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1. Introduction and preliminaries

We consider the problem{−div(a(x,∇u)) + b(x)|u|p(x)−2u = f(x, u) for x ∈ Ω,
a(x,∇u) · ν(x) = g(x, u) for x ∈ ∂Ω,

(1)

where Ω ⊂ R
N , N ≥ 2 is a bounded domain with smooth boundary. We assume

that a : Ω × R
N → R

N , a = a(x, η), is a Carathéodory function such that it
is the continuous derivative with respect to η of a function A : Ω × R

N → R,
A = A(x, η). More exactly, a(x, η) = ∇ηA(x, η). The mappings a and A verify
the following.
(A1) The equality

A(x, 0) = 0

holds for all x ∈ Ω.
(A2) There exists a constant c0 > 0 such that

|a(x, η)| ≤ c0(1 + |η|p(x)−1),

for all x ∈ Ω and all η ∈ R
N .
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(A3) The inequality

0 ≤ [a(x, η1) − a(x, η2)] · (η1 − η2)

holds for all x ∈ Ω and all η1, η2 ∈ R
N , with equality if and only if

η1 = η2.
(A4) The inequalities

|η|p(x) ≤ a(x, η) · η ≤ p(x) A(x, η)

hold for all x ∈ Ω and all η ∈ R
N .

(A5) The mapping A is even with respect to its second variable, that is,

A(x,−η) = A(x, η)

for all x ∈ Ω and all η ∈ R
N .

The above type of assumptions can be found in other papers too. For
example, in [16] and [17] we meet the assumptions (A1)–(A4). In [16] the
approach relies on the sub and supersolution method, so the author extends
the sub and supersolutions concept to the Sobolev space with variable expo-
nents. He establishes the existence of the solution between a number of sub
and supersolutions and presents some of its properties. Although the author
does not discuss a problem similar to (1), he treats a variational inequality
that can be reduced to a variational equality and can be linked to a problem
with Neumann or Robin boundary conditions. In [17] the authors establish
the existence of a solution for an elliptic problem with Dirichlet boundary
conditions. Their strategy relies on a variant of the mountain pass theorem
of Ambrosetti and Rabinowitz combined with adequate variational methods.
Our strategy is to apply a theorem related to the mountain pass theorem,
namely the fountain theorem, which will be reminded in Sect. 2. This theorem
requires the symmetry condition (A5) and allows us to obtain a sequence of
solutions.

We note that, in [16] and [17], as well as in our paper, the study is con-
ducted in the framework of the variable exponent Lebesgue–Sobolev spaces.
However, nonstandard operators closely related to the ones described with the
aid of (A1)–(A5) can appear in different situations, such is the case of classi-
cal Lebesgue–Sobolev spaces (see [14]), or the case of anisotropic Lebesgue–
Sobolev spaces with variable exponent (see [3]).

There is a good reason for working under hypotheses like (A1)–(A5), here
and elsewhere. This set of hypotheses is only natural when we think at the
operators that can be obtained from it by making the suitable choices. Indeed,
for A(x, η) = 1

p(x) |η|p(x) we deduce that a(x, η) = |η|p(x)−2η and for η = ∇u
we find the p(·)-Laplace operator

div(a(x,∇u)) = div
(
|∇u|p(x)−2∇u

)
.

A second well-known example of operator arises when we choose A(x, η) =
1

p(x) [(1+ |η|2)p(x)/2 −1], thus a(x, η) = (1+ |η|2)(p(x)−2)/2η and for η = ∇u we
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find the generalized mean curvature operator

div(a(x,∇u)) = div
(
(1 + |∇u|2)(p(x)−2)/2∇u

)
.

We notice that in [17] it is considered a convexity-type condition in addi-
tion to (A1)–(A4). This condition permits to consider the above presented
examples of operators only for the case when p(x) ≥ 2. We, on the other hand,
can manage without it, thus in our examples p > 1.

