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1. Introduction

We study the positive, radial solutions of the nonlinear biharmonic equation

Δ2ϕ(x) = ϕ(x)p, x ∈ R
n. (1.1)

Such solutions are known to exist when n > 4 and p ≥ n+4
n−4 , but they fail to

exist, otherwise. Our goal in this paper is to derive their asymptotic expansion
as |x| → ∞ and thus obtain an analogue of a well-known result [8] for the
second-order equation

− Δϕ(x) = ϕ(x)p, x ∈ R
n. (1.2)

We remark that the qualitative properties of solutions to (1.1) resemble those
of solutions to (1.2), however the methods used to establish them are quite
different.

First, let us summarize the known results for the second-order equation
(1.2). If n ≤ 2 or 1 < p < n+2

n−2 , then no positive solutions exist; and if p = n+2
n−2 ,

then all positive solutions are radial up to a translation and also explicit [1,2].
If p > n+2

n−2 , finally, the positive radial solutions form a one-parameter family
{ϕα}α>0, see [5,11]. When it comes to the behavior of the solutions ϕα, a
crucial role is played by a singular solution of the form

Φ(x) = a0(n, p) · |x|− 2
p−1 . (1.3)

As |x| → ∞, that is, each ϕα behaves like the singular solution Φ.
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There is also a critical value pc associated with the second-order equation
(1.2). This is defined by taking (n+2

n−2 , pc) to be the maximal interval on which

p · Q2

(
2

p − 1

)
> Q2

(
n − 2

2

)
, Q2(α) ≡ |x|α+2(−Δ) |x|−α. (1.4)

It is easy to check that pc = ∞ if n ≤ 10 and that pc < ∞, otherwise. In the
subcritical case n+2

n−2 < p < pc, each radial solution ϕα oscillates around the
singular solution (1.3) and the graphs of any two radial solutions intersect one
another [13]. In the supercritical case p ≥ pc, on the other hand, the graphs
of distinct solutions ϕα do not intersect one another and they do not intersect
the graph of the singular solution, either [13].

Let us now turn to the fourth-order equation (1.1). Although the known
results are very similar to those listed above, their proofs are generally quite
different. In this case, positive solutions fail to exist if n ≤ 4 or 1 < p < n+4

n−4 ,
while they are explicit and radial up to a translation, if p = n+4

n−4 , see [3,12,14].
And if p > n+4

n−4 , there is a one-parameter family of radial solutions ϕα which
behave asymptotically like a singular solution of the form

Φ(x) = a0(n, p) · |x|− 4
p−1 , (1.5)

see [7]. The associated critical value arose in [7] and it is defined by taking
(n+4

n−4 , pc) to be the maximal interval on which

p · Q4

(
4

p − 1

)
> Q4

(
n − 4

2

)
, Q4(α) ≡ |x|α+4Δ2|x|−α. (1.6)

Moreover, pc < ∞ if and only if n ≥ 13, while the graphs of radial solutions
intersect one another in the subcritical case [6,9] but not in the supercritical
case [9,10].

There are also results that are well-known in the second-order case (1.2)
but remain open in the fourth-order case (1.1). Those include the precise
asymptotic expansion of the radial solutions in the supercritical case p ≥ pc.
Expansions for the second-order case go back to [8,11] and they provided a
key ingredient for studying the stability of steady states for the nonlinear heat
equation ut − Δu = up in the supercritical case [8]. Our goal in this paper is
to establish an analogous expansion for the fourth-order problem.

Theorem 1.1. Suppose n ≥ 13 and p ≥ pc. Let ϕ be a positive, radial solution
of (1.1) and let λ1 < λ2 ≤ λ3 < 0 < λ4 be the eigenvalues of the associ-
ated linearized equation, see Lemma 3.1. Then there exists a finite sequence
pc = p1 < p2 < · · · < pN such that λ2 ≤ kλ3 if and only if p ≥ pk. Moreover,
ϕ has the following asymptotic expansion as r → ∞.

