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Abstract. In this paper we study boundary value problems for semilinear
equations involving strongly degenerate elliptic differential operators. Via
a Pohozaev’s type identity we show that if the nonlinear term grows faster
than some power function then the boundary value problem has no non-
trivial solution. Otherwise when the nonlinear term grows slower than the
same power function, by establishing embedding theorems for weighted
Sobolev spaces associated with the strongly degenerate elliptic equations,
then applying the theory of critical values in Banach spaces, we prove
that the problem has a nontrivial solution, or even infinite number of
solutions provided that the nonlinear term is an odd function.
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1. Introduction

Boundary value problems for semilinear elliptic equations were studied in [1,2]
(see also the references therein); and for semilinear degenerate elliptic equa-
tions in [3–18] (see also the references therein and the recent survey paper [21]
and the book [22]). Operators considered in [3–18] are degenerate on smooth
surfaces. In this note we consider the following boundary value problem for
semilinear equation involving strongly degenerate elliptic differential operator

Δxu + Δyu + |x|2α|y|2βΔzu − c(x, y, z)u + g(x, y, z, u)
:= Pα,βu − c(x, y, z)u + g(x, y, z, u) = 0 in Ω (1)

u = 0 on ∂Ω, (2)
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where x = (x1, . . . , xn1) ∈ R
n1 , y = (y1, . . . , yn2) ∈ R

n2 , z = (z1, . . . , zn3) ∈
R

n3 ; 0 � c(x, y, z), c(x, y, z) ∈ C0,σ(Ω), g(x, y, z, 0) = 0, g(x, y, z, t) �≡ 0, α,
β ≥ 0, α + β > 0, 0 < σ � 1 and Ω is a bounded domain with a
smooth boundary in R

n1+n2+n3 . It is obvious that the problem (1)–(2)
has a solution u ≡ 0, called the trivial solution. We are interested in
finding other nontrivial solutions to the problem (1)–(2). Note that the
operator Pα,β under consideration is degenerate on two intersecting sur-
faces. Some particular cases of the present paper have been announced
in [19,20]. The paper is organized as follows. In Sect. 2, if the non-
linear term grows faster than a power function and the domain Ω is
Pα,β-star-shape, we establish nonexistence theorem via an identity of
Pohozaev’s type. In Sect. 3 we prove some embedding theorems for weighted
Sobolev spaces associated with the operator Pα,β . Some of the results here are
optimal in the sense that they can not be improved. The method used in this
section can be applied to the cases considered in [8–11] and produce a better
result than that of [8–11]. Note that embedding theorems for weighted Sobolev
spaces associated with nonsmooth vector fields were also obtained in [23]. In
Sect. 4, based on the embedding theorems in Sect. 3 and the theory of critical
values of nonlinear functionals developed in [2] we obtain theorems on the exis-
tence of nontrivial solutions if the nonlinear term grows slower than a power
function (the same power function as for the nonexistence results), or even infi-
nite number of solutions provided that the nonlinear term is an odd function.
In Sect. 5 we present an interesting illustrating example that exhibits the con-
nection between the elliptic, degenerate and strongly degenerate elliptic cases.

2. Nonexistence results

In this section we deal with the nonexistence of nontrivial solutions to the prob-
lems (1)–(2). Let us put G(x, y, z, t) =

∫ t

0
g(x, y, z, s) ds and ν = (νx, νy, νz) =

(νx1 , . . . , νxn1
, νy1 , . . . , νyn2

, νz1 , . . . , νzn3
) be the unit outward normal on ∂Ω.

Set N = n1 + n2 + n3, Nα,β = n1 + n2 + n3(α + β + 1). Let us take a fixed
point (a, b, c) = (a1, . . . , an1 , b1, . . . , bn2 , c1, . . . , cn3) ∈ R

N .

Lemma 1. Suppose that c(x, y, z) ≡ 0, g(x, y, z, t) = g(t). Let u (x, y, z) be a
solution of the problem (1)–(2), which belongs to the space H2(Ω). Then the
solution u (x, y, z) satisfies the identity

∫

Ω

[

Nα,βG (u) − Nα,β − 2
2

g (u) u

]

dxdydz

+
∫

Ω

|x|2(α−1)|y|2(β−1)|∇zu|2[α(x, a)|y|2 + β(y, b)|x|2] dxdydz

=
1
2

∫

∂Ω

να,βνα,β
a,b,c

(
∂u

∂ν

)2

dS, (3)
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where

να,β = |νx|2 + |νy|2 + |x|2α|y|2β |νz|2,
να,β

a,b,c = (x − a, νx) + (y − b, νy) + (α + β + 1)(z − c, νz).

Proof. Integrating by parts gives

(α1 + β1 + 1)
∫

Ω

G(u)dxdydz = −
∫

Ω

[
α1((x − a),∇xu)

n1
+

β1((y − b),∇yu)
n2

+
((z − c),∇zu)

n3

]

g(u)dxdydz,

for any real numbers α1, β1. From (1) it follows that

g(u) = − (Δxu + Δyu + |x|2α|y|2βΔzu
)
.

Hence we get

(α1 + β1 + 1)
∫

Ω

G(u)dxdydz

=
∫

Ω

[
α1((x − a),∇xu)

n1
+

β1((y − b),∇yu)
n2

+
((z − c),∇zu)

n3

]

× (Δxu + Δyu + |x|2α|y|2βΔzu
)
dxdydz. (4)

A detailed computation shows that when α1 = n1
n3(α+β+1) , β1 = n2

n3(α+β+1) the
right-hand side of (4) equals

Nα,β − 2

2n3(α + β + 1)

∫

Ω

[(
∂u

∂x

)2

+

(
∂u

∂y

)2

+ |x|2α|y|2β

(
∂u

∂z

)2
]

dxdydz

− 1

n3(α + β + 1)

∫

Ω

|x|2(α−1)|y|2(β−1)|∇zu|2[α(x, a)|y|2 + β(y, b)|x|2] dxdydz

+
1

2n3(α + β + 1)

∫

∂Ω

(
|∇xu|2 + |∇yu|2 + |x|2α|y|2β |∇zu|2

)
να,β

a,b,cdS. (5)

From the boundary condition (2) we deduce that
∫

Ω

g(u)udxdydz =
∫

Ω

[∣
∣∇xu

∣
∣2+
∣
∣∇yu

∣
∣2 + |x|2α|y|2β

∣
∣∇zu

∣
∣2
]
dxdydz (6)

and

∇xu = νx
∂u

∂ν
, ∇yu = νy

∂u

∂ν
, ∇zu = νz

∂u

∂ν
on the boundary ∂Ω. (7)

