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1. Introduction

Suppose that Ω is a bounded domain of R
N (N ≥ 2) with Lipschitz boundary

∂Ω. The following exponential energy functional

E(u) =
∫

Ω

exp(|∇u|2) dx (1.1)

originates from the exponential harmonic mappings. It has been studied in
[10,16,17], especially for the regularity theory. Naito [17] proved the existence,
uniqueness and Cα regularity of the minimizer. Duc and Eells [10], Lieberman
[16] proved the C∞ and C1,α regularity of the minimizer, respectively. Besides,
Siepe [21] studied the Lipschitz regularity of the minimizers of the more general
functional ∫

Ω

Φ(∇u) dx,

under the main assumption that implies the Δ2 condition on Φ: there exists a
positive number K > 2 such that

Φ(2ξ) ≤ KΦ(ξ).
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This condition implies that Φ(ξ) would be controlled by a polynomial of |ξ|.
Therefore, Δ2 condition is not satisfied by function Φ(ξ) = exp(|ξ|2).

Motivated by the above results, in this paper we are concerned with the
following non-uniformly elliptic Dirichlet boundary problem{−div (DξΦ(∇u)) = f − divg in Ω,

u = 0 on ∂Ω,
(1.2)

where Φ : R
N �→ R+ is a C1 nonnegative, strictly convex function, DξΦ :

R
N → R represents the gradient of Φ(ξ) with respect to ξ and ∇u represents

the gradient with respect to the spatial variables x. Without loss of generality
we may assume that Φ(0) = 0.

Our main assumptions are that Φ(ξ) satisfies the super-linear condition
(or 1-coercive condition, see [15], Chapter E)

lim
|ξ|→∞

Φ(ξ)
|ξ| = ∞, (1.3)

and the symmetric condition: there exists a positive number C > 0 such that

Φ(−ξ) ≤ CΦ(ξ), ξ ∈ R
N . (1.4)

For the right-hand side of Eq. (1.2) we assume that

f ∈ L1(Ω) and g ∈ (L∞(Ω))N . (1.5)

There are numerous examples of Φ(ξ) satisfying structure assumptions
(1.3) and (1.4) as well as Φ(ξ) = exp(|ξ|2) − 1. The well-known are listed as
follows.

Example 1.

Φ(ξ) =
1
p
|ξ|p, p > 1.

In this case, Eq. (1.2) is the p-Laplacian equation.

Example 2.

Φ(ξ) =
1
p1

|ξ1|p1 +
1
p2

|ξ2|p2 + · · · +
1

pN
|ξN |pN , pi > 1, i = 1, 2, . . . , N,

where ξ = (ξ1, ξ2, . . . , ξN ). In this case, Eq. (1.2) is the anisotropic p-Laplacian
equation.

Example 3.

Φ(ξ) = |ξ| log(1 + |ξ|).
(See [8, Chapter 4; 12].)

Example 4.

Φ(ξ) = |ξ|Lk(|ξ|),
where Li(s) = log(1 + Li−1(s)) (i = 1, 2, . . . , k) and L0(s) = log(1 + s) for
s ≥ 0. The corresponding elliptic problems are introduced in Prandtl-Eyring
fluids and plastic materials with logarithmic hardening law. (See [14].)
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The main purpose of this paper is to establish the existence and unique-
ness of solutions for problem (1.2) under the integrability condition (1.5). In
this case, it is reasonable to work with entropy solutions or renormalized solu-
tions, which need less regularity than the usual weak solutions. The notion of
entropy solutions was first proposed by Bénilan et al. [3] for the nonlinear ellip-
tic problems. It was then adapted to the study of some nonlinear elliptic and
parabolic problems. We refer to [2,4,5,18] for details. To do this, inspired by
the ideas in [6], we first employ a unifying method to prove the existence and
uniqueness of weak solutions for problem (1.2) under the integrability condition
that f ∈ LN (Ω). It is worth pointing out that we do not assume polynomial or
exponential growth for function Φ as in [1,7,16]. Generally speaking, finding
solutions for such problems or deriving the Euler–Lagrange equations for min-
imizers of variational problems is not a trivial fact when function Φ(ξ) does
not satisfy the Δ2-condition. Based on the above result we further study the
existence and uniqueness of entropy solutions for problem (1.2) by using the
approximation techniques.

Now we state our main results. The first two theorems are about the
existence and uniqueness of weak solutions and entropy solutions. The third
one is about the comparison principle.

Theorem 1.1. Let the structure assumptions (1.3) and (1.4) be satisfied. If
f ∈ LN (Ω) and g ∈ (L∞(Ω))N , then there exists a unique weak solution for
problem (1.2).

Theorem 1.2. Let the structure assumptions (1.3) and (1.4) be satisfied. If
f ∈ L1(Ω) and g ∈ (L∞(Ω))N , then there exists a unique entropy solution for
problem (1.2).

Theorem 1.3. Suppose that u is an entropy solution of problem (1.2) with g = 0.
If f ≥ 0, then we have u ≥ 0.

