0. m

2
1

) (3.31)

provided that the right-hand sides are finite. Moreover we have

G (t) f = θ(σt)− 2
3 Ai′

(
x

3
√

σt

)

+ R(x, t), (3.32)

where for t > 1, 0 < δ < 1, γ > 0
∥
∥
∥∂(n)

x R(t)
∥
∥
∥
H

0, m
2

2

≤ Ct−
3−m+2n+2δ

6 (‖φ‖
H

0, 21
4

1

+ ‖φ‖
H

1, 7
2

2

)

+ 〈t〉−γ (t−
1
2 ( 1

2 − m
2 ) ‖f‖L1 + t−

1
4 ‖f‖

H
0. m

2
1

),

θ =
∫ +∞

0

xf(x)dx.

Proof. Let the contours Ci are defined as

C1 =
{

p ∈
(
∞e−i( π

2 +ε), 0
)⋃(

0,∞ei( π
2 +ε)

)}
, (3.33)

C2 =
{

q ∈
(
∞e−i( π

2 +2ε), 0
)⋃(

0,∞ei( π
2 +2ε)

)}
, (3.34)

C3 =
{

q ∈
(
∞e−i( π+ε

2 ), 0
)⋃(

0,∞ei( π+ε
2 )
)}

, (3.35)
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where ε > 0 can be chosen such that all functions under integration are analytic
and Re k(ξ) > 0 for ξ ∈ C1. Via Sokhotskii–Plemeli formula and Cauchy The-
orem we have

G(x, y, t) =
3∑

j=1

Jj(x, y, t), (3.36)

where

J1(x, y, t) =
1

2πi

∫ i∞

−i∞
epx−K(p)te−pydp, (3.37)

J2(x, y, t) = − 1
2πi

1
2πi

∫

C1

dξeξt

∫

C2

epx Y +(p, ξ)
K(p) + ξ

I+
1 (p, ξ, y)dp, (3.38)

J3(x, y, t) (3.39)

=
1

2πi

1
2πi

∫

C1

dξeξt I
−
1 (k(ξ), ξ, y)
I−
2 (k(ξ), ξ)

∫ i∞

−i∞
epx Y +(p, ξ)

K(p) + ξ
I−
2 (p, ξ)dp.

The functions I1, I2 and Y ±(z, ξ) were defined by formulas (2.2)–(2.3) and
(2.4).

For subsequent considerations it is required to investigate the behavior
of the function Γ(z, ξ) given by (2.5). Set

g(p, ξ) = ln
{(

K(p) + ξ

K1(p) + ξ

)
w−(p)
w+(p)

}

�= 0, Re p = 0, Re ξ < 0.

Observe that the function g(p, ξ) obeys the Hölder condition for all finite p
and tends to a definite limit φ(∞, ξ) as p → ±i∞,

g(∞, ξ) = lim
p→±i∞

ln
{(

K(p) + ξ

K1(p) + ξ

)
w−(p)
w+(p)

}

= 0.

Also it can be easily obtain that for large p and some fixed ξ the following
inequality holds

|g(p, ξ) − g(∞, ξ)| ≤ C

(
|ξ|μ
|p|2μ

)

, μ > 0. (3.40)

By properties of Cauchy type integral the above estimates imply the following
results for all ξ ∈ C1

∣
∣Y ±(z, ξ)

∣
∣ ≤ C, Y ±(∞, ξ) = 1,

and

Y ±(p, ξ) − 1 = O

(
|ξ|μ
|p|2μ

)

, μ ∈ [0, 1] , (3.41)

In the neighborhood of p = 0 we have

K(p) + ξ = σp3 + ξ + O(p4),
K1(p) + ξ = −σp3 + ξ + O(p4).
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Also for small ξ by construction k(ξ) = k1(ξ)+ O(ξ), where

k1(ξ) =
(

1
σ

ξ

) 1
3

.

Note that k1(ξ) is root of the equation −σq3 + ξ = 0 such that Re k1(ξ) > 0.
In order to separate the principal part of the expansion of

Γ+(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
K(q) + ξ

K1(q) + ξ

(
q − k(ξ)
q + k(ξ)

) 1
2

dq

near points p = 0, ξ = 0 we introduce the new function Γ̃+(z, ξ) by the
following relation

Γ̃+(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
σq3 + ξ

−σq3 + ξ

(
(q − k1(ξ))
(q + k1(ξ))

) 1
2

dq.