Putting (4)–(7) together we finally get the desired identity (3). �

From Lemma 1 we can easily deduce the following two theorems:

Theorem 1. Suppose that c(x, y, z) ≡ 0, g(x, y, z, t) = g(t). Let Ω be a
Pα,β-star-shape domain with respect to the point {(0, 0, 0)} (i. e. the inequality
να,β
0,0,0 > 0 holds almost everywhere on ∂Ω) and Nα,βG (t) − Nα,β−2

2 g (t) t < 0
when t �= 0. Then the problem (1)–(2) has no nontrivial solution u ∈ H2(Ω).
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Theorem 2. Suppose that c(x, y, z) ≡ 0, g(x, y, z, t) = g(t). Let Ω be a
Pα,β-star-shape domain with respect to the point {(0, 0, 0)} and Nα,βG (t) −
Nα,β−2

2 g (t) t < 0 when t > 0. Then the problem (1)–(2) has no nontrivial
positive solution u ∈ H2(Ω).

Theorem 3. Suppose that c(x, y, z) ≡ 0. Let Ω be a Pα,β-star-shape domain
with respect to the point {(0, 0, 0)} and g(x, y, z, t) = λt + |t|γt with λ ≤ 0,
γ ≥ 4

Nα,β−2 . Then the problem (1)–(2) has no nontrivial solution u ∈ H2(Ω).

Proof. Indeed, in this case G(t) = λt2

2 + |t|γ+2

γ+2 . Assume that u is a nontrivial
solution of the boundary value problem (1)–(2). From Lemma 1, taking
(a, b, c) = (0, 0, 0), we have
∫

Ω

{

λu2 +
[γ(2 − Nα,β) + 4]|u|γ+2

2(γ + 2)

}

dxdydz =
1
2

∫

∂Ω

να,βνα,β
0,0,0

(
∂u

∂ν

)2

dS.

(8)

If γ > 4
Nα,β−2 or λ < 0, we see that the left-hand side of (8) is negative but

the right-hand side is nonnegative since Ω is Pα,β-star-shape. This leads to a
contradiction.

If γ = 4
Nα,β−2 and λ = 0, then we deduce from (8)

1
2

∫

∂Ω

να,βνα,β
0,0,0

(
∂u

∂ν

)2

dS = 0.

Again since Ω is Pα,β-star-shape we deduce that ∂u
∂ν

∣
∣
∣
∂Ω

≡ 0. Then from a
uniqueness theorem it follows that u ≡ 0. Theorem 3 is thus proved. �

Remark 1. Without the condition of Pα,β-starness of the domain Ω,
Theorems 1–3 may not be true. Indeed, if Ω does not intersect with the hyper-
planes {x = 0} and {y = 0} then Pα,β is elliptic in Ω. Hence we can prove the
existence of a nontrivial solution of the problem (1)–(2) for any function g(t)
with the growth order less than N+2

N−2 (note that Nα,β+2
Nα,β−2 < N+2

N−2 ) by using the
variational method and the classical Sobolev embedding theorem. Note that,
in this case, of course, the Pα,β-star shape condition of Ω fails. An example in
Sect. 5 will illuminate this phenomenon.

3. Embedding theorems

The situation changes drastically if the growth rate of g(x, y, z, t) in the t-var-
iable is less than Nα,β+2

Nα,β−2 as we shall now show. Let us first introduce some
auxiliary spaces.

Definition 1. By Sp
1 (Ω), 1 ≤ p < ∞, we will denote the set of all functions

u ∈ Lp(Ω) such that ∇xu,∇yu, |x|α|y|β∇zu ∈ Lp(Ω). For the norm in Sp
1 (Ω)
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we take

‖u‖p
Sp

1 (Ω)
=
∫

Ω

⎛

⎝|u|p +
n1∑

i=1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣

p

+
n2∑

j=1

∣
∣
∣
∣
∂u

∂yj

∣
∣
∣
∣

p

+
n3∑

l=1

∣
∣
∣
∣|x|α|y|β ∂u

∂zl

∣
∣
∣
∣

p
⎞

⎠dxdydz.

If p = 2 we can also define the scalar product in S2
1(Ω) as follows

(u, v)S2
1(Ω) = (u, v)L2(Ω) + (∇xu,∇xv)L2(Ω) + (∇yu,∇yv)L2(Ω)

+
(|x|α|y|β∇zu, |x|α|y|β∇zv

)
L2(Ω)

.

The space Sp
1,0(Ω) is defined as the closure of C1

0 (Ω) in the space Sp
1 (Ω), where

C1
0 (Ω) denotes the set of functions in C1 (Ω) with a compact support in Ω.

Lemma 2. Let Πn = [−1, 1] × · · · × [−1, 1]
︸ ︷︷ ︸

n times

and fi(t1, . . . , ti−1, ti+1, . . . , tn) :=

fi(t; t̂i) ∈ Ln−1(Πi−1
(t;t̂i)

). Assume that n ≥ 2 then the following inequality holds
∣
∣
∣
∣
∣

∫

Πn

n∏

i=1

fi(t; t̂i)dt

∣
∣
∣
∣
∣

n−1

≤
n∏

i=1

∫

Πn−1
(t;t̂i)

∣
∣fi(t; t̂i)

∣
∣n−1

d̂ti,

where dt = dt1 . . . dtn, d̂ti = dt1 . . . dti−1dti+1 . . . dtn and

Πn−1

(t;t̂i)
= {(t1, . . . , ti−1, ti+1, . . . , tn) := (t; t̂i) ∈ R

n−1 : (t; t̂i) ∈ [−1, 1]×· · ·×[−1, 1]
︸ ︷︷ ︸

(n−1) times

}.

The proof is easily established by induction (see also [24], [25]).

Proposition 1. Suppose that 1 ≤ p < Nα,β . Then we have Sp
1,0(Ω) ⊂

L
pNα,β

Nα,β−p −ε
(Ω) for every small positive ε.