Another remark is that the first example enables us to connect (1) to the
problem presented in [29],{−Δpu+ b(x)|u|p−2u = f(x, u) for x ∈ Ω,

|∇u|p−2 ∂u
∂ν = g(x, u) for x ∈ ∂Ω,

(2)

where Ω ⊂ R
N is a bounded domain with smooth boundary. In (2) the expo-

nent p is constant, hence they are dealing with the classical p-Laplace operator

Δpu = div(|∇u|p−2∇u).
A similar problem is considered also in [27], where p is not a constant, but a
continuous function. More exactly, they consider the problem{−Δp(x)u+ |u|p(x)−2u = λ1f(x, u) for x ∈ Ω,

|∇u|p(x)−2 ∂u
∂ν = λ2g(x, u) for x ∈ ∂Ω.

(3)

The p(·)-Laplace operator Δp(·) is an extension of the p-Laplace operator Δp

and in the present paper we generalize it to the even more general operator
described by (A1)–(A5). Thus we are entitled to say that our problem extends
(2) and (3), since the constants λ1, λ2 are positive and the functions b, f, g
fulfill conditions resembling to those used in our paper and described in what
follows.

For the function b : Ω → R we assume that
(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω.

In what concerns the rest of the functions involved in problem (1), in
order to present the general hypotheses more easily, we introduce some nota-
tion. We set

C+(Ω) =
{
h ∈ C(Ω) : 1 < min

x∈Ω
h(x) < max

x∈Ω
h(x) < ∞

}

and for all h ∈ C+(Ω) we denote

h+ = sup
x∈Ω

h(x), h− = inf
x∈Ω

h(x).

In addition, we denote

h�(x) =
{
Nh(x)/[N − h(x)] if h(x) < N,
∞ if h(x) ≥ N,

and

h∂(x) =
{

(N − 1)h(x)/[N − h(x)] if h(x) < N,
∞ if h(x) ≥ N.
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We consider p ∈ C+(Ω) and we suppose that f , g are Carathéodory
functions verifying the next conditions.
(F1) For q ∈ C+(Ω) with q(x) < p�(x) for all x ∈ Ω, there exists c1 > 0 such

that

|f(x, t)| ≤ c1|t|q(x)−1

for all x ∈ Ω and all t ∈ R.
(F2) There exists α1 > p+ such that

0 < α1F (x, t) ≤ tf(x, t)

for all x ∈ Ω and all t ∈ R, where

F (x, t) =
∫ t

0

f(x, s)ds.

(F3) The function f is odd with respect to its second variable, that is,

f(x,−t) = −f(x, t)

for all x ∈ Ω and all t ∈ R.
(G1) For r ∈ C+(Ω) with r(x) < p∂(x) for all x ∈ ∂Ω, there exists c2 > 0

such that

|g(x, t)| ≤ c2|t|r(x)−1

for all x ∈ ∂Ω and all t ∈ R.
(G2) There exists α2 > p+ such that

0 < α2G(x, t) ≤ tg(x, t)

for all x ∈ ∂Ω and all t ∈ R, where

G(x, t) =
∫ t

0

g(x, s)ds.

(G3) The function g is odd with respect to its second variable, that is,

g(x,−t) = −g(x, t)
for all x ∈ ∂Ω and all t ∈ R.

We point out that by our main theorem we will establish the existence
of a sequence of weak solutions for (1) without adding further conditions on
p, q and r. On the other hand, the corresponding result from [27] is provided
under the additional assumptions that q−, r− > p+.

As previously said, the nonlinear elliptic problem (1) will be studied in
the framework of the variable exponent Lebesgue–Sobolev spaces which are
briefly described in Sect. 2. The interest for such problems is based on the
multiple possibilities to apply them. There are applications in elastic mechan-
ics [30], in the mathematical modeling of non-Newtonian fluids [6,12,18–23,26]
and in image restoration [5]. To be more specific, we recall that some of the
first applications are concerning the electrorheological fluids, shortly, the ER
fluids. These fluids are suspensions of extremely fine non-conducting particles
(up to 50 μm diameter) in an electrically insulating fluid. The ER fluids have
a special property: when disposed to an electromagnetic field, their apparent
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viscosity undergoes a significant change which is reversible. For example, a
typical ER fluid can go from the consistency of a liquid to that of a gel, and
back, with response times on the order of milliseconds. After he made this
discovery, Winslow obtained an US patent [25] on the effect who now carries
his name and wrote an article published in 1949 [26]. For more details it is
enough to perform a simple search on the free encyclopedia site, Wikipedia.
This is a rapid way to learn that the electrorheological fluids have applica-
tions in fast acting hydraulic valves and clutches [22], in ER brakes [21] and
shock absorbers [23]. Recently, there are appearing novel uses, including use
in the US army’s planned future force warrior project or use in accurate abra-
sive polishing and tactile displays [15]. ER fluids have also been proposed to
have potential applications in flexible electronics and Motorola filed a pat-
ent application for mobile device applications in 2006. Further information on
properties, modelling and the applications of variable exponent spaces to these
fluids can be found in [1,2,4,6,8,10,12,18–20].