It can be proved by a direct calculation for small |z| < 1, |ξ| < 1

Γ̃+(z, ξ) − Γ+(z, ξ) = O(zξ
1
3 ).

Integrating by parts and using Cauchy Theorem we get

Γ̃+(z, ξ) =
1

2πi

∫ i∞

−i∞

1
q − z

ln
σq3 + ξ

−σq3 + ξ

(
(q − k1(ξ))
(q + k1(ξ))

) 1
2

dq (3.42)

= −1
2

ln z + ln(φ1(ξ) − z) + ln(φ2(ξ) − z) − 1
2

ln(k1(ξ) − z),

where φ1(ξ) and φ2(ξ) are roots of the equation σq3 + ξ = 0 such that
Re φ1(ξ) > 0,Re φ2(ξ) > 0 in Reξ > 0 :

φ1(ξ) =
(
ξσ−1 exp (iπ)

) 1
3 , φ2(ξ) =

(
ξσ−1 exp (−iπ)

) 1
3 . (3.43)

On the basis last relations for points of the contours close the points p = 0
and ξ = 0 integrand of J2(x, y, t) has the following representation

eξtepx 1
(p + k1(ξ))(p − k1(ξ))

Ĩ+(p, ξ, y), (3.44)

where

Ĩ+(p, ξ, y) =
1

2πi

∫ i∞

−i∞

e−qy(q − k1)(q + k1)
(q − z)(σq3 + ξ)

dq

=
2∑

j=1

e−φj(ξ)y
φ2

j − k2
1

φj − p
φ′

j(ξ)

On integrating this function by extending the limits to −∞ and +∞ we obtain
the contributions to J2(x, y, t) from the neighborhoods of ξ = 0 and p = 0

− 1
2πi

1
2πi

∫

C1

dξeξt

∫ i∞

−i∞
epx 1

(p + k1(ξ))(p − k1(ξ))
Ĩ+(p, ξ, y)dp (3.45)

= − 1
2πi

1
2πi

∫

C1

dξeξte−k1(ξ)x
1

2k1(ξ)

2∑

j=1

e−φj(ξ)y(φj − kj)φ′
j(ξ)dξ.
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Via (3.42) we have that

ξ

2πi

∫ i∞

−i∞

1
q − z

1
q

(
1

Y +
− 1

Y −

)

dq

=
ξ

Y −z
+

ξ

z
resp=0

1
Y +(p, ξ)

=
ξ

Y −z
+

1
z
k2
1(ξ).

On the basis last relations for points of the contours close the points p = 0
and ξ = 0 integrand of J3(x, y, t) has the following representation

eξtepx 1
(p + k1(ξ))(p − k1(ξ))

k1(ξ)
p

Ĩ(k1(ξ), ξ, y),

where

Ĩ(k1(ξ), ξ, y) =
2∑

j=1

e−φj(ξ)y(φj + k1)φ′
j(ξ).

On integrating this function by extending the limits to −∞ and +∞ we obtain
the contributions to J3(x, y, t) from the neighborhoods of ξ = 0 and p = 0

− 1
2πi

1
2πi

∫

C1

dξeξt

∫ i∞

−i∞
epx 1

(p + k1(ξ))(p − k1(ξ))
Ĩ+(p, ξ, y)dp (3.46)

= − 1
2πi

1
2πi

∫

C1

dξeξte−k1(ξ)x
1

2k1(ξ)

2∑

j=1

e−φj(ξ)y(φj + k1)φ′
j(ξ)dξ.

Substituting (3.45) and (3.46) into (3.36) we rewrite the Green function in the
form

G(x, y, t) = F (x, y, t) + R(x, y, t), (3.47)

where the function F (x, y, t) given by

F (x, y, t) =
1

2πi

∫ i∞

−i∞
e−σp3t+p(x−y)dp (3.48)

− 1
2πi

∫ i∞

−i∞
eξt−k1(ξ)xk−1

1 (ξ)
2∑

j=1

e−φj(ξ)yφj(ξ)φ′
j(ξ)dξ

and R(x, y, t) is the contribution to G(x, y, t) over the rest of the range of
integration:

R(x, y, t)) =
∑

Mj(x, y, t) (3.49)

M1(x, y, t) =
1

2πi

∫ i∞

−i∞,|p|>1

epx−K(p)te−pydp, (3.50)
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M2(x, y, t) = − 1
2πi

