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1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension n (n > 2) without
boundary, and m be an integer such that 0 < m < n. Recall that W™ (M)
is the usual Sobolev space, namely the completion of C°°(M) under the norm

m m/n
”uHm,n/m = (/ Z |Vku|n/mdvg>
M-

or any of its equivalents, where
vk AI;/QU when k is even
u = k-1
VAg? uw when k is odd,

V and A, represent the gradient and the Laplace-Beltrami operator respec-
tively with respect to (M,g). Precisely in local coordinates {x'}" ,, g =
9ij dl’idl‘j,

L Of 0 1 0

VI= g 2f = o

'
(et
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for all f € C°°(M), where /g = det(g;;). Here we have used the repeated
summation convention. In a celebrated paper [6], Fontana proved the follow-
ing. For all u € W™ (M) with

/ udvg = 0, / (V™| du, <1, (1.1)
M M
there holds
/ exp {A(m,n)|u(m)\"/(”_m)}dv9 <C (1.2)
M

for some uniform constant C' = C'(m, M), where

n
n/2om m+1 n—m
wn,l <7r F(Qn—F@Q) )) lf mis Odd

A(m7n) = 12 2 I (13)
prog <7T p(2n;n()2)> if mis even.

If A(m,n) is replaced by any larger number, the integral in (1.2) is still finite,
but cannot be bounded uniformly by any constant.

Inequality (1.2) is a manifold version of the corresponding Euclidean case,
the well-known Adams inequality [1]. It is also known as the Adams—Fontana
inequality, which is an extension of the classical Trudinger—Moser inequality
[14,16,19]. The main tool Fontana used to obtain (1.2) is the potential theory,
which is the same as that of Adams.

One may ask the following question: Does the best constant A(m,n)
change if we assume other conditions instead of (1.1) such that the Adams—
Fontana inequality (1.2) holds? Regarding this topic, we have the following:

Theorem 1. Let (M,g) be a compact Riemannian manifold of dimension n
without boundary, m is an integer such thatn/2 <m <n, and : M xR — R

s a nonnegative measurable function such that for some c¢* > 0
Bz, t) > [t (1.4)

Then for all u € W™ w (M) with

/ (IV™ulm + B, u)) dvg <1, (1.5)
M

there exists a uniform constant C' = C(m, M, c*) such that (1.2) holds, where
A(m,n) is defined by (1.3).

Theorem 1 follows from the Young inequality and the Adams—Fontana
inequality. Here m > n/2 is a technical hypothesis. It should be remarked
that for 0 < m < %, one can easily get the subcritical Adams-Fontana type
inequalities, namely for any 0 < a < A(m,n) and all u € W™ (M) satisfy-
ing (1.4) and (1.5), there exists a uniform constant C' = C(m,n, ) such that

fM eolulm=m dvy, < C. This can also be deduced from the Young inequality and
the Adams—Fontana inequality.
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Next we consider a class of simple functionals related to the most inter-
esting case of Theorem 1, namely n = 2m. In view of this special case, we
have the following definition of critical growth for a function. This kind of
definitions were originally proposed by Adimurthi [2].

Definition 2. Let (M, g) be a compact Riemannian manifold of even dimen-
sion. Let h : M x R — R be a C'-function and b be a positive real number.
Let f(x,t) = h(x,t)ebt2. f is called a function of critical growth on M if f
satisfies the following assumptions (H;)—(Hy) for every (x,t) € M x (0, +00):
(H1) f(z,t) >0, f(z,—t) = —f(=,1);

(Hy) f'(x,t) > {50, where f/(z,t) = 3 (z,1);

(Hs) F(x,t) < A(1 +1t° f(x,t)) for some o € [0,1) and A > 0, where

F(x,t)z/o f(z,s)ds

is the primitive of f;
(Hy) For every € > 0,

lim sup h(m,t)e_€t2 =0, lim inf h(ar;,t).est2 = +00.
t—=+00 pe t—+ooxeM

Denote the set of all critical growth functions by C(M). Clearly C(M) is
nonempty. A typical example is f(z,t) = Mebt” € C(M) for some A > 0. Let
fla,t) = h(z,t)e’” € C(M) and F(z,t) be the primitive of f. We define a
class of functionals on the space W 3-2(M) as following:

