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Abstract. This paper deals with dimension reduction in linearized
elastoplasticity in the rate-independent case. The reference configuration
of the elastoplastic body is given by a two-dimensional middle surface
and a small but positive thickness. We derive a limiting model for the
case in which the thickness of the plate tends to 0. This model contains
membrane and plate deformations which are coupled via plastic strains.
The convergence analysis is based on an abstract Γ-convergence theory
for rate-independent evolution formulated in the framework of energetic
solutions. This concept is based on an energy-storage functional and a dis-
sipation functional, such that the notion of solution is phrased in terms
of a stability condition and an energy balance.
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1. Introduction

For engineering applications the derivation of lower-dimensional theories for
bodies such as rods, beams, membranes, plates and shells from a three-
dimensional theory is of fundamental importance. In [16,17] a first rigorous
justification of Kirchhoff’s plate equation and the plane membrane system,
respectively, can be found. The term “justification” has to be understood as
the convergence of the solutions of the full three-dimensional system towards
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solutions of the limiting model without any additional assumptions on the
solutions. Later results for rods, linear and nonlinear plates, or shells can
be found in [3,6] and the references therein. An important tool in most of
the recent investigations is the notion of Γ-convergence. This convergence
assures, roughly speaking, that (almost) minimizers of the three-dimensional
theory (subject to suitable boundary conditions and applied loads) converge to
minimizers of the limiting lower-dimensional theory.

However, as Γ-convergence is a purely static concept, there are only very
few results concerning the justification of similar dimension reductions for
evolutionary problems in nonlinear continuum mechanics, see [1] for a recent
result. More often, lower dimensional theories are derived by ad hoc assump-
tions via formal asymptotic expansion, see e.g. [7,9,15].

In [11] an elastoplastic plate model in the rate-independent case was
derived using an abstract Γ-convergence result developed in [13]. The scaling
of the displacements in [11] follows the classical theory, see e.g. [4] and the
references therein. However, the plastic strains were scaled in a way such that
the dissipation potential of the scaled system is independent of the param-
eter describing the thickness of the plate. Hence, it can be shown that the
scaled dissipation functional converges continuously to a limit functional and
the results of [13] can be directly applied.

In this paper we propose a scaling of the plastic strains that matches
the scaling of the linearized strain tensor. Therefore, the scaled dissipation
functional depends on the thickness of the plate and converges in the sense
of Mosco (see [2]) to a highly degenerated limit functional. Hence the method
developed in [11] cannot be applied. By exploiting the quadratic form of the
energy functionals we are in position to circumvent this problem and to do a
limit passage from linearized elastoplasticity in three dimensions to a model
that combines two two-dimensional linear elastic models, namely the mem-
brane model for in-plane displacements and Kirchhoff’s plate equation for the
out-of-plane displacement, with plastic effects. Although the equations for the
elastic equilibrium are the same as in [11] the plastic flow rule differs.

The evolution of an elastoplastic body in the rate-independent case can
be formulated in different ways, e.g. as a variational inequality, a differential
inclusion, or as an energetic system. All three are expressed in terms of an
energy functional

Eh(t, u, p) =
∫

Ω

Wh(ε(u), p)dx − 〈�(t), u〉,

defined as integral over the rescaled plate domain Ω := ω × (−1/2, 1/2). Here
u and p are the rescaled displacements and plastic strains, respectively. The
small parameter h > 0 is proportional to the unscaled thickness of the plate
and occurs in Wh via the corresponding scalings of the strains.

Additionally we have a dissipation potential

Rh(ṗ) =
∫

Ω

Rh(ṗ)dx.
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Rate-independence is implemented by the positive 1-homogeneity of Rh, i.e.
Rh(λṗ) = λRh(ṗ) for all λ ≥ 0 and all ṗ.

The solutions have to satisfy the differential inclusion

0 = DEh(t, u(t), p(t)), 0 ∈ ∂ṗRh(ṗ(t)) + DpEh(t, u(t), p(t)),

where the first equation is the balance of forces and the second is the plastic
flow rule.

For a quadratic energy functional Eh(t, ·) the differential inclusion is fully
equivalent to the so-called energetic formulation (see [12,14]). The energetic
formulation is stated in terms of an energetic stability condition and the total
balance of energy. The advantage of the energetic formulation is that it is based
on Eh and Rh rather than on their derivatives. Thus, notions of convergence
for functionals such as Γ-convergence and Mosco convergence can be applied.

The underlying model together with the underlying scalings will be
described in Sect. 2.1. Moreover, we state the main result of this paper, namely
the convergence of the solutions of the three-dimensional system to a solution
of a lower-dimensional system. Its proof is the content of the following Sect. 3.
Here, we use the ideas developed in [13].

In Sect. 4 we formulate the limit problem in terms of the in-plane
displacements (v1, v2), the out-of-plane displacement v3, and the plastic strain
p, which is still defined on all of Ω. For an isotropic material, the limiting
model takes the form

0 = −div
(
Σ0

(
ε1,2(v))−[p1,2]0

))− Gmemb(t, ·) in ω,

(1.1a)

0 = div div
(

Σ0

(
1
24

D2v3+[p1,2]1

))
− gbend(t, ·) − div Gbend(t, ·) in ω,

(1.1b)
0 ∈ ∂R(Dṗ) +

(
[[ Σ0(p1,2−ε1,2(v)+x3D2v3) || 0 ]]

)
+ khardDp in Ω,

(1.1c)

where Σ0(ε) := 2λμ
λ+2μ trεI2 +2με, ε ∈ R

2×2
sym. Here, ε1,2(v) ∈ R

2×2
sym is the in-plane

strain tensor and D2v3 ∈ R
2×2
sym the bending strain tensor.

Equation (1.1a) is the second-order membrane equation for (v1, v2), which
is coupled to the plastic strain p via the integrals [·]0 over x3 ∈ (−1/2, 1/2).
Equation (1.1b) is a generalization of Kirchhoff’s plate equation (of order four)
for v3. It is also coupled to the plastic strain p, but now with weighted averages
[·]1.The flowrule (1.1c) exhibits the elastic strains as forcing in a very special
manner concerning the dependence on x3.

In Sect. 4.1 we discuss other possible choices for the scalings of the plastic
strain and compare the results with the limit model derived in [11]. Finally,
in Sect. 4.2 we show briefly how the last equation in (1.1) can be eliminated
using a vector-valued hysteresis operator of play type.
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2. Setup of the elastoplastic model

The starting point for our study is the classical elastoplastic model with
hardening. Here we focus on domains with plate geometry, i.e., Ωh = ω ×
(−h/2, h/2), where ω is the mid surface and the thickness h > 0 is sufficiently
small. We formulate the evolution of the plate in terms of a differential inclu-
sion or equivalently as a variational inequality. Moreover, we will outline the
suitable scalings to obtain a nontrivial limiting model. The final model will be
presented in Sect. 2.3, while the convergence proof is the content of Sect. 3.

