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Abstract. A class of Adams–Fontana type inequalities are established on
compact Riemannian manifolds without boundary via the Young inequal-
ity together with the usual Adams–Fontana inequality (Comment Math
Helv 68:415–454, 1993). As an application, a sequence of functionals are
defined on manifolds, a sufficient condition on which the Palais–Smale
condition holds is given and the existence of critical points of the func-
tionals is also considered in the spirit of Adimurthi (Ann Scuola Norm
Sup Pisa Cl Sci 17:393–413, 1990) and Adimurthi and Sandeep (Nonlinear
Differ Equ Appl 13:585–603, 2007).
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1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 2) without
boundary, and m be an integer such that 0 < m < n. Recall that Wm, n

m (M)
is the usual Sobolev space, namely the completion of C∞(M) under the norm

‖u‖m,n/m =

(∫
M

m∑
k=0

|∇ku|n/mdvg

)m/n

or any of its equivalents, where

∇ku =

{
∆k/2

g u when k is even

∇∆
k−1
2

g u when k is odd,

∇ and ∆g represent the gradient and the Laplace–Beltrami operator respec-
tively with respect to (M, g). Precisely in local coordinates {xi}n

i=1, g =
gijdx

idxj ,

∇f = gij ∂f

∂xj

∂

∂xi
, ∆gf = − 1√

g

∂

∂xi

(
gij√g ∂f

∂xi

)
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for all f ∈ C∞(M), where
√
g = det(gij). Here we have used the repeated

summation convention. In a celebrated paper [6], Fontana proved the follow-
ing. For all u ∈ Wm, n

m (M) with∫
M

udvg = 0,
∫

M

|∇mu| n
m dvg ≤ 1, (1.1)

there holds ∫
M

exp
{
λ(m,n)|u(x)|n/(n−m)

}
dvg ≤ C (1.2)

for some uniform constant C = C(m,M), where

λ(m,n) =

⎧⎪⎪⎨
⎪⎪⎩

n
ωn−1

(
πn/22mΓ(m+1

2 )
Γ(n−m+1

2 )

) n
n−m

if m is odd

n
ωn−1

(
πn/22mΓ(m

2 )
Γ(n−m

2 )

) n
n−m

if m is even.
(1.3)

If λ(m,n) is replaced by any larger number, the integral in (1.2) is still finite,
but cannot be bounded uniformly by any constant.

Inequality (1.2) is a manifold version of the corresponding Euclidean case,
the well-known Adams inequality [1]. It is also known as the Adams–Fontana
inequality, which is an extension of the classical Trudinger–Moser inequality
[14,16,19]. The main tool Fontana used to obtain (1.2) is the potential theory,
which is the same as that of Adams.

One may ask the following question: Does the best constant λ(m,n)
change if we assume other conditions instead of (1.1) such that the Adams–
Fontana inequality (1.2) holds? Regarding this topic, we have the following:

Theorem 1. Let (M, g) be a compact Riemannian manifold of dimension n
without boundary, m is an integer such that n/2 ≤ m < n, and β : M×R → R

is a nonnegative measurable function such that for some c∗ > 0

β(x, t) ≥ c∗|t| n
m . (1.4)

Then for all u ∈ Wm, n
m (M) with∫

M

(|∇mu| n
m + β(x, u)

)
dvg ≤ 1, (1.5)

there exists a uniform constant C = C(m,M, c∗) such that (1.2) holds, where
λ(m,n) is defined by (1.3).

Theorem 1 follows from the Young inequality and the Adams–Fontana
inequality. Here m ≥ n/2 is a technical hypothesis. It should be remarked
that for 0 < m < n

2 , one can easily get the subcritical Adams–Fontana type
inequalities, namely for any 0 ≤ α < λ(m,n) and all u ∈ Wm, n

m (M) satisfy-
ing (1.4) and (1.5), there exists a uniform constant C = C(m,n, α) such that∫

M
eα|u|

n
n−m

dvg ≤ C. This can also be deduced from the Young inequality and
the Adams–Fontana inequality.
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Next we consider a class of simple functionals related to the most inter-
esting case of Theorem 1, namely n = 2m. In view of this special case, we
have the following definition of critical growth for a function. This kind of
definitions were originally proposed by Adimurthi [2].