1 n
I (u) = 5 /M (IV2ul> + 1) dvg — /M F(z,u)dvg, Y1 > 0. (1.6)

For any fixed 7 > 0, we define the modified first eigenvalue for Agg , the Poly-
harmonic operator, by

Ar(M) = inf{/ (|V%u|2 +TU2) dvg :u € W%’Q(M)7/ u?dv, = 1}.
M M
(1.7)
Then we state the following;:

Theorem 3. Let (M,g) be a compact Riemannian manifold of dimension n
without boundary, n be even, f(z,t) = h(z,t)e" € C(M) be a function of
critical growth, J. be defined by (1.6) and \.(M) be defined by (1.7) for some
7 > 0. Then (i) the functional J, : W2:2(M) — R satisfies the Palais—Smale

Condition on the interval (—oo, %) , where By = (4m)"(n/2)!; (ii) assume that

sup f'(x,0) < A-(M), limsup inf th(z,t) = 4o, (1.8)
zeM t——4o00 TEM

then there exists some ug € W3-2(M) \ {0} such that

Ag%uo + 1ug = f(z,up) in M. (1.9)
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Furthermore, for the case n = 2, ug can be chosen such that ug(x) > 0 for all
ze M.

The method we adopt to prove Theorem 3 is the calculation of certain
constrained variation, which has been originally used by Adimurthi [2], then by
Lakkis [11], Adimurthi-Sandeep [3] and others. Precisely the Nehari manifold
[15] with respect to the functional .J; reads

N = {u eW=2(M): / (IV2ul? + 7u?) doy = / uf(z,u)dvg,u # 0} .
M M

We will prove that there exists a minimizer of J, on N, and it is indeed a criti-
cal point of J.. The key point in Adimurthi’s compactness analysis is applying
Lions’ Lemma [10]. The reason we can use this method here is that a Lions’
type lemma also holds in our case. Such kind of lemma has been used as a
powerful tool in [20] for compact Riemannian surface without boundary and
in [12] for bounded smooth domains in R*.

Let us interpret the relation between Theorems 1 and 3. Solutions of
Eq. (1.9) are critical points of the functional J;. In view of the structure of .J;,
precisely its first part [, (|A2u|? 4 7u?)dvy, it is reasonable to use Theorem 1
to study the compactness of the Palais—Smale sequence of J,.. This is the
motivation of establishing Theorem 1.

For any 0 < A < A\, (M), if f(z,t) = Mebt” | the hypothesis (1.8) becomes
simple. We deduce immediately from Theorem 3 the following;:

Corollary 4. Let (M,g) be a compact Riemannian manifold of dimension n
without boundary, n is even. For any A : 0 < A < A.(M), there exists a
nontrivial solution of the following equation

Ag%u +7u=due®™  in M
u€ W=2(M).

Furthermore, when n = 2, the solution can be chosen positive everywhere.

For related problems, a multi-bubble phenomenon for embedding of
Wy (Q) (2 ¢ R*") into Orlicz space has been investigated by Robert and
Struwe [17] for m = 2, Druet [4] for m = 1, Struwe [18] for m = 2 and
Martinazzi [13] for general m; Equations with critical growth nonlinearities in
R™ was also considered by Ruf, etc. [5]; Brezis—Nirenberg problem and Corn
problem for poly-harmonic operators were studied by Ge [7,8].

We organized this paper as follows: In Sect. 2 we prove the Adams—
Fontana type inequality (Theorem 1). Section 3 contributes to compactness
analysis and the Palais—Smale condition of the functional J.. Then we prove
the remaining part of Theorem 3 in Sect. 4.



