
Nonlinear Differ. Equ. Appl. 17 (2010), 55–67
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1. Introduction

In this paper, we study the existence of infinitely many small solutions for the
following quasilinear elliptic equation with singular potential

⎧
⎪⎨

⎪⎩

−∆pu − µ
|u|p−2u

|x|p =
|u|p∗(s)−2u

|x|s + λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

(1.1)

where 1 < p < N , −∆pu := −div(|∇u|p−2∇u) is the p-Lapace, 0 ≤ µ < µ :=
(

N−p
p

)p

, λ is a positive parameter, and Ω ⊂ RN (N ≥ 3) is an open bounded

domain with smooth boundary, 0 ∈ Ω, 0 ≤ s ≤ p < N , p∗(s) = (N−s)p
N−p is the

so called Hardy–Sobolev critical exponent. When s = 0, p∗(0) = p∗ = Np
N−p

is the Sobolev critical exponent and if s = p, p∗(p) = p is the Hardy critical
exponent.
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When p = 2. Elliptic equations with critical exponent have been consid-
ered by many authors since the pioneer work by Brezis and Nirenberg [1] in
case s = 0 and µ = 0. When a singular potential is concerned, He and Zou
[2] proved that the existence infinitely many small solutions which converge
to zero. In [3], by using variational arguments and moving plane method, the
author proved some results about existence, uniqueness and qualitative behav-
ior of positive solutions to a class of equations with singular coefficient and
critical exponent (see [4–8]).

When p �= 2. Ghoussoub and Yuan [9] obtained the existence of infinitely
many nontrivial solutions for Hardy–Sobolev subcritical case and Hardy criti-
cal case by establishing Palais–Smale type conditions around appropriate cho-
sen dual sets in bounded domain. Besides, although there are a lot of papers
about the singular problems with Hardy–Sobolev critical exponents (the
case that p �= 2) (see [10,11]). But there are few results dealing with the case
the general form f(x, t). In [12], the authors considered the Eq. (1.1) in case
λf(x, u) = up∗−1, in which also the case µ < 0 is considered, as well as exis-
tence of minimizers. In [13], Roberta Musina studied existence and multiplicity
results for a weighted p-Laplace equation involving Hardy potentials and criti-
cal nonlinearities, in which there is a survey on the most recent results, as well
as new existence and multiplicity results. When f(x, u) = |u|q−2

|x|s u, the exis-
tence of positive solutions for the Eq. (1.1) are obtained in [14]. Chen and Li
[15] obtained that the existence of infinitely many solutions by using minimax
procedure in the case µ = 0 and f(x, u) = k(x)|u|r−2u (1 < r < Np

N−p ). But
they did not give any further information on the sequence of solutions.

Recently, Kajikiya [16] established a critical point theorem related to the
symmetric mountain pass lemma and applied to a sublinear elliptic equation.
But there are no such results on singular quasilinear elliptic problems with
critical Sobolev exponents and Hardy terms (1.1).

Motivated by reasons above, the aim of this paper is to show that the exis-
tence of infinitely many solutions of problem (1.1), and there exists a sequence
of infinitely many arbitrarily small solutions converging to zero by using a
new version of the symmetric mountain-pass lemma due to Kajikiya [16]. In
order to use the symmetric mountain-pass lemma, there are many difficul-
ties. The main one in solving the problem is a lack of compactness which can
be illustrated by the fact that the embedding of H1,p

0 (Ω) into Lp∗
(Ω) is no

longer compact. Hence the concentration-compactness principle is used here
to overcome the difficulty.

u ∈ H1,p
0 (Ω) is said to be a solutions of problem (1.1) if u satisfies

∫

Ω

(

|∇u|p−2∇u · ∇v − µ
|u|p−2uv

|x|p − |u|p∗(s)−2uv

|x|s − λf(x, u)v
)

dx = 0

for all v ∈ H1,p
0 (Ω).

In the case µ = 0, problem (1.1) is related to the well known Sobolev–
Hardy inequalities, which is essentially due to Caffarelli, Kohn and Nirenberg
(see [17]),
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(∫

RN

|u|q
|x|s

) p
q

≤ Cq,s,p

∫

RN

|∇u|pdx, ∀ u ∈ H1,p
0 (Ω),

where p ≤ q ≤ p∗. For sharp constants and extremal functions, see [9]. As
q = s = p, the above Sobolev inequality becomes the well known Hardy
inequality (see [9,17,18]),

∫

Ω

|u|p
|x|p ≤ 1

µ

∫

Ω

|∇u|pdx, ∀ u ∈ H1,p
0 (Ω). (1.2)