These are all very interesting matters that sustain our determination
to investigate problems with p(·)-growth conditions but, as usually, there is
a downside. Indeed, if we take the mathematical point of view, when deal-
ing with variable exponents it is obvious that we are in fact dealing with more
mathematical difficulties. Moreover, when we pass from the classical p-Laplace
operator to the variable p(·)-Laplace operator we get into more trouble, since
the homogeneity is lost. However, in our case, we are manipulating even more
general operators, as we saw above. And, as this would not be difficult enough,
we also have nonlinear conditions on the boundary. Therefore, in order to over-
come all this, we need some good “tools”, some solid auxiliary results. We
provide them in the next section.

2. Notation and auxiliary results

For the bounded domain with smooth boundary from the introductory section,
Ω ⊂ R

N , N ≥ 2, we denote by M one of the following two sets: Ω or ∂Ω. We
define the variable exponent Lebesgue space by

Lp(·)(M)=

{
u : u is a measurable real–valued function such that

∫
M

|u|p(x) <∞
}

endowed with the Luxemburg norm

‖u‖Lp(·)(M) = inf

{
μ > 0 :

∫
M

∣∣∣∣u(x)μ
∣∣∣∣
p(x)

≤ 1

}
.

The space
(
Lp(·)(M), ‖ · ‖Lp(·)(M)

)
has many qualities. It is a separable and

reflexive Banach space ([13, Theorem 2.5, Corollary 2.7]) and the inclusion
between spaces generalizes naturally: if 0 < |M| < ∞ and p1, p2 ∈ C+(M) are
such that p1 ≤ p2 in M, then the embedding Lp2(·)(M) ↪→ Lp1(·)(M) is contin-
uous ([13, Theorem 2.8]). Furthermore, for all u ∈ Lp(·)(M) and v ∈ Lp′(·)(M)
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we have the following Hölder-type inequality (see [13, Theorem 2.1])∣∣∣∣
∫

M
uv dx

∣∣∣∣ ≤ 2 ‖u‖Lp(·)(M)‖v‖Lp′(·)(M) (4)

where we denoted by Lp′(·)(M) the conjugate space of Lp(·)(M), obtained
by conjugating the exponent pointwise, that is, 1/p(x) + 1/p′(x) = 1 ([13,
Corollary 2.7]).

We denote by ρM, p(·) : Lp(·)(M) → R the mapping defined by

ρM, p(·)(u) =
∫

M
|u|p(x) ,

which is called the p(·)-modular of the Lp(·)(M) space. This is very helpful
when working on the generalized Lebesgue spaces. We present some of its
properties ([11, Theorem 1.3, Theorem 1.4]). If u ∈ Lp(·)(M) and p < ∞ then,

‖u‖Lp(·)(M) < 1 (=1; > 1) ⇔ ρM, p(·)(u) < 1 (=1; > 1)

‖u‖Lp(·)(M) > 1 ⇒ ‖u‖p−

Lp(·)(M)
≤ ρM, p(·)(u) ≤ ‖u‖p+

Lp(·)(M)
(5)

‖u‖Lp(·)(M) < 1 ⇒ ‖u‖p+

Lp(·)(M)
≤ ρM, p(·)(u) ≤ ‖u‖p−

Lp(·)(M)
(6)

‖u‖Lp(·)(M) → 0 (→ ∞) ⇔ ρM, p(·)(u) → 0 (→ ∞). (7)

If, in addition, (un)n ⊂ Lp(·)(M), then

lim
n→∞ ‖un − u‖Lp(·)(M) = 0 ⇔ lim

n→∞ ρM, p(·)(un − u) = 0

⇔ (un)n converges to u in measure and lim
n→∞ ρM, p(·)(un) = ρM, p(·)(u).