1
2πi

∫

C1,|ξ|<1

dξeξt

∫

C2,|p|>1

epx Y +(p, ξ)
K(p) + ξ

I+
1 (p, ξ, y)dp

(3.51)

− 1
2πi

1
2πi

∫

C1,|ξ|>1

dξeξt

∫

C2,|p|>1

epx Y +(p, ξ)
K(p) + ξ

I+
1 (p, ξ, y)dp,

M3(x, y, t) =
1

2πi

1
2πi

∫

C1,|ξ|<1

dξeξt I
−
1 (k(ξ), ξ, y)
I−
2 (k(ξ), ξ)

∫ i∞

−i∞,|p|>1

epx Y +(p, ξ)
K(p) + ξ

I−
2 (p, ξ)dp (3.52)

+
1

2πi

1
2πi

∫

C1,|ξ|>1

dξeξt I
−
1 (k(ξ), ξ, y)
I−
2 (k(ξ), ξ)

∫ i∞

−i∞,|p|>1

epx Y +(p, ξ)
K(p) + ξ

I−
2 (p, ξ)dp.

Denote by

Φ(x, t)f(τ) =
∫ +∞

0

F (x, y, t)f(y, τ)dy (3.53)

and

R(t)f = θ(x)
∫ +∞

0

R(x, y, t)f(y)dy. (3.54)

In the book [17] it was proved that operator Φ(x, t)f(τ) is Green oper-
ator of the Neumann problem for linear KdV equation ut + σuxxx = 0 and
satisfies all estimates of Lemma 1.

To estimate operator Rφ we use standard method of “partition of
unity” and Watson Lemma [7]. Firstly we estimate the function M1(x, y, t).
Sea x − y > 0. We have

e−K(p)t+p(x−y)pdp =
1

(1 − K ′(p)t + (x − y))
de−K(p)t+p(x−y)p

Therefore integrating by part we get

M1(x, y, t) = − 1
2πi

∫ i∞

−i∞,|p|>1

e−K(p)t+p(x−y)Θ(p, t, x, y)dp,

where

Θ(p, t, x, y) =
K ′′(p)t

(1 − K ′(p)t + (x − y))2
− 1

p

1
(1 − K ′(p)t + (x − y))

.

In the case of x − y < 0 we change contour of the integration to obtain

|M1(x, y, t)| ≤ C

∫

L,|p|>1

e−C|p|2t−C|p||x−y|dp,

where

L =
{

z ∈ C, z = ρe±iφ, φ =
π

2
− ε, ε > 0.

}
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Here we are used that for p ∈ L,ReK(p) > 0,Rep > 0 and

K(p) = O(〈p〉2).
Since 1 − K ′(p)t + (x − y) �= 0 for Rep = 0, x − y > 0 and

K ′(p) = O(〈p〉),K ′′(p) = O(1), ∂l
pK(p) = O(〈p〉−l+2), l > 2

we get

‖∂n
x M1(·, y, t)‖Ls,μ ≤ Ct−

1
2 (n+1− 1

s −μ) 〈t〉−γ
,

for s > 1, where γ > 0. Using obtained estimate we get
∥
∥
∥
∥

∫ +∞

0

M1(x − y, t)f(y)dy

∥
∥
∥
∥

L2, m
2

(3.55)

≤ C
(‖M1(·, t)‖L2, m

2
‖f‖L1 + ‖M1(·, t)‖L2 ‖f‖

L1, m
2

)

≤ Ct−
1+2n−2m

4 〈t〉−γ ‖f‖L1 + t−
1+2n

4 〈t〉−γ ‖f‖
L1, m

2
.

Now we estimate M2(x, y, t). In order to separate the principal part of the
expansion of M2(x, y, t) near point ξ = 0 we use the following obvious rela-
tions for |p| > 1

K(p) = −p |p| + O(p−1),
K1(p) = −p2 + O(p−1),

k(ξ) = O(ξ
1
3 ).