Vol. 17 (2010) A class of Adams—Fontana type inequalities 123

2. Proof of Theorem 1

Proof of Theorem 1: Let 0 < m < N. Assume u € W™ (M) satisfies (1.5).
1

Then we have by (1.4), [u| < C for some constant C, where u = Vol (A1)

Jy; udvg. We distinguish two cases to estimate the integral in (1.2):
Case 1: u is a constant. Clearly |u| = |[u] < C, and then

/ ek(7n,n)|u\’"*”" dvg <C
M

for some universal constant C. Here and throughout this paper we denote
various constants by the same C.

Case 2: u is not a constant. It is easy to from (1.4) that

/ Bz, uw)dvy > 0. (2.1)
M

Noting that [, [V™u|# dvy, = 0 implies u is a constant, we get by (1.5) and
(2.1)

0< / |Vl dvg < 1. (2.2)
M
Define the set
E={xeM:|u(z) -1l > 2[ul}.
If £ = @, then |u| < 3[u| < C, whence [}, e’\(m’””“‘ﬁdvg < C for some

constant C. In the following, we assume E # @. When z € E, we have
lu(z) —ul >0 < 1, and thus

 Tule)—w]

[u(@) 77 = Ju(z) @+ |

n
n—m

= Ju(x) — == |1+

u(z) —

__n_ ‘ﬂ| )
S’U,,’L‘—unfnz 1_},_077
)= ( lu(z) — 1l
< Ju(z) = a7 + Clu(x) —u == [1]
n C "
< (1+40)|u(z) —u| = + - |7 2.3)

_m
n—m

for all 4 > 0. Here we have used the mean value theorem in the above first
inequality. In view of (2.2), we can take ¢ such that

1+5:(/ |vmufntdyg> o (2.4)
M
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When n/2 <m < n, we have

__m

5> <1 - /M ,B(x,u)dvg> B
> (1 - /M ﬁ(x,u)dvg> T

_ fM Bz, u)dvg
1— fM Bx,u)dvg

This together with the Holder inequality and assumption (1.4) implies

n n ﬁ
ol <0 ([ i, )
M

< O§n=m . (2.5)

Noting that [, [V"u
(2.3), (2.4) and (2.5),

/ Al ™= gy, / ANl T gy, / Ammlul ™= gy,
M M\E E

|lu—1u

my ||
IVl 7

wdvg = [y, IV™(u — )| dvg, we obtain by combining

n—m

§C’+C/ exp ¢ A(m,n) dvy, < C.
M

Here we have used the Adams-Fontana inequality. Combining Case 1 and Case
2, we completes the proof of the Theorem. ]

3. Palais—Smale condition

In this section, we prove part (i) of Theorem 3. The method we used here was
first used by Adimurthi [2]. Let n be the dimension of (M, g) and n is even.
For all u € W2:2(M) and some 7 > 0, we define

Hu||§ = /M (IV2ul* + 7u?) du,.
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Standard elliptic estimates (see for example [9, Chapter 8]) imply that |lul|, is
equivalent to the Sobolev norm

/2 1/2

Jullz 2 = / > IVFuldv,
M —o

Define a functional

I(u) = % /M wf (2, u)dv, — /M Flo, u)dv,.

Let By = A(5,2) = (4m)"(n/2)!. Firstly we have the following:

Lemma 3.1. Let f € C(M). Then we have

(i) Ifue W=2(M), then f(x,u) € LP(M) for all p > 1;
(i) 2 =sup{c?: ¢ >0, ” S|1‘1p<1 Sy wf(z, cw)dvg < 400};
wl g <
(iii) Let {up} and {vi} be bounded sequences in W=-2(M) converging weakly
and for almost every x in M to u and v respectively. Further assume that

lim sup ||uk||§ < %.
— 400
Then for every integer m > 0,
lim / f(z’uk)v,zndvg = / f(@,w) v dvg; (3.1)
k—+o00 M UL M u