(8)

For Ω previously introduced we define the variable exponent Sobolev
space W 1,p(·)(Ω),

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}

endowed with the norm

‖u‖ = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω),

where by ‖∇u‖Lp(·)(Ω) we understand ‖ |∇u|‖Lp(·)(Ω). The space (W 1,p(·)(Ω),
‖ · ‖) is a separable and reflexive Banach space ([13, Theorem 1.3]). Moreover,
we have the following embedding result and trace theorem.

Theorem 1. ([8, Proposition 2.4]) Let Ω ⊂ R
N , N ≥ 2 be a bounded domain

with smooth boundary. If p, q ∈ C(Ω) satisfy the condition

1 ≤ q(x) < p�(x), ∀x ∈ Ω,

then there is a compact embedding W 1,p(·)(Ω) ↪→ Lq(·)(Ω).
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Theorem 2. ([7, Corollary 2.4]) Let Ω ⊂ R
N , N ≥ 2 be a bounded domain with

smooth boundary. Suppose that p ∈ C+(Ω) and r ∈ C(Ω) satisfy the condition

1 ≤ r(x) < p∂(x), ∀x ∈ ∂Ω.

Then there is a compact boundary trace embedding W 1,p(·)(Ω) ↪→ Lr(·)(∂Ω).

We refer to [7] for further details concerning the extension of the classical
trace to Lebesgue–Sobolev spaces with variable exponent. For simplicity, when
we refer to the trace of u we will write u instead of u|∂Ω or γu.

The third useful theorem concerns the application a.

Theorem 3. ([16, Theorem 4.1]) The mapping a is an operator of type (S+),
that is, if un ⇀ u (weakly) in W 1,p(·)(Ω) and

lim sup
n→∞

∫
Ω

a(x,∇un) · (∇un − ∇u) dx ≤ 0,

then un → u (strongly) in W 1,p(·)(Ω).

The next theorem that needs to be recalled here is the fountain theorem.
But first we have to present the general context. It is known ([28, Sect. 17])
that for a separable and reflexive Banach space there exist {en}∞

n=1 ⊂ X and
{fn}∞

n=1 ⊂ X� such that

fn(em) = δn,m =
{

1 if n = m,
0 if n = m,

X = span{en : n = 1, 2, . . . , } and X� = span{fn : n = 1, 2, . . . , }.
(Note that, since [28] is written in Chinese, the above assertions are based on
the affirmations made by Fan and Han in [9], or by Yao in [27].) For k = 1, 2, . . .
we denote

Xk = span{ek}, Yk =
k⊕

j=1

Xj and Zk =
∞⊕

j=k

Xj . (9)

For a separable reflexive Banach space X and for Xk, Yk, Zk previously defined
we give the statement of the fountain theorem (see for example [24]) that we
are going to use in Sect. 3.

Theorem 4. Assume that I ∈ C1(X,R) and that for each k = 1, 2, . . . , there
exist ρk > γk > 0 such that

(H1) infu∈Zk, ‖u‖X=γk
I(u) → ∞ as k → ∞.

(H2) maxu∈Yk, ‖u‖X=ρk
I(u) ≤ 0.

(H3) I satisfies the (PS)c condition for every c > 0 (that is, any sequence
(un)n ⊂ X such that I(un) → c and I ′(un) → 0 in X� as n → ∞
contains a subsequence converging to a critical point of I).

Then I has a sequence of critical values tending to +∞.
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In the present paper we choose X = W 1,p(·)(Ω) which, as said above,
is a separable reflexive Banach space. To apply Theorem 4 we will operate
with energetic functionals and rely on the critical point theory. This is why
we provide properties of some of the functionals that will be involved in our
future calculus. We start with Λ : W 1,p(·)(Ω) → R defined by

Λ(u) =
∫

Ω

A(x,∇u) dx.

Proposition 1. ([17, Lemma 1]) (i) The functional Λ is well-defined on
W 1,p(·)(Ω).

(ii) The functional Λ is of class C1(W 1,p(·)(Ω),R) and

〈Λ′
(u), v〉 =

∫
Ω

a(x,∇u) · ∇v dx,

for all u, v ∈ W 1,p(·)(Ω).