The rest of this paper is organized as follows. In Sect. 2, we state some
basic results that will be used later. We will prove the main results in Sect. 3.
In the following C will represent a generic constant that may change from line
to line even if in the same inequality.

2. Preliminaries

Let Φ(ξ) be a nonnegative convex function. We define the polar function of
Φ(ξ) as

Ψ(η) = sup
ξ∈RN

{η · ξ − Φ(ξ)}, (2.1)

which is also known as the Legendre transform of Φ(ξ). It is obvious that Ψ(η)
is a convex function. In the following we will list several lemmas.

Definition 2.1 [15, Definition 4.1.3]. Let C ⊂ R
N be convex. The mapping

F : C → R
N is said to be monotone (rest. strictly monotone)] on C when, for
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all x and x′ in C,

〈F (x) − F (x′), x − x′〉 ≥ 0,

[resp. 〈F (x) − F (x′), x − x′ > 0〉 whenever x �= x′].

Lemma 2.2 [15, Theorem 4.1.4]. Let f be a function differentiable on an open
set Ω ⊂ R

N and let C be a convex subset of Ω. Then, f is convex (resp.
strictly convex) on C if and only if its gradient ∇f is monotone (resp. strictly
monotone) on C.

Lemma 2.3. Suppose that Φ(ξ) is a convex C1 function with Φ(0) = 0. Then
we have, for all ξ, ζ ∈ R

N ,

Φ(ξ) ≤ ξ · DΦ(ξ), (2.2)
(DΦ(ξ) − DΦ(ζ)) · (ξ − ζ) ≥ 0. (2.3)

Lemma 2.4 [6] Suppose that Φ(ξ) is a nonnegative convex C1 function and
Ψ(η) is its polar function. Then we have, for ξ, η, ζ ∈ R

N ,

ξ · η ≤ Φ(ξ) + Ψ(η), (2.4)
Ψ(DΦ(ζ)) + Φ(ζ) = DΦ(ζ) · ζ. (2.5)

Lemma 2.5 [13, Chapter 3]. Suppose that Φ(ξ) is a nonnegative convex func-
tion with Φ(0) = 0, which satisfies (1.3). Then its polar function Ψ(η) in (2.1)
is a well-defined, nonnegative function in R

N , which also satisfies (1.3).

Lemma 2.6 [19, Chapter 4]. Let D ⊂ R
N be measurable with finite Lebesgue

measure and fk ∈ L1(D) and gk ∈ L1(D) (k = 1, 2, . . .), and

|fk(x)| ≤ gk(x), a.e. x ∈ D, k = 1, 2, . . . .

If

lim
k→∞

fk(x) = f(x), lim
k→∞

gk(x) = g(x), a.e. x ∈ D,

and

lim
k→∞

∫
D

gk(x) dx =
∫

D

g(x) dx < ∞,

then we have

limk→∞
∫

D

fk(x) dx =
∫

D

f(x) dx.

Lemma 2.7 [11, Proposition 9.1c]. Let D ⊂ R
N be measurable with finite

Lebesgue measure, and let {fn} be a sequence of functions in Lp(D) (p ≥ 1)
such that

fn ⇀ f weakly in Lp(D),
fn → g a.e. in D.

Then f = g a.e. in D.
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Lemma 2.8 [9, Chapter 3; 20]. Suppose that Φ(ξ) is a nonnegative convex func-
tion satisfying (1.3). Let D ⊂ R

N be a measurable with finite Lebesgue measure
|D| and let {fk} ⊂ L1(D; RN ) be a sequence satisfying that∫

D

Φ(fk) dx ≤ C, (2.6)

where C is a positive constant. Then there exist a subsequence {fkj
} ⊂ {fk}

and a function f ∈ L1(D; RN ) such that

fkj
⇀ f weakly in L1(D; RN ) as j → ∞ (2.7)

and ∫
D

Φ(f) dx ≤ lim inf
j→∞

∫
D

Φ(fkj
) dx ≤ C. (2.8)

3. The proofs of main results

3.1. Weak solutions

In this section we will give a reasonable definition for weak solutions and prove
the existence and uniqueness of weak solutions for problem (1.2).

Definition 3.1. A function u ∈ W 1,1
0 (Ω) with DξΦ(∇u) · ∇u ∈ L1(Ω) is called

a weak solution of problem (1.2) if for every ϕ ∈ C1
0 (Ω), we have∫

Ω

DξΦ(∇u) · ∇ϕdx =
∫

Ω

fϕ dx +
∫

Ω

g · ∇ϕdx. (3.1)

Proof of Theorem 1.1. We consider the variational problem

min{J(v)|v ∈ V },

where V = {v ∈ W 1,1
0 (Ω)|Φ(∇v) ∈ L1(Ω)}, and functional J is

J(v) =
∫

Ω

Φ(∇v) dx −
∫

Ω

fv dx −
∫

Ω

g · ∇v dx.

We will establish that J(v) has a minimizer u(x) in V and then prove that the
minimizer satisfies the Euler–Lagrange equation of functional J weakly.