2.1. The clamped elastoplastic plate

We consider a bounded Lipschitz domain ω ⊂ R
2 and set Ωh := ω ×

(−h/2, h/2). We denote by Γ0
h = γ0 × (−h/2, h/2) the part of the body with

prescribed boundary conditions. Here, γ0 ⊂ ∂ω has a positive 1-dimensional
Hausdorff measure. We set

H1
Γ0

h
(Ωh; R3) := {u ∈ H1(Ωh; R3) : u = 0 on Γ0

h},

where Γ0
h := γ0 × (−h/2, h/2) denotes the part of the boundary where the

displacement is prescribed.
The elastoplastic properties of the body Ωh are described in terms of the

linearized strain tensor ε(u) = 1
2 (∇u + ∇uT) and the plastic strain tensor

p ∈ R
3×3
dev := {A ∈ R

3×3
sym : tr A = 0}

via the stored energy density W : R
3×3
sym × R

3×3
dev → R, which is assumed to be

given by

W(ε, p) =
1
2
C(ε − p) : (ε − p) +

khard

2
|p|2,

where ‘:’ denotes the usual inner product on R
3×3, i.e. A : B = tr (AT B). Here

we are interested in the isotropic and homogeneous case, i.e., Ce = λtr e+2μe,
where λ, μ > 0 are the Lamé constants and khard is a measure for kinematic
hardening.

Moreover, the plastic flow rule of the material can be formulated in terms
of a dissipation potential R : R

3×3
dev → [0,∞), which is assumed to be con-

tinuous, convex, and homogeneous of degree 1. The latter conditions means
R(λṗ) = λR(ṗ) for all λ ≥ 0 and ṗ ∈ R

3×3
dev . The corresponding elastic domain

K ⊂ R
3×3
dev is defined via K := ∂R(0), which is the subdifferential of R at

0. More specifically, we assume that R(ṗ) = σyield|ṗ| for a given yield stress
σyield > 0. This corresponds to the von Mises yield criterion.

Given time-dependent volume and surface loadings fh(t, ·) and gh(t, ·)
the full elastoplastic problem can be written in the form

−div (∂εW(ε(u), p)) = fh(t, ·) in Ωh,

0 ∈ ∂R(ṗ) + ∂pW(ε(u), p) in Ωh,

u(t, ·) = 0 on Γ0
h, (2.1)

∂εW(ε(u), p)ν = gh(t, ·) on ∂Ωh\Γ0
h,
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where ν denotes the outer normal vector on ∂Ωh. Here σ = ∂εW ∈ R
3×3
sym

denotes the stress, while ∂pW ∈ R
3×3
dev contains the deviator of the stress as

well as any plastic back stresses.
We reformulate the system (2.1) in abstract form for the pair q = (u, p)

via the energy functional Eh : [0, T ] × Qh → R and the dissipation functional
Rh : Qh → [0,∞] as follows

Qh := H1
Γ0

h
(Ωh; R3) × L2(Ωh; R3×3

dev ),

Eh(t, q) :=
∫

Ωh

W(ε(u), p) dx − 〈�h(t), u〉 and Rh(ṗ) :=
∫

Ωh

R(ṗ) dx.

where �h(t) ∈ Q∗
h is defined via

〈�h(t), u〉 :=
∫

Ω

fh(t, x) · u(x) dx +
∫

Ωh\Γ0
h

gh(t, x) · u(x) da(x). (2.2)

Although the dissipation potential depends only on the plastic strain rate ṗ
we will also write Rh(q̇) as no confusion will arise.

We call a function qh = (uh, ph) : [0, T ] → Qh a solution to the RIS
(Qh, Eh,Rh) [and hence to the above elastoplastic problem (2.1)], if it solves
one of the following three equivalent problem formulations:

Differential inclusion:
0 ∈ ∂Rh(q̇h(t)) + DqEh(t, qh(t)); (2.3a)

Variational inequality:
∀ q̃ ∈ Qh : 〈DqEh(t, qh(t)), q̃−q̇〉 + Rh(q̃) − Rh(q̇h) ≥ 0; (2.3b)

Energetic formulation:
(S) ∀ q̃ ∈ Qh : Eh(t, qh(t)) ≤ Eh(t, q̃) + Rh(q̃−qh(t)),

(E) Eh(t, q(t)) +
∫ t

0
Rh(q̇) ds = Eh(0, qh(0)) − ∫ t

0
〈�̇h, qh〉ds. (2.3c)

Condition (S) is referred to as the stability whereas (E) is called the energy bal-
ance. We refer to [12, Sect. 2] for the equivalence between these three forms.
For any h > 0 and �h ∈ W1,1(0, T ;Q∗

h) the above problems have a unique
solution (see [8,14])

2.2. Scaling for thin-plate domains

It is already known from the theory of linearized elasticity, see [3,16,17] that
the strain of in-plane displacements (membrane modes) are smaller than the
out-of-plane modes (bending modes). As in [11] we use the following scaling
for the displacements:

uh(xh) = Shuh(Shxh), where Sh = diag(1, 1, 1/h).

Since xh ∈ Ωh is mapped to x = Shxh ∈ Ω1, the rescaled function uh will be
defined in U := H1

Γ0(Ω; R3), where Ω := Ω1 and Γ0 := γ0 × (−1/2, 1/2). In
the following we will indicate functions, functionals etc. associated with the
domain Ωh by a subscript h and their rescaled counterparts by a superscript h.
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For linearized elasticity the scaling of the strains is arbitrary, because it is
an infinitesimal theory by definition. In contrast, the theory of linearized elas-
toplasticity is no longer scaling invariant, because the boundary of the elastic
domain K = ∂R(0) contains the given yield stresses of order 1, i.e. indepen-
dent of h. Thus, our theory needs a scaling where most of the strains in the
plastic tensor p as well as in ε are of order 1.

The scaling acts differently on the components of the strains in ε(uh), as
follows

ε(uh)(xh) = Sh ε(uh)(Shxh)Sh =

⎛
⎜⎝

ε11(uh) ε12(uh) 1
hε12(uh)

ε12(uh) ε22(uh) 1
hε23(uh)

1
hε13(uh) 1

hε23(uh) 1
h2 ε33(uh)

⎞
⎟⎠ .

Concerning the scaling of the plastic strain tensor we look for scalings of the
form

ph(xh) = Πα,β
h ph(Shxh) :=

⎛
⎝ph

11 ph
12

1
hα ph

13

ph
12 ph

22
1

hα ph
23

1
hα ph

13
1

hα ph
23

1
hβ ph

33

⎞
⎠ . (2.4)

To simplify the presentation we will choose α = 1 and β = 2 which fits to
the scaling of ε, i.e, ph = ShphSh. Note, that this differs from the scalings in
[11] where α = β = 0. We refer to the end of Sect. 4 for a discussion of more
general scalings. The plastic strain tensors ph are thus defined in the space

Ph := {p ∈ L2(Ω; R3×3
sym) : p11 + p22 + p33/h2 = 0} ⊂ P := L2(Ω; R3×3

sym).