Remark 1. The study from [17] is conducted for Λ : W 1,p(·)
0 (Ω) → R, where

W
1,p(·)
0 (Ω) represents the Sobolev space with zero boundary values defined as

the closure of C∞
0 (Ω) with respect to the norm ‖ · ‖

W
1,p(·)
0 (Ω)

= ‖∇u‖Lp(·)(Ω).

Since the calculus is almost identical, it is omitted for brevity.

In addition, we denote by J : W 1,p(·)(Ω) → R the functional defined by

J(u) =
∫

Ω

[
|∇u|p(x) + |u|p(x)

]
dx.

Proposition 2. ([9, Proposition 2.3]) If u ∈ W 1,p(·)(Ω) then

‖u‖ > 1 ⇒ ‖u‖p− ≤ J(u) ≤ ‖u‖p+

‖u‖ < 1 ⇒ ‖u‖p+ ≤ J(u) ≤ ‖u‖p−
.

Other two functionals that have interesting properties are ψ, ϕ:
W 1,p(·)(Ω) → R defined by

ψ(u) =
∫

Ω

1
q(x)

|u|q(x) dx, ϕ(u) =
∫

∂Ω

1
r(x)

|u|r(x) dS. (10)

Proposition 3. The functionals ψ, ϕ : W 1,p(·)(Ω) → R are weakly-strongly
continuous, that is, un ⇀ u (weakly) implies ψ(un) → ψ(u), respectively,
ϕ(un) → ϕ(u), as n → ∞.

Proof. Let (un)n ⊂W 1,p(·)(Ω) be such that un⇀u (weakly) in W 1,p(·)(Ω). By
Theorem 1 and Theorem 2, we have

W 1,p(·)(Ω) ↪→ Lq(·)(Ω) compactly

and

W 1,p(·)(Ω) ↪→ Lr(·)(∂Ω) compactly.
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Therefore, passing eventually to a subsequence, we get the strong convergence
of (un)n to u in Lq(·)(Ω) and Lr(·)(∂Ω). This only means that

‖un − u‖Lq(·)(Ω) → 0, respectively, ‖un − u‖Lr(·)(∂Ω) → 0

as n → ∞. Using (8) we have arrived to

lim
n→∞ ρΩ, q(·)(un) = ρΩ, q(·)(u), respectively, lim

n→∞ ρ∂Ω, r(·)(un) = ρ∂Ω, r(·)(u).

Since

|ψ(un) − ψ(u)| ≤ 1
q−

∣∣ρΩ, q(·)(un) − ρΩ, q(·)(u)
∣∣ and

|ϕ(un) − ϕ(u)| ≤ 1
r−

∣∣ρ∂Ω, r(·)(un) − ρ∂Ω, r(·)(u)
∣∣ ,

our proof is complete. �

We remind now the following.

Proposition 4. ([9, Lemma 3.3]) For a separable reflexive Banach space X
and for Xk, Yk, Zk defined by (9) assume that Φ : X → R is weakly-strongly
continuous, Φ(0) = 0 and γ > 0 is a given positive number. Then

sup
u∈Zk, ‖u‖X≤γ

|Φ(u)| → 0

as k → ∞.

For X = W 1,p(·)(Ω) with Xk, Yk, Zk defined by (9) and ψ, ϕ defined by
(10), we set

βk = sup
u∈Zk, ‖u‖≤1

|ψ(u)|, θk = sup
u∈Zk, ‖u‖≤1

|ϕ(u)|. (11)

By Proposition 3 and Proposition 4 we deduce our final auxiliary result.

Proposition 5. If k → ∞, then

βk → 0 and θk → 0.

Now we have the necessary tools to obtain the desired multiplicity result
that will be stated and proved in the third section.

3. Main result

Everywhere below we work under the hypotheses described in the previous sec-
tions. Since we are preoccupied with the existence of multiple weak solutions
of problem (1), we begin by giving the definition of such solutions.

Definition 1. A function u ∈ W 1,p(·)(Ω) which verifies∫
Ω

a(x,∇u) · ∇v dx+
∫

Ω

b(x)|u|p(x)−2uv dx−
∫

Ω

f(x, u)v dx−
∫

∂Ω

g(x, u)v dS=0

for all v ∈ W 1,p(·)(Ω) is called a weak solution of (1).
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We associate to problem (1) the energetic functional I : W 1,p(·)(Ω) → R

defined by

I(u) =
∫

Ω

A(x,∇u) dx+
∫

Ω

b(x)
p(x)

|u|p(x) dx−
∫

Ω

F (x, u) dx−
∫

∂Ω

G(x, u) dS.