Due to (1.3), for every δ > 0, there exists a constant Cδ > 0 such that

|ξ| ≤ δΦ(ξ) + Cδ. (3.2)

By Hölder’s and Sobolev’s inequalities and (3.2), we have∣∣∣∣
∫

Ω

fv dx

∥∥∥∥ ≤ ‖f‖LN (Ω)‖v‖L1∗ (Ω)

≤ C‖f‖LN (Ω)‖∇v‖L1(Ω)

≤ Cδ‖Φ(∇v)‖L1(Ω) + Cδ (3.3)

and ∣∣∣∣
∫

Ω

g · ∇v dx

∣∣∣∣ ≤ ‖g‖L∞(Ω)‖∇v‖L1(Ω)

≤ Cδ‖Φ(∇v)‖L1(Ω) + Cδ. (3.4)
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Choosing δ sufficiently small, we conclude from (3.3) and (3.4) that

J(v) ≥ 1
2

∫
Ω

Φ(∇v) dx − C(Φ, ‖f‖LN (Ω), ‖g‖L∞(Ω)) ≥ −C.

Thus we get

−C ≤ inf
v∈V

J(v) ≤ J(0) = 0.

Then we can find a minimizing sequence {vn}∞
n=1 ⊂ V such that

lim
n→∞ J(vn) = inf

v∈V
J(v).

It follows that, for n = 1, 2, . . . ,∫
Ω

Φ(∇vn) dx ≤ C.

From Lemma 2.8 we may choose a subsequence {vni
} of {vn} and a function

u ∈ W 1,1
0 (Ω) such that

∇vni
⇀ ∇u weakly in L1(Ω).

Since ∫
Ω

Φ(∇u) dx ≤ lim inf
i→∞

∫
Ω

Φ(∇vni
) dx,

we know that u ∈ V, and J(v) is weakly lower semi-continuous on V, which
ensures that

J(u) ≤ lim inf
i→∞

J(vni
) = inf

v∈V
J(v).

This implies that u ∈ V is a minimizer of the functional J(v) in V, i.e.,

J(u) = inf
v∈V

J(v).

Furthermore, since u ∈ V is a minimizer, we have λu ∈ V, λ ∈ (0, 1), and

J(u) ≤ J(λu),

which implies ∫
Ω

Φ(∇u) dx −
∫

Ω

fu dx −
∫

Ω

g · ∇u dx

≤
∫

Ω

Φ(λ∇u) dx − λ

∫
Ω

fu dx − λ

∫
Ω

g · ∇u.

Recalling (2.3), we know

Φ(∇u) − Φ(λ∇u) ≥ (1 − λ)DξΦ(λ∇u) · ∇u.

Then

(1 − λ)
∫

Ω

DξΦ(λ∇u) · ∇u dx ≤ (1 − λ)
∫

Ω

fu dx + (1 − λ)
∫

Ω

g · ∇u dx.

Dividing the above inequality by 1− λ, and passing to limits as λ → 1, we get

lim inf
λ→1

∫
Ω

DξΦ(λ∇u) · ∇u dx ≤
∫

Ω

fu dx +
∫

Ω

g · ∇u dx.
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Since DξΦ(λ∇u) · ∇u ≥ 0, by Fatou’s Lemma we conclude that∫
Ω

DξΦ(∇u) · ∇u dx ≤
∫

Ω

fu dx +
∫

Ω

g · ∇u dx.

Using (2.2) and the same argument as (3.4), we have

1
2

∫
Ω

DξΦ(∇u) · ∇u dx ≤ C.

It follows from (2.5) that DξΦ(∇u) · ∇u ∈ L1(Ω) and Ψ(DξΦ(∇u)) ∈ L1(Ω).
For some fixed ϕ(x) ∈ C1

0 (Ω), we know that J(u) ≤ J(λu+(1−λ)ϕ),∀λ ∈
(0, 1). Denote ξλ = λ∇u + (1 − λ)∇ϕ. In light of (2.3), we find

Φ(∇u) − Φ(ξλ) ≥ (1 − λ)DξΦ(ξλ) · (∇u − ∇ϕ),

and deduce as above to have∫
Ω

DξΦ(ξλ) · (∇u − ∇ϕ) dx

≤
∫

Ω

fu dx −
∫

Ω

fϕ dx +
∫

Ω

g · ∇u dx −
∫

Ω

g · ∇ϕdx. (3.5)

Consider

g(λ) = Φ(ξλ) = Φ(λ∇u + (1 − λ)∇φ).

It is obvious that g is a convex function in R. Then by the monotonicity of a
convex function’s derivative, we know

g′(0) ≤ g′(λ) ≤ g′(1), λ ∈ (0, 1),

which yields that

DξΦ(∇φ) · (∇u − ∇ϕ) ≤ DξΦ(ξλ) · (∇u − ∇ϕ) ≤ DξΦ(∇u) · (∇u − ∇φ).
(3.6)

Recalling (2.4), (1.4) and (2.5), we have

|DξΦ(∇u) · ∇ϕ| ≤ Ψ(DξΦ(∇u)) + Φ(∇ϕ) + Φ(−∇ϕ)
≤ Ψ(DξΦ(∇u)) + (C + 1)Φ(∇ϕ). (3.7)

As Ψ(DξΦ(∇u)) ∈ L1(Ω) and ϕ ∈ C1
0 (Ω), it is easy to know DξΦ(∇ϕ) · (∇u−

∇ϕ) ∈ L1(Ω) and DξΦ(∇u) · (∇u − ∇ϕ) ∈ L1(Ω). By Lebesgue dominated
convergence theorem, we have∫

Ω

lim
λ→1

DξΦ(ξλ) · (∇u − ∇ϕ) dx = lim
λ→1

∫
Ω

DξΦ(ξλ) · (∇u − ∇ϕ) dx.