(a) If pk < p < pk+1, with the convention that pN+1 = ∞, then

r
4

p−1 ϕ(r) = a0 +
k∑

j=1

ajr
jλ3 + b1r

λ2 + ak+1r
(k+1)λ3 + O

(
rλ2+λ3

)
. (1.7)
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(b) If p = pk for some k ≥ 2, then kλ3 = λ2 and

r
4

p−1 ϕ(r) = a0 +
k−1∑
j=1

ajr
jλ3 + rkλ3(b1 log r + ak) + O

(
rλ2+λ3 log r

)
.

(1.8)

(c) If p = pc, finally, then λ2 = λ3 and

r
4

p−1 ϕ(r) = a0 + rλ3(b1 log r + a1) + b2r
2λ3(log r)2 + O

(
r2λ3 log r

)
.

(1.9)

Preliminary versions of these expansions appeared in [9,15]. The expan-
sion in [15] only lists two terms, but its proof is quite different from ours and
contains some nice ideas. The expansion in [9] lists three terms, but it is not
rigorously proven and not entirely correct in the critical case p = pc.

The proof of Theorem 1.1 is given in Sect. 2; it heavily relies on the fact
that r

4
p−1 ϕ(r) is increasing, as first observed by the author [10]. Although a

similar statement holds in the second-order case [4], the corresponding proofs
[8,11] do not use that statement. Finally, Sect. 3 collects some basic facts about
the quartic polynomial (1.6) and the eigenvalues of the associated linearized
equation; we use these facts in the proof of our main result.

2. Asymptotic expansion at infinity

In this section, we give the proof of Theorem 1.1 regarding the asymptotic
expansion of the positive, radial solutions of (1.1). First, we use an Emden–
Fowler transformation to transform (1.1) into an ODE whose linear part has
constant coefficients. Then, we analyze this ODE using some key results of
Gazzola–Grunau [7] and the author [10].

Lemma 2.1. Let p > 1 and m = 4
p−1 . If ϕ is a positive, radial solution of

(1.1), then

W (s) = emsϕ(es) = rmϕ(r), s = log r = log |x| (2.1)

is a solution of the ordinary differential equation

Q4(m − ∂s)W (s) = W (s)p, (2.2)

where Q4 is the quartic polynomial defined by

Q4(α) = |x|α+4Δ2|x|−α = α(α + 2)(α + 2 − n)(α + 4 − n). (2.3)

Proof. Since ∂r = e−s∂s, a short computation allows us to write the radial
Laplacian as

Δ = ∂2
r + (n − 1)r−1∂r = e−2s(n − 2 + ∂s)∂s.

Using the operator identity ∂se
−ks = e−ks(∂s − k), one can then easily check

that

Δ2e−ms = e−4s−ms Q4(m − ∂s) = e−mps Q4(m − ∂s).

This also implies that Q4(m − ∂s)W (s) = empsΔ2ϕ(es) = W (s)p, as
needed. �
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Lemma 2.2. Suppose that n > 4 and p > n+4
n−4 . Then the positive, radial solu-

tions of (1.1) form a one-parameter family {ϕα}α>0, where each ϕα satisfies
ϕα(0) = α and

lim
r→∞ rmϕα(r) = Q4(m)

1
p−1 (2.4)

with m = 4
p−1 and Q4 as in (2.3). If we also assume that p ≥ pc, then

Y = rmϕα(r) − Q4(m)
1

p−1 (2.5)

is strictly increasing for all r > 0, hence also negative for all r > 0.