Definition 2. Let (M, g) be a compact Riemannian manifold of even dimen-
sion. Let h : M × R → R be a C1-function and b be a positive real number.
Let f(x, t) = h(x, t)ebt2 . f is called a function of critical growth on M if f
satisfies the following assumptions (H1)–(H4) for every (x, t) ∈ M × (0,+∞):
(H1) f(x, t) > 0, f(x,−t) = −f(x, t);
(H2) f ′(x, t) > f(x,t)

t , where f ′(x, t) = ∂f
∂t (x, t);

(H3) F (x, t) ≤ A(1 + tσf(x, t)) for some σ ∈ [0, 1) and A > 0, where

F (x, t) =
∫ t

0

f(x, s)ds

is the primitive of f ;
(H4) For every ε > 0,

lim
t→+∞ sup

x∈M
h(x, t)e−εt2 = 0, lim

t→+∞ inf
x∈M

h(x, t)eεt2 = +∞.

Denote the set of all critical growth functions by C(M). Clearly C(M) is
nonempty. A typical example is f(x, t) = λtebt2 ∈ C(M) for some λ > 0. Let
f(x, t) = h(x, t)ebt2 ∈ C(M) and F (x, t) be the primitive of f . We define a
class of functionals on the space W

n
2 ,2(M) as following:

Jτ (u) :=
1
2

∫
M

(|∇n
2 u|2 + τu2

)
dvg −

∫
M

F (x, u)dvg, ∀τ > 0. (1.6)

For any fixed τ > 0, we define the modified first eigenvalue for ∆
n
2
g , the Poly-

harmonic operator, by

λτ (M) := inf
{∫

M

(|∇n
2 u|2 + τu2

)
dvg : u ∈ W

n
2 ,2(M),

∫
M

u2dvg = 1
}
.

(1.7)

Then we state the following:

Theorem 3. Let (M, g) be a compact Riemannian manifold of dimension n

without boundary, n be even, f(x, t) = h(x, t)ebt2 ∈ C(M) be a function of
critical growth, Jτ be defined by (1.6) and λτ (M) be defined by (1.7) for some
τ > 0. Then (i) the functional Jτ : W

n
2 ,2(M) → R satisfies the Palais–Smale

Condition on the interval
(
−∞, β0

2b

)
, where β0 = (4π)n(n/2)!; (ii) assume that

sup
x∈M

f ′(x, 0) < λτ (M), lim sup
t→+∞

inf
x∈M

th(x, t) = +∞, (1.8)

then there exists some u0 ∈ W
n
2 ,2(M) \ {0} such that

∆
n
2
g u0 + τu0 = f(x, u0) in M. (1.9)
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Furthermore, for the case n = 2, u0 can be chosen such that u0(x) > 0 for all
x ∈ M .

The method we adopt to prove Theorem 3 is the calculation of certain
constrained variation, which has been originally used by Adimurthi [2], then by
Lakkis [11], Adimurthi-Sandeep [3] and others. Precisely the Nehari manifold
[15] with respect to the functional Jτ reads

N =
{
u ∈ W

n
2 ,2(M) :

∫
M

(|∇n
2 u|2 + τu2

)
dvg =

∫
M

uf(x, u)dvg, u 
≡ 0
}
.

We will prove that there exists a minimizer of Jτ on N , and it is indeed a criti-
cal point of Jτ . The key point in Adimurthi’s compactness analysis is applying
Lions’ Lemma [10]. The reason we can use this method here is that a Lions’
type lemma also holds in our case. Such kind of lemma has been used as a
powerful tool in [20] for compact Riemannian surface without boundary and
in [12] for bounded smooth domains in R

4.
Let us interpret the relation between Theorems 1 and 3. Solutions of

Eq. (1.9) are critical points of the functional Jτ . In view of the structure of Jτ ,
precisely its first part

∫
N

(|∆n
2 u|2 + τu2)dvg, it is reasonable to use Theorem 1

to study the compactness of the Palais–Smale sequence of Jτ . This is the
motivation of establishing Theorem 1.

For any 0 < λ < λτ (M), if f(x, t) = λtebt2 , the hypothesis (1.8) becomes
simple. We deduce immediately from Theorem 3 the following:

Corollary 4. Let (M, g) be a compact Riemannian manifold of dimension n
without boundary, n is even. For any λ : 0 < λ < λτ (M), there exists a
nontrivial solution of the following equation

{
∆

n
2
g u+ τu = λuebu2

in M

u ∈ W
n
2 ,2(M).