Due to Proposition 1, by a standard calculus it can be shown that I is
well defined and I ∈ C1(W 1,p(·)(Ω); R) with

〈I ′(u), v〉 =
∫

Ω

a(x,∇u) · ∇v dx+
∫

Ω

b(x)|u|p(x)−2uv dx−
∫

Ω

f(x, u)v dx

−
∫

∂Ω

g(x, u)v dS

for all u, v ∈ W 1,p(·)(Ω). Hence any critical point u ∈ W 1,p(·)(Ω) of I is a weak
solution to problem (1).

Our main result is given by the following theorem.

Theorem 5. Problem (1) admits a sequence (un)n of weak solutions such that
I(un) → ∞ when n → ∞.

The idea of the proof of Theorem 5 is to show that (H1)–(H3) are fulfilled.
To this end we will prove three corresponding lemmas.

Lemma 1. For every k ∈ N, there exists γk > 0 such that infu∈Zk, ‖u‖=γk

I(u) → ∞, when k → ∞.

Proof. By (F1), (F3) and (G1), (G3) we deduce that there exist c1, c2 > 0
such that

F (x, u) ≤ c1
q(x)

|u|q(x) ∀x ∈ Ω (12)

and

G(x, u) ≤ c2
r(x)

|u|r(x) ∀x ∈ ∂Ω, (13)

where q, r ∈ C+(Ω) with q(x) < p�(x) for all x ∈ Ω and r(x) < p∂(x) for all
x ∈ ∂Ω.

On the other hand, by (A4),

Λ(u) ≥ 1
p+

∫
Ω

|∇u|p(x) dx. (14)

Clearly, by (B) and (12)–(14),

I(u) ≥ 1
p+

∫
Ω

|∇u|p(x) dx+
b0
p+

∫
Ω

|u|p(x) dx− c1

∫
Ω

1
q(x)

|u|q(x) dx

−c2
∫

∂Ω

1
r(x)

|u|r(x) dS. (15)

Next, by (15), Proposition 2, (10) and (11),

I(u) ≥ 1
p+

min{1; b0}‖u‖p− − c1‖u‖q+
βk − c2‖u‖r+

θk, (16)
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for u ∈ Zk with ‖u‖ > 1. Depending on the order relation between p− and q+,
respectively, p− and r+, we distinguish several cases to treat separately.

Case 1: p− < q+ and p− < r+. We consider the following two equations:
1

4p+
min{1; b0}tp− − c1t

q+
βk = 0, (17)

1
4p+

min{1; b0}tp− − c2t
r+
θk = 0. (18)

Let ξk = 0 be the solution of (17) and ζk = 0 be the solution of (18).
Then

ξk =
(

1
4p+c1βk

min{1; b0}
) 1

q+−p−

and

ζk =
(

1
4p+c2θk

min{1; b0}
) 1

r+−p−
.

Using Proposition 5 we obtain that

lim
k→∞

ξk = ∞ and lim
k→∞

ζk = ∞.

We choose γk = min{ξk, ζk}, for u ∈ Zk with ‖u‖ = γk and by (16)–(18) we
have

I(u) ≥ 1
2p+

min{1; b0}γp−
k − c̃ → ∞ as k → ∞,

where c̃ is a positive constant. With that, the proof of the first case is complete.

Case 2: p− > q+ and p− < r+. By Proposition 5 we deduce that, for suffi-
ciently large k, βk <

1
2p+c1

min{1; b0}, thus (16) yields

I(u) ≥ 1
2p+

min{1; b0}‖u‖p− − c2θk‖u‖r+
,

for u ∈ Zk with ‖u‖ > 1. We choose γk = ζk, that is, the nonzero solution of
(18), and we discover that, for u ∈ Zk with ‖u‖ = γk,

I(u) ≥ 1
4p+

min{1; b0}γp−
k → ∞ as k → ∞, (19)

hence the proof of our second case is complete.