In this paper, we use the norm

‖u‖ = ‖u‖H1,p
0 (Ω) :=

(∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx

) 1
p

,

by (1.2), this norm is equivalent to the usual norm
(∫

Ω
|∇u|pdx

)1/p. As a con-
sequence of Hardy inequality (1.2), the elliptic operator L := (−|∇ · |p−2∇·)−

µ
|x|p | · |p−2· is positive in H1,p

0 (Ω) if 0 ≤ µ < µ.
By the Hardy inequality and the Sobolev–Hardy inequality, for 0 ≤ µ

< µ, 0 ≤ s < p and p ≤ r ≤ p∗(s), we can define the Sobolev–Hardy constant:

Aµ,s,r(Ω) := inf
u∈H1,p

0 (Ω)\{0}

∫

Ω

(
|∇u|p − µ |u|p

|x|p
)

dx

(∫

Ω
|u|r
|x|s dx

) p
r

. (1.3)

In the important case where r = p∗(s), we shall simply denote Aµ,s,p∗(s) as
As. Note Aµ,0 is the best constant in the Sobolev inequality, i.e.,

Aµ,0(Ω) := inf
u∈H1,p

0 (Ω)\{0}

∫

Ω

(
|∇u|p − µ |u|p

|x|p
)

dx

(∫

Ω
|u|p∗dx

) p
p∗

.

Note that Aµ,0,p(Ω) is nothing but the first eigenvalue of the positive operator
L in H1,p

0 (Ω):

λ1(Ω) := inf
u∈H1,p

0 (Ω)\{0}

∫

Ω

(
|∇u|p − µ |u|p

|x|p
)

dx
(∫

Ω
|u|pdx

) .

The energy functional corresponding to problem (1.1) is defined as follows,

I(u) =
1
p

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx − 1
p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx − λ

∫

Ω

F (x, u)dx,

then I(u) is well defined on H1,p
0 (Ω). Standard arguments [19] show that I(u)

belongs to C1(H1,p
0 (Ω), R). The solutions of problem (1.1) are then the critical

points of the functional I.
The main result of this paper is as follows.

Theorem 1.1. Suppose that f(x, u) satisfies the following conditions:

(H1) f(x, u) ∈ C(Ω × R,R), f(x,−u) = −f(x, u) for all u ∈ R;
(H2) lim|u|→∞

f(x,u)
|u|p∗(s)−1 = 0 uniformly for x ∈ Ω;

(H3) lim|u|→0+
f(x,u)
up−1 = ∞ uniformly for x ∈ Ω.
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There then exists λ∗ > 0 such that for any λ ∈ (0, λ∗), problem (1.1) has a
sequence of non-trivial solutions {un} and un → 0 as n → ∞.

Remark 1.1. When p = 2, µ = 0 and s = 0, the authors in [20] proved the
existence of infinitely many solutions for (1.1) under conditions (H1) − (H3)
and
(H4) 1

2f(x, u)u−F (x, u) ≥ a− b|u|2∗
for almost every x ∈ Ω and u ∈ R where

F (x, u) =
∫ u

0
f(x, t)dt, b ≥ 0, a ≤ 0.

But they did not give any further information on the sequence of solutions.
When p = 2, the authors in [2] proved the existence of infinitely many small
solutions for (1.1) under conditions (H1) − (H3). In this paper, we shall prove
that this sequence of solutions may converge to zero for (1.1).

Remark 1.2. In this paper, the nonlinearity f(x, u) need not satisfy condition
(H4) as in [20]. Furthermore, we consider more general nonlinearity than is
considered in [14,15]. Hence, we make a improvement of the main results of
[2,14,15,20].

Definition 1.1. A C1 functional I on Banach space X satisfies the Palais–Smale
condition at level c ((PS)c, for short) if every sequence {un} satisfying

I(un) → c and I ′(un) → 0,

contains a convergent subsequence.

2. Preliminary lemmas

Denote M+ as a cone of positive finite Radon measure. Since the proof of the
following result is similar to Lions [21,22] and is an adaptation of lemma by
Smets [24], we just sketch the proof here.

Lemma 2.1. Let 0 ≤ s ≤ p < N and {un} ⊂ H1,p
0 (Ω) be a bounded sequence,

going if necessary to subsequence, we may assume that un ⇀ u in H1,p
0 (Ω),

|∇un|p ⇀ ζ in M+, |un|p∗(s)

|x|s ⇀ ν in M+. Define

ζ∞ := lim
R→∞

lim
n→∞

∫

Ω∩{x∈Ω:|x|>R}
|∇un|pdx,

ν∞ := lim
R→∞

lim
n→∞

∫

Ω∩{x∈Ω:|x|>R}

|un|p∗(s)

|x|s dx.