(iv) Let {uy} be a sequence in W=2(M) converging weakly and for almost
every x in M to u, such that

sup/ g f(z, up)dvg < +00.
k JMm

Then for any v € [0,1),

il ooy = [ Jul @ ul)do, (3:2)
—to M M
lim F(x,uk)dvg:/ F(z,u)dvy; (3.3)
k—+oco Jas M

(v) I(u) >0 for all u, and I(u) =0 if and only if u = 0. Further there exists
a constant B > 0 such that

/ uf(z,u)dvy < B(1+ I(u)) (3.4)
M

for allu € W=2(M).
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Proof. By the assumption (Hy), for any e > 0, there exist positive constants
C4(e) and Cs(e) such that

Co(€)e? 1= < tf(2,t) < C1(e)e?IH9T for ¢ > 1. (3.5)

This together with Theorem 1 gives (i) and (ii).

For (iii), since limsupy_,, o [[ux|lZ < Bo/b, from (3.5) and Theorem 1,
there exists some p > 1 such that f(x,uy) is bounded in LP(M). On the other
hand, Sobolev imbedding theorem implies that v; (in fact a subsequence of
vg) converging to v in L°(M) for all s > 1. Then we have by using the Holder
inequality for any N > 0,

1 1-4
1 P

/ f(w’uk)v;”dvg <% (/ |f(as,uk)|pdvg> ' (/ |Uk|’“d”g> g

lue|>N Uk M .

It follows that

flx, ug) / f(w,uy) < 1 )
vltdv, = vitdv, + O | — | .
/M Uf; ke lug|<N Uk k=" N

Passing to the limit & — —+oo, then N — 400, the dominated convergence
theorem implies (3.1).
To prove (iv), noting that ¢ f(z,t) = |t|f(x, |t]), we have for any N > 0,

1 1
v < - — - .
AWMWfQMW%MWAWM@WW%<%NH>

The same argument in the proof of (iii) implies that (3.2) holds. Now from
(H3) we have |F(z,t)] < M(1+ |t|?|f(x,t)]) for some o € [0,1). Again the
dominated convergence theorem implies (3.3).

Finally we prove (v). For ¢t > 0, we have by (H3),

0
which together with the assumption (H;) implies that f(z,t) — 2F(x,t) is an

even nonnegative function and strictly increasing with respect to ¢t > 0. Hence
I(u) > 0 and I(u) =0 if and only if w = 0. By (H3),

I(u) = %/M uf(z,u)dvgy — /M F(z,u)dvg
3 [t = [ A0+,

1
—-Ci + f/ uf(z,u)dv,
4 Jjuize,

Y

Y

for some positive constants C; and Cy. This immediately leads to (3.4). O

Secondly we have the following Lions’ type lemma:
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Lemma 3.2. Let {u;} C W2:2(M) be a sequence of functions such that |luy|, =
1 and up — u weakly in W=2-2(M). Then for any p < 1/(1 — [|u]2),

limsup/ eﬁopuidvg < +o0. (3.6)
k—+oco J M

Proof. If u = 0, then the conclusion is a easy corollary of Theorem 1. Hence
we assume u Z 0. Since u, — u weakly in W2-2(M), it follows that

lug — u||§ —1- ||u||£27 ask — +oo,
thanks to the decomposition

g — ull2 = ||uk||3+||u|\g—2/ (VEueVEu+ Tupa) dog.
M

Noting that there exists some constant C' > 0 such that

Up — U
Bopui, < ﬁop(k”)Q + Cu?,
we conclude (3.6) by using the Holder inequality and Theorem 1. O

Thirdly we need the following compactness result:

Lemma 3.3. Assume f € C(M), {ur} C W=2(M) satisfies up, — u weakly in
W=22(M), up — u a.e. in M and u % 0. Further assume that

) 2b
(i) lullz > [y uf(@,u)dvg;
(iil) supy, [y, kS (@, up)dvg < +o0,
then there holds

(i) there exists C € (0 50] such that limy_, oo Jr (ug) = C;

lim ug f (2, up)dvg = /M uf(x, u)dv,.

k—-+o00 M

Proof. By (v) of Lemma 3.1, I(u) > 0. So (ii) implies that J;(u) > I(u) > 0
and

< .
() < Jim Ir () = ©

Let 8 = fM x,u)dvg. Then we have by (iv) of Lemma 3.1,
. 2
i [l = 2(C + 5).