Moreover, recalling (3.5) we have∫
Ω

DξΦ(∇u) · (∇u − ∇ϕ) dx≤
∫

Ω

fu dx −
∫

Ω

fϕ dx+
∫

Ω

g · ∇u dx−
∫

Ω

g · ∇ϕdx.

Denote

A0 =
∫

Ω

DξΦ(∇u) · ∇u dx −
∫

Ω

fu dx −
∫

Ω

g · ∇u dx.
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Then we conclude that, for every ϕ(x) ∈ C1
0 (Ω),∫

Ω

DξΦ(∇u) · ∇ϕdx −
∫

Ω

fϕ dx −
∫

Ω

g · ∇ϕdx ≥ A0.

By a scaling argument, it follows that∫
Ω

DξΦ(∇u) · ∇ϕdx −
∫

Ω

fϕ dx −
∫

Ω

g · ∇ϕdx = 0.

It means that u(x) is a weak solution of problem (1.2).
Suppose that there exists another weak solution ũ for problem (1.2).

Then, for every ϕ ∈ C∞
0 (Ω), we have∫

Ω

DξΦ(∇ũ) · ∇ϕdx =
∫

Ω

fϕ dx +
∫

Ω

g · ∇ϕdx,

which follows that ∫
Ω

[DξΦ(∇u) − DξΦ(∇ũ)] · ∇ϕdx = 0. (3.8)

Recalling (2.4) and (2.5) we observe that

|DξΦ(∇ũ) · ∇u| ≤ Φ(∇u) + Φ(−∇u) + Ψ(DξΦ(∇ũ))

≤ (C + 1)Φ(∇u) + DξΦ(∇ũ) · ∇ũ ∈ L1(Ω).

Making use of the approximation argument, we conclude that w = u − ũ can
be a test function in (3.8). Therefore, we deduce that∫

Ω

[DξΦ(∇u) − DξΦ(∇ũ)] · (∇u − ∇ũ) dx = 0.

By the strict convexity of Φ, we have ∇u = ∇ũ a.e. in Ω. Recalling the fact
that u, ũ ∈ W 1,1

0 (Ω), we know that u = ũ a.e. in Ω. This finishes the proof. �
3.2. Entropy solutions

In this section we are ready to prove the existence and uniqueness of entropy
solutions for problem (1.2). We would like to point out that our approach is
much influenced by [3].

Let Tk denote the truncation function at height k ≥ 0:

Tk(r) = min{k,max{r,−k}} =

⎧⎨
⎩

k if r ≥ k,
r if |r| < k,
−k if r ≤ −k.

Next, we define the very weak gradient of a measurable function u with
Tk(u) ∈ W 1,1

0 (Ω). As a matter of the fact, working as in Lemma 2.1 of [3] we
can prove the following result:

Proposition 3.2. For every measurable function u on Ω such that Tk(u) belongs
to W 1,1

0 (Ω) for every k > 0, there exists a unique measurable function v : Ω →
R

N , such that

∇Tk(u) = vχ{|u|<k}, almost everywhere in Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E. Moreover,
if u belongs to W 1,1

0 (Ω), then v coincides with the weak gradient of u.
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From the above Proposition, we denote v = ∇u, which is called the very
weak gradient of u. The notion of the very weak gradient allows us to give the
following definition of entropy solutions for problem (1.2).

Definition 3.3. A measurable function u with Tk(u) ∈ W 1,1
0 (Ω) is an entropy

solution to problem (1.2) if the following conditions are satisfied:
(i)

∫
Ω

DξΦ(∇Tk(u)) · ∇Tk(u) dx < ∞;
(ii) For every k > 0 and every function φ ∈ C1

0 (Ω),
∫

Ω

DξΦ(∇u) · ∇Tk(u − φ) dx ≤
∫

Ω

fTk(u − φ) dx +
∫

Ω

g · ∇Tk(u − φ) dx

(3.9)

holds.

Proof of Theorem 1.2. (1) Existence of entropy solutions.
We first introduce the approximate problems. Let {fn}, {gn} ⊂ C∞

0 (Ω)
be two sequences of functions strongly convergent to f in L1(Ω) and to g in
(L∞(Ω))N such that

‖fn‖L1(Ω) ≤ ‖f‖L1(Ω), ‖gn‖L∞(Ω) ≤ ‖g‖L∞(Ω). (3.10)

Let us consider the approximate problems{−div (DξΦ(∇un)) = fn − divgn in Ω,
un = 0 on ∂Ω.