Proof. See Theorem 1 in [7] for the existence part, Theorem 3 in [7] for a proof
of (2.4) and equation (4.7) in [10] for the monotonicity of Y in the supercritical
case. �

To understand the behavior of the function Y in (2.5), we use Lemma
2.1 to get[

Q4(m − ∂s) − pQ4(m)
]
Y (s) = (Y + L)p − Lp − pLp−1Y ≡ g(Y ), (2.6)

where s = log r and L = Q4(m)
1

p−1 . Note that the linearized equation is
given by the left hand side. As we shall show in Lemma 3.1, the associated
eigenvalues are all real in the supercritical case p ≥ pc and they also satisfy

λ1 < λ2 ≤ λ3 < 0 < λ4. (2.7)

The presence of a positive eigenvalue is likely to complicate matters because
we are seeking an expansion as s → ∞. We thus isolate this eigenvalue and we
factor (2.6) as

(∂s − λ1)(∂s − λ2)(∂s − λ3)Z(s) = g(Y ), Z(s) ≡ Y ′(s) − λ4Y (s). (2.8)

Since Y (s) is negative and increasing by Lemma 2.2, we actually have

Z(s) = |Y ′(s)| + |λ4Y (s)| (2.9)

and we can use Gronwall-type estimates to control Z(s); this is where Lemma
2.2 becomes crucial, as it ensures that Z(s) ≥ 0. Once we have some precise
estimate for Z(s), we can simply integrate to get an estimate for Y (s), and we
can then repeatedly use the following lemma to obtain refined expansions for
both Z(s) and Y (s).

Lemma 2.3. Suppose n ≥ 13 and p ≥ pc. Let Z(s) be as in (2.8). Given any
s0 ∈ R then, there exist some constants αi, βi such that

Z(s) =
3∑

i=1

αie
λis + βi

∫ s

s0

eλi(s−τ) · g(Y (τ)) dτ (2.10)

in the supercritical case p > pc and

Z(s) =
2∑

i=1

αie
λis + βi

∫ s

s0

eλi(s−τ) · g(Y (τ)) dτ

+α3se
λ3s + β3

∫ s

s0

(s − τ)eλ3(s−τ) · g(Y (τ)) dτ (2.11)
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in the critical case p = pc. Moreover, each αi depends on s0 and the eigenvalues
λ1, λ2, λ3 which appear in equation (2.8), whereas each βi depends solely on
the eigenvalues.

Proof. We multiply the first equation in (2.8) by e−λ1s and we integrate to get

(∂s − λ2)(∂s − λ3)Z(s) = A1e
λ1s +

∫ s

s0

eλ1(s−τ) · g(Y (τ)) dτ

for some constant A1. Repeating the same argument once again, we arrive at

(∂s − λ3)Z(s) = B1e
λ1s + B2e

λ2s +
∫ s

s0

∫ ρ

s0

eλ2(s−ρ)eλ1(ρ−τ) · g(Y (τ)) dτ dρ

because λ1 < λ2. Once we now switch the order of integration, we get

(∂s − λ3)Z(s) = B1e
λ1s + B2e

λ2s +
∫ s

s0

∫ s

τ

eλ2(s−ρ)eλ1(ρ−τ) · g(Y (τ)) dρ dτ

= B1e
λ1s + B2e

λ2s +
∫ s

s0

eλ1(s−τ) − eλ2(s−τ)

λ1 − λ2
· g(Y (τ)) dτ.

In the supercritical case, λ2 < λ3 by Lemma 3.1, so we can repeat our approach
once again to deduce (2.10). In the critical case, λ2 = λ3 so our approach leads
to (2.11). �

Lemma 2.4. Suppose n ≥ 13 and p ≥ pc. Let Z(s) be as in (2.8) and let δ > 0.
Then

Z(s) = O
(
eλ3s+δs

)
as s → ∞. (2.12)

Proof. Suppose first that p > pc. Then λ1 < λ2 < λ3 by Lemma 3.1 and so

Z(s) ≤ C1e
λ3s + C2

∫ s

s0

eλ3(s−τ) · |g(Y (τ))| dτ (2.13)

by (2.10). Now, Lemma 2.2 and our definition (2.6) ensure that

lim
τ→∞

g(Y (τ))
Y (τ)

= g′(0) = 0.

