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Ground state and multiple solutions
for a critical exponent problem

Z. Chen, N. Shioji, and W. Zou

Abstract. We study the following Brezis–Nirenberg type critical exponent
equation which is related to the Yamabe problem:

−Δu = λu + |u|2∗−2u, u ∈ H1
0 (Ω),

where Ω is a smooth bounded domain in R
N (N ≥ 3) and 2∗ is the critical

Sobolev exponent. We show that, if N ≥ 5, this problem has at least
�N+1

2
� pairs of nontrivial solutions for each fixed λ ≥ λ1, where λ1 is the

first eigenvalue of −Δ with the Dirichlet boundary condition. For N ≥ 3,
we give energy estimates from below for ground state solutions.
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1. Introduction

We study the following Brezis–Nirenberg critical Sobolev exponent problem:

− Δu = λu+ |u|2∗−2u, u ∈ H1
0 (Ω), (1.1)

where Ω is a smooth bounded domain of R
N (N ≥ 3), 2∗ := 2N

N−2 is the critical
Sobolev exponent and λ > 0. It is well known that solutions of problem (1.1)
are critical points of the C2 functional I : H1

0 (Ω) → R given by

I(u) =
1
2

∫
Ω

(|∇u|2 − λu2) dx− 1
2∗

∫
Ω

|u|2∗
dx.

Equation (1.1) arises in a geometric context in the Yamabe problem, whether
a given metric D on a manifold M with scalar curvature μ can be conformally

Z. Chen and W. Zou are partially supported by NSFC (10871109); N. Shioji is partially sup-
ported by the Grant-in-Aid for Scientific Research (C) (No. 21540214) from Japan Society
for the Promotion of Science.



254 Z. Chen, N. Shioji, and W. Zou NoDEA

deformed to a metric D0 of constant scalar curvature. Let D0 = u4/(N−2)D,
where u is the conformal factor, the scalar curvature μ0 is given by the equation

−4(N − 1)
N − 2

ΔMu+ μu = μ0u|u|2∗−2,

where ΔM is the Laplace-Beltrami operator on the manifold M with respect
to the metric D [25,30]. Let λn be the n-th Dirichlet eigenvalue of −Δ on Ω
counted with multiplicity. The pioneering paper on the Eq. (1.1) was due to
Brezis and Nirenberg [6] in 1983 where the authors showed that for N ≥ 4
and λ ∈ (0, λ1) problem (1.1) has at least one positive solution. The same
conclusion was proved in [6] for N = 3 when Ω is a ball and λ ∈ (λ1/4, λ1). By
using a version of Pohozaev Identity, Eq. (1.1) has no nontrivial solution when
λ ≤ 0 and Ω is star-shaped. Since 1983, there has been a considerable number
of papers on problem (1.1). Let us now briefly recall the main results obtained
before. If N ≥ 4 and λ �= λn for every n ≥ 1, Capozzi et al. [7] showed that
(1.1) has a nontrivial solution [31]. If N ≥ 5 the same conclusion is true for
every λ > 0 [7,31]. Arioli et al. [3] showed that problem (1.1) has only trivial
radial solutions when N = 4,Ω is the unit ball and λ = λ1.

The first multiplicity result was obtained by Cerami et al. [8]. They
proved that the number of solutions of (1.1) is bounded below by the number
of eigenvalues of (−Δ,Ω) lying in the open interval (λ, λ + S|Ω|−2/N ), where
S is the best constant for the Sobolev embedding D1,2(RN ) ↪→ L2∗

(RN ) and
|Ω| is the Lebesgue measure of Ω. If N ≥ 4 and Ω is a ball, then for any λ > 0,
problem (1.1) has infinitely many sign-changing solutions which are built by
using particular symmetry of the domain Ω [15]. If N ≥ 7 and Ω is a ball,
then for each λ > 0, problem (1.1) has infinitely many sign-changing radial
solutions [26]. Cerami et al. [10] proved for N ≥ 6, problem (1.1) has two pairs
of solutions on any smooth bounded domain. When 4 ≤ N ≤ 6 and Ω is a ball,
there is a λ∗ > 0 such that (1.1) has no radial solutions which change sign if
λ ∈ (0, λ∗) [2]. Devillanova and Solimini [12] showed that, if N ≥ 7, problem
(1.1) has infinitely many solutions for each λ > 0. There is no information
on the sign-changingness of the solutions obtained in [12]. Recently, Schechter
and Zou [23] proved that, if N ≥ 7, problem (1.1) has infinitely many sign-
changing solutions for each λ > 0. In 2005, Clapp and Weth [11] got finitely
many solutions to (1.1) for each λ > 0 and N ≥ 4. The main result of [11] says
that if 0 < λ < λ1, then (1.1) has at least �N+2

2 	 pairs of nontrivial solutions;
if λn < λ < λn+1, then (1.1) has at least �N+1

2 	 pairs of nontrivial solutions; if
λ = λn+1 = · · · = λn+m is an eigenvalue of multiplicity m < N + 2, then (1.1)
has at least �N+1−m

2 	 pairs of nontrivial solutions. All these solutions satisfy
I(u) < 2

N S
N/2. Here, �a	 is the least integer n satisfying n ≥ a for each a > 0.

From the results of [11] we see that if λ is an eigenvalue of multiplicity
m ≥ N + 2, there is no information about the existence and multiplicity of
solutions to (1.1) for N < 7. In this paper, we give a partial answer to this
question. Precisely, we shall prove the following theorem.

Theorem 1.1. Let N ≥ 5 and λ ≥ λ1, then (1.1) has at least �N+1
2 	 pairs of

nontrivial solutions. These solutions satisfy I(u) < 2
N S

N/2.
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Here we will use a constraint method and the usual Krasnoselskii genus
theory without (PS)c type condition to prove Theorem 1.1, and we do not
need the capacity or the equivariant relative category that are used in [11].

Another natural question is about the existence and energy estimates of
ground state solutions to problem (1.1). The ground state refers to minimizers
of the corresponding energy within the set of nontrivial solutions. When N ≥ 4
and 0 < λ < λ1, the existence of (positive) ground state solutions was proved
by Brezis and Nirenberg [6]. Very recently, Szulkin, Weth and Willem [22]
studied the case λ ≥ λ1. They proved that, for N = 4 and λn < λ < λn+1 or
N ≥ 5 and λn ≤ λ < λn+1 (n ≥ 1), problem (1.1) has ground state solutions.
On the other hand, if 0 < λ < λ1, we know that if u is a solution of problem
(1.1), then

I(u) >
1
N

(
1 − λ

λ1

)N/2

SN/2.

In fact, by I ′(u)u = 0 we get(
1 − λ

λ1

)∫
Ω

|∇u|2 dx ≤
∫

Ω

(|∇u|2 − λu2) dx

=
∫

Ω

|u|2∗
dx <

(
1
S

∫
Ω

|∇u|2 dx
)2∗/2

.

So ∫
Ω

|∇u|2 dx >
(

1 − λ

λ1

)(N−2)/2

SN/2,

and we get

I(u) >
1
N

(
1 − λ

λ1

)N/2

SN/2.

Therefore, if u is a ground state solution, then the ground state energy satisfies
I(u) > 1

N (1− λ
λ1

)N/2SN/2. However, including [22], there is no similar estimate
of energy to the ground state solutions for the case λ ≥ λ1. Here we give a
positive answer to this open question. Precisely, we shall prove the following
theorem.

Theorem 1.2. Let λn ≤ λ < λn+1 for some n ≥ 1.
(1) If N ≥ 5, then problem (1.1) has a ground state solution u.
(2) If N = 4 and λn < λ < λn+1, then problem (1.1) has a ground state

solution u.
(3) If N = 3 and λn+1 − S|Ω|−2/N < λ < λn+1, then problem (1.1) has a

ground state solution u.
These solutions satisfy I(u) > 1

N (1 − λ
λn+1

)N/2SN/2.