Finally, we introduce the spaces

Qh := U × Ph ⊂ Q := U × P.

When substituting qh = (uh, ph) in Eh and Rh we still have to take care
of the change in the volume measure. Hence we set

Eh(t, uh, ph) =
1
h

Eh(t, uh, ph) and Rh(ṗh) =
1
h

Rh(ṗh).

To control the loading part of �h defined in (2.2), we also have to assume a
corresponding scaling of the loadings namely

fh(t, xh) = S−1
h Fvol(t, Shxh) and gh(t, xh) = hS−1

h Fsurf(t, Shxh),

where xh ∈ ω×{−h/2, h/2}. For simplicity, we assume that there are no sur-
face loadings on ∂ω\γ0 × (−h/2, h/2). They could be easily included, but need
a different scaling. Then, Eh : [0, T ] × Qh → R and Rh : Qh → [0,∞) take the
form

Eh(t, u, p) =
∫

Ω

W(Shε(u)Sh, ShpSh) dx − 〈�(t), u〉, (2.5a)

Rh(ṗ) =
∫

Ω

R(Shṗ(x)Sh) dx, (2.5b)

〈�(t), u〉 =
∫

Ω

Fvol(t, x)u(x) dx +
∫

ω×{−1,1}
Fsurf(t, x)u(x) da(x), (2.5c)
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where Fvol and Fsurf are such that � ∈ W1,1(0, T ;U∗). In order to compute the
Γ-limits for Eh and Rh, we extend Eh and Rh to the bigger space Q by setting
Eh = Rh = ∞ on Q\Qh.

The only dependence in h occurs through the scaling of the elastic and
plastic strains. Using Korn’s inequality and assuming h ∈ (0, 1] we have the
uniform convexity.

Eh(t, q) ≥ c(‖Shε(u)Sh‖2
L2 + ‖ShpSh‖2

L2) ≥ c(‖ε(u)‖2
L2 + ‖p‖2

L2)

≥ cKornc‖u‖2
H1 + c‖p‖2

L2 (2.6)

independently of h. The existence of solutions of the RIS (Q, Eh,Rh) is clas-
sical. For a proof of the following theorem we refer to [8,14,18].

Theorem 2.1. Assume that (Q, Eh,Rh) is as above with � ∈ W1,1(0, T ;Q∗)
and that qh

0 ∈ Q is stable at t = 0 (i.e. 0 ∈ ∂Rh(0) + DqEh(0, qh
0 )), then there

is a unique energetic solution qh ∈ W1,1(0, T ;Q) with qh(0) = qh
0 . Moreover,

it holds that qh(t) ∈ Qh and

‖q̇h‖L1(r,s;Q) ≤ C‖�̇(t)‖L1(r,s;Q∗), (2.7)

where C > 0 is independent of h and 0 ≤ r < s ≤ T .

Obviously, the scalings of the unique energetic solutions w.r.t. the RIS
(rate-independent system) (Qh, Eh,Rh) are the unique energetic solutions of
the RIS (Qh, Eh,Rh).

2.3. The limiting elastoplastic model

Obviously, the energy Eh blows up for h → 0 if the strains εi3(u) and pi3 do
not vanish. Thus, we expect the limit energy to be defined on a reduced space,
namely

QKL := {(u, p) ∈ Q : εi3(u) = pi3 = 0} = UKL × PKL.

The restriction in UKL take the explicit form

∂x1u3 + ∂x3u1 = ∂x2u3 + ∂x3u2 = ∂x3u3 = 0 a.e. in Ω.

The last equation implies that u3 is independent of x3. Using this the first two
equations imply that u1 and u2 are affine in x3. Defining

V = {(v1, v2, v3) ∈ H1
γ0

(ω; R3) : v3 ∈ H2(ω), ∇v3 · ν = 0 on γ0}
the space UKL of so-called Kirchhoff–Love displacements can be characterized
by

UKL = {u = Kv : v ∈ V } with

Kv(x1, x2, x3) =

⎛
⎝ v1(x1, x2) − x3∂x1v3(x1, x2)

v2(x1, x2) − x3∂x2v3(x1, x2)
v3(x1, x2)

⎞
⎠ , (2.8)

see e.g. [3,4]. Note that the component u3 has gained higher smoothness.
The limit model will be defined in such a way that it is restricted to

UKL ×PKL. The reduced energy is obtained by relaxing the strains εj3 and pj3
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in the following way. We decompose the 6-dimensional space R
3×3
sym into two

three-dimensional components by setting

ε1,2 :=
(

ε11 ε12

ε21 ε22

)
∈ R

2×2
sym, ε3 := (ε13, ε23, ε33) ∈ R

3. (2.9a)

For A ∈ R
2×2
sym and b ∈ R

3 we define [[A || b ]] ∈ R
3×3
sym such that ε = [[ ε1,2 || ε3 ]] ,

i.e.

[[A || b ]] =

⎛
⎝A11 A12 b1

A12 A22 b2

b1 b2 b3

⎞
⎠ . (2.9b)

Now we define a relaxed energy density depending only on ε1,2 and p1,2, namely

W(ε1,2, p1,2) := min{W( [[ ε1,2 || a ]] , [[ p1,2 || b ]] ) : a, b ∈ R
3 ∧ b3 = −p11−p22}.

Note that due to the plastic incompressibility the constraint b3 = −p11 − p22

has to be included. The definition of W implies the important lower estimate

W(ShεSh, ShpSh) ≥ W(ε1,2, p1,2) for all h ∈ [0, 1], ε, p ∈ R
3×3
sym. (2.10)

For the isotropic W defined in Sect. 2.1 we obtain the energy density

W(ε1,2, p1,2)

= λμ
λ+2μ (tr(ε1,2−p1,2))2 + μ|ε1,2−p1,2|2 + khard

2 (|p1,2|2 + (p11 + p22)2).

We define the limit energy E0 : [0, T ] × Q → R∞ by

E0(t, q) :=

⎧⎨
⎩
∫

Ω

W(ε1,2(u), p1,2) dx − 〈�(t), u〉 , if q ∈ QKL.

+∞, else

For the limit dissipation functional the derivation is even simpler. We imme-
diately see that R0 : P → R∞ defined by

R0(ṗ) =

⎧⎨
⎩

σyield

∫
Ω

|ṗ − (ṗ11 + ṗ22)e3 ⊗ e3| dx, if ṗ ∈ PKL

+∞, else,

is the Γ-limit, where e3 = (0, 0, 1)T.
The following convergence result, which is the central aim of this paper,

shows that the solutions qh = (uh, ph) of the RIS (Q, Eh,Rh) converge, for
h → 0, to solutions q = (u, p) of the limiting RIS (Q, E0,R0). The proof will
be established in Sect. 3. We follow the ideas in [13] and adapt the results
presented therein to our needs. The specific properties of the limit system
as well as the connection with the model derived in [11] are discussed in
Sect. 4.