(3.11)

By virtue of Theorem 1.1 we can find un ∈ W 1,1
0 (Ω) with∫

Ω

DξΦ(∇un) · ∇un dx < ∞, (3.12)

that is a weak solution of problem (3.11) in the sense of Definition 3.1. Our aim
is to prove that a subsequence of these approximate solutions {un} converges
to a measurable function u, which is an entropy solution of problem (1.2). We
will divide the proof into several steps.

Using an approximation argument, we can choose Tk(un) as a test func-
tion in (3.11) to have∫

Ω

DξΦ(∇Tk(un)) · ∇Tk(un) dx

=
∫

Ω

fnTk(un) dx +
∫

Ω

gn · ∇Tk(un) dx. (3.13)

It follows from (3.10) that∫
Ω

DξΦ(∇Tk(un)) · ∇Tk(un) dx

≤ k‖fn‖L1(Ω) + ‖gn‖L∞(Ω)

∫
Ω

|∇Tk(un)| dx

≤ k‖f‖L1(Ω) + ‖g‖L∞(Ω)

∫
Ω

|∇Tk(un)| dx. (3.14)
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Recalling (2.2) and using the similar estimate as in (3.4), we have∫
Ω

Φ(∇Tk(un)) dx ≤
∫

Ω

DξΦ(Tk(∇un)) · ∇Tk(un) dx ≤ C(k + 1), (3.15)

which implies from (3.2) that∫
Ω

|∇Tk(un)| dx ≤ Cδk + Cδ, (3.16)

that is Tk(un) is bounded in W 1,1
0 (Ω).

Step 1. We shall prove the convergence in measure of {un} and we shall find a
subsequence which is almost everywhere convergent in Ω.

Recalling Sobolev embedding theorem, we have the following continuous
embedding

W 1,1
0 (Ω) ↪→ L1∗

(Ω),

where 1∗ = N
N−1 . It follows from (3.16) that for every k > 1,

‖Tk(un)‖L1∗ (Ω) ≤ C‖∇Tk(un)‖L1(Ω) ≤ Cδk + Cδ.

Noting that {|un| ≥ k} = {|Tk(un)| ≥ k}, we have

meas{|un| > k} ≤
(‖Tk(un)‖L1∗ (Ω)

k

)1∗

≤
(

Cδ +
Cδ

k

)1∗

. (3.17)

For every fixed ε > 0, and every k > 0, we know that

{|un − um| > ε} ⊂ {|un| > k} ∪ {|um| > k} ∪ {|Tk(un) − Tk(um)| > ε}.

Recalling the convergence of {Tk(un)} in Lq(Ω) with q ∈ [1, 1∗) and (3.17), we
conclude that

lim sup
n,m→∞

meas{|un − um| > ε} ≤
(

Cδ +
Cδ

k

)1∗

.

First sending k → ∞ and then δ → 0, we conclude that

lim sup
n,m→∞

meas{|un − um| > ε} = 0,

which implies the convergence in measure of {un}, and then we find an a.e.
convergent subsequence (still denoted by {un}) in Ω such that

un → u a.e. in Ω. (3.18)

Recalling (3.15) and Lemma 2.8, we may draw a subsequence (we also
denote it by the original sequence for simplicity) such that

∇Tk(un) ⇀ ηk, weakly in L1(Ω) (3.19)

and ∫
Ω

Φ(ηk) dx ≤ Ck.

In view of (3.18), we conclude that ηk = ∇Tk(u) a.e. in Ω.
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Step 2. We shall prove that the sequence {∇un} converges almost everywhere
in Ω to ∇u (up to a subsequence).

We first claim that {∇un} is a Cauchy sequence in measure. Let δ > 0,
and denote

E1 := {x ∈ Ω : |∇un| > h} ∪ {|∇um| > h},

E2 := {x ∈ Ω : |un − um| > 1}
and

E3 := {x ∈ Ω : |∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ 1, |∇un − ∇um| > δ},

where h will be chosen later. It is obvious that

{x ∈ Ω : |∇un − ∇um| > δ} ⊂ E1 ∪ E2 ∪ E3.

For k ≥ 0, we can write

{x ∈ Ω : |∇un| ≥ h} ⊂ {x ∈ Ω : |un| ≥ k} ∪ {x ∈ Ω : |∇Tk(un)| ≥ h}.

Thus, applying (3.16) and (3.17), there exist constants C > 0 such that

meas{x ∈ Ω : |∇un| ≥ h} ≤
(

Cδ +
Cδ

k

)1∗

+
Cδk + Cδ

h
.

Without loss of generality, we can assume that 0 < δ < 1, then we have

meas{x ∈ Ω : |∇un| ≥ h} ≤ Cδ1∗
+

Cδ

k1∗ +
Ck

h
+

Cδ

h
.

By choosing k = Cδh
1

1+1∗ , we deduce that

meas{x ∈ Ω : |∇un| ≥ h} ≤ Cδ + Cδ(h− 1∗
1+1∗ + h−1).