As has been pointed out above, the existence of ground state solutions in
case N ≥ 4 in Theorem 1.2 are not new, and can be found in [22]. They gave a
minimax characterization of the ground states and used the Nehari manifold
introduced by Pankov [19] to prove their results. Here we will give a direct
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proof which is much simpler than the proof of [22]. Moreover, we can get an
energy estimate as stated in Theorem 1.2. In case N = 3, one nontrivial solu-
tion had been found in [8], where whether the solution is a ground state had
not been determined. The novelty of the current paper is that we can prove
there exist ground state solutions and get the energy estimates.

We also consider the following critical biharmonic problem under the
Dirichlet boundary condition

Δ2u− λu = |u| 8
N−4u in Ω, u = |∇u| = 0 on ∂Ω (1.2)

and the one under the Navier boundary condition

Δ2u− λu = |u| 8
N−4u in Ω, u = Δu = 0 on ∂Ω. (1.3)

These kind of problems have received much interest in recent years, and were
studied by many authors, see [4,13,16–18,20,28,29]. In particular, Clapp and
Weth [11] obtained the following result in case N ≥ 8: if λ > 0 is not a Dirichlet
(respectively Navier) eigenvalue of Δ2 on Ω, then problem (1.2) (respectively
(1.3)) has at least �(N + 1)/2	 pairs of nontrivial solutions; if λ is an eigen-
value of multiplicity m < N + 2, then it has at least �(N + 1 −m)/2	 pairs of
nontrivial solutions.

From the results of [11] we see that if λ is an eigenvalue of multiplicity
m ≥ N +2, there is no information about the multiplicity of solutions to (1.2)
(respectively (1.3)). Here we give a partial answer to this question. Let λ̃n be
the n-th eigenvalue of Δ2 with boundary condition (1.2) (respectively (1.3))
on Ω counted with multiplicity. We shall prove the following theorem.

Theorem 1.3. Let N ≥ 10 and λ ≥ λ̃1, then problem (1.2) (respectively (1.3))
has at least �(N + 1)/2	 pairs of nontrivial solutions.

We can also study the ground state solutions to problem (1.2) and (1.3).
To the best of our knowledge, it seems there is no information about the exis-
tence and energy estimates of the ground state solutions to problem (1.2) and
(1.3) in case λ ≥ λ̃1. Here we will give the following theorem.

Theorem 1.4. Let λ̃n ≤ λ < λ̃n+1 for some n ≥ 1.

(1) If N ≥ 10, then problem (1.2) (respectively (1.3)) has a ground state
solution u.

(2) If N = 8, 9 and λ �= λ̃n, then problem (1.2) (respectively (1.3)) has a
ground state solution u.

These solutions satisfy Ĩ(u) > 2
N (1 − λ/λ̃n+1)N/4S̃N/4, where Ĩ is the energy

functional of (1.2) (respectively (1.3)) defined in (4.1).

The existence of nontrivial solutions in caseN ≥ 8 in Theorem 1.4 are not
new, and can be seen in [16]. Here we will prove there exist ground state solu-
tions and get the energy estimates. Since methods in the proofs of Theorem 1.3
and 1.4 are similar to Theorems 1.1 and 1.2, we will give sketch proofs of
Theorem 1.3 and 1.4 in Sect. 4.
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2. Proof of Theorem 1.1

In this section we assume that N ≥ 5 and λn ≤ λ < λn+1 for some n ≥ 1.
Throughout this paper, we denote the norm of Lp(Ω) by ‖u‖p = (

∫
Ω

|u|p dx) 1
p ,

and positive constants (possibly different) by C. Let H := H1
0 (Ω) be the usual

Sobolev space with the inner product (u, v) =
∫
Ω

∇u∇v dx and the correspond-
ing norm ‖u‖ = (u, u)

1
2 . We choose a sequence of L2-normalized orthonormal

eigenfunctions ek corresponding to Dirichlet eigenvalues λk, k ∈ N, that is
−Δek = λkek as x ∈ Ω and ek = 0 when x ∈ ∂Ω. Then ek ∈ C∞(Ω) and there
is a constant C0 > 0 such that |ek(x)| ≤ C0 for x ∈ Ω. We set

V − := span{e1, . . . , en}, V + := span{ej : j ≥ n+ 1}.
As pointed out above, the solutions of problem (1.1) correspond to critical
points of the C2 functional I : H → R given by

I(u) =
1
2

∫
Ω

(|∇u|2 − λu2) dx− 1
2∗

∫
Ω

|u|2∗
dx. (2.1)

As usual, we say that a sequence (um) in H is a (PS)c sequence for I if

I(um) → c, ‖I ′(um)‖ → 0, as m → ∞.

As in [25], we consider a new functional

J(u) :=

∫
Ω
(|∇u|2 − λu2) dx

(
∫
Ω

|u|2∗ dx)2/2∗ =
∫

Ω

(|∇u|2 − λu2) dx

defined on M := {u ∈ H : ‖u‖2∗ = 1}. Then M ⊂ H is a complete Hilbert
manifold, invariant under the involution u → −u. Moreover, we have that
J ∈ C1(M,R), and u ∈ M is a critical point of J with J(u) = β > 0, if
and only if ũ := β

1
2∗−2u is a critical point of I with I(ũ) = 1

N β
N/2 > 0.

Clearly, (um) is a (PS)β sequence for J if and only if the sequence (ũm),
where ũm := β

1
2∗−2um, is a (PS)β̃ sequence for I with β̃ = 1

N β
N/2. Here, we

say that a sequence (um) in M is a (PS)β sequence for J if

J(um) → β, ‖J ′(um)‖ → 0, as m → ∞.

Denote

M̂ := {u ∈ M : J ′(u) �= 0}, Jβ := {u ∈ M : J(u) ≤ β},
Kβ := {u ∈ M : J ′(u) = 0, J(u) = β}.

Note that J(u) = J(−u). It is well known [25] that there is an odd pseudo-
gradient vector field, i.e., there exists an odd Lipschitz continuous map
ν : M̂ → TM with ν(u) ∈ TuM and ‖ν(u)‖ < 2‖J ′(u)‖, 〈J ′(u), ν(u)〉 >
‖J ′(u)‖2. We have the following deformation lemma on the Hilbert manifold
M without (PS) condition.

Lemma 2.1. Let ε, δ > 0, β ∈ R and D ⊂ M be a symmetric subset (i.e.,

D = −D) such that ‖J ′(u)‖ ≥ 4ε
δ

for u ∈ J−1[β − 2ε, β + 2ε] ∩ D2δ, where

Dδ := {u ∈ M : dist(u,D) ≤ δ}. Then there exists a map η ∈ C1([0, 1]×M,M)
such that η(t, ·) : M → M is an odd homeomorphism for any t ∈ [0, 1] and
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(1) η(0, u) = u, ∀u ∈ M ;
(2) η(t, u) = u, ∀u �∈ J−1[β − 2ε, β + 2ε] ∩D2δ;
(3) η(1, Jβ+ε ∩D) ⊂ Jβ−ε.

Proof. Let A := J−1[β − 2ε, β + 2ε] ∩D2δ, B := J−1[β − ε, β + ε] ∩Dδ and
define ρ : M → R by

ρ(u) =
dist(u,M \A)

dist(u,M \A) + dist(u,B)
.

Let

f(u) =

{
−ρ(u) ν(u)

‖ν(u)‖ if u ∈ M̂,

0 if u ∈ M \ M̂,

and consider the Cauchy problem d
dtω = f(ω) with ω(0, u) = u. Then this

problem has a unique solution ω(t, u) for t ∈ R such that ω(t, ·) is an odd
homeomorphism with respect to u ∈ M . Let η(t, u) = ω(δt, u). It is easy to
see that (1) and (2) holds. Note that

d

dt
J(η(t, u)) =

d

dt
J(ω(δt, u)) = −δ〈J ′(η), ρ(η)

ν(η)
‖ν(η)‖〉 ≤ −δρ(η)‖J ′(η)‖2

‖ν(η)‖ ,

we get that J(η(·, u)) is non-increasing with respect to t. For any u ∈ Jβ+ε∩D,

‖η(t, u) − u‖ = ‖
∫ t

0

d

ds
η(s, u) ds‖ ≤

∫ t

0

δ‖f(w)‖ ds ≤ δt,

we get that η(t, u) ∈ Dδ, ∀t ∈ [0, 1]. If there exists t0 ∈ [0, 1) such that
J(η(t0, u)) ≤ β−ε, then J(η(1, u)) ≤ J(η(t0, u)) ≤ β−ε, that is η(1, u) ∈ Jβ−ε.
If J(η(t, u)) > β − ε for all t ∈ [0, 1), we have that η(t, u) ∈ B. Hence,
ρ(η(t, u)) ≡ 1. It follows that

J(η(1, u)) = J(u) − δ

∫ 1

0

〈J ′(η),
ν(η)

‖ν(η)‖〉 dt

≤ J(u) − δ

∫ 1

0

‖J ′(η)‖
2

dt ≤ β − ε,

that means η(1, u) ∈ Jβ−ε. Therefore, (3) holds. �

Now, for j ∈ N, j ≥ n + 1, we define Σj := {A ⊂ M : A = −A = A,
γ(A) ≥ j}, where γ denotes the usual Krasnoselskii genus, and consider

βj := inf
A∈Σj

sup
u∈A

J(u).