Furthermore, when n = 2, the solution can be chosen positive everywhere.

For related problems, a multi-bubble phenomenon for embedding of
Wm,2

0 (Ω) (Ω ⊂ R
2m) into Orlicz space has been investigated by Robert and

Struwe [17] for m = 2, Druet [4] for m = 1, Struwe [18] for m = 2 and
Martinazzi [13] for general m; Equations with critical growth nonlinearities in
R

n was also considered by Ruf, etc. [5]; Brezis–Nirenberg problem and Corn
problem for poly-harmonic operators were studied by Ge [7,8].

We organized this paper as follows: In Sect. 2 we prove the Adams–
Fontana type inequality (Theorem 1). Section 3 contributes to compactness
analysis and the Palais–Smale condition of the functional Jτ . Then we prove
the remaining part of Theorem 3 in Sect. 4.
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2. Proof of Theorem 1

Proof of Theorem 1: Let 0 < m < N . Assume u ∈ Wm, n
m (M) satisfies (1.5).

Then we have by (1.4), |u| ≤ C for some constant C, where u = 1
V ol(M)∫

M
udvg. We distinguish two cases to estimate the integral in (1.2):

Case 1: u is a constant. Clearly |u| = |u| ≤ C, and then

∫
M

eλ(m,n)|u|
n

n−m
dvg ≤ C

for some universal constant C. Here and throughout this paper we denote
various constants by the same C.
Case 2: u is not a constant. It is easy to from (1.4) that

∫
M

β(x, u)dvg > 0. (2.1)

Noting that
∫

M
|∇mu| n

m dvg = 0 implies u is a constant, we get by (1.5) and
(2.1)

0 <
∫

M

|∇mu| n
m dvg < 1. (2.2)

Define the set

E = {x ∈ M : |u(x) − u| > 2|u|}.

If E = ∅, then |u| ≤ 3|u| ≤ C, whence
∫

M
eλ(m,n)|u|

n
n−m

dvg ≤ C for some
constant C. In the following, we assume E 
= ∅. When x ∈ E, we have
|u(x) − u| > 0, |u|

|u(x)−u| ≤ 1
2 , and thus

|u(x)| n
n−m = |u(x) − u+ u| n

n−m

= |u(x) − u| n
n−m

∣∣∣∣1 +
u

u(x) − u

∣∣∣∣
n

n−m

≤ |u(x) − u| n
n−m

(
1 + C

|u|
|u(x) − u|

)
≤ |u(x) − u| n

n−m + C|u(x) − u| m
n−m |u|

≤ (1 + δ)|u(x) − u| n
n−m +

C

δ
m

n−m
|u| n

n−m (2.3)

for all δ > 0. Here we have used the mean value theorem in the above first
inequality. In view of (2.2), we can take δ such that

1 + δ =
(∫

M

|∇mu| n
m dvg

)− m
n−m

. (2.4)
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When n/2 ≤ m < n, we have

δ ≥
(

1 −
∫

M

β(x, u)dvg

)− m
n−m

− 1

≥
(

1 −
∫

M

β(x, u)dvg

)−1

− 1

=

∫
M
β(x, u)dvg

1 − ∫
M
β(x, u)dvg

.

This together with the Hölder inequality and assumption (1.4) implies

|u| n
n−m ≤ C

(∫
M

|u| n
m dvg

) m
n−m

≤ C

(∫
M

β(x, u)dvg

) m
n−m

≤ Cδ
m

n−m . (2.5)

Noting that
∫

M
|∇mu| n

m dvg =
∫

M
|∇m(u− u)| n

m dvg, we obtain by combining
(2.3), (2.4) and (2.5),

∫
M

eλ(m,n)|u|
n

n−m
dvg =

∫
M\E

eλ(m,n)|u|
n

n−m
dvg +

∫
E

eλ(m,n)|u|
n

n−m
dvg

≤ C + C

∫
M

exp

⎧⎪⎨
⎪⎩λ(m,n)

|u− u| n
n−m

‖∇mu‖
n

n−m

L
n
m (M)

⎫⎪⎬
⎪⎭ dvg ≤ C.