Since Z(s) ≥ |λ4Y (s)| by equation (2.9), this trivially implies

|g(Y (τ))| ≤ δ|λ4Y (τ)|
C2

≤ δZ(τ)
C2

for all large enough τ . Inserting this estimate in (2.13), we conclude that

e−λ3sZ(s) ≤ C1 + δ

∫ s

s0

e−λ3τZ(τ) dτ (2.14)

for all large enough s0, s. Using Gronwall’s inequality, we thus obtain (2.12).
Suppose now that p = pc, in which case λ1 < λ2 = λ3 by Lemma 3.1.

Using the exact same approach as above with (2.11) instead of (2.10), we now
get

e−λ3sZ(s) ≤ C1s +
δ

2

∫ s

s0

e−λ3τZ(τ) dτ +
δ2

2

∫ s

s0

(s − τ)e−λ3τZ(τ) dτ
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for all large enough s0, s in analogy with (2.14). Letting F (s) denote the
rightmost integral, one can express the last equation in the form

F ′′(s) ≤ C1s +
δ

2
F ′(s) +

δ2

2
F (s), F (s0) = F ′(s0) = 0. (2.15)

We note that F, F ′ are non-negative, while G(s) = F ′(s) + δ
2F (s) is such that

G′(s) − δG(s) = F ′′(s) − δ

2
F ′(s) − δ2

2
F (s) ≤ C1s.

Multiplying by e−δs and integrating, we now get

F ′(s) +
δ

2
F (s) = G(s) ≤ C1e

δs

∫ s

s0

τe−δτ dτ ≤ C2e
δs.

Since F, F ′ are non-negative by above, we may thus recall (2.15) to conclude
that

e−λ3sZ(s) = F ′′(s) ≤ C1s + C3e
δs.

This trivially implies the desired (2.12) and also completes the proof. �

Lemma 2.5. Under the assumptions of the previous lemma, one has

Z(s) =

{
O(seλ3s) if p = pc

O(eλ3s) if p > pc

}
. (2.16)

Proof. Let us fix some 0 < δ < |λ3|/2 and consider two cases.

Case 1. When p > pc, we use equation (2.10) to get

Z(s) ≤ C1e
λ3s + C2

∫ s

s0

eλ3(s−τ) · |g(Y (τ))| dτ.

According to (2.6) and (2.9), the rightmost factor in the integrand is bounded
by

|g(Y (τ))| ≤ CY (τ)2 ≤ CZ(τ)2

for all large enough τ . Using this fact and the previous lemma, we find that

e−λ3sZ(s) ≤ C1 + C

∫ s

s0

e(λ3+2δ)τ dτ (2.17)

for all large enough s0, s. Since 2δ < −λ3, the result now follows.

Case 2. When p = pc, we use (2.11) instead of (2.10). Proceeding as above,
one gets

e−λ3sZ(s) ≤ C3s + C3

∫ s

s0

e(λ3+2δ)τ dτ + C3

∫ s

s0

(s − τ)e(λ3+2δ)τ dτ

instead of (2.17). Since 2δ < −λ3, the result follows as before. �

Corollary 2.6. Under the assumptions of Lemma 2.4, one also has

Y (s) =

{
O(seλ3s) if p = pc

O(eλ3s) if p > pc

}
. (2.18)
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Proof. Recall our definition (2.8) which reads
[
e−λ4sY (s)

]′
= e−λ4sZ(s)

for some λ4 > 0. Since Y (s) → 0 as s → ∞ by (2.4), we may then integrate
to get

Y (s) = −
∫ ∞

s

eλ4(s−τ)Z(τ) dτ. (2.19)

Using the expansion (2.16) for Z(τ), we obtain the expansion (2.18) for Y (s).
�

Remark 2.7. In what follows, we shall frequently use the fact that∫ s

s0

O(eμτ ) dτ =
∫ ∞

s0

O(eμτ ) dτ −
∫ ∞

s

O(eμτ ) dτ = C1 + O(eμs)

whenever μ < 0 as well as the analogous statement∫ s

s0

O(eμτ ) dτ = O(eμs)

whenever μ > 0. Moreover, similar statements hold with eμs replaced by seμs.