Note that j ≥ n + 1, we have A ∩ {u ∈ V + : ‖u‖2∗ = 1} �= ∅ for any A ∈ Σj ,
since γ(A) > n. Therefore βj > 0 for all j ≥ n+ 1.

Lemma 2.2. For j ≥ n+ 1, there exists a (PS)βj
sequence (um) for J .

Proof. Fix j ≥ n+1. If there is no (PS)βj
sequence (um) for J, then there exists

ε > 0 such that ‖J ′(u)‖ ≥ 4ε for u ∈ J−1[βj − 2ε, βj + 2ε]. Let D = M, δ = 1.
Then by Lemma 2.1 there is an continuous map η ∈ C1([0, 1] × M,M) with
η(1, Jβj+ε) ⊂ Jβj−ε. There exists an A ∈ Σj such that sup

u∈A
J(u) < βj +ε. Since
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η(1, ·) is odd, γ(η(1, A)) ≥ γ(A) ≥ j, that is η(1, A) ∈ Σj . While η(1, A) ⊂
η(1, Jβj+ε) ⊂ Jβj−ε, which is a contradiction with the definition of βj . �

For ε > 0 and y ∈ R
N , we consider the Aubin-Talenti instanton [1,27]

Uε,y ∈ D1,2(RN ) defined by

Uε,y := [N(N − 2)]
N−2

4

(
ε

ε2 + |x− y|2
)N−2

2

= A0

(
ε

ε2 + |x− y|2
)N−2

2

,

where A0 := [N(N − 2)]
N−2

4 is a constant. Then Uε,y satisfies the equation
−Δu = |u|2∗−2u on R

N and
∫

RN |∇Uε,y|2 dx =
∫

RN |Uε,y|2∗
dx = SN/2. Let

E := {Uε,y : ε > 0, y ∈ R
N}.

Then E contains all positive solutions of the equation −Δu = |u|2∗−2u on R
N .

Lemma 2.3. Let (um) be a (PS)βj
sequence for J . Up to a subsequence, the

following properties hold.

(a) If 0 < βj < S, then (um) converges in M and βj is a critical value of J .
(b) If S < βj < 22/NS, then one of the following conclusions holds:

(b.1) (um) converges in M, that is βj is a critical value of J .
(b.2) There is a critical point u of J with J(u) = β∗ = (βN/2

j −SN/2)2/N ∈
(0, S) such that

dist(β
1

2∗−2
j um − β

1
2∗−2∗ u,E) → 0 or dist(β

1
2∗−2
j um − β

1
2∗−2∗ u,−E) → 0.

(c) If βj = S, then one of the following conclusions holds:
(c.1) (um) converges in M and βj is a critical value of J .

(c.2) dist(β
1

2∗−2
j um, E) → 0 or dist(β

1
2∗−2
j um,−E) → 0.

Proof. This lemma is inspired by a similar lemma for the functional I (see
Lemma 7 in [11]), and we give a sketch proof. Since (um) is a (PS)βj

sequence

for J, it follows that sequence (ũm), where ũm := β
1

2∗−2
j um, is a (PS)β̃j

sequence for I with β̃j = 1
N β

N/2
j . By Struwe’s global compactness result

for I [24,25], up to a subsequence, if 0 < β̃j < 1
N S

N/2, it follows that
β̃j is a critical value of I, so (a) holds; if 1

N S
N/2 < β̃j < 2

N S
N/2, then

β̃j is a critical value of I, which responds to (b.1). Otherwise, there is a
critical point ũ of I with I(ũ) = β̃j − 1

N S
N/2 = 1

N β
N/2
∗ such that either

dist(ũm − ũ, E) → 0 or dist(ũm − ũ,−E) → 0, which reduces to (b.2). If
β̃j = 1

N S
N/2, then β̃j is a critical value of I and (c.1) follows. If not, we then

have either dist(ũm, E) → 0 or dist(ũm,−E) → 0 and we get(c.2). �

Lemma 2.4. If βj = βj+1 < 22/NS, then Kβj is infinite.

Proof. Let β = βj = βj+1. If 0 < β < S, then the (PS)β condition holds from
Lemma 2.3 (a), then by a standard argument we get γ(Kβ) ≥ 2, that is, Kβ is
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infinite. If S < β < 22/NS, we denote β∗ := (βN/2 − SN/2)2/N > 0 and define

W+(δ) := {v ∈ M : dist(β
1

2∗−2 v − β
1

2∗−2∗ u,E) ≤ δ for some u ∈ Kβ∗},
W−(δ) := {v ∈ M : dist(β

1
2∗−2 v − β

1
2∗−2∗ u,−E) ≤ δ for some u ∈ Kβ∗},

W (δ) := W+(δ) ∪W−(δ),

where δ > 0. By a similar proof as in [11], we get that W+(δ) ∩W−(δ) = ∅ for
δ > 0 small enough. If Kβ is finite, then γ(Kβ) ≤ 1. Fix δ′ > 0 small enough
such thatW+(δ′)∩W−(δ′) = ∅, γ(Bδ′(Kβ)) = γ(Kβ) andBδ′(Kβ)∩W (δ′) = ∅,
where Bδ′(Kβ) = {u ∈ M : dist(u,Kβ) ≤ δ′}. Then γ

(
(Bδ′(Kβ) ∪W (δ′)

)≤1.
By Lemma 2.3, there is an ε > 0 such that

‖J ′(u)‖ ≥ 16ε
δ′ for u ∈ J−1[β − 2ε, β + 2ε] \ int

(
Bδ′/2(Kβ) ∪W (δ′/2)

)
.

Let D := H\ (Bδ′(Kβ) ∪W (δ′)
)

and δ = δ′/4. Then by Lemma 2.1, there is
an odd continuous map η ∈ C1([0, 1] ×M,M) such that

η
(
1, Jβ+ε\(Bδ′(Kβ) ∪W (δ′))

) ⊂ Jβ−ε.

Thus

j + 1 ≤ γ(Jβ+ε) ≤ γ(Jβ+ε\(Bδ′(Kβ) ∪W (δ′))) + γ(Bδ′(Kβ) ∪W (δ′))

≤ γ(Jβ−ε) + 1 ≤ j − 1 + 1 ≤ j,

which is a contradiction. Hence, Kβ is infinite. If β = S, the proof is similar
to the case S < β < 22/NS. We omit the details. �

We set B(x, r) := {y ∈ R
N : |y − x| < r}. Without loss of generality, we

may assume that 0 ∈ Ω. Then we have B(0, 2
m ) ∈ Ω for m large enough. Let

em
i := ξ 2

m
ei and V −

m := span{em
1 , . . . , e

m
n }, where

ξη(x) :=

⎧⎪⎨
⎪⎩

0 if x ∈ B(0, η
2 ),

2
η |x| − 1 if x ∈ B(0, η)\B(0, η

2 ),
1 if x ∈ Ω\B(0, η),

(2.2)

for any η > 0. Then it follows that |∇ξ 2
m

(x)| ≤ m, and em
i ∈ H1

0 (Ω\B(0, 1
m )).

We have the following lemma.