Proof. It suffices to prove that for any sufficiently small ε there exists a con-
stant C such that the following inequality

∥
∥u
∥
∥

L

pNα,β
Nα,β−p

−ε
(Ω)

� C‖u‖S1
1,0(Ω) (9)

holds for any function u ∈ C1
0 (Ω) . Without loss of generality we can assume

that Ω ⊂ [−1, 1] × · · · × [−1, 1]
︸ ︷︷ ︸

N times

:= ΠN
(x,y,z). Extend the function u to be equal

to 0 outside of Ω. We have for all (x, y, z) ∈ Ω

u (x, y, z) =
∫ xi

−1

∂u

∂θ
(x1, . . . xi−1, θ, xi+1, . . . , xn1 , y1, . . . yn2 , z1, . . . , zn3) dθ.

Therefore

|u (x, y, z) | ≤
∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

L1(Π1
(xi)

)

:= Ai(x, y, z; x̂i) := Ai, ∀ (x, y, z) ∈ Ω, i = 1, n1.

Hence for all (x, y, z) ∈ Ω

|u (x, y, z) |δ1 ≤ Aδ1
i , δ1 =

n1 + αn3

n1(n1 + n2 + n3(1 + α + β) − 1)
, i = 1, n1.
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Similarly, for all (x, y, z) ∈ Ω

|u (x, y, z) |δ2 ≤
∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

δ2

L1(Π1
(yj))

:= (Bj(x, y, z; ŷj))δ2 := Bδ2
j ,

δ2 =
n2 + βn3

n2(n1 + n2 + n3(1 + α + β) − 1)
, j = 1, n2,

|u (x, y, z) |δ3 ≤
∥
∥
∥
∥

∂u

∂zl

∥
∥
∥
∥

δ3

L1(Π1
(zl)

)

:= (Cl(x, y, z; ẑl))δ3 := Cδ3
l ,

δ3 =
1 − ε̃

n1 + n2 + n3(1 + α + β) − 1
, l = 1, n3,

where ε̃ is small enough (but positive). Define Ñδ = n1δ1 +n2δ2 +n3δ3. Multi-
plying all the N above inequalities and then integrating over the cube ΠN

(x,y,z),
in view of the Holder inequality with respect to the z-variable, we obtain

∫

Ω
|u|Ñδ dxdydz ≤

∫

ΠN
(x,y,z)

|x|−αn3δ3 |y|−βn3δ3

n1,n2,n3∏

i,j,l=1

Aδ1
i Bδ2

j Cδ3
l dzdxdy

≤
∫

Π
n1+n2
(x,y)

|x|−αn3δ3 |y|−βn3δ3

(∫

Π
n3
(z)

n3∏

l=1

C
1

n3−1
l dz

)(n3−1)δ3

×
⎛

⎝
∫

Π
n3
(z)

n1,n2∏

i,j=1

A

δ1
1−(n3−1)δ3
i B

δ2
1−(n3−1)δ3
j dz

⎞

⎠

1−(n3−1)δ3

dxdy := I1.

(10)

By applying Lemma 2 with n = n3 we deduce that

(∫

Π
n3
(z)

n3∏

l=1

C
1

n3−1

l dz

)(n3−1)δ3

≤
n3∏

l=1

(∫

Π
n3−1
(z;ẑl)

Cld̂zl

)δ3

=
n3∏

l=1

(∫

Π
n3
(z)

|x|α|y|β
∣
∣
∣
∣
∂u

∂zl

∣
∣
∣
∣dz

)δ3

:=
n3∏

l=1

(Ĉl(x, y))δ3 :=
n3∏

l=1

Ĉδ3
l

and by the Holder inequality

⎛

⎝
∫

Π
n3
(z)

n1,n2∏

i,j=1

A
δ1

1−(n3−1)δ3
i B

δ2
1−(n3−1)δ3
j dz

⎞

⎠

1−(n3−1)δ3

≤
n1∏

i=1

(∫

Π
n3
(z)

Aidz

)δ1 n2∏

j=1

(∫

Π
n3
(z)

Bjdz

)δ2
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=
n1∏

i=1

(∫

Π
n3
(z)

∫ 1

−1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣dxidz

)δ1 n2∏

j=1

(∫

Π
n3
(z)

∫ 1

−1

∣
∣
∣
∣
∂u

∂yj

∣
∣
∣
∣dyjdz

)δ2

:=
n1∏

i=1

(Âi(x, y; x̂i))δ1

n2∏

j=1

(B̂j(x, y; ŷj))δ2 :=
n1∏

i=1

Âδ1
i

n2∏

j=1

B̂δ2
j .

Hence for p = n1(n1+n2+n3(1+α+β)−1)
n3(α+n1ε̃) , in view of the Holder inequality, we

have

I1 ≤
∫

Π
n2
(y)

|y|−βn3δ3

⎧
⎨

⎩

∫

Π
n1
(x)

|x|−αn3δ3

n1,n2,n3∏

i,j,l=1

Âδ1
i B̂δ2

j Ĉδ3
l dx

⎫
⎬

⎭
dy

≤
(∫

Π
n1
(x)

|x|−αn3δ3pdx

) 1
p

×
∫

Π
n2
(y)

|y|−βn3δ3

⎧
⎨

⎩

(∫

Π
n1
(x)

n1∏

i=1

Â
1

n1−1

i dx

)δ1(n1−1)

⎛

⎝
∫

Π
n1
(x)

n2∏

j=1

B̂jdx

⎞

⎠

δ2
n3∏

l=1

(∫

Π
n1
(x)

Ĉldx

)δ3

⎫
⎪⎬

⎪⎭
dy

:= C

∫

Π
n2
(y)

|y|−βn3δ3

⎧
⎨

⎩

(∫

Π
n1
(x)

n1∏

i=1

Â
1

n1−1

i dx

)δ1(n1−1)

n2∏

j=1

(∫

Π
n1
(x)

B̂jdx

)δ2 n3∏

l=1

(∫

Π
n1
(x)

Ĉldx

)δ3
⎫
⎬

⎭
dy := I2. (11)

Again by Lemma 2 with n = n1

(∫

Π
n1
(x)

n1∏

i=1

Â
1

n1−1

i dx

)δ1(n1−1)

≤
n1∏

i=1

(∫

Π
n1−1
(x\xi)

Âi
ˆdxi

)δ1

=
n1∏

i=1

(∫

Π
n1+n3
(x,z)

∣
∣
∣
∂u

∂xi

∣
∣
∣dzdx

)δ1

:=
n1∏

i=1

( ˆ̂
Ai(y))δ1 =

n1∏

i=1

ˆ̂
Aδ1

i .