Theorem 2.2. Assume that the RIS (Q, Eh,Rh) are given as above for all
h ∈ [0, 1]. Consider a family of solutions qh : [0, T ] → Q, as defined in (2.3).
Moreover assume that we have Eh(0, qh

0 ) → E0(0, q0
0) and qh

0 ⇀ q0
0 in Q. Then

for all t ∈ [0, T ] we have the convergences
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qh(t) → q(t), Eh(t, qh(t)) → E0(t, q(t)),
∫ t

0

Rh(q̇h) dt →
∫ t

0

R0(q̇) dt.

Moreover, q is an energetic solution of the RIS (Q, E0,R0).

Remark 2.3. Note that the existence of initial data qh
0 satisfying the assump-

tions in Theorem 2.2 is not trivial. We refer to [11] for a discussion of this
question.

3. Proof of Theorem 2.2

In this section we will prove our main result which is stated in terms of
Γ-convergence of the energy functionals Eh and the dissipation functionals
Rh. We will use the weak and the strong topologies in the underlying Hilbert
space Q. More specifically we use the notion of Mosco convergence (cf. [2,5])
denoted by In

M−→ I. The definition is as follows

In
M−→ I ⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(i) Liminf estimate:
qn ⇀ q =⇒ I(q) ≤ lim inf

n→∞ In(qn),

(ii) Limsup estimate (existence of recovery sequences)
∀ q̂ ∈ Q ∃ (q̂n)n : q̂n → q̂ and I(q̂) ≥ lim sup

n→∞
In(q̂n).

(3.1)

Hence, Mosco convergence is nothing but Γ-convergence with respect to both
the weak and strong topology.

In the following we will use the notation [n] = {1, . . . , n}, n ∈ N in order
to shorten notation.

3.1. Γ-limit of the energy functional

Proposition 3.1. Let Eh : [0, T ]×Q → R∞ and E0 : [0, T ]×Q → R∞ be defined
as above. Then Eh Γ→ E0 as h → 0 with respect to the weak topology on Q.
Indeed, Eh even converges to E0 in the sense of Mosco convergence.

The proof is similar to the classical one by Ciarlet [4, Sect. 1.4 and 1.11].

Proof. (i) We start by proving the lim inf inequality. Let (hn)n∈N be a
vanishing sequence. To simplify notation we will replace (hn) by n whenever
no confusion can arise. Assume that q = (u, p) ∈ Q and qn = (un, pn) ∈ Q are
such that qn ⇀ q in Q. If q /∈ QKL then there exists an index i ∈ [3] such that
either εi3(u) �= 0 or pi3 �= 0. Notice that by (2.6) we have for any C > 0 the
estimate

En(t, qn) ≥ c(‖Snε(un)Sn‖2
L2 + ‖SnpnSn‖2

L2) − 〈�(tn), un〉
≥ C(‖ε(un)i3‖2

L2 + ‖pn
i3‖2

L2) − 〈�(t), un〉
for sufficiently large n. Therefore, we deduce that

lim inf
n→∞ En(t, wn) ≥ C(‖εi3(u)‖2

L2 + ‖pi3‖2
L2) − ‖�‖L∞(0,T ;H∗)‖u‖H1 ,
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where C can be chosen arbitrary large and obtain En(t, qn) → ∞. For q ∈ QKL

we proceed as follows. First we compute

En(t, qn) =
∫

Ω

W(ε1,2(un), (pn)1,2) dx − 〈�(t), un〉

+
1
h2

n

∫
Ω

2μ

2∑
i=1

(εi3(un) − pn
i3)

2 + khard

2∑
i=1

(pn
i3)

2 dx (3.2)

+
∫

Ω

(λ + 2μ)

(
λ

λ+2μ

2∑
i=1

(εii(un)−pn
ii)+

1
h2

n

(ε33(un)−pn
33)

)2

dx

Note, that we can always assume that p33/h2
n+p11+p22 = 0 since En(tn, qn) =

∞ otherwise. Hence, we especially have
2∑

i,j=1

(
pn

ij

)2 +
(
pn
33/h2

n

)2
=

2∑
i,j=1

(
pn

ij

)2 + (pn
11 + pn

22)
2.

Using that the terms in the second and third line of (3.2) are positive we
obtain

En(t, qn) ≥
∫

Ω

W(ε1,2(un), (pn)1,2) dx − 〈�(t), un〉.

The right-hand side is weakly lower semi-continuous on Q and as n → ∞ we
obtain

lim inf
n→∞ En(t, qn) ≥ E0(t, q).

(ii) It remains to construct a recovery sequence for q ∈ QKL. For this we
choose qn to be the unique solution of the elliptic problem

〈Anqn, q̃〉 = 〈�q, q̃〉 := 〈A0q, q̃〉 ∀q̃ ∈ Qhn , (3.3)

where An : Qhn → Qhn and A0 : Q → Q∗ are the linear and self-adjoint
operators associated with the quadratic energies Eh and E0, i.e.,

Ah = DqEh on Qh and A0 = DqE0 on QKL.

Due to the Lax–Milgram theorem qn exists and is uniquely determined. We
want to show that qn is a recovery sequence for q. To this end we use (2.6) and
obtain that both an := Snε(un)Sn and bn := SnpnSn are uniformly bounded
in L2(Ω; R3×3

sym) and therefore also un and pn in U and P, respectively. Hence
we can extract a (not relabelled) subsequence qn such that qn ⇀ q̂. More-
over, we know that q̂ = (û, p̂) ∈ QKL. Choosing a further (also not relabelled)
subsequence we have that an ⇀ a and bn ⇀ b in L2(Ω; R3×3

sym). It holds that
aij = εij(û) and bij = p̂ij for i, j ∈ [2]. We set cn := an − bn such that
cn ⇀ c := a − b.

For an arbitrary v ∈ U we set q̃ = (v, 0) in (3.3) and obtain

〈�q, q̃〉 (3.4)

=
∫

Ω

λ (trcn)
(

ε11(v) + ε22(v) +
1
h2

n

ε33(v)
)

+ 2μ cn : (Snε(v)Sn) dx
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We now choose v such that v1 = v2 = 0 and multiplicate with h2
n. After passing

to the limit we obtain for all v3 ∈ H1
Γ0

(Ω)

∫
Ω

(λ (c11 + c22) + (λ + 2μ)c33) ∂x3v3 dx = 0.