Here we have used the Adams–Fontana inequality. Combining Case 1 and Case
2, we completes the proof of the Theorem. �

3. Palais–Smale condition

In this section, we prove part (i) of Theorem 3. The method we used here was
first used by Adimurthi [2]. Let n be the dimension of (M, g) and n is even.
For all u ∈ W

n
2 ,2(M) and some τ > 0, we define

‖u‖2
g =
∫

M

(|∇n
2 u|2 + τu2

)
dvg.
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Standard elliptic estimates (see for example [9, Chapter 8]) imply that ‖u‖g is
equivalent to the Sobolev norm

‖u‖n
2 ,2 =

⎛
⎝∫

M

n/2∑
k=0

|∇ku|2dvg

⎞
⎠

1/2

.

Define a functional

I(u) =
1
2

∫
M

uf(x, u)dvg −
∫

M

F (x, u)dvg.

Let β0 = λ(n
2 , 2) = (4π)n(n/2)!. Firstly we have the following:

Lemma 3.1. Let f ∈ C(M). Then we have

(i) If u ∈ W
n
2 ,2(M), then f(x, u) ∈ Lp(M) for all p > 1;

(ii) β0
b = sup{c2 : c > 0, sup

‖w‖g≤1

∫
M
wf(x, cw)dvg < +∞};

(iii) Let {uk} and {vk} be bounded sequences in W
n
2 ,2(M) converging weakly

and for almost every x in M to u and v respectively. Further assume that

lim sup
k→+∞

‖uk‖2
g <

β0

b
.

Then for every integer m ≥ 0,

lim
k→+∞

∫
M

f(x, uk)
uk

vm
k dvg =

∫
M

f(x, u)
u

vmdvg; (3.1)

(iv) Let {uk} be a sequence in W
n
2 ,2(M) converging weakly and for almost

every x in M to u, such that

sup
k

∫
M

ukf(x, uk)dvg < +∞.

Then for any ν ∈ [0, 1),

lim
k→+∞

∫
M

|uk|νf(x, |uk|)dvg =
∫

M

|u|νf(x, |u|)dvg, (3.2)

lim
k→+∞

∫
M

F (x, uk)dvg =
∫

M

F (x, u)dvg; (3.3)

(v) I(u) ≥ 0 for all u, and I(u) = 0 if and only if u ≡ 0. Further there exists
a constant B > 0 such that∫

M

uf(x, u)dvg ≤ B(1 + I(u)) (3.4)

for all u ∈ W
n
2 ,2(M).
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Proof. By the assumption (H4), for any ε > 0, there exist positive constants
C1(ε) and C2(ε) such that

C2(ε)eb(1−ε)t2 ≤ tf(x, t) ≤ C1(ε)eb(1+ε)t2 for t ≥ 1. (3.5)

This together with Theorem 1 gives (i) and (ii).
For (iii), since lim supk→+∞ ‖uk‖2

g < β0/b, from (3.5) and Theorem 1,
there exists some p > 1 such that f(x, uk) is bounded in Lp(M). On the other
hand, Sobolev imbedding theorem implies that vk (in fact a subsequence of
vk) converging to v in Ls(M) for all s > 1. Then we have by using the Hölder
inequality for any N > 0,

∫
|uk|>N

f(x, uk)
uk

vm
k dvg ≤ 1

N

(∫
M

|f(x, uk)|pdvg

) 1
p
(∫

M

|vk| p
p−1 dvg

)1− 1
p

.

It follows that∫
M

f(x, uk)
uk

vm
k dvg =

∫
|uk|≤N

f(x, uk)
uk

vm
k dvg +O

(
1
N

)
.

Passing to the limit k → +∞, then N → +∞, the dominated convergence
theorem implies (3.1).

To prove (iv), noting that tf(x, t) = |t|f(x, |t|), we have for any N > 0,∫
|uk|>N

|uk|νf(x, |uk|)dvg ≤ 1
N1−ν

∫
M

|uk|f(x, |uk|)dvg = O

(
1

N1−ν

)
.

The same argument in the proof of (iii) implies that (3.2) holds. Now from
(H3) we have |F (x, t)| ≤ M(1 + |t|σ|f(x, t)|) for some σ ∈ [0, 1). Again the
dominated convergence theorem implies (3.3).