By using the Holder inequality with q = n2[n1+n2+n3(1+α+β)−1]
n3(β+n2ε̃) we obtain

I2 ≤ C

(∫

Π
n2
(y)

|y|−αn3δ3qdy

) 1
q n1∏

i=1

(∫

Π
n2
(y)

ˆ̂
Aidy

)δ1

×
⎡

⎣
∫

Π
n2
(y)

n2∏

j=1

(∫

Π
n1
(x)

B̃jdx

) 1
n2−1

dy

⎤

⎦

δ2(n2−1)
n3∏

l=1

(∫

Π
n1+n2
(x,y)

C̃ldxdy

)δ3
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≤ C

n1∏

i=1

(∫

Π
n2
(y)

ˆ̂
Aidy

)δ1
⎡

⎣
∫

Π
n2
(y)

n2∏

j=1

(∫

Π
n1
(x)

B̃jdx

) 1
n2−1

dy

⎤

⎦

δ2(n2−1)

n3∏

l=1

(∫

Π
n1+n2
(x,y)

C̃ldxdy

)δ3

. (12)

From Lemma 2 with n = n2 it follows that

⎡

⎣
∫

Π
n2
(y)

n2∏

j=1

(∫

Π
n1
(x)

B̃jdx

) 1
n2−1

dy

⎤

⎦

δ2(n2−1)

≤
n2∏

j=1

(∫

Π
n1+n2
(x,y)

B̃jdxdy

)δ2

=
n2∏

j=1

(∫

Ω

∣
∣
∣
∣
∂u

∂yj

∣
∣
∣
∣ dxdydz

)δ2

=
∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

δ2

L1(Ω)

.

Combining (10), (11), (12) we obtain

I2 ≤ C

n1,n2,n3∏

i,j,l=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

δ1

L1(Ω)

·
∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

δ2

L1(Ω)

·
∥
∥
∥
∥|x|α|y|β ∂u

∂zl

∥
∥
∥
∥

δ3

L1(Ω)

.

It implies that

‖u‖
LÑδ (Ω)

≤ C

n1,n2,n3∏

i,j,l=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

δ1
Ñδ

L1(Ω)

·
∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

δ2
Ñδ

L1(Ω)

·
∥
∥
∥
∥|x|α|y|β ∂u

∂zl

∥
∥
∥
∥

δ3
Ñδ

L1(Ω)

≤ C

⎛

⎝
n1∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

L1(Ω)

+
n2∑

j=1

∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

L1(Ω)

+
n3∑

l=1

∥
∥
∥
∥|x|α|y|β ∂u

∂zl

∥
∥
∥
∥

L1(Ω)

)

. (13)

Next we put |u|γ (γ ≥ 1) into (13) and obtain

‖|u|γ‖
LÑδ (Ω)

≤ C

⎛

⎝
n1∑

i=1

∥
∥
∥
∥|u|γ−1 ∂u

∂xi

∥
∥
∥
∥

L1(Ω)

+
n2∑

j=1

∥
∥
∥
∥|u|γ−1 ∂u

∂yj

∥
∥
∥
∥

L1(Ω)

+
n3∑

l=1

∥
∥
∥
∥|u|γ−1|x|α|y|β ∂u

∂zl

∥
∥
∥
∥

L1(Ω)

)

≤ C
(∥
∥|u|γ−1

∥
∥

Lp′ (Ω)

)
⎛

⎝
n1∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

Lp(Ω)

+
n2∑

j=1

∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

Lp(Ω)

+
n3∑

l=1

∥
∥
∥
∥|x|α|y|β ∂u

∂zl

∥
∥
∥
∥

Lp(Ω)

)

,
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where 1
p + 1

p′ = 1. Therefore choosing γ = p

p−(p−1)Ñδ
, we get

‖u‖
L

pÑδ
p−(p−1)Ñδ (Ω)

≤ C

⎛

⎝
n1∑

i=1

∥
∥
∥
∥

∂u

∂xi

∥
∥
∥
∥

Lp(Ω)

+
n2∑

j=1

∥
∥
∥
∥

∂u

∂yj

∥
∥
∥
∥

Lp(Ω)

+
n3∑

l=1

∥
∥
∥
∥|x|α|y|β ∂u

∂zl

∥
∥
∥
∥

Lp(Ω)

)

.

Note that pÑδ

p−(p−1)Ñδ
→ pNα,β

Nα,β−p when ε̃ → 0. The proof of the proposition is
therefore completed. �

Proposition 2. Assume that 1 ≤ p < Nα,β . Then the embedding map Sp
1,0(Ω)

into L
pNα,β

Nα,β−p −ε
(Ω) is compact for every positive small ε.

Proof. Set k = max{[α], [β]} + 1, where [·] stands for the integral part
of the argument. In [26] the authors have shown that Sp

1,0(Ω) is com-
pactly embedded into Lp

1
k+1

(Ω). Combining the above result of [26] and

Propositions 1 we can easily get the claim in Proposition 2. �

Proposition 3. Assume that p > Nα,β . Then Sp
1,0(Ω) ⊂ C0(Ω̄).

Proof. It suffices to prove the following estimate

sup
x∈Ω

|u| ≤ C‖u‖Sp
1,0(Ω) for every u ∈ C1

0 (Ω) .

First, we assume V ol (Ω) = 1. By the inequality (9) we have

‖|u|γ‖
L

Nα,β
Nα,β−1 −ε

(Ω)

≤ C ‖|u|γ‖S1
1,0(Ω)

= Cγ

∫

Ω

|u|γ−1.

⎛

⎝
n1∑

i=1

∣
∣
∣
∣
∂u

∂xi

∣
∣
∣
∣+

n2∑

j=1

∣
∣
∣
∣
∂u

∂yj

∣
∣
∣
∣+

n3∑

l=1

|x|α|y|β
∣
∣
∣
∣
∂u

∂zl

∣
∣
∣
∣

⎞

⎠dxdydz

≤ Cγ‖u‖Sp
1,0(Ω).

∥
∥|u|γ−1

∥
∥

L
p

p−1 (Ω)

for γ ≥ 1 and a small fixed positive ε. That is

‖u‖
L

(
Nα,β

Nα,β−1 −ε

)

(Ω)

≤ (Cγ)
1
γ ‖u‖

1
γ

Sp
1,0(Ω)

. ‖u‖1− 1
γ

L
p(γ−1)

p−1 (Ω)

≤ (Cγ)
1
γ ‖u‖

1
γ

Sp
1,0(Ω)

. ‖u‖1− 1
γ

L
pγ

p−1 (Ω)
since V ol (Ω) = 1.