Thus, we have the following identity (see [4, Proof of Theorem 1.4])

c33 = − λ

2μ + λ
(c11 + c22) .

Analogously, by setting v3 = 0 in (3.4) and using the symmetry of cn we get

4μ

∫
Ω

cn
13∂x3v1 + cn

23∂x3v2 dx = hn〈�q, q̃〉.

After passing to the limit we deduce that c13 = c23 = 0.
Since qn ∈ Qhn implies pn

33/h2
n + pn

11 + pn
22 = 0 we directly infer that

pn
33/h2

n ⇀ −p̂11 − p̂22 = b33. Therefore we deduce

a33 = −p̂11 − p̂22 − λ

λ + 2μ

2∑
i=1

(εii(û) − p̂ii) . (3.5)

In a next step we set q̃ = (0, p̃) with p̃ ∈ Phn such that p̃ij = 0 for i, j ∈ [2].
By plugging it into (3.3) we derive

∫
Ω

2μ (cn
i3p̃i3 + cn

3ip̃3i) + 2khard (bn
i3p̃i3 + bn

3ip̃3i) dx = 0.

By passing to the limit and using that c3i = ci3 = 0 we obtain b3i = bi3 = 0
and thus also a3i = ai3 = 0 for i ∈ [2]. For an arbitrary q̃ = (ũ, p̃) ∈ QKL we
define the sequence q̃n = (ũn, p̃n) ∈ Qhn by ũn = ũ, p̃n

ij = p̃ij for (i, j) �= (3, 3)
and p̃n

33 = −h2
n(p̃11 + p̃22). Then q̂n → q̂ strongly in Q and

0 = lim
n→∞ 〈Anqn, q̃n〉 − 〈�q, q̃

n〉 = 〈A0q̂, q̃〉 − 〈�q, q̃〉 = 0.

Therefore, it holds that A0(q̂ − q) = 0 in Q∗
KL, which yields q̂ = q. Hence, we

have that qn ⇀ q in Q. It remains to show that the energies converge. To this
end note that by means of an,a and bn, b and the identity in (3.5) we can
write

〈A0q, q〉 =
∫

Ω

C(a − b) : (a − b) + khard|b|2 dx,

〈Anqn, qn〉 =
∫

Ω

C(an − bn) : (an − bn) + khard|bn|2 dx, (3.6)
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where C is the elasticity tensor defined in Sect. 2.1. Hence, using the quadratic
structure of the energy functionals we compute

c(‖an − a‖2
L2 + ‖bn − b‖2

L2)

≤
∫

Ω

C(cn − (a − b)) : (cn − (a − b)) + khard|bn − b|2 dx

= 〈A0q, q〉 − 2
∫

Ω

C(a − b) : cn + khardb : bn dx + 〈Anqn, qn〉

= 〈A0q, q〉 − 2
∫

Ω

C(a − b) : cn + khardb : bn dx + 〈�q, q
n〉

→ 〈�q, q〉 − 〈A0q, q〉 = 0.

Therefore, we obatin the strong convergences an → a and bn → b in
L2(Ω; R3×3

sym) and consequently qn → q strongly in Q. To finish the proof note
that

En(t, qn) = 1
2 〈Anqn, qn〉 − 〈�(t), un〉 −→ 1

2 〈A0q, q〉 − 〈�(t), u〉 = E0(t, q)

where we used the strong convergence of an and bn and (3.6). �

3.2. Γ-limit of the dissipation functional

Proposition 3.2. Let Rh and R0 be defined as above. Then Rh Γ→ R0 with
respect to the weak topology on P. What is more, Rh converges to R0 in the
sense of Mosco convergence, too.

Proof. (i) Let (hn)n∈N be a vanishing sequence, choose ṗn such that ṗn ⇀ ṗ
Assume that ṗ /∈ PKL. Then there exists some i ∈ [3] such that ṗi3 �= 0. For
sufficiently large n we have

Rn(ṗn) = σyield

∫
Ω

|SnṗnSn| dx ≥ σyield

hn

∫
Ω

|ṗn
i3| dx ≥ Cσyield

∫
Ω

|ṗn
i3|dx,

where C can be chosen arbitrarily large. Due to the lower semicontinuity of
the norm we obtain Rn(ṗn) → +∞.

Now let ṗ ∈ PKL. We can safely assume that tr(SnṗnSn) = 0 for all n.
We have that

Rn(ṗn)=σyield

∫
Ω

|SnṗnSn| dx ≥ σyield

∫
Ω

√√√√ 2∑
i,j=1

(ṗn
ij)2 + (ṗn

11 + ṗn
22)2 dx.

(3.7)

The weak lower semicontinuity of the right-hand side grants the lim inf-
inequality.

(ii) To construct a recovery sequence for a given ṗ ∈ PKL set ṗn
ij=ṗij for

(i, j)�=(3, 3) and ṗn
33= − h2

n(ṗ11+ṗ22). Note that tr(SnpnSn)=0 and therefore

Rn(ṗn) = σyield

∫
Ω

|ṗ − (ṗ11 + ṗ22)e3 ⊗ e3| dx = R0(ṗ). (3.8)

The last part of the assertion follows from the strong convergence ṗn → ṗ
in P. �



Vol. 19 (2012) Derivation of plate theories in plasticity 449

Note that for absolutely continuous functions q : [0, T ] → Q and 0 ≤ r <
s ≤ T we have

Dissh(q; [r, s]) =
∫ s

r

Rh(q̇(t)) dt,

where we used the notation

Dissh(q; [r, s]) := sup

{
n∑

i=1

Rh(q(ti)−q(ti−1)) : n ∈ N, r ≤ t0 < · · · < tn ≤ s

}
.

which is defined for all pointwise defined functions. Using the lim inf estimate
from Rh M−→ R0 it is standard to show that Dissh is lower semicontinuous in
the sense that (∀ t ∈ [0, T ] : qh(t) ⇀ q(t)

)
(3.9)

⇒ Diss0(q0; [0, T ]) ≤ lim inf
h→0

Dissh(qh; [0, T ]).

3.3. Convergence of the solutions

The main challenge is to establish the upper semicontinuity of the stable sets,
i.e., limits of stable sequences remain stable with respect to the limit energy
and dissipation functional. We have the following crucial result:

Proposition 3.3. Let qn be such that the stability condition w.r.t. (En,Rn) is
satisfied for t ∈ [0, T ]. If qn ⇀ q in Q, then we have that q satisfies the stability
condition w.r.t. (E0,R0).