Finally we prove (v). For t > 0, we have by (H2),

∂

∂t
{tf(x, t) − 2F (x, t)} = tf ′(x, t) − f(x, t) > 0,

which together with the assumption (H1) implies that f(x, t) − 2F (x, t) is an
even nonnegative function and strictly increasing with respect to t > 0. Hence
I(u) ≥ 0 and I(u) = 0 if and only if u ≡ 0. By (H3),

I(u) =
1
2

∫
M

uf(x, u)dvg −
∫

M

F (x, u)dvg

≥ 1
2

∫
M

uf(x, u)dvg −
∫

M

A(1 + |u|σ|f(x, u)|)dvg

≥ −C1 +
1
4

∫
|u|≥C2

uf(x, u)dvg

for some positive constants C1 and C2. This immediately leads to (3.4). �

Secondly we have the following Lions’ type lemma:
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Lemma 3.2. Let {uk} ⊂ W
n
2 ,2(M) be a sequence of functions such that ‖uk‖g =

1 and uk ⇀ u weakly in W
n
2 ,2(M). Then for any p < 1/(1 − ‖u‖2

g),

lim sup
k→+∞

∫
M

eβ0pu2
kdvg < +∞. (3.6)

Proof. If u ≡ 0, then the conclusion is a easy corollary of Theorem 1. Hence
we assume u 
≡ 0. Since uk ⇀ u weakly in W

n
2 ,2(M), it follows that

‖uk − u‖2
g → 1 − ‖u‖2

g as k → +∞,

thanks to the decomposition

‖uk − u‖2
g = ‖uk‖2

g + ‖u‖2
g − 2

∫
M

(∇n
2 uk∇n

2 u+ τuku
)
dvg.

Noting that there exists some constant C > 0 such that

β0pu
2
k ≤ β0p

(uk − u)2

1 − ‖u‖2
g

+ Cu2,

we conclude (3.6) by using the Hölder inequality and Theorem 1. �

Thirdly we need the following compactness result:

Lemma 3.3. Assume f ∈ C(M), {uk} ⊂ W
n
2 ,2(M) satisfies uk ⇀ u weakly in

W
n
2 ,2(M), uk → u a.e. in M and u 
≡ 0. Further assume that

(i) there exists C ∈
(
0, β0

2b

]
such that limk→+∞ Jτ (uk) = C;

(ii) ‖u‖2
g ≥ ∫

M
uf(x, u)dvg;

(iii) supk

∫
M
ukf(x, uk)dvg < +∞,

then there holds

lim
k→+∞

∫
M

ukf(x, uk)dvg =
∫

M

uf(x, u)dvg.

Proof. By (v) of Lemma 3.1, I(u) > 0. So (ii) implies that Jτ (u) ≥ I(u) > 0
and

Jτ (u) ≤ lim
k→+∞

Jτ (uk) = C.

Let β =
∫

M
F (x, u)dvg. Then we have by (iv) of Lemma 3.1,

lim
k→+∞

‖uk‖2
g = 2(C + β).

Noting that
uk

‖uk‖g
⇀

u√
2(C + β)

weakly in W
n
2 ,2(M),

and for sufficiently large k,

b

β0
‖uk‖2

g <

(
1 − ‖u‖2

g

2(C + β)

)−1

,
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we obtain by using Lemma 3.2 that there exists some p > 1 such that

sup
k

∫
M

epbu2
kdx < +∞. (3.7)

The power of this inequality is evident. From (H4) we know that

Λ := sup
(x,t)∈M×R

|th(x, t)|e− p−1
2 bt2 < +∞,

which together with (3.7) implies for any N > 0 that∫
|uk|≥N

ukf(x, uk)dvg =
∫

|uk|≥N

ukh(x, uk)ebu2
kdvg

≤ Λ
∫

|uk|≥N

e− p−1
2 bu2

kepbu2
kdvg

= O
(
e− p−1

2 bN2
)
.

With the same argument used in the proof of (iii) of Lemma 3.1, we get the
desired result by employing the dominated convergence theorem. �

Finally we prove the part (i) of Theorem 3:

Proof of (i) of Theorem 3 (Palais–Smale condition): Let C ∈ (−∞, β0
2b ), and

{uk} be a sequence in W
n
2 ,2(M) such that

lim
k→+∞

Jτ (uk) = C, lim
k→+∞

J ′
τ (uk) = 0.

Noting that

Jτ (uk) − 1
2
〈J ′

τ (uk), uk〉 = I(uk), (3.8)

we have I(uk) = O(‖uk‖g) since J(uk) and J ′(uk) are bounded. Then from
(v) of Lemma 3.1, we have∫

M

ukf(x, uk)dvg = O(‖uk‖g).