Let ε > 0. We may choose δ = ε/6 and let h = h(ε) large enough such that

meas(E1) ≤ ε/3, for all n,m ≥ 0. (3.20)

On the other hand, by Step 1, we know that {un} is a Cauchy sequence
in measure. Then there exists N1(ε) ∈ N such that

meas(E2) ≤ ε/3, for all n,m ≥ N1(ε). (3.21)

Moreover, since Φ is C1 and strictly convex, then from Lemma 2.2 and
Definition 2.1, there exists a real valued function m(h, δ) > 0 such that

(DΦ(ξ) − DΦ(ζ)) · (ξ − ζ) ≥ m(h, δ) > 0, (3.22)

for all ξ, ζ ∈ R
N with |ξ|, |ζ| ≤ h, |ξ − ζ| ≥ δ. By taking T1(un − um) as a

test function in the approximation equation (3.11) and integrating on E3, we
obtain

m(h, δ)meas(E3)

≤
∫

E3

[DξΦ(∇un) − DξΦ(∇um)] · (∇un − ∇um) dx

=
∫

E3

[fn − fm]T1(un − um) dx +
∫

E3

[gn − gm] · (∇un − ∇um) dx

≤ ‖fn − fm‖L1(Ω) + 2hmeas(Ω)‖gn − gm‖L∞(Ω) := αn,m,
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which implies that

meas(E3) ≤ αn,m

m(h, δ)
≤ ε/3,

for all n,m ≥ N2(ε, δ). It follows from (3.20) and (3.21) that

meas{x ∈ Ω : |∇un − ∇um| > δ} ≤ ε, for all n,m ≥ max{N1, N2},

that is {∇un} is a Cauchy sequence in measure. Then we may choose a sub-
sequence (denote it by the original sequence) such that

∇un → v a.e. in Ω.

Thus, from Proposition 3.2 and ∇Tk(un) ⇀ ∇Tk(u) weakly in L1(Ω), we
deduce from Lemma 2.7 that v coincides with the very weak gradient of u.
Therefore, we have

∇un → ∇u a.e. in Ω. (3.23)

Step 3. We shall prove that u is an entropy solution.

Now we choose vn = Tk(un −φ) as a test function in (3.11) for k > 0 and
φ ∈ C1

0 (Ω). We note that, if L = k + ‖φ‖L∞(Ω), then∫
Ω

DξΦ(∇un) · ∇Tk(un − φ) dx

=
∫

Ω

DξΦ(∇TL(un)) · ∇Tk(TL(un) − φ) dx

and ∫
Ω

DξΦ(∇TL(un)) · ∇Tk(TL(un) − φ) dx

=
∫

Ω

fnTk(un − φ) dx +
∫

Ω

gn · ∇Tk(un − φ) dx. (3.24)

The first term on the left hand side of (3.24) can be written as∫
Ω

DξΦ(∇TL(un)) · ∇Tk(TL(un) − φ) dx

=
∫

{|TL(un)−φ|≤k}
DξΦ(∇TL(un)) · ∇TL(un) dx

−
∫

{|TL(un)−φ|≤k}
DξΦ(∇TL(un)) · ∇φ dx.

From (2.2), we have

DξΦ(∇TL(un)) · ∇TL(un) ≥ 0,

it follows from Fatou’s lemma and (3.23) that∫
{|TL(u)−φ|≤k}

DξΦ(∇TL(u)) · ∇TL(u) dx

≤ lim inf
n→∞

∫
{|TL(un)−φ|≤k}

DξΦ(∇TL(un)) · ∇TL(un) dx.
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In view of (3.14) and (2.5), we know that∫
Ω

Ψ(DξΦ(∇TL(un))) dx ≤ C. (3.25)

Applying Lemmas 2.5, 2.8 and (3.23), we conclude that (up to a subsequence)

DξΦ(∇TL(un)) ⇀ DξΦ(∇TL(u)) weakly in L1(Ω). (3.26)

Denote

ξn = DξΦ(∇TL(un)), En = {x ∈ Ω : |TL(un) − φ| ≤ k}
and

E = {x ∈ Ω : |TL(u) − φ| ≤ k}
for simplicity. We can write∫

En

ξn · ∇φ dx =
∫

E

ξn · ∇φ dx +
∫

En\E

ξn · ∇φ dx := I1 + I2.

From (3.26), we have

lim
n→∞ I1 =

∫
{|TL(u)−φ|≤k}

DξΦ(∇TL(u)) · ∇φ dx.

Recalling Lemma 2.5, we know that Ψ also satisfies the super-linear con-
dition (1.3). Then for every ε > 0, there exists a constant M > 0 such that

|s| ≤ εΨ(s), for all |s| > M.

It follows that from (3.25) that

|I2| ≤ C(‖∇φ‖L∞(Ω))
∫

Ω

|ξn|χEn\E dx

= C

(∫
{|ξn|≤M}

|ξn|χEn\E dx +
∫

{|ξn|≥M}
|ξn|χEn\E dx

)

≤ C

(
Mmeas(En\E) + ε

∫
Ω

Ψ(ξn) dx

)

≤ CMmeas(En\E) + Cε.

Moreover, by the arbitrariness of ε, we get

lim
n→∞ |I2| = 0.