Case 3: p− < q+ and p− > r+. Proposition 5 implies that, for sufficiently large
k, θk <

1
2p+c2

min{1; b0}, so we notice that, using (16),

I(u) ≥ 1
2p+

min{1; b0}‖u‖p− − c1βk‖u‖q+
,

for u ∈ Zk with ‖u‖ > 1. We choose γk to be the nonzero solution of (17),
that is, ξk. For u ∈ Zk with ‖u‖ = γk we have arrived at relation (19) and the
proof of our third case is complete.
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Case 4: p− > q+ and p− > r+. Again, by Proposition 5, for sufficiently large
k, βk <

1
4p+c1

min{1; b0} and θk <
1

4p+c2
min{1; b0}. Therefore by (16),

I(u) ≥ 1
2p+

min{1; b0}‖u‖p−
.

By choosing (γk)k such that γk → ∞ as k → ∞, for u ∈ Zk with ‖u‖ = γk,
we have that I(u) → ∞ and the proof of our last case is complete. �

Remark 2. The proof of the fourth case can be done without relying on
Proposition 5. Indeed, using (12)–(14), (B) and Proposition 2 for u ∈ W 1,p(·)(Ω)
with ‖u‖ > 1 we get that

I(u) ≥ 1
p+

min{1; b0}‖u‖p− − c1
q−

∫
Ω

|u|q(x) dx− c2
r−

∫
∂Ω

|u|r(x) dS. (20)

Relations (5) and (6) imply that∫
Ω

|u|q(x) dx ≤ ‖u‖q+

Lq(·)(Ω)
+ ‖u‖q−

Lq(·)(Ω)
.

Taking into account Theorem 1 we can establish the existence of a constant
c3 > 0 such that ∫

Ω

|u|q(x) dx ≤ c3‖u‖q+
for ‖u‖ > 1. (21)

In the same manner, using Theorem 2 instead of Theorem 1, we can find
a constant c4 > 0 such that∫

∂Ω

|u|r(x) dS ≤ c4‖u‖r+
for ‖u‖ > 1. (22)

We introduce (21), (22) into (20) and, for u ∈ Zk with ‖u‖ = γk > 1, we
have

I(u) ≥ 1
p+

min{1; b0}γp−
k − c1c3

q− γq+

k − c2c4
r− γr+

k .

We choose (γk)k such that γk → ∞ as k → ∞ and we infer that I(u) → ∞ as
k → ∞ because q+ < p− and r+ < p−.

Let us pass now to the proof of our second lemma, corresponding to
hypothesis (H2) from the fountain theorem.

Lemma 2. For every k ∈ N there exists ρk > γk (γk given by Lemma 1) such
that the following inequality

max
u∈Yk, ‖u‖=ρk

I(u) ≤ 0

takes place.

Proof. The assumptions (A1) and (A2) yield that, for all η ∈ R
N and all

x ∈ Ω,

A(x, η) =
∫ 1

0

a(x, tη) · η dt ≤ c0

(
|η| +

1
p(x)

|η|p(x)

)
.
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Therefore, by (B),

I(u)≤c0‖∇u‖L1(Ω)+
max{c0; ‖b‖L∞(Ω)}

p− J(u)−
∫

Ω

F (x, u) dx−
∫

∂Ω

G(x, u) dS.

(23)

Since 1 < p(x) we have the continuous embedding Lp(·)(Ω) ↪→ L1(Ω) hence
there exists c5 > 0 such that

‖∇u‖L1(Ω) ≤ c5‖∇u‖Lp(·)(Ω) ≤ c5‖u‖. (24)

From (F2) and (G2) it follows that there exist M1, M2 > 0 such that

M1|u|α1 ≤ F (x, u) ∀x ∈ Ω (25)

and

M2|u|α2 ≤ G(x, u) ∀x ∈ ∂Ω. (26)

Due to Proposition 2 and relations (23)–(26), for u ∈ Yk with ‖u‖ > 1 we
obtain

I(u) ≤ c0c5‖u‖ +
max{c0; ‖b‖L∞(Ω)}

p− ‖u‖p+ −M1‖u‖α1
Lα1 (Ω) −M2‖u‖α2

Lα2 (∂Ω).