Noting that
Uk u

[urllg 2(C+p)
and for sufficiently large k,

-1
b o lull;

weakly in W 2:2(M),
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we obtain by using Lemma 3.2 that there exists some p > 1 such that

sup/ PPk dy < +o00. (3.7)
k JMm

The power of this inequality is evident. From (Hy) we know that

A:= sup |th(x7t)|e_pT_lbt2 < 400,
(z,t)e M xR

which together with (3.7) implies for any N > 0 that
[ty = [ b,
luk[>N [uk|>N
< A/ e_%;lb“iepb“idvg
[uk|>N
=0 (671’2;11)]\]2).

With the same argument used in the proof of (iii) of Lemma 3.1, we get the
desired result by employing the dominated convergence theorem. O

Finally we prove the part (i) of Theorem 3:
Proof of (i) of Theorem 3 (Palais—Smale condition): Let C € (—oo, %), and
{us,} be a sequence in W 2-2(M) such that

. _ : / _
kErJIrloo Jr(ug) = C, kEToo J(ug) = 0.

Noting that

1

To(ur) = 5 (T2 (g ) = T, (3.8)

we have I(ug) = O(JJugl|g) since J(ux) and J'(ug) are bounded. Then from
(v) of Lemma 3.1, we have

[ wstem)de, = O(ful,).
M
Tt follows from (H3) that

[ Fuis, =0l

M
and whence [lug||2 = O(|Ju||y) since J(uy) is bounded. It follows that
sup |uk||g + sup/ g f(z, up)dvg < +00. (3.9)
k k JM

Up to a subsequence, we can assume u; — ug weakly in W=22(M), strongly
in L?(M) and a.e. in M.
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Case 1. C <0.
We have by (v) of Lemma 3.1 and Fatou’s Lemma,

. .. 1
0 < I(uo) < liminf I(ue) = lim inf{ (wr) — 5 (77 (wn),ug)} = C.

This leads to ug = 0. If C' < 0, there is no Palais—Smale sequence. If C' = 0,
we have by (3.9) and (iv) of Lemma 3.1,

Il =2l {50+ | Floidf =0

Therefore u; — 0 strongly in W 2:2(M).
Case 2. C € (0, 5o/ (2b)).
Suppose 1y = 0. Then from (3.9) and (iv) of Lemma 3.1, we have

Bo

li 2= lim 2 F =,
kigrfloo||uk||g m {JT(Uk)—F/M (x7uk)dvg}< 2

This together with (ii7) of Lemma 3.1 leads to

lim up f(x, up)dvg = / wo f (2, ug)dvg = 0.
k—+oc0 M M

Hence limy_, 4o I(u) = 0. From (3.8) we obtain

k——+oo k— o0

0<C= lim J (ux)= lim {I(uk) + ;(J;(uk),uw} =0,

and a contradiction. Hence ug # 0.
By J.(ug) — 0, (3.9) and (iv) of Lemma 3.1, we have

||u0||§ = / uo f(z, up)dvy.
M
Hence 1ug € M. Then applying Lemma 3.3 to u; and ug, we obtain

luoll2 < Timn_frun

k——+oo

=2 lim < J-(ux)+ [ F(z, ug)dy,
(e + | Flomgin
=2 lim {I(Uk) + %<J7/-(uk)auk> +/

Jm y F(z, uk)dvg}

zznm{Aﬂw@ww%+wwmw@

k—+o00

=/uM@wM%=WM~
M
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This implies up, — wug strongly in W#2:2(M), and the Palais-Smale condi-
tion. g

4. Existence result

In this section, we will prove part (ii) of Theorem 3. Firstly we need several
technical lemmas.