Therefore
∥
∥
∥
∥∂

n
x

∫ +∞

0

M2(·, y, t)f(y)dy

∥
∥
∥
∥

L2,μ

≤ 1
2πi

1
2πi

e−δt

∫

C1

eξtdξ

∫ i∞

C2,|p|>1

|p|n

|p| 1+2μ
2

1
(|p|2 + ξ)

dp

×
∫

C3,|q|>1

1

|q − p| |q| 1
2
dq

≤ Ce−δtt−
1
2 (1− 1+μ2

2 +n) ‖f‖L1 , (3.56)

for some small δ > 0, n = 0, 1, 2. In the same way can be estimated
operator M3. Thus from estimates (3.56) and (3.55) it follows that

‖∂n
x Rf‖

L
2, m

2
≤ 〈t〉−γ (t−

1
2 ( 1

2 − m
2 +n) ‖f‖L1 + t−

1
2 ( 1

2+n) ‖f‖
L1, m

2
) (3.57)

Lemma is proved. �

Lemma 2. Let the function f(x, t) such that
∫ +∞
0

xf(x, t)dx = 0 and satisfy
the estimate

∥
∥
∥(·) l

2 f (·, t)
∥
∥
∥
L1

≤ Cεβ (1 + t)− 8−l
6 g (t)α

, 0 ≤ l ≤ 5,
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where α = 4
5 , 0 < β. We also assume that the function g(t) satisfies the inequal-

ities for η > 0
1
2

(1 + η log (1 + t)) < g(t) < 2 (1 + η log (1 + t)) .

Then the following estimates are valid for n = 0, 1, t > 0
∥
∥
∥
∥(·)

m
2

∫ t

0

g−1 (τ) ∂(n)
x G (t − τ) f (τ) dτ

∥
∥
∥
∥
L2

≤ Cεβg−1+α (t) t−
3−m+2n

6 ,

where 0 ≤ m ≤ 2.

Proof. Via formula (3.47) we obtain the following representation

G(x, t − τ)f(τ) =
∫ +∞

0

Φ(x, y, t − τ)f(y, τ)dy (3.58)

+
∫ +∞

0

R(x, y, t − τ)f(y, τ)dy.

From book [17] we have
∥
∥
∥
∥(·)

m
2

∫ t

0

g−1 (τ) ∂(n)
x Φ(t − τ) f (τ) dτ

∥
∥
∥
∥
L2

≤ Cεβg−1+α (t) t−
3−m+2n

6 .

Now we estimate second term of (3.58). From (3.57) we have for t > 0, m ≥ 0

‖∂n
x Rφ‖

L
2, m

2
≤ 〈t〉−γ (t−

1
2 ( 1

2 − m
2 +n) ‖φ‖L1 + t−

1
2 ( 1

2+n) ‖φ‖
L1, m

2
).

Also from the condition of the lemma for the function g(t) we have for t > 1 :
t−α < 1

g(t) , α > 0 and supτ∈[
√

t,t]
1

g(τ) < C
g(t) . Hence we get for t > 4, n = 0, 1

∥
∥
∥
∥

∫ t

0

(·)m
2 g−1(τ)∂n

x R(t − τ)f(τ)dτ

∥
∥
∥
∥
L2

≤ C

∫ √
t

0

t−γ ‖f(τ)‖
L1, m

2
dτ + Cg−1 (t)

∫ t
2

√
t

t−γ ‖f(τ)‖
L1, m

2
dτ

+C sup
t
2 <τ<t

g−1 (τ) ‖f(τ)‖
L1, m

2

∫ t

t
2

(t − τ)− 1
2 ( 1

2+n)dτ

+C sup
t
2 <τ<t

g−1 (τ) ‖f(τ)‖L1

∫ t

t
2

(t − τ)− 1
2 ( 1

2 − m
2 +n)dτ.

By the previous assumptions we have
∥
∥x

m
2 f(t)

∥
∥
L1 ≤ Cεβ (1 + t)− 5

6 t
m−3

6 g (t)α
, 0 ≤ m ≤ 5;

hence for n = 0, 1
∥
∥
∥
∥

∫ t

0

(·)m
2 g−1(τ)∂n

x R(t − τ)f(τ)dτ

∥
∥
∥
∥
L2

≤ Cεβg−1+α (t) t−
3−m+2n

6 .

Lemma 2 is proved. �

By the contraction mapping principle we can prove the following theorem.
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Theorem 2. Let u0(x) ∈ H1, 7
2

2 (R+). Then there exist a positive time T and a
unique solution of the problem (1.1) such that

u (t) ∈ C([0, T ] ;H1, 7
2

2 (R+)).