It follows from (H3) that∫
M

F (x, uk)dvg = O(‖uk‖g),

and whence ‖uk‖2
g = O(‖uk‖g) since J(uk) is bounded. It follows that

sup
k

‖uk‖g + sup
k

∫
M

ukf(x, uk)dvg < +∞. (3.9)

Up to a subsequence, we can assume uk → u0 weakly in W
n
2 ,2(M), strongly

in L2(M) and a.e. in M .
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Case 1. C ≤ 0.
We have by (v) of Lemma 3.1 and Fatou’s Lemma,

0 ≤ I(u0) ≤ lim inf
k→+∞

I(uk) = lim inf
k→+∞

{Jτ (uk) − 1
2
〈J ′

τ (uk), uk〉} = C.

This leads to u0 = 0. If C < 0, there is no Palais–Smale sequence. If C = 0,
we have by (3.9) and (iv) of Lemma 3.1,

lim
k→+∞

‖uk‖2
g = 2 lim

k→+∞

{
Jτ (uk) +

∫
M

F (x, uk)dvg

}
= 0.

Therefore uk → 0 strongly in W
n
2 ,2(M).

Case 2. C ∈ (0, β0/(2b)).
Suppose u0 = 0. Then from (3.9) and (iv) of Lemma 3.1, we have

lim
k→+∞

‖uk‖2
g = lim

k→+∞
2
{
Jτ (uk) +

∫
M

F (x, uk)dvg

}
<
β0

b
.

This together with (iii) of Lemma 3.1 leads to

lim
k→+∞

∫
M

ukf(x, uk)dvg =
∫

M

u0f(x, u0)dvg = 0.

Hence limk→+∞ I(uk) = 0. From (3.8) we obtain

0 < C = lim
k→+∞

Jτ (uk) = lim
k→+∞

{
I(uk) +

1
2
〈J ′

τ (uk), uk〉
}

= 0,

and a contradiction. Hence u0 
= 0.
By J ′

τ (uk) → 0, (3.9) and (iv) of Lemma 3.1, we have

‖u0‖2
g =
∫

M

u0f(x, u0)dvg.

Hence u0 ∈ N . Then applying Lemma 3.3 to uk and u0, we obtain

‖u0‖2
g ≤ lim

k→+∞
‖uk‖2

g

= 2 lim
k→+∞

{
Jτ (uk) +

∫
M

F (x, uk)dvg

}

= 2 lim
k→+∞

{
I(uk) +

1
2
〈J ′

τ (uk), uk〉 +
∫

M

F (x, uk)dvg

}

= 2 lim
k→+∞

{∫
M

ukf(x, uk)dvg + 〈J ′
τ (uk), uk〉

}

=
∫

M

u0f(x, u0)dvg = ‖u0‖2
g.
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This implies uk → u0 strongly in W
n
2 ,2(M), and the Palais–Smale condi-

tion. �

4. Existence result

In this section, we will prove part (ii) of Theorem 3. Firstly we need several
technical lemmas.

Lemma 4.1. Let f(x, t) = h(x, t)ebt2 ∈ C(M) and define h0(t) = infx∈M h(x, t).
Suppose that lim supt≥0 th0(t) = +∞, and a ≥ 0 is such that

sup
‖w‖g≤1

∫
M

wf(x, aw)dvg < +∞, (4.1)

then a2 < β0
b .

Proof. By (ii) of Lemma 3.1, we have a2 ≤ β0
b . Suppose a2 = β0

b . We employ
a function sequence φ̃δ introduced by Adams ([1], pp. 393–395) such that
‖φ̃δ‖g = 1 and on the geodesic ball Bp(δ),

|φ̃δ|2 ≥
(

log
1
δn

)
1
β0

(
1 − Cε+O

(
log

1
δ

)−1
)
.

This implies ∫
M

φ̃δf(x, φ̃δ)dvg ≥
∫

Bp(δ)

φ̃δf(x, φ̃δ)dvg → +∞

as δ → 0, provided that ε > 0 is sufficiently small. This contradicts (4.1).
Hence a2 < β0

b . �

Lemma 4.2. Let f(x, t) ∈ C(M) and assume that (i) lim supt→+∞ h0(t)t =
+∞, where h0(t) = infx∈M h(x, t); (ii) supx∈M f ′(x, 0) < λτ (M); then for
any u ∈ W

n
2 ,2(M) \ {0}, there exists a constant γ > 0 such that γu ∈ N .