Thus we obtain∫
{|TL(un)−φ|≤k}

DξΦ(∇TL(un)) · ∇φ dx→
∫

{|TL(u)−φ|≤k}
DξΦ(∇TL(u)) · ∇φ dx.

Using the strong convergence of fn and gn, (3.18), (3.19) and the Lebesgue
dominated convergence theorem, we can pass to the limits as n → ∞ in the
other terms of (3.24) to conclude∫

Ω

DξΦ(∇u) · ∇Tk(u − φ) dx ≤
∫

Ω

fTk(u − φ) dx +
∫

Ω

g · ∇Tk(u − φ) dx,
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for all k > 0 and φ ∈ C1
0 (Ω). Therefore, we finish the proof of the existence of

entropy solutions.
(2) Uniqueness of entropy solutions.
Suppose that v is another entropy solution for problem (1.2). Our aim

is to prove that u = v a.e. in Ω. We write the entropy inequality (3.9) corre-
sponding to solution u with test function Th(v) and v with test function Th(u).
Add up both results, we have∫

{|u−Th(v)|≤k}
[Dξ(Φ∇u) − g] · ∇Tk(u − Th(v)) dx

+
∫

{|v−Th(u)|≤k}
[Dξ(Φ∇v) − g] · ∇Tk(v − Th(u)) dx

≤
∫

Ω

f [Tk(u − Th(v)) + Tk(v − Th(u))] dx. (3.27)

First we consider the right-hand side of inequality (3.27). Noting that

Tk(u − Th(v)) + Tk(v − Th(u)) = 0 in {|u| ≤ h, |v| ≤ h},

then we have ∣∣∣∣
∫

Ω

f [Tk(u − Th(v)) + Tk(v − Th(u))] dx

∣∣∣∣
≤ 2k

(∫
{|u|>h}

|f | dx +
∫

{|v|>h}
|f | dx

)
.

Since both meas {|u| > h} and meas {|v| > h} tend to 0 as h goes to infinity
from (3.17), the right-hand side of inequality (3.27) tends to 0 as h goes to
infinity.

For the left-hand side of (3.27), let us define

A0 = {x ∈ Ω : |u − v| ≤ k, |u| ≤ h, |v| ≤ h},

A1 = {x ∈ Ω : |u − Th(v)| ≤ k, |v| > h},

A′
1 = {x ∈ Ω : |v − Th(u)| ≤ k, |u| > h},

A2 = {x ∈ Ω : |u − Th(v)| ≤ k, |v| ≤ h, |u| > h},

A′
2 = {x ∈ Ω : |v − Th(u)| ≤ k, |u| ≤ h, |v| > h},

then we have {x ∈ Ω : |u − Th(v)| ≤ k} = A0 ∪ A1 ∪ A2 and {x ∈ Ω :
|v − Th(u)| ≤ k} = A0 ∪ A′

1 ∪ A′
2. On the set A0 the left-hand side of (3.27) is

equal to ∫
A0

[DξΦ(∇u) − DξΦ(∇v)] · ∇(u − v) dx.

On the set A1, for the first term of the left-hand side in (3.27), from (2.2) we
have ∫

A1

DξΦ(∇u) · ∇u dx ≥ −
∫

A1

g · ∇u dx.
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Since g ∈ L∞(Ω), we have
∣∣∣∣
∫

A1

g · ∇u dx

∣∣∣∣ ≤ ‖g‖L∞(A1)‖∇u‖L1(A1).

Since |A1| tends to zero as h → ∞, we know that ‖g‖L∞(A1) tends to zero as
h → ∞. If we prove that ‖∇u‖L1(A1) is bounded, then the term with A1 will
converge to zero. We decompose A1 as

A1 = {v > h, |u − h| ≤ k} ∪ {v ≤ −h, |u + h| ≤ k} = A+
1 ∪ A−

1 .

On A+
1 (and the same for A−

1 ) we have −k ≤ u − h ≤ k, and then h − k ≤
u ≤ h + k. Hence A+

1 ⊆ Bh−k,2k, where Bh,k = {h ≤ |u| ≤ h + k}. Choosing
φ = Th(u) in (3.9), we get

∫
Bh,k

DξΦ(∇u) · ∇u dx ≤ k‖f‖L1(Ω) + ‖g‖L∞(Ω)

∫
Bh,k

|∇u| dx.

It follows from (2.2) and the similar estimate as in (3.4) that
∫

Bh,k

Φ(∇u) dx ≤ C(k + 1).

Moreover, we have
∫

Bh,k

|∇u| dx ≤ C(k + 1).

Thus we deduce that

‖∇u‖L1(A1) ≤
∫

Bh−k,2k

|∇u| dx ≤ C(k + 1).

Therefore, we have

lim sup
h→∞

∫
A1

[DξΦ(∇u) − g] · ∇u dx ≥ 0.