4. Proof of Theorem 1

We suppose that for a sufficiently small ε > 0

‖u0‖
H

0, 21
4

1

+ ‖u0‖
H

1, 7
2

2

≤ ε

and
∫ +∞

0

xu0(x)dx = θ < 0.

We denote

η = −θ

∫ +∞

0

Ai′2(z)dz > 0.

We let u(x, t) = e−φ(t)v(x, t). Then we get from (1.1)
⎧
⎨

⎩

vt − φtv + e−φ(t)vvx + Kv = 0, t > 0, x > 0,
v(x, 0) = eφ(0)u0(x), x > 0,
vx (0, t) = 0, t > 0.

(4.1)

Now we assume that the real-valued function φ(t) satisfies the following
condition

∫ +∞

0

x
(
−φtv + e−φ(t)vvx

)
dx = 0. (4.2)

Since vx (0, t) = 0 we have
∫ +∞

0

xKv(x, t)dx = 0.

Indeed, by Plancherel Theorem we have
∫ +∞

0

xKv(x, t)dx =
∫ i∞

−i∞

1
p2

lim
z→p,Rez>0

1
2πi

∫ i∞

−i∞

1
q − z

K(q)(v̂(q, t)− v(0, t)
q

)dq

= πi lim
z→0,Rez>0

∫ i∞

−i∞

1
(q − z)2

K(q)(v̂(q, t) − v(0, t)
q

)dq

= πi
1

2πi

∫ i∞

−i∞
σq(v̂(q, t) − v(0, t)

q
)dq = πσivx (0, t) = 0.

Then via (4.1) we have for all t > 0

d

dt

∫ +∞

0

xv(x, t)dx = −
∫ +∞

0

xKv(x, t)dx = 0.

Therefore choosing φ(0) = 0 we get by (4.2)

φte
φ(t) = θ−1

∫ +∞

0

xvvxdx.
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Integrating with respect to time we get

eφ(t) = g(t) = 1 + θ−1

∫ t

0

dτ

∫ +∞

0

xvvxdx

= 1 − 1
2
θ−1

∫ t

0

‖v (τ)‖2
L2 dτ.

Thus we get the following problem
⎧
⎪⎪⎨

⎪⎪⎩

vt + g(t)−1( v
2θ ‖v (t)‖2

L2 + vvx) + Kv = 0, t > 0, x > 0,

g(t) = 1 − λ
2θ

∫ t

0
‖v (τ)‖2

L2 dτ,
v(x, 0) = u0(x), x > 0,
vx (0, t) = 0, g(0) = 1, t > 0.

(4.3)

We consider the integral equation associated with (4.3) which is written as

v(x, t) = G(x, t)u0(x)

+λ

∫ t

0

g(τ)−1G(x, t − τ)(
v

2θ
‖v (τ)‖2

L2 + vvx)dτ.

Changing the variables

v(x, t) = G(x, t)u0(x) + r(x, t) (4.4)

we get the system of integral equations (r, g) = (M1(r, g), M2(r, g)) for the first
approximation of perturbation theory

{
M1(r, g) = λ

∫ t

0
g(τ)−1G(x, t − τ)( v

2θ ‖v (τ)‖2
L2 + vvx)dτ.

M2(r, g) = 1 − λ 1
2θ

∫ t

0
‖v (τ)‖2

L2 dτ.
(4.5)

We prove that (M1(r, g), M2(r, g)) is a contradiction mapping in the set

Xε =
{

r ∈ C([0,+∞) ,X); g ∈ C(0,+∞), |||r|||X1 ≤ ε, |||r|||X2 ≤ ε
3
4 ,

rx(0, t) = 0, 1
2 (1 + η log t) < g(t) < 2(1 + η log t), t > 0

}

with the norm

|||r|||X = |||r|||X1 + |||r|||X2

|||r|||X1 =
1∑

n=0

2∑

m=0

sup
t>0

g(t)
1
5 (1 + t)

3+2n−m
6

∥
∥
∥x

m
2 ∂(n)

x r (t)
∥
∥
∥
L2

,

|||r|||X2 =
1∑

n=0

7∑

m=3

sup
t>0

g(t)−1 (1 + t)
3+2n−m

6

∥
∥
∥x

m
2 ∂(n)

x (G(t)u0 + r(t))
∥
∥
∥
L2

.