But 1 < p+ < αi, i ∈ {1, 2}, and Yk is a finite dimensional space, thus all the
norms are equivalent and we can conclude that, for u ∈ Yk with ‖u‖ = ρk > γk

big enough, I(u) ≤ 0. �

Finally, we give the third lemma, corresponding to hypothesis (H3).

Lemma 3. The functional I satisfies the (PS)c condition for every c > 0.

Proof. Let c > 0 and (un)n ⊂ W 1,p(·)(Ω) be such that

I(un) → c and I ′(un) → 0 in
(
W 1,p(·)(Ω)

)�

as n → ∞. (27)

To show that (un)n is strongly convergent in W 1,p(·)(Ω) we start by show-
ing that (un)n is bounded. Arguing by contradiction, we assume that, passing
eventually to a subsequence still denoted by (un)n,

‖un‖ → ∞ as n → ∞.

We denote α = min{α1, α2} and we choose τ ∈ (p+, α). Then, for sufficiently
large n, by (27) and (A4) we deduce that

c+ 1 + ‖un‖ ≥ I(un) − 1
τ

〈I ′(un), un〉

≥
(

1
p+

− 1
τ

)∫
Ω

(
|∇un|p(x) + b(x)|un|p(x)

)
dx

−
∫

Ω

(
F (x, un) − 1

τ
f(x, un)un

)
dx

−
∫

∂Ω

(
G(x, un) − 1

τ
g(x, un)un

)
dS. (28)
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Taking into consideration (F2) and (G2), the inequality (28) reduces to

c+ 1 + ‖un‖ ≥
(

1
p+

− 1
τ

)∫
Ω

(
|∇un|p(x) + b(x)|un|p(x)

)
dx. (29)

Furthermore, due to (B) and Proposition 2, (29) becomes

c+ 1 + ‖un‖ ≥
(

1
p+

− 1
τ

)
min{1, b0}‖un‖p−

,

for sufficiently large n. We let n go to ∞ and we divide by ‖un‖p−
in the

above relation. This way, we have obtained a contradiction, therefore (un)n is
bounded in W 1,p(·)(Ω). However, W 1,p(·)(Ω) is a reflexive Banach space, thus,
up to a subsequence, (un)n is weakly convergent to some u0 in W 1,p(·)(Ω).
Using (27) we infer that

lim
n→∞〈I ′(un), un − u0〉 = 0,

more precisely,

lim
n→∞

[∫
Ω

a(x,∇un) · (∇un − ∇u0) dx+
∫

Ω

b(x)|un|p(x)−2un(un − u0) dx

−
∫

Ω

f(x, un)(un − u0) dx−
∫

∂Ω

g(x, un)(un − u0) dS
]

= 0.

(30)

At the same time, by (B) and the Hölder-type inequality (4),∣∣∣∣
∫

Ω

b(x)|un|p(x)−2un(un − u0) dx
∣∣∣∣

≤ 2‖b‖L∞(Ω)

∥∥∥|un|p(x)−1
∥∥∥

L
p(·)

p(·)−1 (Ω)
‖un − u0‖Lp(·)(Ω). (31)

Since p(x) < p�(x), for all x ∈ Ω, then, by Theorem 1, the space W 1,p(·)(Ω) is
compactly embedded in Lp(·)(Ω). Hence

un → u0 in Lp(·)(Ω). (32)

By (31), (7) and (32) we deduce that

lim
n→∞

∫
Ω

b(x)|un|p(x)−2un(un − u0) dx = 0. (33)

In a similar manner, using (F1), (4), Theorem 1 and (7), we get

lim
n→∞

∫
Ω

f(x, un)(un − u0) dx = 0, (34)

while using (G1), (4), Theorem 2 and (7), we get

lim
n→∞

∫
∂Ω

g(x, un)(un − u0) dS = 0. (35)

Combining (30) with (33)–(35) we arrive at

lim
n→∞

∫
Ω

a(x,∇un) · (∇un − ∇u0) dx = 0.
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This means that, since a is a (S+)-type operator, by Theorem 3, (un)n is
strongly convergent to u0 in W 1,p(·)(Ω). From (27) it follows that u0 is a crit-
ical point for I and the proof is complete. �

Proof of Theorem 5. The proof follows immediately from Lemma 1, Lemma 2,
Lemma 3 and Theorem 4. �
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