Proof of Theorem 1.1. Our assertions about the eigenvalues λi and the critical
values pi are basically facts about the quartic polynomial (2.3), so we estab-
lish them separately in Sect. 3, see Lemmas 3.1 and 3.4, respectively. In what
follows, we may thus focus solely on the asymptotic expansions stated in the
theorem.

For part (a), we assume pk < p < pk+1. In this case, we shall prove the
expansions

Y (s) =
l∑

j=1

aje
jλ3s + O(e(l+1)λ3s), 0 ≤ l ≤ k − 1 (2.20)

with the sum interpreted as zero when l = 0, as well as the refined expansion

Y (s) =
k∑

j=1

aje
jλ3s + b1e

λ2s + O(e(k+1)λ3s). (2.21)

Note that the former holds when l = 0 by Corollary 2.6. To establish them
both at the same time, we will show that (2.20) with l < k − 1 implies (2.20)
with l + 1 and that (2.20) with l = k − 1 implies (2.21).

Suppose then that (2.20) holds for some 0 ≤ l ≤ k − 1. In view of (2.6),
the Taylor series expansion of g near Y = 0 has the form

g(Y ) =
L∑

j=2

djY
j + O

(
Y L+1

)
, (2.22)
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where L is an arbitrary positive integer. We take L = l + 1 and use (2.20) to
get

g(Y (s)) =
l+1∑
j=2

cje
jλ3s + O

(
e(l+2)λ3s

)
.

The corresponding expression for Z(s) provided by Lemma 2.3 is

Z(s) =
3∑

i=1

αie
λis + βi

∫ s

s0

eλi(s−τ) · g(Y (τ)) dτ (2.23)

and we may combine the last two equations to arrive at

Z(s)=
3∑

i=1

αie
λis+βie

λis

∫ s

s0

⎡
⎣ l+1∑

j=2

cje
(jλ3−λi)τ +O

(
e(l+2)λ3τ−λiτ

)⎤
⎦ dτ.

(2.24)

Since pk < p < pk+1 by assumption, Lemmas 3.1 and 3.4 ensure that

λ1 < λ2 + λ3 < (k + 1)λ3 < λ2 < kλ3 < 0. (2.25)

In particular, jλ3 − λ1 is positive for each j ≤ l + 2 ≤ k + 1, whereas jλ3 − λ2

is positive when j ≤ k and negative when j ≥ k + 1. Thus, (2.24) leads to the
expansion

Z(s) =
l+1∑
j=1

aje
jλ3s + O

(
e(l+2)λ3s

)
,

if l ≤ k − 2, but it leads to the expansion

Z(s) =
k∑

j=1

aje
jλ3s + b1e

λ2s + O(e(k+1)λ3s),

if l = k − 1. In either case, a similar expansion is easily seen to hold for

Y (s) = −
∫ ∞

s

eλ4(s−τ)Z(τ) dτ

by (2.19). This shows that (2.20) with l < k − 1 implies (2.20) with l + 1
and that (2.20) with l = k − 1 implies (2.21). In particular, (2.21) follows by
induction.

We now repeat this argument to refine (2.21) even further. As before, we
insert (2.21) in (2.22) with L = k + 1 and we end up with

g(Y (s)) =
k+1∑
j=2

cje
jλ3s + O

(
e(λ2+λ3)s

)
.

Inserting the last equation in (2.23) and recalling (2.25), we deduce that

Z(s) =
k∑

j=1

aje
jλ3s + b1e

λ2s + ak+1e
(k+1)λ3s + O

(
e(λ2+λ3)s

)
.
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By (2.19), a similar expansion holds for Y (s), so the expansion (1.7) for part
(a) follows.