We assume that

|||r|||X1 ≤ ε, |||r|||X2 ≤ ε
3
4 . (4.6)

First we prove that the mapping transforms the set Xε into itself if ε > 0 is
small. From local existence Theorem2 we have

|||M1(r, g)|||X1 ≤ ε, |||M1(r, g)|||X2 ≤ ε
3
4
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for t < 1. Now we consider case of t > 1. From Lemma 1 we have for t > 1
and 0 ≤ m ≤ 7

∥
∥
∥(·)m

2 ∂(n)
x G(t)u0(·)

∥
∥
∥
L2

≤ Cεt−
3−m+2n

6

since u0 ∈ H0, 21
4

1 . Thus via (4.4) and (4.6) we have

1∑

n=0

2∑

m=0

sup
t>0

(1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x v (t)

∥
∥
∥
L2

≤
1∑

n=0

2∑

m=0

sup
t>0

(1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x G(t)u0(·)

∥
∥
∥
L2

+
1∑

n=0

2∑

m=0

sup
t>0

(1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x r(·, t)

∥
∥
∥
L2

≤ Cε

and

1∑

n=0

7∑

m=3

sup
t>0

g(t)−1 (1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x v (·, t)

∥
∥
∥
L2

≤ Cε
3
4 . (4.7)

We have by the Schwarz inequality with ρ = ‖xf‖L2 / ‖f‖L2

‖f‖L1 ≤
(∫

(
ρ2 + x2

) |f |2 dx

) 1
2
(∫

(
ρ2 + x2

)−1
dx

) 1
2

≤ ρ− 1
2

(∫
(
1 + x2

)−1
dx

) 1
2
(∫

(
ρ2 + x2

) |f |2 dx

) 1
2

≤
√

2
(∫

(
1 + x2

)−1
dx

) 1
2

‖f‖ 1
2
L2 ‖xf‖ 1

2
L2 .

Therefore we get for t > 0
∥
∥
∥
∥(·)

m+3
2

(

−v(·, t)
θ

∫ +∞

0

yvvydy + vvx(·, t)
)∥
∥
∥
∥
L1

≤ Cθ−1
∥
∥
∥〈·〉m+5

2 v(·, t)
∥
∥
∥

1
2+ 1

2
m+1
m+3

L2
‖〈·〉v(·, t)‖

1
2

2
m+3

L2 ‖v(t)‖2
L2

+C
∥
∥
∥(·)m+1

2 v(·, t)
∥
∥
∥
L2

‖(·)vx(·, t)‖L2

≤ Cε
9
5 (1 + t)− 5−m

6 (log (1 + t))
4
5

for m = 0, 1, 2. Also by the construction of v we see that

∫ +∞

0

x

(

−v

θ

∫ +∞

0

yvvydy + vvx

)

dx = 0.
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Thus using results of Lemma 2 we have for t > 1, α = 4
5 , m = 0, 1, 2

1∑

n=0

2∑

m=0

sup
t>1

g(t)1−αt
3−m+2n

6

∥
∥
∥(·)m

2 ∂(n)
x M1(r, g)

∥
∥
∥
L2

≤ C

1∑

n=0

2∑

m=0

sup
t>1

g(t)1−αt
3−m+2n

6

×
∥
∥
∥
∥(·)

m
2

∫ t

0

g(τ)−1∂(n)
x G(·, t − τ)

(

−v

θ

∫ +∞

0

yvvydy + vvx

)

dτ

∥
∥
∥
∥
L2

≤ Cε
9
5 ≤ ε. (4.8)

For higher order m, we turn to the original equation

u(x, t) = G(x, t)u0(x) +
∫ t

0

G(x, t − τ)uuxdτ. (4.9)

By Lemma 1 and the local existence theorem we get for 3 ≤ m ≤ 7

∥
∥(·)m

2 u (·, t)∥∥
L2

≤ C (1 + t)− 3−m
6 ‖u0‖

H
0, m+2

2 + 3
4

1

+Cε
3
2

∫ t

0

(
(t − τ)− 2

3 (1 + τ)− 5−m
6 + (t − τ)− 3

4 (1 + τ)− 5−m
6 + 1

12

)
dτ

+Cε2

∫ t

0

(t − τ)− 3−m
6 (1 + τ)−1 (1 + η log (1 + τ))−2

dτ

≤ C (1 + t)− 3−m
6 ‖u0‖

H
0, m+3

2
1

+ Cε (1 + t)− 3−m
6 ≤ Cε (1 + t)− 3−m

6 .