Then there exist a, at most, countable index set J and a collection of points
{xj}, j ∈ J , in Ω such that

(i) ζ∞ ≥ Asν
p/p∗(s)
∞ ;

(ii) ν = |u|p∗(s)

|x|s +
∑

δxj
νj, νj > 0, ζ = |∇u|p +

∑
δxj

Asν
p/p∗(s)
j ;

(iii) ζj ≥ δxj
Asν

p/p∗(s)
j ;

(iv) limn→∞
∫

Ω∩{x∈Ω:|x|>R}
|un|p∗(s)

|x|s dx =
∫

Ω∩{x∈Ω:|x|>R}
|u|p∗(s)

|x|s dx+‖ν‖+ν∞.
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Under assumption (H2), we have

f(x, u)u = o

( |u|p∗(s)

|x|s
)

, F (x, u) = o

( |u|p∗(s)

|x|s
)

,

which means that, for all ε > 0, there exist two constants a(ε), b(ε) > 0 which
depend on ε such that

|f(x, u)u| ≤ a(ε) + ε
|u|p∗(s)

|x|s , (2.1)

|F (x, u)| ≤ b(ε) + ε
|u|p∗(s)

|x|s . (2.2)

Hence,

F (x, u) − 1
p
f(x, u)u ≤ c(ε) + ε

|u|p∗(s)

|x|s , (2.3)

for some constant c(ε) > 0 which depend on ε.

Lemma 2.2. Assume condition (H2) holds. Then for any λ > 0, the functional
I satisfies the local (PS)c condition in

c ∈
(

−∞,
p − s

p(N − s)
A

N−s
p−s
s − λc

(
p − s

2pλ(N − s)

)

|Ω|
)

in the following sense: if

I(un) → c <
p − s

p(N − s)
A

N−s
p−s
s − λc

(
p − s

2pλ(N − s)

)

|Ω|

and I ′(un) → 0 for some sequence in H1,p
0 (Ω), then {un} contains a subse-

quence converging strongly in H1,p
0 (Ω).

Proof. Let {un} be a sequence in H1,p
0 (Ω) such that

I(un) =
1
p

∫

Ω

(

|∇un|p − µ
|un|p
|x|p

)

dx − 1
p∗(s)

∫

Ω

|un|p∗(s)

|x|s dx

−λ

∫

Ω

F (x, un)dx

= c + o(1) (2.4)

and

〈I ′(un), un〉 =
∫

Ω

(

|∇un|p − µ
|un|p
|x|p

)

dx −
∫

Ω

|un|p∗(s)

|x|s dx

−λ

∫

Ω

f(x, un)undx

= o(1)‖un‖. (2.5)
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It follows from (2.4) and (2.5) that

I(un) − 1
p
〈I ′(un), un〉

=
(

1
p

− 1
p∗(s)

)∫

Ω

|un|p∗(s)

|x|s dx − λ

∫

Ω

[

F (x, un) − 1
p
f(x, un)un

]

dx

= c + o(1)‖un‖,

i.e.,

p − s

p(N − s)

∫

Ω

|un|p∗(s)

|x|s dx = λ

∫

Ω

[

F (x, un) − 1
p
f(x, un)un

]

dx + c + o(1)‖un‖.

Then by (2.3), we obtain

(
p − s

p(N − s)
− λε

)∫

Ω

|un|p∗(s)

|x|s dx ≤ λc(ε)|Ω| + c + o(1)‖un‖.

Setting ε = (p − s)/2p(N − s)λ, we get

∫

Ω

|un|p∗(s)

|x|s dx ≤ M + o(1)‖un‖, (2.6)

where o(1) → 0 and M is a some positive number. On the other hand, by (2.2)
and (2.6), we have

c + o(1)‖un‖ = I(un)

=
1
p

∫

Ω

(

|∇un|p − µ
|un|p
|x|p

)

dx − 1
p∗(s)

∫

Ω

|un|p∗(s)

|x|s dx

−λ

∫

Ω

F (x, un)dx

≥ 1
p
‖un‖p − λb(ε)|Ω| −

[
1

p∗(s)
+ λε

] ∫

Ω

|un|p∗(s)

|x|s dx. (2.7)

Thus (2.6) and (2.7) imply that {un} is bounded in H1,p
0 (Ω). Therefore we can

assume that un ⇀ u in H1,p
0 (Ω), |∇un|p ⇀ ζ in M+, |un|p∗(s)

|x|s ⇀ ν in M+. Let
xj be a singular point of the measures ζ and ν, define a function φ(x) ∈ C∞

0 (Ω)
such that φ(x) = 1 in B(xj , ε), φ(x) = 0 in Ω \B(xj , 2ε) and |∇φ| ≤ 2/ε in Ω.
Then {φun} is bounded in H1,p