On the set A2, we have
∫

A2

[DξΦ(∇u) − g] · ∇(u − v) dx

≥ −
∫

A2

DξΦ(∇u) · ∇v dx +
∫

A2

g · ∇v dx −
∫

A2

g · ∇u dx. (3.28)

Reasoning as before, the second and third terms of the right-hand side in (3.28)
tend to zero as h tends to infinity. Furthermore, by (2.4), (1.4) and (2.5) we
know that
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∫
A2

|DξΦ(∇u) · ∇v| dx

≤
∫

A2

Ψ(DξΦ(∇u)) dx +
∫

A2

Φ(∇v) dx +
∫

A2

Φ(−∇v) dx

≤
∫

{h<|u|<h+k}
DξΦ(∇u) · ∇u dx + (C + 1)

∫
{h−k<|v|<h}

DξΦ(∇v) · ∇v dx.

For given k > 0, define the function Th,1(s) = T1(s − Th(s)) by

Th,1(s) =

⎧⎨
⎩

s − hsign(s) if h < |s| < h + 1,
sign(s) if |s| ≥ h + 1,
0 if |s| ≤ h.

Choosing k = 1 and φ = Th(u) in the inequality (3.9), we obtain
∫

{h≤|u|≤h+1}
DξΦ(∇u) · ∇u dx

≤
∫

Ω

fTh,1(u) dx +
∫

{h≤|u|≤h+1}
g · ∇u dx

≤
∫

{|u|>h}
|f | dx + ‖g‖L∞(Ω)

∫
{h≤|u|≤h+1}

|∇u| dx.

It follows from (3.17) and the above argument that

lim
h→∞

∫
{h<|u|<h+1}

DξΦ(∇u) · ∇u dx = 0. (3.29)

Therefore, we conclude from (3.29) that

lim
h→∞

∫
A2

DξΦ(∇u) · ∇v dx = 0.

Due to the above reason, the same estimates can be done on A′
1 and A′

2.
Summing up the results obtained for A0, A1, A

′
1, A2 and A′

2, we deduce
that

lim
h→∞

∫
A0

[DξΦ(∇u) − DξΦ(∇v)] · ∇(u − v) dx = 0,

that is, for every k > 0,∫
{|u−v|≤k}

[DξΦ(∇u) − DξΦ(∇v)] · ∇(u − v) dx = 0.

Thus from the strict convexity of function Φ(ξ), we have ∇u = ∇v a.e. in Ω.
Furthermore, Sobolev embedding theorem implies that

‖Tk(u − v)‖L1∗ (Ω) ≤ C‖∇Tk(u − v)‖L1(Ω) = 0, for all k > 0,

and hence u = v a.e. in Ω. This completes the proof. �
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Next, we begin to prove a comparison result.

Proof of Theorem 1.3. Choosing Tl(u+) as a test function in (3.9) of Defini-
tion 3.3, we obtain∫

Ω

DξΦ(∇u) · ∇Tk(u − Tl(u+)) dx ≤
∫

Ω

fTk(u − Tl(u+)) dx. (3.30)

For the right hand side of (3.30), we can write∫
Ω

fTk(u − Tl(u+)) dx =
∫

{u≥l}
fTk(u − Tl(u+)) dx

+
∫

{0<u<l}
fTk(u − Tl(u+)) dx

+
∫

{u≤0}
fTk(u − Tl(u+)) dx.

If 0 < u < l, then u − Tl(u+) = 0 and∫
{0<u<l}

fTk(u − Tl(u+)) dx = 0.

If u ≤ 0, then u − Tl(u+) = u and∫
{u≤0}

fTk(u − Tl(u+)) dx ≤ 0

due to the fact that f ≥ 0. If u ≥ l, then u+ = u. Therefore, we have∫
Ω

fTk(u − Tl(u+)) dx ≤
∫

{u≥l}
fTk(u − Tl(u)) dx. (3.31)

On the other hand, we can split the left hand side of (3.30) into three
terms∫

Ω

DξΦ(∇u) · ∇Tk(u − Tl(u+)) dx

=
∫

{u≤0}
DξΦ(∇u) · ∇Tk(u) dx +

∫
{l<u<l+k}

DξΦ(∇u) · ∇(u − l) dx

+
∫

{u≥l+k}
DξΦ(∇u) · ∇l dx.

Recalling DξΦ(∇u) · ∇u ≥ 0 and (2.4), we deduce that∫
Ω

DξΦ(∇u) · ∇Tk(u − Tl(u+)) dx ≥
∫

Ω

DξΦ(∇Tk(u−)) · ∇Tk(u−) dx

≥
∫

Ω

Φ(∇Tk(u−)) dx.

It follows from (3.30) and (3.31) that∫
Ω

Φ(∇Tk(u−)) dx ≤
∫

{u≥l}
fTk(u − Tl(u)) dx.
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Using the Lebesgue dominated theorem and letting l → ∞ in the above
inequality, we conclude that

∫
Ω

Φ(∇Tk(u−)) dx ≤ 0,

which implies from the nonnegativity of Φ(ξ) that ∇Tk(u−) = 0 and
Tk(u−) = C. Then from Tk(u−) ∈ W 1,1

0 (Ω) we have u− = 0 a.e. in Ω, i.e.,
u ≥ 0 a.e. in Ω. This finishes the proof. �
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