Therefore we get
∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

L
γ

(
Nα,β

Nα,β−1 −ε

)

(Ω)

≤ (Cγ)
1
γ

∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

1− 1
γ

L
pγ

p−1 (Ω)

.
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Choose τ such that Nα,β

Nα,β−1 − ε > p
p−1 . Let us substitute for γ the value

ξρ(ρ = 1, 2, . . . ) where ξ =
(

Nα,β

Nα,β−1 − ε
)

p−1
p > 1 by the hypotheses of the

theorem. Then we have
∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

L

(
Nα,β

Nα,β−1 −ε

)

.ξρ

(Ω)

≤ (Cξρ)
1

ξρ

∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

1−ξ−ρ

L

(
Nα,β

Nα,β−1 −ε

)

.ξρ−1

(Ω)

for ρ = 1, 2, . . . . Iterating from ρ = 1 and using the fact that
∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

L

(
Nα,β

Nα,β−1 −ε

)

.ξ
(Ω)

≤ 1

we obtain
∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

Lξρ
(Ω)

≤
∥
∥
∥
∥
∥

u

‖u‖
Sp

1,0(Ω)

∥
∥
∥
∥
∥

L

(
Nα,β

Nα,β−1 −ε

)

.ξρ

(Ω)

≤ (Cξ)Σρ.ξ−ρ

= C.

Consequently, as ρ −→ ∞, we have

sup
x∈Ω

∣
∣
∣
∣
∣

u

‖u‖
Sp

1,0(Ω)

∣
∣
∣
∣
∣
≤ C,

and hence supx∈Ω |u| ≤ C‖u‖
Sp

1,0(Ω)
. To eliminate the restriction V ol (Ω) = 1

we consider the transformation Ω −→ Ω1

x1 = {V ol (Ω)}− 1
Nα,β x, y1 = {V ol (Ω)}− 1

Nα,β y, z1 = {V ol (Ω)}− Nα,β−n1−n2
Nα,β z.

The domain Ω1 now has the volume 1. That leads to

sup
(x,y,z)∈Ω

|u(x, y, z)| = sup
(x1,y1,z1)∈Ω1

|u(x1, y1, z1)|

≤ C ‖u(x1, y1, z1)‖Sp
1,0(Ω1)

≤ C‖u(x, y, z)‖Sp
1,0(Ω).

�

In the next proposition we prove a precise embedding theorem. The method
exploited here can be applied to produce a better result than those obtained
in [8–11]. For the sake of simplicity we will prove the proposition for the case
n1 = n2 = n3 = 1. Let us define

I = {(x, y, z) : a1 < x < a2, b1 < y < b2,−1 < z < 1}.

In what follows we denote by Ax, Ay, Az the images of a set A ⊂ R
3 under the

projection map along the direction Ox,Oy,Oz, respectively. We first need an
auxiliary lemma.
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Lemma 3. Let a, b ∈ R, 1 � p1, p2, p3 < ∞; 1
p1

+ 1
p2

= 1; p3 > max{p1, p2}. The
following inequality holds

∫

I

|F1(y, z)| 1
p1 |F2(x, z)| 1

p2 |F3(x, y)| 1
p3 dxdydz

�
(∫ a2

a1

|x|−
ap1

p3−p1 dx

) p3−p1
p1p3

(∫ b2

b1

|y|−
bp2

p3−p2 dy

) p3−p2
p2p3

[∫

Ix

|F1(y, z)|dydz

] 1
p1

×
[∫

Iy

|F2(x, z)|dxdz

] 1
p2
[∫

Iz

|x|a|y|b|F3(x, y)|dxdy

] 1
p3

.

Proof. If either of the factors on the right-hand side is infinite then the claim
is obviously true. Hence we may suppose that all the factors on the right-hand
side are finite. By Holder’s inequality we have

∫

I

|F1(y, z)| 1
p1 |F2(x, z)| 1

p2 |F3(x, y)| 1
p3 dxdydz

=

∫

I

|F1(y, z)| 1
p1 |F2(x, z)| 1

p2 |x| −a
p3 |y|− b

p3 ||x|a|y|bF3(x, y)| 1
p3 dxdydz

�
∫

Iz

[∫ 1

−1

|F1(y, z)|dz

] 1
p1
[∫ 1

−1

|F2(x, z)|dz

] 1
p2

×|x|− a
p3 |y|− b

p3 ||x|a|y|bF3(x, y)| 1
p3 dxdy

�
(∫ a2

a1

|x|−
ap1

p3−p1 dx

) p3−p1
p1p3

[∫

Iy

|F2(x, z)|dxdz

] 1
p2

×
∫ b2

b1

[∫ 1

−1

|F1(y, z)|dz

] 1
p1 |y|− b

p3

[∫ a2

a1

|x|a|y|b|F3(x, y)|dx

] 1
p3

dy

�
(∫ a2

a1

|x|−
ap1

p3−p1 dx

) p3−p1
p1p3

(∫ b2

b1

|y|−
bp2

p3−p2 dy

) p3−p2
p2p3

[∫

Iy

|F2(x, z)|dxdz

] 1
p2

×
[∫

Ix

|F1(y, z)|dydz

] 1
p1
[∫

Iz

|x|a|y|b|F3(x, y)|dxdy

] 1
p3

�

Proposition 4. Assume that 1 < p < Nα,β . Then Sp
1,0(Ω) ⊂ L

pNα,β
Nα,β−p (Ω).