Moreover, if ‖u‖2
g ≤ ∫

M
uf(x, u)dvg, then γ ≤ 1 and γ = 1 if and only if

u ∈ N .

Proof. For any u ∈ W
n
2 ,2(M) \ {0}, γ > 0, we define

ψ(γ) =
1
γ

∫
M

uf(x, γu)dvg.

Thanks to the monotonicity of the function f(x,t)
t with respect to t > 0, we

have by using the Levi’s theorem and our assumption (ii),

lim
γ→0

ψ(γ) =
∫

M

u2f ′(x, 0)dvg < ‖u‖2
g.

On the other hand, from u 
≡ 0 we have limγ→+∞ ψ(γ) = +∞. Hence there
exists some γ > 0 such that ψ(γ) = ‖u‖2, which implies that γu ∈ N .
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From (H1) and (H2), it follows that f(x, tu)u/t is increasing for t > 0. It
follows that, if ‖u‖2

g ≤ ∫
M
uf(x, u)dvg, then γ ≤ 1 and γ = 1 if and only if

u ∈ N . �

By (v) of Lemma 3.1, I(u) ≥ 0. Hence Jτ (u) ≥ 0 on N . Let

S =
√

2 inf
u∈N

Jτ (u).

Lemma 4.3. Under the assumption of Lemma 4.2, we have 0 < S2 < β0
b .

Proof. Firstly we prove S2 > 0. Suppose not. There exists a sequence {uk} ⊂
N such that Jτ (uk) → 0 as k → +∞. Since Jτ (uk) = I(uk), we have by using
(v) of Lemma 3.1,

sup
k

∫
M

ukf(x, uk)dvg < +∞; sup
k

‖uk‖2
g < +∞. (4.2)

Then we can assume without loss of generality that uk → u weakly in
W

n
2 ,2(M), strongly in L2(M), and for almost all x ∈ M . Thanks to Fatou’s

lemma,

0 ≤ I(u) ≤ lim inf
k→+∞

I(uk) ≤ lim inf
k→+∞

Jτ (uk) = 0.

Thus u = 0. We obtain by using (4.2) and (iv) of Lemma 3.1,

lim
k→+∞

‖uk‖2
g = 2 lim

k→+∞

(
Jτ (uk) +

∫
M

F (x, uk)dvg

)
= 0.

Let vk = uk/‖uk‖g and assume vk ⇀ v weakly in W
n
2 ,2(M). The above equal-

ity together with (iii) of Lemma 3.1 and our assumption (ii) leads to

1 = lim
k→+∞

∫
M

f(x, uk)
uk

v2
kdvg

=
∫

M

f ′(x, 0)v2dvg < λτ (M)
∫

M

v2dvg ≤ 1,

and a contradiction. Therefore S2 > 0.
Secondly we prove S2 < β0

b . Let w ∈ W
n
2 ,2(M) such that ‖w‖g = 1. By

Lemma 4.2, there exists a γ > 0 such that γw ∈ N . Hence

S2

2
≤ Jτ (γw) ≤ γ2

2
‖w‖2

g =
γ2

2
.

This implies S ≤ γ. Using the fact that f(x,tw)
t w is an increasing function of t

in (0,+∞) and γw ∈ N , we have∫
M

f(x, Sw)
S

wdvg ≤
∫

M

f(x, γw)
γ

wdvg =
1
γ2

‖γw‖2
g = 1.



132 Y. Yang and L. Zhao NoDEA

Hence

sup
‖w‖g≤1

∫
M

f(x, Sw)wdvg ≤ S,

this together with Lemma 4.1 leads to S2 < β0
b . �

Lemma 4.4. Let f(x, t) ∈ C(M) and u0 ∈ N such that Jτ (u0) = inf{Jτ (u) :
u ∈ N}. Then J ′

τ (u0) = 0, i.e., u0 is a critical point of Jτ .

Proof. Suppose J ′
τ (u0) 
= 0, then there exists v ∈ W

n
2 ,2(M) such that

〈J ′
τ (u0), v〉 = 1. For α, t ∈ R, we define σt(α) = αu0 − tv. Passing to the

limit t → 0 and α → 1, we have

d

dt
Jτ (σt(α)) → −〈J ′

τ (u0), v〉 = −1.