Lemma 2.5. (a) ‖em
i − ei‖ → 0 as m → +∞;

(b) There exists an m0 ∈ N such that for any m ≥ m0 it holds

max
{u∈V −

m : ‖u‖2=1}
‖u‖2 ≤ λn + C1m

−N+2,

where C1 is a constant independent of m.

The proof of (a) can be found in [14] and the proof of (b) can be found
in [9]. In fact they proved some similar conclusions with Hardy potential μ

|x|2
for μ ∈ [0, (N−2

2 )2). As a direct consequence of Lemma 2.5, we have the fol-
lowing lemma which is important for our proof.
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Lemma 2.6. For any m ≥ m0 it holds

sup
u∈V −

m

I(u) ≤ C2m
− N(N−2)

2 , (2.3)

where C2 is a constant independent of m.

Proof. Note that λn ≤ λ. For any m ≥ m0 and u ∈ V −
m , by Holder inequality

and (b) of Lemma 2.5, we have

I(u) ≤ λn − λ

2

∫
Ω

u2 dx+
C1

2
m−N+2

∫
Ω

u2 dx− 1
2∗

∫
Ω

|u|2∗
dx

≤ Cm−N+2‖u‖2
2∗ − 1

2∗ ‖u‖2∗
2∗

≤ max
t≥0

(Cm−N+2t2 − 1
2∗ t

2∗
)

≤ C2m
− N(N−2)

2 .

Thus, (2.3) holds. �

Define Uε := Uε,0 = A0( ε
ε2+|x|2 )

N−2
2 and let r1 = 1

2m , r2 = r1
3 . Then for

any r ∈ (0, r2] = (0, 1
6m ], we define a cut-off function of Uε by

Ur
ε (x) =

⎧⎨
⎩
Uε(x) −A0

(
ε

ε2+r2

)N−2
2

if x ∈ B(0, r),

0 if x ∈ Ω\B(0, r).

Similar cut-off definitions can be seen in [9,14]. Then Ur
ε ∈ H1

0 (B(0, r)) ⊂
H1

0 (Ω). Note (2.2), and define ξη ≡ 1 for η = 0. Let 0 ≤ 2η < ε < r, then the
following lemma holds.

Lemma 2.7. For any y ∈ Ω, the following estimates hold.∫
Ω

|∇(ξη(x− y)Ur
ε (x))|2 dx ≤ SN/2 − C

(ε
r

)N−2

+ C
(η
ε

)N−2

, (2.4)

∫
Ω

|ξη(x− y)Ur
ε (x)|2∗

dx ≥ SN/2 − C
(ε
r

)N−2

− C
(η
ε

)N−2

. (2.5)

Proof. First, we assume η = 0. Note ∇Uε(x) = −(N − 2)A0ε
N−2

2 x
(ε2+|x|2)N/2 ,

we have∫
Ω

|∇Ur
ε |2 dx =

∫
B(0,r)

|∇Uε|2 dx = SN/2 −
∫

RN \B(0,r)

|∇Uε|2 dx

= SN/2 − CεN−2

∫
RN \B(0,r)

|x|2
(ε2 + |x|2)N

dx

= SN/2 − CεN−2

∫ +∞

r

ρN+1

(ε2 + ρ2)N
dρ

≤ SN/2 − C
(ε
r

)N−2

.
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Hence, (2.4) holds.

∫
Ω

|Ur
ε |2∗

dx =
∫

B(0,r)

|Ur
ε |2∗

dx

≥
∫

B(0,r)

|Uε|2∗
dx− 2∗

∫
B(0,r)

|Ur
ε |2∗−1A0

(
ε

ε2 + r2

)N−2
2

dx

=
∫

RN

|Uε|2∗
dx−

∫
RN \B(0,r)

|Uε|2∗
dx

−2∗
∫

B(0,r)

|Ur
ε |2∗−1A0

(
ε

ε2 + r2

)N−2
2

dx.

While

∫
RN \B(0,r)

|Uε|2∗
dx = C

∫ +∞

r

(
ε

ε2 + ρ2

)N

ρN−1 dρ ≤ CεNr−N

and

2∗
∫

B(0,r)

|Ur
ε |2∗−1A0

(
ε

ε2 + r2

)N−2
2

dx

= C

∫ r

0

(
ε

ε2 + ρ2

)N+2
2
(

ε

ε2 + r2

)N−2
2

ρN−1 dρ

≤ C
εN

rN−2

∫ r

0

ρN−1

(ε2 + ρ2)
N+2

2

dρ

≤ C
εN

rN−2

(∫ ε

0

ρN−1

εN+2
dρ+

∫ r

ε

ρN−1

ρN+2
dρ

)

≤ C
(ε
r

)N−2

.

Therefore,

∫
Ω

|Ur
ε |2∗

dx ≥
∫

RN

|Uε|2∗
dx− CεNr−N − CεN−2r−N+2

≥ SN/2 − C
(ε
r

)N−2

,

that is, (2.5) holds.
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Now we assume that η > 0. Note that Ur
ε (x) < Uε(x) ≤ Cε− N−2

2 , and
|∇Ur

ε (x)| ≤ Cε− N
2 , we have∫

Ω

|∇(ξη(x− y)Ur
ε (x))|2 dx ≤

∫
Ω

|∇Ur
ε |2 dx+

∫
Ω

|∇ξη(x− y)|2|Ur
ε (x)|2 dx

+2
∫

Ω

|ξη(x− y)Ur
ε (x)∇ξη(x− y)∇Ur

ε (x)| dx

≤ SN/2 − C
(ε
r

)N−2

+ C

∫
η
2 ≤|x−y|≤η

4
η2
ε−(N−2) dx

+C
∫

η
2 ≤|x−y|≤η

2
η
ε− N−2

2 ε− N
2 dx

≤ SN/2 − C
(ε
r

)N−2

+ C
(η
ε

)N−2

.

Hence, (2.4) holds. Similarly∫
Ω

|ξη(x− y)Ur
ε (x)|2∗

dx

=
∫

Ω

|Ur
ε |2∗

dx−
∫

Ω

(1 − ξη(x− y)2
∗
)|Ur

ε |2∗
dx

≥ SN/2 − C
(ε
r

)N−2

− C

∫
|x−y|≤η

ε−N dx

≥ SN/2 − C
(ε
r

)N−2

− C
(η
ε

)N−2

,

that is, (2.5) holds. �

Remark 2.1. Let η = 0, the following similar estimate∫
Ω

|Ur
ε |2∗

dx ≥ SN/2 − CεNr−N , (2.6)

which is different from the inequality (2.5), is not true. Indeed, note that
εN−2r−N+2 � εNr−N as ε small enough. Assume that (2.6) holds, then
together with (2.4) and let ε small enough, we get that∫

Ω
|∇Ur

ε |2 dx
(
∫
Ω

|Ur
ε |2∗ dx)

2
2∗

≤ SN/2 − CεN−2r−N+2

(SN/2 − CεNr−N )
2
2∗

< S,

which is a contradiction.

Now, we let εr = r
N+2

2 , and define ur = Ur
εr
, then it is easy to see that ur

is continuous in H1
0 (Ω) with respect to r ∈ (0, r2] = (0, 1

6m ]. Let η ∈ [0, rN+1],
the following lemma holds.

Lemma 2.8. There exists C3 > 0 and m1 ∈ N such that for any m ≥ m1 and
any y ∈ Ω,

sup
t≥0

I(tξη(x− y)ur(x))

{
< 1

N S
N/2 if r ∈ (0, r2],

≤ Sm if r ∈ [ r2
2 , r2

]
,

(2.7)
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where Sm = 1
N S

N/2 − C3m
−(N+2), Sm + C2m

− N(N−2)
2 < 1

N S
N/2 and C2 is

defined in Lemma 2.6.