For part (b), we assume p = pk with k ≥ 2. In this case, we shall similarly
prove

Y (s) =
l∑

j=1

aje
jλ3s + O

(
e(l+1)λ3s

)
, 0 ≤ l ≤ k − 2 (2.26)

together with the refined expansion

Y (s) =
k−1∑
j=1

aje
jλ3s + O

(
sekλ3s

)
. (2.27)

Note that the former holds when l = 0 by Corollary 2.6. Proceeding as before,
we assume (2.26) holds for some 0 ≤ l ≤ k − 2 and insert (2.26) in (2.22) with
L = l + 1. As (2.26) is the same expansion that we had before, we still end up
with (2.24), but we now have

λ1 < λ2 + λ3 = (k + 1)λ3 < λ2 = kλ3 < 0 (2.28)

instead of (2.25). Assuming l < k−2, equation (2.24) leads to (2.26) with l+1
exactly as before. If l = k − 2, on the other hand, then it leads to (2.27).

We now repeat this argument to refine (2.27) even further. Inserting
(2.27) in (2.22) with L = k, one finds that

g(Y (s)) =
k∑

j=2

cje
jλ3s + O

(
se(k+1)λ3s

)
.

We combine this fact with (2.23) and recall (2.28) to get

Z(s) =
k−1∑
j=1

aje
jλ3s + b1se

kλ3s + akekλ3s + O
(
se(k+1)λ3s

)
.

Once again, this also implies the desired expansion (1.8) for part (b).
For part (c), finally, we assume p = p1. In this case, (2.27) with k = 1 is

already known to hold by Corollary 2.6. To refine this expansion, we insert it
in (2.22) with L = 1 and proceed as before to find that

Z(s) = b1se
λ3s + a1e

λ3s + O
(
s2e2λ3s

)
.

Using this and (2.22) with L = 2, we may then repeat the same approach once
more to end up with the expansion (1.9) which is stated in the theorem. �

3. Useful facts

In this section, we gather some basic facts related to the quartic polynomial
(2.3) in the supercritical case p ≥ pc > n+4

n−4 , in which case

λ∗ ≡ 4
p − 1

− n − 4
2

< 0. (3.1)



410 P. Karageorgis NoDEA

Lemma 3.1. Suppose n ≥ 13 and p ≥ pc. If m = 4
p−1 and Q4 is the quartic

(2.3), then

P(λ) = Q4(m − λ) − pQ4(m) (3.2)

has four real roots λ1 < 2λ∗ < λ2 ≤ λ∗ ≤ λ3 < 0 < λ4 and those are such that

λ1 + λ4 = λ2 + λ3 = 2λ∗. (3.3)

Moreover, a double root arises if and only if p = pc, in which case λ2 = λ3 =
λ∗.

Proof. Noting that Q4 is symmetric about n−4
2 , we see that P is symmetric

about

λ∗ ≡ m − n − 4
2

=
4

p − 1
− n − 4

2
< 0.

In addition, we have

lim
λ→±∞

P(λ) = +∞, P(2λ∗) = P(0) = (1 − p) · Q4(m) < 0 (3.4)

and we also have

P(λ∗) = Q4

(
n − 4

2

)
− p · Q4

(
4

p − 1

)
≥ 0 (3.5)

because p ≥ pc. This forces P(λ) to have at least one root in each of the
intervals

(−∞, 2λ∗), (2λ∗, λ∗], [λ∗, 0), (0,∞).

If λ∗ happens to be a root, then it must be a double root by symmetry; this
is only the case when equality holds in (3.5), namely when p = pc. As for our
assertion (3.3), this also follows by symmetry because λ is a root of P if and
only if 2λ∗ − λ is. �

Lemma 3.2. Suppose n ≥ 13 and p ≥ pc. Let λ2 ≤ λ3 < 0 be as in Lemma 3.1
and let Q4 be the quartic polynomial (2.3). Given any integer k ≥ 1, we then
have

λ2 > kλ3 ⇐⇒ Rk(p) < 0, (3.6)

where Rk(p) is the polynomial defined by

Rk(p) = (p − 1)4
[
Q4

(
k − 1
k + 1

· 4
p − 1

+
n − 4
k + 1

)
− pQ4

(
4

p − 1

)]
. (3.7)