Lemma 4.1. Let f(z,t) = h(z,t)e" € C(M) and define ho(t) = infyepy h(z, t).
Suppose that lim sup,~q tho(t) = +oo, and a > 0 is such that

sup / wf(x, aw)dvy < 400, (4.1)
M

lwllg<1
2 Bo
then a® < 5.

Proof. By (ii) of Lemma 3.1, we have a? < %". Suppose a? = ’%“. We employ
a function sequence ggg introduced by Adams ([1], pp. 393-395) such that
ll¢slly = 1 and on the geodesic ball B, (),

-1
|s]* > (10g61"> % (1 —Ce+ 0 (log;> ) :

b5 [ (2, d5)dvy > / s f (@, ds)dvy — +00
M B,(5)

This implies

as § — 0, provided that ¢ > 0 is sufficiently small. This contradicts (4.1).
Hence a? < B—b(’ 0

Lemma 4.2. Let f(x,t) € C(M) and assume that (i) limsup,_,,  ho(t)t =
+o00, where ho(t) = infyen h(z,t); (i9) supyea f/(z,0) < A-(M); then for
any u € W32(M) \ {0}, there exists a constant v > 0 such that yu € N.
Moreover, if ||uH3 < [y uf(z,u)dog, then v < 1 and v = 1 if and only if
ueN.

Proof. For any u € W3-2(M)\ {0}, v > 0, we define

1
P(y) = ? /M uf(z,yu)dvg.

Thanks to the monotonicity of the function f(f"t) with respect to t > 0, we

have by using the Levi’s theorem and our assumption (%),

g 00) = [ 4 (a,0)dv, < ul
y—0 M

On the other hand, from v # 0 we have lim,_, o ¥(y) = +00. Hence there
exists some 7 > 0 such that v¥(y) = |lu||?, which implies that yu € N
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From (H;) and (Hs), it follows that f(z,tu)u/t is increasing for ¢t > 0. It
follows that, if ||lul|2 < [}, uf(x,u)dvy, then v < 1 and v = 1 if and only if
ueN. O

By (v) of Lemma 3.1, I(u) > 0. Hence J,(u) > 0 on N. Let

S = /2 inf J,(u).
ueN
Lemma 4.3. Under the assumption of Lemma 4.2, we have 0 < S? < ﬁ—bo.

Proof. Firstly we prove S? > 0. Suppose not. There exists a sequence {uy} C
N such that J; (ux) — 0 as k — 4o00. Since J; (uy) = I(uy), we have by using
(v) of Lemma 3.1,

sup/ ug f(z, up)dvg < +00;  sup ||uk||§ < +o00. (4.2)
k JM k

Then we can assume without loss of generality that up — wu weakly in
W3:2(M), strongly in L2(M), and for almost all # € M. Thanks to Fatou’s
lemma,

< I(u) < liminf I(uy) < liminf —0.
0 < I(u) < liminf I(u) < lim inf J; (ug) =0

Thus u = 0. We obtain by using (4.2) and (iv) of Lemma 3.1,

i g3 =2 tim (L(m <[ F(x,uk)dvg) o,

Let v, = ug/||uk|ly and assume v, — v weakly in W=:2(M). The above equal-
ity together with (iii) of Lemma 3.1 and our assumption (ii) leads to

1= lim / Mvidvg
k—+oo Jar Ug

/ f(z,0)v%dv, < )\T(M)/ v?dv, < 1,
M M

and a contradiction. Therefore S2 > 0.
Secondly we prove S? < %0. Let w € W22(M) such that |lw|, = 1. By
Lemma 4.2, there exists a v > 0 such that yw € A. Hence

S? Yoe
o5 < Jr(yw) < 7““’”_(; =5

This implies S < «. Using the fact that Mw is an increasing function of ¢
in (0,+00) and yw € N, we have

/ devg < / devg = %vanz = 1.
M S M Y Y
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Hence
sup / [z, Sw)wdvy < S,
lwllg<1J/ M
this together with Lemma 4.1 leads to S? < %. O

Lemma 4.4. Let f(xz,t) € C(M) and ug € N such that J(ug) = inf{J(u) :
uw € N}. Then J.(ug) =0, d.e., ug is a critical point of J..