Proof. In the following the time t is fixed. We make use of the quadratic form
of the energy functionals. In this case the global stability condition is equiva-
lent to local stability condition �(t)−Anqn ∈ ∂Rn(0), where An is the operator
associated with En defined in the proof of Proposition 3.1. Hence, we want to
show that

〈A0q − �(t), q̂〉 + R0(q̂) ≥ 0 ∀q̂ ∈ QKL, (3.10)

where A0 is the operator associated with the limit energy. To this end we are
going to show that for all q̂ ∈ QKL and for all stable sequences qn such that
qn ⇀ q we can construct a sequence q̂n such that Rn(q̂n) → R0(q̂) and

〈Anqn, q̂n〉 → 〈A0q, q̂〉. (3.11)

Step 1. Let qn = (un, pn) be such a weakly converging stable sequence. In
particular, there exists a constant C ≥ 0 such that En(t, qn) ≤ C. As in the
proof of Proposition 3.1 we obtain that

‖Snε(un)Sn‖2
2 + ‖SnpnSn‖2

2 ≤ C

which directly implies εi3(u) = ε3i(u) = pi3 = p3i = 0 for i ∈ [3]; hence
q ∈ QKL. Moreover, we have that pn

11 + pn
22 + pn

33/h2
n = 0 for all n ∈ N and

therefore pn
33/h2

n ⇀ −p11 − p22. Let an := Snε(un)Sn and bn := SnpnSn

as before. The estimate above allows us to extract weakly converging subse-
quences such that an ⇀ a and bn ⇀ b in L2(Ω; R3×3

sym).
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Step 2. If we test the global stability condition with (un ± αv, pn) for an arbi-
trary v ∈ U and let α → 0 we obtain∫

Ω

λtr(an − bn) · tr(Snε(v)Sn) + 2μ(an − bn) : (Snε(v)Sn) dx = 〈�(tn), v〉.

Choosing v = (0, 0, v3)T yields

a33 − b33 = − λ

2μ + λ
(a11 − b11 + b11 − b22) .

Since we know that bn
33 = pn

33/h2
n ⇀ −p11 − p22 and an

ij = εij(un) ⇀
εij(u), i, j = 1, 2, we obtain

an
33 = ε(un)33/h2

n ⇀ −p11 − p22 − λ

2μ + λ
(ε11(u) − p11 + ε22(u) − p22) .

Step 3. Now, we take q̂n = (ûn, p̂n) as the recovery sequence for q̂ as con-
structed in the proof of Proposition 3.1, i.e.,

q̂n −→ q̂ and En(t, q̂n) −→ E0(t, q̂).

Note, that we have the strong convergence q̂n → q̂ in Q. Moreover, we know
that ân := Snε(ûn)Sn and b̂n := Snp̂nSn converge strongly to â and b̂ in
L2(Ω; R3×3

sym), respectively. Here, we have that âij = εij(û) and b̂ij = p̂ij for
i, j = 1, 2 and

â13 = â23 = b̂13 = b̂23 = 0,

b̂33 = −p̂11 − p̂22, â33 = b̂33 − λ

2μ + λ
(â11 − b̂11 + â22 − b̂22).

(3.12)

Step 4. In order to prove (3.11) we write the product in the following way

〈Anqn, q̂〉
=
∫

Ω

λtr(an−bn) · tr(ân−b̂n) + 2μ(an−bn) : (ân−b̂n) + khardbn : b̂n dx

Using the weak and the strong convergence of an, bn and ân, b̂n, respectively,
yields

〈Anqn, q̂n〉 →
∫

Ω

λtr(a−b) · tr(â−b̂) + 2μ(a−b) : (â−b̂) + khardb : b̂ dx

= 〈A0q, q̂〉,
where we have used the relations derived in Step 2. Thus, we have shown
(3.11).

Step 5. It remains to show that Rn(p̂n) → R0(p̂), i.e., p̂n is also a recovery
sequence w.r.t. Rh. For this, note that we have

Rn(p̂n) = σyield

∫
Ω

|b̂n|dx.



Vol. 19 (2012) Derivation of plate theories in plasticity 451

Hence, the convergence of Rn(p̂n) follows directly from the strong convergence
of b̂n. �

We are now in position to provide the full proof of the Γ-convergence
result for the quadratic rate-independent systems (Q, Eh,Rh).

Proof of Theorem 2.2. We will mainly follow the same six steps of the argu-
ment as in [13].

Step 1: A priori estimates. Using Theorem 2.1 we obtain the uniform bounds

‖qh‖C0([0,T ];Q) + ‖q̇h‖L1(0,T ;Q) ≤ C

for all h ∈ (0, 1].

Step 2: Selection of subsequences. Via the selection principle of Arzela–
Ascoli we find a q∗ ∈ C0(0, T ;Q) and a suitable subsequence (hn)n∈N such
that qhn(t) ⇀ q∗(t) in Q for all t ∈ [0, T ]. We can estimate

n∑
k=1

|qh(tk) − qh(sk)| ≤
n∑

k=1

∫ tk

sk

|q̇h(t)|Q dt ≤ Cθ (3.13)

and using the weak lower semicontinuity of the norm we have that the limit
q∗ is absolutely continuous as well.

Step 3: Stability of the limit. Since qhn(t) is stable w.r.t. (En,Rn) and qhn(t) ⇀
q∗(t) we infer from Proposition 3.3 that q∗(t) is also stable.

Step 4: Upper energy estimate. The energy balance for qh reads

Eh(t, qh(t)) + Dissh(qh; [0, t]) = Eh(0, qh(0)) −
∫ t

0

〈�̇(s), qh(s)〉ds.

Using the weak convergence of the solutions we can pass to the limit hn → 0 by
employing the Mosco convergence of the energy functionals and (3.9). More-
over, using the dominated convergence theorem and the uniform boundedness
of uh we obtain ∫ t

0

〈�̇(s), uh(s)〉 ds →
∫ t

0

〈�̇(s), u∗(s)〉 ds

for all t ∈ [0, T ]. This leads to the estimate

E0(t, q∗(t)) + Diss0(q∗, [0, t]) ≤ E0(0, q∗(0)) −
∫ t

0

〈�̇(s), q∗(s)〉ds.

Here we use the liminf-estimates on the left-hand side, while convergences hold
on the right-hand side.

Step 5: Lower energy estimate. It remains to show the opposite inequality. For
this, note that q∗ is absolutely continuous and hence for any ρ > 0 there exists
some δ > 0 such that

∀t, s ∈ [0, T ], |t − s| < δ : |q∗(t) − q∗(s)| ≤ ρ

‖�̇(t)‖L1(0,T ;U∗)

.
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Choose (ri)N
i=0 ⊂ [0, t] with r0 = 0, rN = t, ri > ri−1 and |ri − ri−1| ≤ δ for all

i ∈ [N ]. Then, by using the stability of the limit process w, we have that

E(t, q∗(t)) + Diss0(q∗; [0, t])
≥ E0(0, q∗(0))

+
N∑

i=1

E0(ri, q∗(ri)) + R0(q∗(ri)−q∗(ri−1)) − E0(ri−1, q∗(ri−1))

≥ E0(0, q∗(0)) +
N∑

i=1

E0 (ri, q∗ (ri)) − E0 (ri−1, q∗ (ri))

= E0(0, q∗(0)) +
N∑

i=1

∫ ri

ri−1

〈�̇(t), q∗(t)〉dt +
∫ ri

ri−1

〈�̇(t), q∗(ri) − q∗(t)〉dt

≥
∫ t

0

∂tE0(s, q∗(s)) ds + E0(0, q∗(0)) − ρ.