Proof. Let r ≤ r2. Note that η ∈ [0, rN+1], by Lemma 2.7 we have that

∫
Ω

|∇(ξη(x− y)ur(x))|2 dx ≤ SN/2 − C
(εr

r

)N−2

+ C

(
η

εr

)N−2

≤ SN/2 + Cr
N(N−2)

2

(
≤ SN/2 + Cm− N(N−2)

2 if r ∈
[r2

2
, r2

])
, (2.8)

and
∫

Ω

|ξη(x− y)ur(x)|2∗
dx ≥ SN/2 − C

(εr

r

)N−2

− C

(
η

εr

)N−2

≥ SN/2 − Cr
N(N−2)

2

(
≥ SN/2 − Cm− N(N−2)

2 if r ∈
[r2

2
, r2

])
, (2.9)

For r small enough, we have εr <
r
2 and Uεr

(x) ≥ 2A0

(
εr

ε2
r+r2

)N−2
2

for |x| ≤ r
2 .

That is ur(x) = Uεr
(x) − A0

(
εr

ε2
r+r2

)N−2
2 ≥ 1

2Uεr
(x) for |x| ≤ r

2 . Hence,
if η = 0,
∫

Ω

|ur(x)|2 dx ≥
∫

B(0,εr)

|ur(x)|2 dx

≥ 1
4

∫
B(0,εr)

|Uεr
(x)|2 dx

≥ C

∫ εr

0

ρN−1

(
εr

2ε2r

)N−2

dρ

≥ Cε2r = CrN+2
(
≥ Cm−(N+2) if r ∈

[r2
2
, r2

])
. (2.10)

Similarly, if 0 < η ≤ rN+1, we also have
∫

Ω

|ξη(x− y)ur(x)|2 dx

=
∫

Ω

|ur|2 dx−
∫

Ω

(1 − ξη(x− y)2)|ur|2 dx

≥ CrN+2 −
∫

|x−y|≤η

ε−(N−2)
r dx

≥ CrN+2
(
≥ Cm−(N+2) if r ∈

[r2
2
, r2

])
. (2.11)

For any constants B1, B2 > 0, we have that

max
t≥0

(
t2

2
B1 − t2

∗

2∗ B2

)
=

1
N
B1

(
B1

B2

)N−2
2

=
1
N

(
B1

B
2/2∗
2

)N
2

. (2.12)
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By (2.8)–(2.12) we have

I(tξη(x− y)ur(x)) =
t2

2

∫
Ω

(|∇(ξη(x− y)ur(x))|2 − λ(ξη(x− y)ur(x))2) dx

− t2
∗

2∗

∫
Ω

|ξη(x− y)ur(x)|2∗
dx

≤ t2

2

(
SN/2 + Cr

N(N−2)
2 − λCrN+2

)

− t2
∗

2∗
(
SN/2 − Cr

N(N−2)
2

)

≤ 1
N

(
SN/2 − CrN+2

)( SN/2 − CrN+2

SN/2 − Cr
N(N−2)

2

)N−2
2

,

since N ≥ 5, we have N + 2 < N(N−2)
2 . Note (2.3), there exists an m1 ≥ m0

such that for any m ≥ m1, we have r ≤ 1
6m and

sup
t≥0

I(tξη(x− y)ur(x)) ≤ 1
N
SN/2 − CrN+2

<
1
N
SN/2

(
≤ 1
N
SN/2 − C3m

−(N+2), if r ∈
[r2

2
, r2

])
,

and

C2m
− N(N−2)

2 < C3m
−(N+2),

where C3 is a constant independent of m. Let Sm =
1
N
SN/2 − C3m

−(N+2),

then Lemma 2.8 holds. �
From now on, we fix m ≥ m1. Note r1 = 1

2m , r2 = r1
3 = 1

6m . Define
ηr = rN+1. Let

M1
m :=

{
ξηr

(·)ur(· + y) : y ∈ Ω,dist(y, ∂Ω) > r, r ∈
[

1
12m

,
1

6m

]}
,

M2
m :=

{
ur(· + y) : y ∈ Ω,dist(y, ∂Ω) > r, r ∈

(
0,

1
6m

]}
.

Then for any u(x) = ξηr
(x)ur(x + y) ∈ M1

m, we have u ∈ H1
0 (Ω), supp(u) ⊂

B(−y, r)\B(0, ηr/2), and sup
t≥0

I(tu(x)) = sup
t≥0

I(tu(x− y)) ≤ Sm. Similarly, for

any u = ur(· + y) ∈ M2
m, we have supp(u) ⊂ B(−y, r) and sup

t≥0
I(tu(x)) <

1
N S

N/2. We write S
k = {x ∈ R

k+1 : |x| = 1}, B
k = {x ∈ R

k : |x| ≤ 1} for
k ∈ N. We consider u± := max{±u, 0}. We have the following lemma.

Lemma 2.9. There exists an odd continuous map h : S
N → H1

0 (B(0, r1)) such
that one of h(θ)± belongs to M1

m and the other belongs to M1
m ∪M2

m for every
θ ∈ S

N , that is

sup
t≥0

I(th(θ)) < Sm +
1
N
SN/2, for any θ ∈ S

N . (2.13)
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Proof. Note ηr = rN+1. For y ∈ B
N , we set t = |y|, θ = y

|y| and define

h̃ : B
N → H1

0 (B(0, r1)) by

h̃(y) =

{
u ηr2

2
(·) − ξηr2

(·)ur2(· + 4tr2θ) if 0 ≤ t ≤ 1
2 ,

ut(2r2−ηr2 )−r2+ηr2
(· − 2r2(2tθ − θ)) − ur2(· + 2r2θ) if 1

2 ≤ t ≤ 1.

Since ξηr2
(x) ≡ 1 for |x| ≥ ηr2 , we see that ξηr2

(·)ur2(·+2r2θ) ≡ ur2(·+2r2θ),
and so h̃ is continuous on B

N . Moreover, h̃(y)+ ∈ M2
m, h̃(y)

− ∈ M1
m, and

supp(h̃(y)+) ∩ supp(h̃(y)−) = ∅. Notice that h̃ is odd on S
N−1, it induces an

odd continuous map h : S
N → H1

0 (B(0, r1)) by

h(x1, . . . , xN+1) =

{
h̃(x1, . . . , xN ) if xN+1 ≥ 0,
−h̃(−x1, . . . ,−xN ) if xN+1 ≤ 0,

then one of h(θ)± belongs to M1
m and the other belongs to M1

m ∪M2
m for every

θ ∈ S
N , and supp(h(θ)+) ∩ supp(h(θ)−) = ∅, that is

sup
t≥0

I(th(θ)) ≤ sup
t≥0

I(th(θ)+) + sup
t≥0

I(th(θ)−) < Sm +
1
N
SN/2,

hence (2.13) holds. �

Lemma 2.10. There exists an odd continuous map h : R
n+N+2 → H1

0 (Ω) such
that lim|x|→+∞ I(h(x)) = −∞ and S̃ := supu∈h(Rn+N+2) I(u) <

2
N S

N/2.

Proof. Note that em
i ∈ H1

0 (Ω\B(0, 1
m )), we define an odd continuous map

h1 : R
n → H1

0 (Ω\B(0, 1
m )) by h1(x1, . . . , xn) :=

∑n
i=1 xie

m
i . Then by (2.3) it

follows that supu∈h1(Rn) I(u) ≤ C2m
− N(N−2)

2 . Since all norms are equivariant
in V −

m , it is easy to see that lim|x|→+∞ I(h1(x)) = −∞. By Lemma 2.9, there
exists an odd continuous map

h : S
N → H1

0 (B(0, r1)) = H1
0

(
B

(
0,

1
2m

))

such that one of h(θ)± belongs to M1
m and the other belongs to M1

m ∪M2
m for

every θ ∈ S
N . Fix y0 ∈ Ω with |y0| = 3

4m , and let v0(x) = ξηr2
(x)ur2(x + y0)

∈M1
m. Then v0 ∈ H1

0

(
B(0, 1

m

) \B(0, 1
2m )) ∩M1

m, and sup
t≥0

I(tv0) ≤ Sm. Let

Z := (SN × [−1, 1]) ∪ (BN+1 × {−1, 1}) ⊂ R
N+1 × R ≡ R

N+2

and extend h to a map h2 : Z → H1
0 (B(0, 1

m )) as follows: for θ ∈ S
N , s ∈ [0, 1]

and t ∈ [−1, 1] we define

h2(sθ, t) :=

⎧⎪⎨
⎪⎩

(1 − t)h(θ)− + (1 + t)h(θ)+ if s = 1,
2sh(θ)+ + (1 − s)v0 if t = 1,
2sh(θ)− − (1 − s)v0 if t = −1.