Proof. First of all, we use our identity (3.3) to find that

λ2 > kλ3 ⇐⇒ 2λ∗ = λ2 + λ3 > (k + 1)λ3,

where λ∗ < 0 is defined by (3.1). According to Lemma 3.1, λ3 is the unique
root of

P(λ) = Q4

(
4

p − 1
− λ

)
− pQ4

(
4

p − 1

)
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that lies in the interval [λ∗, 0). Since k ≥ 1 by assumption, 2λ∗
k+1 also lies in

that interval, while equations (3.4) and (3.5) give P(λ∗) ≥ 0 > P(0). In
particular, we have

λ2 > kλ3 ⇐⇒ 2λ∗
k + 1

> λ3 ⇐⇒ P

(
2λ∗

k + 1

)
< 0,

where λ∗ = 4
p−1 − n−4

2 by definition (3.1), so the desired condition (3.6) fol-
lows. �

Lemma 3.3. Suppose n ≥ 13 and p ≥ pc. Let k > 1 be an integer, let Rk(p)
denote the polynomial (3.7) of the previous lemma, and let L denote the limit

L = lim
p→±∞

Rk(p)
p4

= Q4

(
n − 4
k + 1

)
− 8(n − 2)(n − 4). (3.8)

(a) If L ≤ 0, then Rk(p) is negative on [pc,∞).
(b) If L > 0, then Rk(p) has a unique root pk > pc and it is negative on

[pc, pk) but positive on (pk,∞).

Proof. First, we show that Rk(p) has two roots in (1, pc) by showing that

Rk(1) < 0, Rk

(
n

n − 4

)
> 0, Rk(pc) < 0. (3.9)

Using our definition (2.3), one can easily check that

lim
p→1

(p − 1)4 · Q4

(
a

p − 1

)
= a4 (3.10)

for any a ∈ R whatsoever; in view of our definition (3.7), this also implies

Rk(1) = 44

(
k − 1
k + 1

)4

− 44 < 0.

Next, we note that Q4 is positive on (0, n − 4) with Q4(n − 4) = 0, hence

Rk

(
n

n − 4

)
=

(
4

n−4

)4

· Q4

(
k(n−4)

k+1

)
> 0.

To show that Rk(pc) < 0, finally, we combine Lemma 3.1 with (3.6). When
p = pc, the lemma gives λ2 = λ3 < 0, hence λ2 > kλ3 and so Rk(pc) < 0 by
(3.6).

This completes the proof of (3.9), which implies that Rk(p) has two roots
in (1, pc). To find the location of the remaining roots, we shall now have to
distinguish two cases.

Case 1. When n ≤ 2(k + 1), there are two additional roots in [−1, 1) because

Rk(−1) ≤ 0, Rk(−1/3) > 0, Rk(1) < 0. (3.11)

Assuming this statement for the moment, Rk has no roots in [pc,∞), so it
must be negative there by (3.9), and thus the limit (3.8) is non-positive; in
fact, the limit has to be negative, as it can only be zero when Rk is a cubic
instead of a quartic.



412 P. Karageorgis NoDEA

To finish the proof for this case, we now establish (3.11). First of all, we
have

Rk(−1) = 24 · Q4

(
n

k + 1
− 2

)
≤ 0

because Q4 is non-positive on (−2, 0]. Since Rk(1) < 0 by (3.9), it remains to
show

(3/4)4 · Rk(−1/3) = Q4

(
n + 2
k + 1

− 3
)

+
Q4(−3)

3

= Q4

(
n

k + 1
− 2 − k − 1

k + 1

)
+ n2 − 1

is positive. In particular, it suffices to show that

Q4(x) + n2 − 1 > 0 whenever −3 < x < 0. (3.12)

Since Q4 is positive on (−3,−2), we may assume −2 ≤ x < 0. Then

x(x + 2) ≥ −1 =⇒ Q4(x) ≥ −(x + 2 − n)(x + 4 − n)

and the rightmost quadratic is increasing on (−∞, 0), so we easily get

Q4(x) ≥ n(2 − n) > 1 − n2.