In the same way

∥
∥x

m
2 ∂xu (t)

∥
∥
L2

≤ C (1 + t)− 5−m
6 ‖u0‖

H
0, m+3

2
1

+C

∫ t
2

0

(

(t − τ)−1 ‖uux‖
H

0, m+3
2

1

+ (t − τ)− 5−m
6 ‖uux‖H0,1

1

)

dτ

+C

∫ t

t
2

(

(t − τ)− 2
3 ‖uux‖

H
0, m+1

2
1

+ (t − τ)− 3−m
6 ‖uux‖L1

+ (t − τ)− 5
6+ 1

12 ‖uux‖
H

0, m+3
2 − 3

4
1

+ (t − τ)− 5−m
6 ‖uux‖H0,1

1

)

dτ.
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Therefore by a direct calculation
∥
∥x

m
2 ∂xu (t)

∥
∥
L2

≤ C (1 + t)− 5−m
6 ‖u0‖

H
0, m+3

2
1

+ Cε2

∫ t
2

0

(t − τ)−1 (1 + τ)− 5−m
6 dτ

+Cε2

∫ t
2

0

(t − τ)− 5−m
6 (1 + τ)−1 (1 + η log (1 + τ))−2

dτ

+Cε
3
2

∫ t

t
2

(
(t − τ)− 2

3 (1 + τ)− 3−m
6 + (t − τ)− 3−m

6 (1 + τ)− 4
3

+ (t − τ)− 5
6+ 1

12 (1 + τ)−1− 1
12+ m

6

)
dτ

+ε2

∫ t

t
2

(t − τ)− 5−m
6 (1 + τ)−1 (1 + η log (1 + τ))−2

dτ

≤ C (1 + t)− 5−m
6 ‖u0‖

H
0, m+3

2
1

+ Cε (1 + t)− 5−m
6 ≤ Cε (1 + t)− 5−m

6 .

Thus we get
1∑

n=0

7∑

m=3

sup
t>0

(1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x u (·, t)

∥
∥
∥
L2

≤ Cε

which implies
1∑

n=0

7∑

m=3

sup
t>0

g(t)−1 (1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x M2(r, g)

∥
∥
∥
L2

≤ Cε ≤ ε
3
4 .

Also from Lemma 2 we have
1∑

n=0

7∑

m=3

sup
t>0

g(t)−1 (1 + t)
3+2n−m

6

∥
∥
∥(·)m

2 ∂(n)
x R(t)u0(·)

∥
∥
∥
L2

≤ Cε

Then using last obtained estimate and (4.8) we can prove (see [17]) for t > 0
1
2
(1 + η log(1 + t)) < g(t) < 2(1 + η log(1 + t)).

Thus (M1(r, g), M2(r, g)) transform the set Xε into itself. Similarly, we can
prove that the transformation (M1(r, g), M2(r, g)) is the contraction mapping.
Hence there exists a unique solution (r, g) of the system of integral equations
(4.5) in the set X and for t > 1 and

‖r(t)‖L∞ = ‖v (t) − G (t)u0‖L∞

≤ C ‖r (t)‖ 1
2
L2 ‖rx (t)‖ 1

2
L2 ≤ Ct−

2
3 g−1+ 4

5 (t).

From Lemma 1 we have

G(t)u0 = θ(σt)− 2
3 Ai′

(
x

3
√

σt

)

+ R(x, t),

where for t > 1, 0 < δ < 1
∥
∥
∥∂(n)

x R(t)
∥
∥
∥
H

0, m
2

2

≤ Cεt−
3−m+2n+2δ

6
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and therefore

‖R‖L∞ ≤ C ‖R‖ 1
2
L2 ‖Rx‖ 1

2
L2 ≤ Ct−

2+δ
3 .

Thus we obtain the following asymptotics of solutions for t → +∞ uniformly
with respect to x > 0 such that

u(x, t) = g−1(t)v(x, t) = g−1(t) (r (x, t) + G(t)u0)

= θ (η log t)−1 (σt)− 2
3 Ai′

(
x

3
√

σt

)

+ g−1(t)R(x, t) + g−1(t)r(x, t)

= θ (η log t)−1 (σt)− 2
3 Ai′

(
x

3
√

σt

)

+ O
(
t−

2
3 (η log t)− 6

5

)
.
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