Proof. To avoid unnecessary complications in the proof we prove this propo-
sition only in case n1 = n2 = n3 = 1. In this case Nα,β = α + β + 3. Hence as
in Proposition 1 it suffices to prove the following inequality

∥
∥u
∥
∥

L
(α+β+3)p
α+β+3−p (Ω)

� C‖u‖Sp
1,0(Ω) for any function u ∈ C1

0 (Ω) .
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Extend the function u to be equal to 0 outside Ω. For m,n = 0, 1, . . . we denote

A(1)
m,n =

{

(x, y, z) ∈ Π3
(x,y,z) :

1
2m+1

� x � 1
2m

,
1

2n+1
� y � 1

2n

}

A(2)
m,n =

{

(x, y, z) ∈ Π3
(x,y,z) : − 1

2m
� x � − 1

2m+1
,

1
2n+1

� y � 1
2n

}

A(3)
m,n =

{

(x, y, z) ∈ Π3
(x,y,z) :

1
2m+1

� x � 1
2m

,− 1
2n

� y � − 1
2n+1

}

A(4)
m,n =

{

(x, y, z) ∈ Π3
(x,y,z) : − 1

2m
� x � − 1

2m+1
,− 1

2n
� y � − 1

2n+1

}

We recall a simple fact that for arbitrary finite numbers a < b and any function
v ∈ C1[a, b] the following inequality holds

|v(x)| � 1
b − a

∫ b

a

|v(x)|dx +
∫ b

a

|v′(x)|dx

for every x ∈ [a, b]. Applying this inequality we have

|u (x, y, z) | � 2m+1

∫ 1
2m

1
2m+1

|u(x, y, z)|dx +
∫ 1

2m

1
2m+1

∣
∣
∣
∂u

∂x
(x, y, z)

∣
∣
∣ dx

�
∫ 1

2m

1
2m+1

2|u(x, y, z)|
|x| dx +

∫ 1
2m

1
2m+1

∣
∣
∣
∂u

∂x
(x, y, z)

∣
∣
∣ dx

:= I
(1)
1,m,n(y, z) + I

(1)
2,m,n(y, z)

for any (x, y, z) ∈ A
(1)
m,n. Set

1
p1

=
1 + α

2 + α + β
,

1
p2

=
1 + β

2 + α + β
,

1
p3

=
1

2 + α + β
, p4 = 1 +

1
p3

.

We have

|u (x, y, z) | 1
p1 � C

{
[I(1)

1,m,n(y, z)]
1

p1 + [I(1)
2,m,n(y, z)]

1
p1

}

for any (x, y, z) ∈ A
(1)
m,n. The constant C does not depend on m,n, u, x, y, z

but may depend on α, β. In a similar way we obtain

|u (x, y, z) | 1
p1 � C

{
[I(i)

1,m,n(y, z)]
1

p1 + [I(i)
2,m,n(y, z)]

1
p1

}

for any (x, y, z) ∈ A
(i)
m,n, i = 2, 3, 4. Analogously

|u (x, y, z) | 1
p2 � C

{
[J (i)

1,m,n(x, z)]
1

p2 + [J (i)
2,m,n(x, z)]

1
p2

}

for any (x, y, z) ∈ A
(i)
m,n, i = 1, 2, 3, 4. The matter concerning the derivative in

the z variable is simpler since

u(x, y, z) =
∫ z

−1

∂u(x, y, z)
∂z

dz
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for any (x, y, z) ∈ A
(i)
m,n, i = 1, 2, 3, 4. Hence

|u (x, y, z) | 1
p3 �

(∫ 1

−1

∣
∣
∣
∂u

∂z
(x, y, z)

∣
∣
∣ dz

) 1
p3

:= [H(x, y)]
1

p3

for any (x, y, z) ∈ A
(i)
m,n, i = 1, 2, 3, 4. Multiplying all the above inequalities

and then integrating over the cube A
(i)
m,n, with the help of Lemma 3, we obtain

∫

A
(i)
m,n

|u|p4dxdydz � C

∫

A
(i)
m,n

{
[I(i)

1,m,n(y, z)]
1

p1 + [I(i)
2,m,n(y, z)]

1
p1

}

×
{

[J (i)
1,m,n(x, z)]

1
p2 + [J (i)

2,m,n(x, z)]
1

p2

}
[H(x, y)]

1
p3 dxdydz

� C(ln 2)1− 2
p3

2∑

k,l=1

[
Ĩ
(i)
k,m,n

] 1
p1
[
J̃

(i)
l,m,n

] 1
p2
[
H̃(i)

m,n

] 1
p3

,

where

Ĩ
(i)
k,m,n =

∫

(A
(i)
m,n)x

I
(i)
k,m,n(y, z)dydz, J̃

(i)
l,m,n =

∫

(A
(i)
m,n)y

J
(i)
l,m,n(x, z)dxdz, k, l = 1, 2

H̃(i)
m,n =

∫

(A
(i)
m,n)z

H(x, y)dxdy.

Therefore

‖u‖
L

3+α+β
2+α+β

=
(∫

Ω

|u|p4dxdydz

) 1
p4

=

(
4∑

i=1

+∞∑

m,n=0

∫

A
(i)
m,n

|u|p4dxdydz

) 1
p4

� C(ln 2)
−2+p3
1+p3

⎛

⎝
4∑

i=1

+∞∑

m,n=0

2∑

k,l=1

[
Ĩ
(i)
k,m,n

] 1
p1
[
J̃

(i)
l,m,n

] 1
p2
[
H̃(i)

m,n

] 1
p3

⎞

⎠

1
p4

� C
4∑

i=1

+∞∑

m,n=0

2∑

k,l=1

[
Ĩ
(i)
k,m,n

] 1
p1p4

[
J̃

(i)
l,m,n

] 1
p2p4

[
H̃(i)

m,n

] 1
p3p4

� C

4∑

i=1

+∞∑

m,n=0

2∑

k,l=1

(
Ĩ
(i)
k,m,n + J̃

(i)
l,m,n + H̃(i)

m,n

)

� C

(∥
∥
∥

u(x, u, z)
x

∥
∥
∥

L1(Ω)
+
∥
∥
∥

u(x, u, z)
y

∥
∥
∥

L1(Ω)
+‖u(x, u, z)‖S1

1,0(Ω)

)

. (14)

Next put γ = (2+α+β)p
3+α+β−p into (14) and by using the Holder and Hardy

inequalities we get
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‖|u|γ‖
L

3+α+β
2+α+β (Ω)

� C

(
∥
∥
∥

|u|γ
x

∥
∥
∥

L1(Ω)
+
∥
∥
∥

|u|γ
y

∥
∥
∥

L1(Ω)
+
∥
∥
∥
∥|u|γ−1 ∂u

∂x

∥
∥
∥
∥

L1(Ω)

+
∥
∥
∥
∥|u|γ−1 ∂u

∂y

∥
∥
∥
∥

L1(Ω)

+
∥
∥
∥
∥|x|α|y|β |u|γ−1 ∂u

∂z

∥
∥
∥
∥

L1(Ω)

)

� C
∥
∥|u|γ−1

∥
∥

Lp′ (Ω)

×
(∥
∥
∥
∥

∂u

∂x

∥
∥
∥
∥

Lp(Ω)

+
∥
∥
∥
∥

∂u

∂y

∥
∥
∥
∥

Lp(Ω)

+
∥
∥
∥
∥|x|α|y|β ∂u

∂z

∥
∥
∥
∥

Lp(Ω)

)

, (15)

where 1
p + 1

p′ = 1. By noting that γ(3+α+β)
2+α+β = (γ − 1)p′ = (α+β+3)p

α+β+3−p we can
reduce similar terms in (15) and obtain the desired inequality. The proof of
Proposition 4 is therefore complete. �

4. Existence results

From now on we suppose that g(x, y, z, t) has only polynomial growth in t.