Since ρ > 0 was arbitrary we have shown the desired lower energy estimate.
Together with the Steps 3 and 4 we conclude that q∗ is equal to the unique

energetic solution q. Therefore, the whole sequence qh(t) converges weakly to
q(t) for all t ∈ [0, T ].

Step 6: Improved convergence. Since the energy equality holds we know that
for all t ∈ [0, T ] we have that

lim sup
h→0

Dissh
(
qh; [0, t]

)

= lim sup
h→0

[
Eh
(
0, qh(0)

)
+
∫ t

0

∂sEh(s, qh(s)) ds − Eh
(
t, qh(t)

)]

≥ E0(0, q(0)) +
∫ t

0

∂sE0(s, q(s)) ds − E0(t, q(t))

= Diss0(q; [0, t]).

Combining this estimate with (3.9) we obtain that for all t ∈ [0, T ]

Dissh
(
qh; [0, t]

) → Diss0(q; [0, t]) and Eh
(
t, qh(t)

)→ E0(t, q(t)).

Finally, since the energy functionals are equi-coercive on Q we get the pointwise
strong convergence of qh as a consequence of the convergence of the energies
by using a similar argument as in the proof of Proposition 3.1. �

4. Discussion of the elastoplastic plate model

In this section we want to discuss how the limit model obtained in Sect. 2.3 can
be reduced to a two-dimensional problem coupled to plastic effects that can
either be described by a three-dimensional model with internal variables or by
a vector-valued Prandtl–Ishlinskii operator associated to each point x ∈ ω.
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The key point is that the Kirchhoff–Love displacements u ∈ UKL can be
characterized by functions defined only on the midplane ω [see (2.8)]. There-
fore, the limit energy E0 can be reduced by integrating over the variable x3.
In the following we will use the letter y to indicate points in ω. Further-
more, ∇ and Δ denote the two-dimensional operators acting only on y ∈ ω,
i.e. ∇ = (∂y1 , ∂y2)

T,Δ = ∂2
y1

+∂2
y2

, and D2v3 ∈ R
2×2
sym denotes the Hessian of

v3 : ω → R. Moreover we will use the two-dimensional in-plane strain tensor

ε1,2(v) =
1
2
(∇v1,2 + (∇v1,2)T), where v1,2 = (v1, v2)T,

which does not depend on v3.
Concerning the plastic strain variable p ∈ L2(Ω; R3×3

sym) we will use the
decomposition Ω = ω × (−1/2, 1/2) and the identification

L2(ω × (−1/2, 1/2); R3×3
sym) ∼= L2(ω;B) with B = L2((−1/2, 1/2); R3×3

sym).

Thus, we associate with each point y ∈ ω an internal variable p(y, ·) ∈ B.
Using the isomorphism K between the space UKL and V introduced in (2.8)
we see that the rate-independent system (QKL, E0,R0) is equivalent to the
system (Q0, E0,R0) with

Q0 := V × L2(ω;B), R0(ṗ) =
∫

ω

∫ 1/2

−1/2
R0(ṗ) dx3 dy,

E0(t, v, p) =
∫

ω

W0(ε1,2(v),D2v3, p) dy − 〈�0(t), v〉.

The reduced energy-density W0 can be decomposed into membrane, bending
and plastic energy-densities, i.e.

W0(ε,D, p) = Wmemb(ε, [p1,2]0) + Wbend(D, [p1,2]1) + Wplast(p),

where

Wmemb(ε,Π) =
2λμ

λ + 2μ

(
1
2
(tr ε)2 − tr ε tr Π

)
+ 2μ

(
1
2
|ε|2 − ε : Π

)
,

Wbend(D,Π) =
2λμ

λ + 2μ

(
1
48

(tr D)2 + tr D trΠ
)

+ 2μ

(
1
48

|D|2 + D : Π
)

Wplast(p) =
λμ

λ + 2μ
‖tr p1,2‖2

2 + μ‖p1,2‖2
2 +

khard

2
(|p|2 + (tr p)2).

Here we used
∫ 1/2

−1/2
dx3 = 1,

∫ 1/2

−1/2
x3 dx3 = 0 and

∫ 1/2

−1/2
x2

3 dx3 = 1/24 and
the short-hand notations

[g]0 =
∫ 1/2

−1/2

g(x3) dx3, [g]1 =
∫ 1/2

−1/2

x3g(x3) dx3, ‖g‖2
2 =

∫ 1/2

−1/2

|g(x3)|2 dx3.
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The reduced loading �0(t) ∈ V ∗ is given by

〈�0(t), v〉 =
∫

ω

Gmemb(t) · v1,2 + gbend(t)v3 + Gbend(t) · ∇v3 dy,

where
Gmemb(t, y) = [F 1,2

vol (t, y, ·)]0+F 1,2
surf(t, y, 1)+F 1,2

surf(t, y,−1),
gbend(t, y) = [Fvol 3(t, y, ·)]0+Fsurf 3(t, y, 1)+Fsurf 3(t, y,−1),

Gbend(t, y) = F 1,2
surf(t, y,−1)−F 1,2

surf(t, y, 1).

As in [11] the important structure in the form of the reduced energy-density
W0 is that the membrane strains ε1,2(v) only couple to the (even) averages
[p1,2]0, while the bending strains D2v3 only couple to the (odd) averages [p1,2]1.
The energetic formulation of the derived evolutionary system (Q0, E0,R0) is
equivalent to the subdifferential formulation. It consists of two elliptic equa-
tions, one for the membrane part and one for the bending part, and the plastic
flow rule. Both elliptic equations are nontrivially coupled to the plastic part
(see [10,11] for simple examples).

The strain tensors take the form

∂AWmemb(A,D) = Σ0(A − D) ∈ R
2×2
sym,

∂BWbend(B,D) = Σ0

(
1
24

B − D

)
∈ R

2×2
sym,

where Σ0(E) := 2λμ
λ+2μ tr E I2 + 2μE is the reduced elasticity tensor.

In order to compute the subdifferential of R0 we note that it can be
written in the form R0(ṗ) = R̃0(Dṗ), where

R̃ :
{

P̃0 → [0,∞),
ṗ �→ σyield|ṗ|, D :

⎧⎨
⎩

P0 → P̃0,

A �→
(

A1,2 0
0 −A11−A22

)
.

and

P0 = {A ∈ R
2×2
sym : A13 = A23 = A33 = 0},

P0 = {A ∈ R
3×3
dev : A13 = A23 = 0}.