Case 2. When n > 2(k + 1), there is one additional root in (−1, 1) because

Rk(−1) > 0, Rk(1) < 0. (3.13)

This follows easily by (3.9) and the fact that Q4 is positive on (0, n−4), which
gives

Rk(−1) = 24 · Q4

(
n

k + 1
− 2

)
> 0

for this case. In view of (3.9), we now know that Rk has three roots in (−1, pc),
being positive at the left endpoint and negative at the right endpoint. If the
limit (3.8) is positive, then Rk is positive as p → ∞, so the fourth root lies in
(pc,∞); if the limit is zero, then Rk is a cubic, so it has no other roots; and if
the limit is negative, then Rk is negative as p → −∞, so the fourth root lies
in (−∞,−1). The result now follows. �

Lemma 3.4. Suppose n ≥ 13 and p ≥ pc. Let λ2 ≤ λ3 < 0 be as in Lemma
3.1. Then there exists a finite sequence pc = p1 < p2 < · · · < pN such that
λ2 > (N + 1)λ3 and

λ2 ≤ kλ3 ⇐⇒ p ≥ pk

for each 1 ≤ k ≤ N . Moreover, if 
x� denotes the greatest integer in x, then
the length of this finite sequence is

N =

{

n−10

2 � when 13 ≤ n ≤ 19


n−9
2 � when n ≥ 20

}
.
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Proof. According to the previous two lemmas, it suffices to show that the limit
(3.8) is positive when k ≤ N but negative when k ≥ N + 1. Let us thus focus
on the quartic

F (k) ≡ 2(k + 1)4

n − 4
·
[
Q4

(
n − 4
k + 1

)
− 8(n − 2)(n − 4)

]
(3.14)

which is merely the limit (3.8) times a positive factor.
To show that F (k) has three roots in the interval (1 − n/2, 1), we show

that

F (1 − n/2) < 0, F (−1) > 0, F (0) < 0, F (1) > 0. (3.15)

First of all, we have Q4(−2) = Q4(n − 4) = 0, so we easily get

k = 0, 1 − n/2 =⇒ F (k) = −2(k + 1)4

n − 4
· 8(n − 2)(n − 4) < 0.

Using our definitions (2.3) and (3.14), we can also verify that

F (−1) = lim
k→−1

2(k + 1)4

n − 4
· Q4

(
n − 4
k + 1

)
= 2(n − 4)3 > 0,

while the fact that F (1) > 0 follows by the Taylor expansion

F (1) = 2n3 − 8n2 − 256n + 512

= 2(n − 13)3 + 70(n − 13)2 + 550(n − 13) + 226.

This proves (3.15), which implies that F has three roots in (1 − n/2, 1).
To see that the fourth root lies in (n/2 − 5, n/2 − 4), we now note that

F (n/2 − 5) = 2n4 − 60n3 + 608n2 − 2336n + 2432

= 2(n − 13)4 + 44(n − 13)3 + 296(n − 13)2 + 628(n − 13) + 118

is positive for each n ≥ 13, whereas

F (n/2 − 4) = −n4 + 18n3 − 124n2 + 416n − 608

=−(n−13)4−34(n−13)3−436(n − 13)2−2470(n−13)−5171

is negative. In particular, the fourth root of F must lie in (n/2 − 5, n/2 − 4).

Case 1. If 1 ≤ k ≤ n/2 − 5, then F (k) is positive by above.

Case 2. If k ≥ n/2 − 4, then F (k) is negative by above.

Case 3. If k = (n − 9)/2 and n is odd, finally, then we can readily check that
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F (k) =
n − 1

2
· (n3 − 33n2 + 312n − 892)

is positive if and only if n ≥ 20. In any case then, the result follows easily. �
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