Definition 2. A function u ∈ S2
1,0(Ω) is called a weak solution of the problem

(1)–(2) if the identity
∫

Ω

[(∇xu,∇xϕ) +
(∇yu,∇yϕ) + |x|2α|y|2β

(∇zu,∇zϕ)
]
dxdydz

+
∫

Ω

[c(x, y, z)uϕ − g(x, y, z, u)ϕ] dxdydz = 0

holds for every ϕ ∈ C∞
0 (Ω).

We try to find weak solutions of the problem (1)–(2) as critical points
of a nonlinear functional. To this end we define the functional Φ on the space
S2

1,0 (Ω) as follows

Φ(u) =
1
2

∫

Ω

(
|∇xu|2 + |∇yu|2 +

∣
∣|x|α|y|β∇zu

∣
∣2
)

dxdydz

+
1
2

∫

Ω

c(x, y, z)u2dxdydz −
∫

Ω

G(x, y, z, u)dxdydz

:= Φ1(u) + Φ2(u) + Φ3(u). (16)

Without difficulty we can verify that Φ1,Φ2 are continuous on S2
1,0 (Ω) and

for u ∈ S2
1,0 (Ω) we have

Φ′
1(u)(v) =

∫

Ω

(
(∇xu,∇xv) + (∇yu,∇yv) + |x|2α|y|2β (∇zu,∇zv)

)
dxdydz,

Φ′
2(u)(v) =

∫

Ω

c(x, y, z)uvdxdydz

for any v ∈ S2
1,0 (Ω) . By using Lemma 3 it’s not difficult to obtain for Φ3 the

following

Lemma 4. Let 1 < p < ∞. If g(x, y, z, t) ∈ C(Ω̄ × R) satisfies the conditions

|g(x, y, z, t)| � a(x, y, z) + b|t|p−1, where a(x, y, z) ∈ L
p

p−1 (Ω), b ∈ R+,
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then

Φ3 : u(x, y, z) −→
∫

Ω

∫ u(x,y,z)

0

g(x, y, z, ξ)dξdxdydz

is a (nonlinear) continuously differentiable functional on Lp(Ω). Moreover, for
each fixed element u ∈ Lp(Ω)

Φ′
3(u)(v) =

∫

Ω

g(x, y, z, u(x, y, z))v(x, y, z)dxdydz

for any element v ∈ Lp(Ω).

Corollary 1. Let c(x, y, z) ∈ C(Ω̄) and g(x, y, z, t) ∈ C(Ω̄ × R) satisfy the
conditions

|g(x, y, z, t)| � a(x, y, z) + b|t|p,
where

a(x, y, z) ∈ L
p

p−1 (Ω), 1 < p <
Nα,β + 2
Nα,β − 2

, b ∈ R+.

The function u is a weak solution of the problem (1)–(2) if and only if u is a
critical point of the functional Φ defined by the formula (16).

Now we impose the following hypotheses on g(x, y, z, t)

(g)1 g(x, y, z, t) ∈ C(Ω̄ × R) and g(x, y, z, 0) = 0.
(g)2 For some 1 < p <

Nα,β+2
Nα,β−2 and some positive constant C

|g(x, y, z, t)| � C (1 + |t|p) .

(g)3 g(x, y, z, t) = ¯̄o(t) for t −→ 0 uniformly in (x, y, z) ∈ Ω̄.

(g)4 limt→+∞
g(x,y,z,t)

t = ∞ or limt→−∞
g(x,y,z,t)

t = ∞ uniformly in
(x, y, z) ∈ Ω̄.

(g)5 If |t| ≥ A for some number A, then

G(x, y, z, t) � μg(x, y, z, t)t

where μ ∈ [0, 1
2 ).

(g)6 g(x, y, z, t) is an odd function in t.

In the following lemma all the conditions (I)1 − (I)5 are taken from [2].

Lemma 5. • If g(x, y, z, t) satisfies (g)2 and (g)3, then Φ satisfies (I)1.
• If g(x, y, z, t) satisfies (g)4, then Φ satisfies (I)2.
• If g(x, y, z, t) satisfies (g)4 and (g)6, then Φ satisfies (I)5.
• If g(x, y, z, t) satisfies (g)2 and (g)5, then Φ satisfies (I)3.

Next let us introduce a set of additional notations:

Br = {u ∈ S2
1,0 (Ω) : ‖u‖S2

1,0(Ω) <r}, Sr =∂Br, Ac = {u ∈ S2
1,0 (Ω) : Φ(u) � c},

Âc = {u ∈ S2
1,0 (Ω) : Φ(u) ≥ c},Kc = {u ∈ S2

1,0 (Ω) : Φ(u) = c,Φ′(u) = 0}.
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Assume that there is a nonzero element e ∈ S2
1,0 (Ω) such that Φ(e) = 0. Let

Γ = {h ∈ C([0, 1], S2
1,0 (Ω)) : h(0) = 0, h(1) = e}

Γ∗ = {h ∈ C(S2
1,0 (Ω) , S2

1,0 (Ω)) : h(0) = 0, h-is a homeomorphism

of S2
1,0 (Ω) onto S2

1,0(Ω), and h(B1) ⊂ Â0}
Γe

∗ = {h ∈ Γ∗ : h(S1) separates 0 and e}.

Define

b = inf
h∈Γ

max
t∈[0,1]

Φ(h(t)), c = sup
h∈Γe∗

inf
u∈S1

Φ(h(u)). (17)

Theorem 4. Suppose that g(x, y, z, t) satisfies the conditions (g)1 − (g)5. Then
the values b and c, defined by the formula (17) are critical values of the func-
tional Φ in (16). The boundary value problem (1)–(2) has a nontrivial weak
solution.