Then we extend h2 radially to a map h3 : R
N+2 → H1

0 (B(0, 1
m )) by

h3(tz) := th2(z) for z ∈ Z, t ≥ 0.
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By construction, h3 is an odd continuous map. Moreover, one of h3(z)±

belongs to M1
m and the other belongs to M1

m ∪ M2
m for any z ∈ R

N+2, and
supp(h3(z)+) ∩ supp(h3(z)−) = ∅, hence we have

sup
u∈h3(RN+2)

I(u) < Sm +
1
N
SN/2, lim

|x|→+∞
I(h3(x)) = −∞.

Now we define h : R
n+N+2 → H1

0 (Ω) by h(y, z)=h1(y)+h3(z) for all y∈R
n,

z ∈ R
N+2. Then h is an odd continuous map, satisfies lim

|x|→+∞
I(h(x)) = −∞

and

sup
(y,z)∈Rn+N+2

I(h(y + z)) ≤ sup
y∈Rn

I(h1(y)) + sup
z∈RN+2

I(h3(z))

< C2m
− N(N−2)

2 + Sm +
1
N
SN/2 <

2
N
SN/2.

That is, S̃ < 2
N S

N/2. �

Lemma 2.11. βn+N+2 < 22/NS.

Proof. Let A := {u ∈ h(Rn+N+2) : ‖u‖2∗ = 1}. Then A ⊂ M,γ(A) ≥ n +
N + 2. In fact, assume that γ(A) = k < n +N + 2, then there exists an odd
continuous map g : A → R

k\{0}. Let O := {x ∈ R
n+N+2 : ‖h(x)‖2∗ < 1},

then O is a symmetric open bounded subset of R
n+N+2, 0 ∈ O and h(∂O) = A,

that is, g ◦h : ∂O ⊂ R
n+N+2\{0} → R

k\{0} is an odd continuous map, which
contradicts with the Borsuk-Ulam Theorem. So γ(A) ≥ n + N + 2, that is
A ∈ Σn+N+2. For any u ∈ A, by (2.12) and Lemma 2.10 we get

2
N
SN/2 > S̃ ≥ max

t>0
I(tu) = max

t>0

(
t2

2

∫
Ω

(|∇u|2 − λu2) dx− t2
∗

2∗

∫
Ω

|u|2∗
dx

)

=
1
N

(∫
Ω
(|∇u|2 − λu2) dx

(
∫
Ω

|u|2∗ dx)2/2∗

)N/2

=
1
N
J(u)N/2,

That is, supu∈A J(u) ≤ (NS̃)2/N < 22/NS. By the definition of βn+N+2, we
see that βn+N+2 < 22/NS. �

Proof of Theorem 1.1 If Kβ is infinite for some 0 < β < 22/NS, J has infinitely
many critical points, and so do I. Hence, we assume that Kβ is finite for all
0 < β < 22/NS. By Lemma 2.11, we have

0 < βn+1 < βn+2 < · · · < βn+N+2 < 22/NS.

Let k0 ∈ N be such that βn+k0 < S ≤ βn+k0+1. By Lemma 2.3, J has at least

max{k0, N + 2 − (k0 + 1)} ≥
⌈
N + 1

2

⌉

nontrivial critical points. Hence, I has at least �N+1
2 	 nontrivial critical points.

This completes the proof. �
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3. Proof of Theorem 1.2

In this section, we assume that N ≥ 3 and λn ≤ λ < λn+1. The following
lemma is crucial.

Lemma 3.1. If u is a nontrivial solution of (1.1), then

‖u‖2∗ > (1 − λ

λn+1
)

N−2
4 S

N−2
4 , (3.1)

‖u‖ > (1 − λ

λn+1
)

N−2
4 S

N
4 , (3.2)

I(u) >
1
N

(
1 − λ

λn+1

)N/2

SN/2. (3.3)

Proof. Assume that u is a nontrivial solution of (1.1). SinceH1
0 (Ω) = V −⊕V +,

we have u = w + v, where w ∈ V −, v ∈ V +. Since I ′(w)w < 0 if w �= 0,
then we have that v �= 0. By I ′(u)w = 0 it follows that

∫
Ω

|u|2∗−2uw dx =
‖w‖2 − λ‖w‖2

2 ≤ 0, that is,
∫
Ω

|u|2∗−2vw dx+
∫
Ω

|u|2∗−2w2 dx ≤ 0. Therefore,∫
Ω

|u|2∗−2vw dx ≤ 0. On the other hand, from I ′(u)v = 0 it follows that∫
Ω

|u|2∗−2uv dx = ‖v‖2 − λ‖v‖2
2 ≥

(
1 − λ

λn+1

)
‖v‖2.

Hence, (
1 − λ

λn+1

)
‖v‖2 ≤

∫
Ω

|u|2∗−2vw dx+
∫

Ω

|u|2∗−2v2 dx

≤
∫

Ω

|u|2∗−2v2 dx ≤ ‖u‖2∗−2
2∗ ‖v‖2

2∗

< S−1‖u‖2∗−2
2∗ ‖v‖2.

Since v �= 0, we get that

‖u‖2∗ >

(
1 − λ

λn+1

) 1
2∗−2

S
1

2∗−2 =
(

1 − λ

λn+1

)N−2
4

S
N−2

4 .

Hence,

‖u‖ > S
1
2 ‖u‖2∗ >

(
1 − λ

λn+1

)N−2
4

S
N
4 ,

I(u) = I(u) − 1
2
I ′(u)u =

1
N

‖u‖2∗
2∗ >

1
N

(
1 − λ

λn+1

)N/2

SN/2.

�

Let K := {u ∈ H1
0 (Ω) : u �= 0, I ′(u) = 0}. Define c := infu∈K I(u). We

have the following theorem.

Theorem 3.1. If problem (1.1) has a nontrivial solution u with I(u) < 1
N S

N/2,
then there exists u0 ∈ K, such that I(u0) = c, i.e., u0 is a ground state solution
of problem (1.1).



Vol. 19 (2012) Ground state and multiple solutions 269

Proof. Since problem (1.1) has a nontrivial solution u with I(u) < 1
N S

N/2,

we get that K �= ∅ and c < 1
N S

N/2. Let uk ∈ K such that lim
k→∞

I(uk) = c.

Then (uk) is a (PS)c sequence for I. Since I satisfies (PS)a condition for
a < 1

N S
N/2 [24,25], it is well know that (uk) has a convergent subsequence,

still denoted by (uk). So we may assume uk → u0 in H and I ′(u0) = 0. By
Lemma 3.1, ‖u0‖ = lim

k→∞
‖uk‖ ≥ (1− λ

λn+1
)

N−2
4 S

N
4 , that is, u0 �= 0. Therefore,

u0 ∈ K, I(u0) = c, i.e., u0 ∈ K is a ground state solution to problem (1.1). �

Proof of Theorem 1.2. WhenN = 4, λ �= λn orN ≥ 5, problem (1.1) has a non-
trivial solution u with I(u) < 1

N S
N/2 [7,31]. When N = 3, λn+1 −S|Ω|−2/N <

λ < λn+1, problem (1.1) has a nontrivial solution u with I(u) < 1
N S

N/2 [8].
Therefore, by Lemma 3.1 and Theorem 3.1, problem (1.1) has a ground state
solution u with I(u) > 1

N (1 − λ
λn+1

)N/2SN/2. �

4. Proof of Theorems 1.3 and 1.4

First we give a sketch of a proof of Theorem 1.3. Let N ≥ 10, and λ̃n ≤ λ <

λ̃n+1 for some n ≥ 1. Denote 2� = 2N/(N − 4). We set H̃ = H2
0 (Ω) (resp.