Now, the subdifferential of R0 can be calculated as follows by using the chain
rule for subdifferentials (see [19, Theorem 23.9])

∂R0(ṗ) = D
∗∂R̃(Dṗ) = D

∗
{

Dṗ
|Dṗ| Dṗ �= 0
σyieldB1(0) otherwise,

where D
∗ is the adjoint operator of D and B1(0) is the unit ball in P̃0 centered

at 0. A simple computation shows that for σ∈P ∗
0 we have (D∗)−1σ=devσ∈ P̃ ∗

0 .
For A∈R

2×2
sym let [[A || 0 ]] ∈ R

3×3
sym denote the enlargement of A by 0. We com-

pute that the plastic stress σpl is given by

σpl = DpE0(t, v, p)

= [[ Σ0(p1,2−ε1,2(v)+x3D2v3) || 0 ]] + khard

[[(
2p11 + p22 p12

p23 p11 + 2p22

)∥∥∥∥ 0
]]

.
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Hence, the subdifferential formulation for E0 and R0 is formally equivalent to

0 = −div
(
Σ0

(
ε1,2(v)−[p1,2]0

))− Gmemb(t, ·) in ω, (4.1a)

0=div div
(
Σ0

(
1
24D2v3+[p1,2]1

))−gbend(t, ·)−div Gbend(t, ·) in ω, (4.1b)

0∈∂R̃0(Dṗ)+dev [[ Σ0(p1,2−ε1,2(v)+x3D2v3) || 0 ]]+khardDp in Ω, (4.1c)

We see that (4.1a) is a second-order membrane equation for the in-plane
displacements v1,2 = (v1, v2) with the average plastic strains [p1,2]0 acting as
plastic strains. The fourth-order equation (4.1b) for the out-of-plane displace-
ment v3 generalizes Kirchhoff’s plate equation, where now the first moments
[p1,2]1 (odd averages) act as plastic strains. The flow law (4.1c) is still posed
on Ω = ω × (−1/2, 1/2), but the important point is that the coupling with
ε1,2(v) and D2v3 occurs only via special x3-dependent profiles, namely 1 and
x3, respectively.

4.1. The choice of scalings for the plastic strains

A careful inspection of the convergence proofs in Sect. 3 reveals that the results
above remain valid for scalings of the form

ph(xh) = Πα,β
h ph(Shxh) :=

⎛
⎝ph

11 ph
12

1
hα ph

13

ph
12 ph

22
1

hα ph
23

1
hα ph

13
1

hα ph
23

1
hβ ph

33

⎞
⎠ .

with α, β > 0. This means, scalings of this particular form lead to the same
limit model. By replacing Dp by p̃ in the previous section we see that for
α, β > 0 the limit model is similar to the one derived in [11], where α = β = 0
was chosen. In [11] the components p13 and p23 of the plastic strains do not
vanish, however, they stay constant since they are not triggered by the elas-
tic stresses. Here, however, the strains p13 and p23 have to vanish due to the
scalings. The component p33 can be reintroduced due to the plastic incom-
pressibility assumption.

4.2. Prandtl–Ishlinskii operators

The plastic flow rule for the limit system can be encoded in terms of vector-
valued Prandtl–Ishlinskii operators. We highlight here the main ideas and refer
to [11] for a deeper discussion.

We note that (4.1c) can be written in the form

0 ∈ ∂R̃0( ˙̃p) + Ap̃ − L(t),

with the loading L = dev [[ Σ0ε
1,2(v) − x3D2v3 || 0 ]] and p̃ = Dp. The vector-

valued play operator P maps the loading L to the solution p̃, i.e.,

PK [L](t) = p(t),

where K = ∂R̃0(0). We now set

Pmemb[ε1,2(v),D2v3] = [PK [L]]0 , and Pbend[ε1,2(v),D2v3] = [PK [L]]1 .
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With these definitions, we can rewrite the system (4.1) as

div
(
Σ0

(
ε1,2(v) − Pmemb[ε1,2(v),D2v3]

))
= Gmemb(t, ·),

div div
(
Σ0

(
1
24D2v3 + Pbend[ε1,2(v),D2v3]

))
= gbend(t, ·) + div Gbend(t, ·).
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[7] Guenther, R.B., Krejč́ı, P., Sprekels, J.: Small strain oscillations of an elasto-
plastic Kirchhoff plate. ZAMM Z. Angew. Math. Mech. 88(3), 199–217 (2008)

[8] Han, W., Reddy, B.D.: Plasticity. In: Interdisciplinary Applied Mathematics,
vol. 9. Springer, New York (1999)

[9] Krejč́ı, P., Sprekels, J.: Elastic-ideally plastic beams and Prandtl–Ishlinskii
hysteresis operators. Math. Methods Appl. Sci. 30(18), 2371–2393 (2007)

[10] Liero, M.: Herleitung eines elastoplastischen Plattenmodells mit Methoden
der Γ-Konvergenz. Institut für Mathematik, Humboldt-Universität zu Berlin,
Diplomarbeit (2008)

[11] Liero, M., Mielke, A.: An evolutionary elastoplastic plate model derived via
Γ-convergence. WIAS preprint no. 1583 (2010, to appear)

[12] Mielke, A. : Evolution in Rate-Independent Systems, Chapt. 6. In: Dafermos,
C.M., Feireisl, E. (eds.) Handbook of Differential Equations, Evolutionary
Equations, vol. 2, pp. 461–559. Elsevier B.V., Amsterdam (2005)

[13] Mielke, A., Roub́ıček, T., Stefanelli, U.: Γ-limits and relaxations for rate-
independent evolutionary problems. Calc. Var. Partial Diff. Equ. 31(3),
387–416 (2008)

http://dx.doi.org/10.1007/s00526-010-0360-0


Vol. 19 (2012) Derivation of plate theories in plasticity 457

[14] Mielke, A., Theil, F.: On rate-independent hysteresis models. NoDEA Nonlinear
Diff. Equ. Appl. 11(2), 151–189 (2004)

[15] Millet, O., Cimetiere, A., Hamdouni, A.: An asymptotic elastic-plastic plate
model for moderate displacements and strong strain hardening. Eur. J. Mech.
A/Solids 22(3), 369–384 (2003)

[16] Morgenstern, D.: Herleitung der Plattentheorie aus der dreidimensionalen Elas-
tizitätstheorie. Arch. Ration. Mech. Anal. 4, 145–152 (1959)

[17] Morgenstern, D.: Mathematische Begründung der Scheibentheorie (zweidimen-
sionale Elastizitätstheorie). Arch. Ration. Mech. Anal. 3, 91–96 (1959)

[18] Reddy, B.D.: Existence of solutions to a quasistatic problem in elastoplasticity.
In: Progress in partial differential equations: calculus of variations, applications
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