Proof. Suppose J.(ug) # 0, then there exists v € W2:2(M) such that
(JL(up),v) = 1. For a, t € R, we define o,(a) = aug — tv. Passing to the
limit ¢ — 0 and o — 1, we have
4
dt
Thus we can choose two positive numbers ¢ and § such that for all
a€l—¢l+¢€andte(0,0),

T+ (01(0)) < J1(00(0)) = Ty (aup). (4.3)

Jr(o1(@)) = =(J7(uo),v) = —1.

We want to show that o;(a) € N for some ¢ and «. For this purpose we set

pil@) = o) 2 - /M o1(a) f (, 01(0)) vy

Since ug € N, we have py(1). Since ug f(x, aug)/a is increasing with respect to
a > 0, we have po(1—¢) > 0 and po(1+¢€) < 0. This implies that p;(1 —€) >0
and p:(1 4 €) < 0 for sufficiently small 0. Hence p;(a) = 0 for some ¢ € (0,9)
and « € [1 —€,1 + €]. Hence from (4.3) we have

inf{J(u) : uwe N} < J (o))

< Jr(aug) < sup Jr(tuo) = Jr(ug).
teR+

This contradicts our assumption J; (ug) = inf{J-(u): u € N'}, hence J.(ug) =0.
0

Now we can prove the second part of Theorem 3.

Proof of Part (ii) of Theorem 8 (existence result): Since the critical points of
J; are solutions of Eq. (1.9). In view of Lemma 4.4, we only need to prove the
existence of ug # 0 such that

Jr(ug) = inf {J-(u) : ue N} = %

Let ug € N be such that limg_ o0 Jr(ug) = %2 Since J-(ug) = I(ux), we
have by (v) of Lemma 3.1,

Sl;p {||uk||_(2] —|—/ ukf(z,uk)dvg} < +00. (4.4)
M
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Hence, up to a subsequence, uy — u weakly in W3-2(M), strongly in L?(M),
and for almost all z € M. We claim that ug # 0 and

Juoll2 < / (1) (4.5)

Suppose ug = 0, then from (4.4) and (iv) of Lemma 3.1

Jukl; = 2kEI-Poo {JT(uk) + /M F(x,uk)dvg} =52

This together with Lemma 4.3 and (iii) of Lemma 3.1 leads to

lim
k—-+oco

li dv, = 0.
Jim Mukf(x,w) Vg

It follows that
52
0< - = lim J-(ug)= lm I(ug)=0,

k—-+oco k——+oo

a contradiction. Hence ug # 0. Suppose (4.5) is false,

o2 > /M wo f (&, o) du,. (4.6)

Then we obtain by using Lemma 3.3,

lim ukf(ac,uk)dvgz/ uo f (2, up)dvy.
k—too Sy M

This leads to
Julfy < tim ol = i [ f ooy = [ wofovuo)do,

which contradicts (4.6). We have proved our claim.
By (4.5) and Lemma 4.2, there exists 0 < v < 1 such that yug € N.
Hence

52
-5 < Jr(yuo) = I(yuo) < I(uo)
SQ
< i ) =l o) =

This implies v = 1 and ug € N. Hence J;(ug) = %2, and the proof of Part (i)
of Theorem 3 is finished.

2 dimensional case. Finally we consider the case dimM = n = 2. Not-
ing that |ug| € N if ug € N, and J-(Ju|) < J-(u) for all v € N. Hence
Jr(Juol) = infyen Jr(u) if Jr(ug) = infyepr Jr(w). Therefore the nontrivial
solution wup can be chosen such that ug > 0. Hence the fact ug(z) > 0 for all
x € M follows immediately from the maximum principle. O
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