Thus we can choose two positive numbers ε and δ such that for all
α ∈ [1 − ε, 1 + ε] and t ∈ (0, δ),

Jτ (σt(α)) < Jτ (σ0(α)) = Jτ (αu0). (4.3)

We want to show that σt(α) ∈ N for some t and α. For this purpose we set

ρt(α) = ‖σt(α)‖2
g −
∫

M

σt(α)f(x, σt(α))dvg.

Since u0 ∈ N , we have ρ0(1). Since u0f(x, αu0)/α is increasing with respect to
α > 0, we have ρ0(1− ε) > 0 and ρ0(1+ ε) < 0. This implies that ρt(1− ε) > 0
and ρt(1 + ε) < 0 for sufficiently small δ. Hence ρt(α) = 0 for some t ∈ (0, δ)
and α ∈ [1 − ε, 1 + ε]. Hence from (4.3) we have

inf{Jτ (u) : u ∈ N} ≤ Jτ (σt(α))
< Jτ (αu0) ≤ sup

t∈R+
Jτ (tu0) = Jτ (u0).

This contradicts our assumption Jτ (u0)= inf{Jτ (u) : u∈ N}, hence J ′
τ (u0) = 0.

�

Now we can prove the second part of Theorem 3.

Proof of Part (ii) of Theorem 3 (existence result): Since the critical points of
Jτ are solutions of Eq. (1.9). In view of Lemma 4.4, we only need to prove the
existence of u0 
= 0 such that

Jτ (u0) = inf {Jτ (u) : u ∈ N} =
S2

2
.

Let uk ∈ N be such that limk→+∞ Jτ (uk) = S2

2 . Since Jτ (uk) = I(uk), we
have by (v) of Lemma 3.1,

sup
k

{
‖uk‖2

g +
∫

M

ukf(x, uk)dvg

}
< +∞. (4.4)
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Hence, up to a subsequence, uk → u weakly in W
n
2 ,2(M), strongly in L2(M),

and for almost all x ∈ M . We claim that u0 
= 0 and

‖u0‖2
g ≤
∫

M

u0f(x, u0)dvg. (4.5)

Suppose u0 = 0, then from (4.4) and (iv) of Lemma 3.1

lim
k→+∞

‖uk‖2
g = 2 lim

k→+∞

{
Jτ (uk) +

∫
M

F (x, uk)dvg

}
= S2.

This together with Lemma 4.3 and (iii) of Lemma 3.1 leads to

lim
k→+∞

∫
M

ukf(x, uk)dvg = 0.

It follows that

0 <
S2

2
= lim

k→+∞
Jτ (uk) = lim

k→+∞
I(uk) = 0,

a contradiction. Hence u0 
= 0. Suppose (4.5) is false,

‖u0‖2
g >

∫
M

u0f(x, u0)dvg. (4.6)

Then we obtain by using Lemma 3.3,

lim
k→+∞

∫
M

ukf(x, uk)dvg =
∫

M

u0f(x, u0)dvg.

This leads to

‖u0‖2
g ≤ lim

k→+∞
‖uk‖2

g = lim
k→+∞

∫
M

ukf(x, uk)dvg =
∫

M

u0f(x, u0)dvg,

which contradicts (4.6). We have proved our claim.
By (4.5) and Lemma 4.2, there exists 0 < γ ≤ 1 such that γu0 ∈ N .

Hence
S2

2
≤ Jτ (γu0) = I(γu0) ≤ I(u0)

≤ lim
k→+∞

I(uk) = lim
k→+∞

Jτ (uk) =
S2

2
.

This implies γ = 1 and u0 ∈ N . Hence Jτ (u0) = S2

2 , and the proof of Part (ii)
of Theorem 3 is finished.

2 dimensional case. Finally we consider the case dimM = n = 2. Not-
ing that |u0| ∈ N if u0 ∈ N , and Jτ (|u|) ≤ Jτ (u) for all u ∈ N . Hence
Jτ (|u0|) = infu∈N Jτ (u) if Jτ (u0) = infu∈N Jτ (u). Therefore the nontrivial
solution u0 can be chosen such that u0 ≥ 0. Hence the fact u0(x) > 0 for all
x ∈ M follows immediately from the maximum principle. �
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