H̃ = H2(Ω) ∩H1
0 (Ω)) for problem (1.2) (resp. (1.3)). In each case, we define

(u, v) =
∫
Ω

ΔuΔv dx and ‖u‖2 = (u, u) for each u, v ∈ H̃. Then we know that
H̃ is a Hilbert space and its norm is equivalent to the standard H2(Ω)-norm.
Let λ > 0, and let Ĩ be a functional defined by

Ĩ(u) =
1
2

∫
Ω

(|Δu|2 − λ|u|2) dx− 1
2�

∫
Ω

|u|2�

dx for u ∈ H̃. (4.1)

We know that each critical point of Ĩ is a solution of (1.2) in the case
H̃ = H2

0 (Ω) (resp. a solution of (1.3) in the case H̃ = H2(Ω) ∩ H1
0 (Ω)).

As in Sect. 2, we consider a new functional

J̃(u) :=

∫
Ω
(|Δu|2 − λu2) dx
(
∫
Ω

|u|2� dx)2/2� =
∫

Ω

(|Δu|2 − λu2) dx

defined on M̃ := {u ∈ H̃ : ‖u‖2� = 1}. Then M̃ ⊂ H̃ is a complete Hilbert
manifold, invariant under the involution u → −u. Moreover, we have that
J̃ ∈ C1(M̃,R), and if u ∈ M̃ is a critical point of J̃ with J̃(u) = β > 0, if
and only if ũ := β

1
2�−2u is a critical point of Ĩ with Ĩ(ũ) = 2

N β
N/4. (um) is a

(PS)β sequence for J̃ if and only if the sequence (ũm), where ũm := β
1

2�−2um,

is a (PS)β̃ sequence for Ĩ with β̃ = 2
N β

N/4. Denote K̃β := {u ∈ M̃ : J̃ ′(u) =

0, J̃(u) = β}. Now, for j ∈ N, j ≥ n + 1, we define Σj := {A ⊂ M̃ : A =
−A = A, γ(A) ≥ j}, where γ denotes the usual Krasnoselskii genus, and
consider

βj := inf
A∈Σj

sup
u∈A

J̃(u).
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As in Sect. 2, one can prove that for all j ≥ n+1 the energy level βj is positive,
and that there exists a (PS)βj

sequence (um) for J̃ (see Lemma 2.2). For each
ε > 0 and y ∈ R

N , we set

Ũε,y(x) = CN

(
ε

ε2 + |x− y|2
)(N−4)/2

for x ∈ R
N ,

where CN = ((N − 4)(N − 2)N(N + 2))(N−4)/8. We denote by S̃ the
best constant for the Sobolev embedding from D2,2(RN ) into L

2N
N−4 (RN ),

where D2,2(RN ) is the completion of C∞
0 (RN ) with respect to the norm

(
∫

RN |Δu|2 dx)1/2. Then Ũε,y satisfies the equation Δ2u = |u|2�−2u on R
N

and ∫
RN

|ΔŨε,y|2 dx =
∫

RN

|Ũε,y|2�

dx = S̃N/4.

Let

Ẽ := {Ũε,y : ε > 0, y ∈ R
N}.

From [17] we see that Ẽ contains all positive solutions of the equation Δ2u =
|u|2�−2u on R

N . Using similar proofs of Lemma 2.3 in Sect. 2, the following
lemma holds directly from Lemma 13 of [11].

Lemma 4.1. Let (um) be a (PS)βj
sequence for J̃ . Up to a subsequence, the

following properties hold.
(a) If 0 < βj < S̃, then (um) converges in M̃ and βj is a critical value of J̃ .
(b) If S̃ < βj < 24/N S̃, then one of the following conclusions holds:

(b.1) (um) converges in M̃, that is βj is a critical value of J̃ .
(b.2) There is a critical point u of J̃ with J̃(u) = β� = (βN/4

j −S̃N/4)4/N ∈
(0, S̃) such that

dist(β
1

2�−2
j um − β

1
2�−2
� u, Ẽ) → 0 or dist(β

1
2�−2
j um − β

1
2�−2
� u,−Ẽ) → 0.

(c) If βj = S̃, then one of the following conclusions holds:
(c.1) (um) converges in M̃ and βj is a critical value of J̃ .

(c.2) dist(β
1

2�−2
j um, Ẽ) → 0 or dist(β

1
2�−2
j um,−Ẽ) → 0.

From Lemma 4.1 and similar proofs of Lemma 2.4, we can show that if
0 < βj = βj+1 < 24/N S̃, then K̃βj is infinite. We choose a complete ortho-
normal basis {ψi}∞

i=1 of H̃ such that each ψi ∈ H̃ satisfies Δ2ψi = λ̃iψi

in Ω. Then we may choose C4 > 0 such that |ψi(x)| ≤ C4, |∇ψi(x)| ≤ C4,
|Δψi(x)| ≤ C4 for each i = 1, . . . , n. Without loss of generality, we may assume
that 0 ∈ Ω. Then we have B(0, 2

m ) ∈ Ω for m large enough. Let ψm
i := ζmψi

and Ṽ −
m := span{ψm

1 , . . . , ψ
m
n }, where ζm ∈ C∞

0 (RN ) such that 0 ≤ ζm ≤ 1,
|∇ζm| ≤ 2m, |Δζm| ≤ Cm2, ζm(x) = 0 if |x| ≤ 1

m and ζm(x) = 1 if |x| ≥ 2
m .

Then we have

‖ψm
i − ψi‖2 =

∫
Ω

|Δ(ζmψi) − Δψi|2 dx
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=
∫

Ω

|Δζmψi + 2∇ζm∇ψi + (ζm − 1)Δψi|2 dx

≤
∫

B(0, 2
m )

(|Δζm|2|ψi|2 + 4|Δζmψi∇ζm∇ψi|

+2|ΔζmψiΔψi| + 4|∇ζm|2|∇ψi|2
+ 4|∇ζm∇ψiΔψi| + |ζm − 1|2|Δψi|2

)
dx

≤ C

∫
B(0, 2

m )

(
m4 +m3 +m2 +m2 +m+ 1

)
dx

≤ Cm−N+4.

Then by similar proofs of Lemma 2.5 and Lemma 2.6, we see that

max
{u∈Ṽ −

m : ‖u‖2=1}
‖u‖2 ≤ λ̃n + Cm−N+4,

sup
u∈Ṽ −

m

I(u) ≤ C5m
− N(N−4)

4 . (4.2)

We choose ρ ∈ C∞
0 (RN ) satisfying 0 ≤ ρ ≤ 1, |∇ρ| ≤ 2, |Δρ| ≤ C6 and

ρ(x) =

{
1 if |x| ≤ 1,
0 if |x| ≥ 2,

where C6 is a constant. We denote Ũε := Ũε,0 = CN ( ε
ε2+|x|2 )

N−4
2 and let

r1 = 1
2m , r2 = r1

3 . Then for any r ∈ (0, r2] = (0, 1
6m ], we define ρr(x) = ρ( 2x

r ).
Then ρr ∈ C∞

0 (B(0, r)), 0 ≤ ρr ≤ 1, |∇ρr| ≤ 4r−1, |Δρr| ≤ 4C6r
−2. Define

Ũr
ε = ρrŨε, which is quite different from the definition of Ur

ε in Sect. 2. Then
Ũr

ε ∈ H̃ with supp(Ũr
ε ) ⊂ B(0, r). Define ξ̃η(x) = 1 − ρη(x) for η > 0 and

ξ̃η(x) ≡ 1 for η = 0. Denote ση,y(x) = ξ̃η(x− y) for convenience. Let 0 ≤ 2η <
ε < r/2, then the following lemma holds.