Proof. Theorem 4 is a direct consequence of Lemma 5 and the theory of critical
values of nonlinear functionals in [2]. �

If g(x, y, z, t) is an odd function in t then something more can be said
about the number of nontrivial solutions of the problem (1)–(2). Let us intro-
duce some further notations. Let Γ∗ = {h ∈ C(S1

0(Ω), S1
0(Ω)) : h(0) = 0, h-is

an odd homeomorphism of S1
0(Ω) onto S1

0(Ω); Φ(h(u)) ≥ 0 for ‖u‖S1
0(Ω) � 1}

and Γm = {K ⊂ S1
0(Ω) : K is compact, symmetric with respect to the origin

and κ(K ∪h(S1)) ≥ m, ∀h ∈ Γ∗}. Here κ(.) is the genus of a set and S1 is the
unit sphere in S1

0(Ω). For each m ∈ Z+ let us denote by Em any m-dimensional
subspace of S1

0(Ω) and E⊥
m any its algebraic and topological complement, and

define

bm = inf
K∈Γm

max
u∈K

Φ(u), cm = sup
h∈Γ∗

inf
u∈S1∩E⊥

m−1

Φ(h(u)). (18)

With the help of Lemma 5 and the results in [2] it is possible to establish the
following theorem. We will omit the details of the proof of the theorem.

Theorem 5. Suppose that g(x, y, z, t) satisfies the conditions (g)1 − (g)6. Then
for each m ∈ Z+, the values bm, cm, defined by the formula (18), are critical
values of the functional Φ with 0 < cm � bm < ∞. If bm+1 = · · · = bm+r = b,
then κ(u ∈ S1

0(Ω) : Φ(u) = b,Φ′(u) = 0) ≥ r. Therefore, the problem (1)–(2)
has infinitely many nontrivial weak solutions.

Next we deal with the effect of adding a linear term to the right hand
side of the equation (1). More precisely, consider the boundary value problem

Pα,βu + d(x, y, z)u + g(x, y, z, u) = 0 in Ω, (19)

u = 0 on ∂Ω, (20)

where d is a nonnegative function. Recall that the eigenvalue problem

Pα,βv(x, y, z) + λd(x, y, z)v(x, y, z) = 0 in Ω,

v = 0 on ∂Ω
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possesses a sequence of eigenvalues 0 < λ1 < λ2 � λ3 � · · · ,
limm→∞ λm = ∞. Each eigenvalue λm has finite simplicity and λ1 is simple.
Let em be an eigenfunction corresponding to the eigenvalue λm. Put

Ψ(u) = Φ1(u) + Φ3(u) − 1
2

∫

Ω

d(x, y, z)u2(x, y, z)dxdydz.

It is easy to see that Φ(u) ≥ Ψ(u). The following lemma gives us results for Ψ
similar to that of Φ in Lemma 5. As in Lemma 5 all the conditions (I)2 − (I)6
are taken from [2].

Lemma 6. • If g(x, y, z, t) satisfies (g)4, then Ψ satisfies (I)2.
• If g(x, y, z, t) satisfies (g)2, (g)4 − (g)6, then Ψ satisfies (I)3.
• If g(x, y, z, t) satisfies (g)4, (g)6, then Ψ satisfies (I)5.
• If 1 < λl+1 �= λl and g(x, y, z, t) satisfies (g)1 − (g)3, then Ψ satisfies (I)6

with El = {e1, . . . , el}.

With the help of Lemma 6 it is not difficult to obtain

Theorem 6. If g(x, y, z, t) satisfies the conditions (g)1–(g)6 and
λl � 1 < λl+1, then for all m > l the values bm, cm, defined by the formula
(18) (of course, with Φ replaced by Ψ), are critical values of the functional
Ψ with 0 < cm � bm. If bm+1 = · · · = bm+r = b, then γ(Kb) ≥ r. The
problem (19)–(20) has infinitely many nontrivial solutions.

5. Illustrating example

In this final section we consider an example of the problem (1)–(2) in which
n1 = n2 = n3 = 1,Ω = B1(a1, b1, 0), g(x, y, z, t) = |t|γt where (a1, b1) ∈
R

2
+, 0 < γ. We show that the existence of nontrivial solutions of the problem

(1)–(2) heavily depends on a1, b1, γ. In this case

να,β
a,b,c = (x − a)ν1 + (y − b)ν2 + (α + β + 1)(z − c)ν3.

First we suppose that b1 = 0. On the sphere S1(a1, 0, 0)

να,β
0,0,0 =

(

x − a1(2α + 2β + 1)
2(α + β)

)2

+ y2 − a2
1 + 4(α + β)(α + β + 1)

4(α + β)2

:=
(

x − a1(2α + 2β + 1)
2(α + β)

)2

+ y2 − R2.

If 0 � a1 < 1 (or the ball B1(a1, 0, 0) contains the origin), then να,β
0,0,0 > 0 on

S1(a1, 0, 0). Hence B1(a1, 0, 0) is Pα,β-star-shape. The problem (1)–(2) has no
nontrivial solution if γ > 4

α+β+1 . If a1 = 1 (or the origin is on the boundary

of B1(a1, 0, 0)) then να,β
0,0,0 > 0 on S1(a1, 0, 0)\{0}. Hence B1(a1, 0, 0) is still

Pα,β-star-shape. The problem (1)–(2) still has no nontrivial solution if γ >
4

α+β+1 . If a1 > 1 (the origin is outside of the ball B1(a1, 0, 0)), then να,β
0,0,0 is

positive on a part of S1(a1, 0, 0) and negative on the other part of S1(a1, 0, 0).
Hence B1(a1, 0, 0) is not Pα,β-star-shape. The problem (1)–(2) may have a
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nontrivial solution. In this case the equation (1) is degenerate only in the y-
variable since the ball does not intersect with the hyperplane x = 0. According
to [11] if γ < 4

β+1 the problem has a nontrivial solution, or else if γ ≥ 4
β+1 the

problem has no nontrivial solution.
Now suppose that a1 = 2. If b1 � 1 the ball still intersects with the

hyperplane y = 0. Hence the problem has no nontrivial solutions if γ < 4
β+1 .

But when b1 > 1 the operator is elliptic in B1(2, b1, 0). According to [1] - [2],
if γ < 4 the problem has a nontrivial solution, or else if γ ≥ 4 the problem has
no nontrivial solution.
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