Lemma 4.2. There exists C > 0, depending only on N, such that for any y ∈ Ω,
we have ∫

Ω

|Δ(ση,yŨ
r
ε )|2 dx ≤ S̃N/4 + C

(
(ε/r)N−4 + (η/ε)N−4

)
, (4.3)

∫
Ω

|ση,yŨ
r
ε |2�

dx ≥ S̃N/4 − C
(
(ε/r)N + (η/ε)N

)
, (4.4)

∫
Ω

|ση,yŨ
r
ε |2 dx ≥ Cε4. (4.5)

Proof. We may assume that η > 0, since the case of η = 0 is much simpler.
First we show (4.3). We note that∣∣∣∣

∫
Ω

|Δ(ση,yŨ
r
ε )|2 dx− S̃N/4

∣∣∣∣
=
∣∣∣∣
∫

RN

|Δ(ση,yρrŨε)|2 dx−
∫

RN

|ΔŨε|2 dx
∣∣∣∣



272 Z. Chen, N. Shioji, and W. Zou NoDEA

≤
∫

RN

|σ2
η,yρ

2
r − 1||ΔŨε|2 dx

+C
(∫

RN

|Δση,y|2Ũ2
ε dx

+
∫

RN

|Δρr|2Ũ2
ε dx+

∫
RN

|∇ση,y|2|∇Ũε|2 dx

+
∫

RN

|∇ρr|2|∇Ũε|2 dx+
∫

RN

Ũε|Δση,y||ΔŨε| dx

+
∫

RN

Ũε|Δρr||ΔŨε| dx+
∫

RN

Ũε|∇ση,y||∇ρr||ΔŨε| dx

+
∫

RN

|ΔŨε||∇ση,y||∇Ũε| dx+
∫

RN

|ΔŨε||∇ρr||∇Ũε| dx
)
.

Since we have

∇Ũε = −CN (N − 4)
(

ε

ε2 + |x|2
)N−4

2 x

ε2 + |x|2

and

ΔŨε = CN (N − 4)
(

ε

ε2 + |x|2
)N−4

2
(

(N − 2)
|x|2

(ε2 + |x|2)2 −N
1

ε2 + |x|2
)
,

we can obtain the following inequalities:

∣∣∣∣
∫

RN

(σ2
η,yρ

2
r − 1)|ΔŨε|2 dx

∣∣∣∣
≤
∫

RN

|σ2
η,yρ

2
r − σ2

η,y||ΔŨε|2 dx+
∫

RN

|σ2
η,y − 1||ΔŨε|2 dx

≤
∫

|x|≥r/2

|ΔŨε|2 dx+
∫

|x−y|≤η

|ΔŨε|2 dx

≤ C

∫ ∞

r/2

εN−4

(ε2 + �2)N−4

(
�4

(ε2 + �2)4
+

1
(ε2 + �2)2

)
�N−1 d�

+C
∫

|x−y|≤η

( ε
ε2

)N−4
(

1
ε2

)2

dx ≤ C
(ε
r

)N−4

+ C
(η
ε

)N

,

∫
RN

|Δση,y|2Ũ2
ε dx ≤ C

η4

∫
|x−y|≤η

( ε
ε2

)N−4

dx ≤ C
(η
ε

)N−4

,
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∫
RN

|Δρr|2Ũ2
ε dx ≤ C

r4

∫
r/2≤|x|≤r

( ε
r2

)N−4

dx ≤ C
(ε
r

)N−4

,

∫
RN

|∇ση,y|2|∇Ũε|2 dx ≤ C

η2

∫
|x−y|≤η

( ε
ε2

)N−4
(

1
ε

)2

dx ≤ C
(η
ε

)N−2

,

∫
RN

|∇ρr|2|∇Ũε|2 dx ≤ C

r2

∫
r/2≤|x|≤r

( ε
r2

)N−4 ( r
r2

)2

dx ≤ C
(ε
r

)N−4

,

∫
RN

Ũε|Δση,y||ΔŨε| dx ≤ C

η2

∫
|x−y|≤η

( ε
ε2

)N−4
2
( ε
ε2

)N−4
2 1

ε2
dx ≤ C

(η
ε

)N−2

,

∫
RN

Ũε|Δρr||ΔŨε| dx ≤ C

r2

∫
r/2≤|x|≤r

( ε
r2

)N−4
2
( ε
r2

)N−4
2 r

r2
dx ≤ C

(ε
r

)N−4

,

∫
RN

Ũε|∇ση,y||∇ρr||ΔŨε| dx

≤ 1
2

(∫
RN

Ũε|∇ση,y|2|ΔŨε| dx+
∫

RN

Ũε|∇ρr|2|ΔŨε| dx
)

≤ C
(η
ε

)N−2

+ C
(ε
r

)N−4

,

∫
RN

|ΔŨε||∇ση,y||∇Ũε| dx ≤ C

η

∫
|x−y|≤η

( ε
ε2

)N−4
2 1

ε2

( ε
ε2

)N−4
2 1

ε
dx

≤ C
(η
ε

)N−1

,

∫
RN

|ΔŨε||∇ρr||∇Ũε| dx ≤ C

r

∫
r/2≤|x|≤r

( ε
r2

)N−4
2 1

r2

( ε
r2

)N−4
2 r

r2
dx

≤ C
(ε
r

)N−4

.

From the inequalities above, we can obtain (4.3). By

∣∣∣∣
∫

Ω

|ση,yŨ
r
ε |2�

dx− S̃
N
4

∣∣∣∣ ≤
∫

|x|≥r/2

|Ũε|2�

dx+
∫

|x−y|≤η

|Ũε|2�

dx

≤ C

∫ ∞

r/2

(
ε

�2

)N

�N−1 d�+ C

∫
|x−y|≤η

( ε
ε2

)N

dx ≤ C
(ε
r

)N

+ C
(η
ε

)N

,

we have (4.4). We also have

∫
Ω

|ση,y Ũ
r
ε |2 dx ≥ C

εN−4

∫
|x|≤ε

σ2
η,y dx ≥ C

εN−4
(εN − ηN ) ≥ Cε4.

Hence we have obtained the desired inequalities. �
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Proof of Theorem 1.3. Let εr = r
N+4

4 , and we define ũr = Ũr
εr

. Then it is easy
to see that ũr is continuous in H̃ with respect to r ∈ (0, r2] = (0, 1

6m ]. Let
η ∈ [0, r

N+2
2 ]. Note that N ≥ 10 and (4.2), by similar proof of Lemma 2.8, we

show that

supt≥0 I(tξ̃η(x− y)ũr(x))

{
< 2

N S̃
N/4 if r ∈ (0, r2],

≤ S̃m if r ∈ [ r2
2 , r2

]
.

S̃m = 2
N S̃

N/4 − C7m
−(N+4),

S̃m + C5m
− N(N−4)

4 < 2
N S̃

N/4.

Now, let ηr = r
N+2

2 . Following similar arguments of Lemma 2.9, Lemma 2.10
and Lemma 2.11, we get that βn+N+2 < 24/N S̃. Therefore, by a similar argu-
ment as in the proof of Theorem 1.1, we can show Theorem 1.3. �

Finally, we give a sketch of a proof of Theorem 1.4. Let N ≥ 8, and
λ̃n ≤ λ < λ̃n+1 for some n ≥ 1. By similar proofs of Lemma 3.1, we have the
following crucial lemma.

Lemma 4.3. If u is a nontrivial solution of (1.2) (respectively (1.3)), then

‖u‖2� > (1 − λ

λ̃n+1

)
N−4

8 S̃
N−4

8 , (4.6)

‖u‖ > (1 − λ

λ̃n+1

)
N−4

8 S̃
N
8 , (4.7)

Ĩ(u) >
2
N

(
1 − λ

λ̃n+1

)N/4

S̃N/4. (4.8)

Let K̃ := {u ∈ H̃ : u �= 0, Ĩ ′(u) = 0}. Define c̃ := inf
u∈K̃

Ĩ(u). Similar to
Theorem 3.1, we have the following theorem.

Theorem 4.1. If problem (1.2)(respectively (1.3)) has a nontrivial solution u

with Ĩ(u) < 2
N S̃

N/4, then there exists u0 ∈ K̃, such that Ĩ(u0) = c̃, i.e., u0 is
a ground state solution of problem (1.2) (respectively (1.3)).

Proof of Theorem 1.4. When N = 8, 9, λ �= λ̃n or N ≥ 10, problem (1.2)
(respectively (1.3)) has a nontrivial solution u with Ĩ(u) < 2

N S̃
N/4 [16]. There-

fore, by Lemma 4.3 and Theorem 4.1, problem (1.2) (respectively (1.3)) has a

ground state solution u with Ĩ(u) >
2
N

(
1 − λ

λ̃n+1

)N/4

S̃N/4. �
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