0 (Ω). Obviously, 〈I ′(un), unφ〉 → 0, i.e.,

lim
n→∞

[∫

Ω

(

|∇un|p − µ
|un|p
|x|p

)

φdx −
∫

Ω

|un|p∗(s)

|x|s φdx − λ

∫

Ω

f(x, un)unφdx

]

= − lim
n→∞

∫

Ω

(
un|∇un|p−2∇un∇φ

)
dx. (2.8)
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On the other hand, by Hölder inequality and boundedness of {un}, it implies
that

0 ≤ lim
ε→0

lim
n→∞

∣
∣
∣
∣

∫

Ω

un|∇un|p−2∇un∇φdx

∣
∣
∣
∣

≤ lim
ε→0

lim
n→∞

(∫

Ω

|un|p|∇φ|pdx

) 1
p
(∫

Ω

|∇un|pdx

) p−1
p

≤ C lim
ε→0

(∫

Ω

|u|p|∇φ|pdx

) 1
p

≤ C lim
ε→0

(∫

B(xj ,ε)

|∇φ|Ndx

) 1
N
(∫

B(xj ,ε)

|u|p∗
dx

) 1
p∗

≤ C lim
ε→0

(∫

B(xj ,ε)

|u|p∗
dx

) 1
p∗

= 0 (2.9)

and

0 ≤ lim
ε→0

lim
n→∞

∣
∣
∣
∣

∫

Ω

|un|p
|x|p φdx

∣
∣
∣
∣ ≤ lim

ε→0
lim

n→∞

∣
∣
∣
∣
∣

∫

B(xj ,ε)

|un|p
||xj | − ε|p φdx

∣
∣
∣
∣
∣
= 0.

(2.10)

From (2.8) to (2.10), we get

0 = lim
ε→0

[∫

Ω

φdζ −
∫

Ω

φdν − λ

∫

Ω

f(x, un)unφdx

]

= ζj − νj . (2.11)

Combing this with Lemma 2.1(iii), we obtain that νj ≥ Asν
p

p∗(s)
j . This result

implies that

νj = 0 or νj ≥ A
N−s
p−s
s .

If the second case νj ≥ A
N−s
p−s
s holds, for some j ∈ J , then by using Lemma 2.1

and the Hölder inequality, we have

c = lim
n→∞

(

I(un) − 1
p
〈I ′(un), un〉

)

=
(

1
p

− 1
p∗(s)

)∫

Ω

|un|p∗(s)

|x|s dx − λ

∫

Ω

[

F (x, un) − 1
p
f(x, un)un

]

dx

=
p − s

p(N − s)

∫

Ω

dν − λ

∫

Ω

[

F (x, u) − 1
p
f(x, u)u

]

dx

≥
(

p − s

p(N − s)
− λε

)∫

Ω

|u|p∗(s)

|x|s dx +
p − s

p(N − s)
A

N−s
p−s
s − λc (ε) |Ω|

≥ p − s

p(N − s)
A

N−s
p−s
µ − λc

(
p − s

2pλ(N − s)

)

|Ω|,
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where ε = (p − s)/2pλ(N − s). This is impossible. Consequently, νj = 0 for all
j ∈ J and hence

∫

Ω

|un|p∗(s)

|x|s dx →
∫

Ω

|u|p∗(s)

|x|s dx.

Now un ⇀ u in H1,p
0 (Ω) and Brezis–Lieb Lemma [23] implies that

lim
n→∞

∫

Ω

|un − u|p∗(s)

|x|s dx = 0.

Thus, we have

o(1)‖un‖ = ‖un‖p −
∫

Ω

|un|p∗(s)

|x|s dx − λ

∫

Ω

f(x, un)undx

= ‖un − u‖p + ‖u‖p −
∫

Ω

|u|p∗(s)

|x|s dx − λ

∫

Ω

f(x, u)udx

= ‖un − u‖p + o(1)‖u‖,

since I ′(u) = 0. Thus we prove that {un} strongly converges to u in H1,p
0 (Ω).

�

3. Existence of a sequence of arbitrarily small solutions

In this section, we prove the existence of infinitely many solutions of (1.1)
which tend to zero. Let X be a Banach space and denote

Σ:={A⊂X\{0} : A is closed in X and symmetric with respect to the orgin}.

For A ∈ Σ, we define genus γ(A) as

γ(A) := inf{m ∈ N : ∃ ϕ ∈ C(A,Rm \ {0}),−ϕ(x) = ϕ(−x)}.

If there is no mapping ϕ as above for any m ∈ N , then γ(A) = +∞. Let Σk

denote the family of closed symmetric subsets A of X such that 0 �∈ A and
γ(A) ≥ k. We list some properties of the genus (see [16]).

Proposition 3.1. Let A and B be closed symmetric subsets of X which do not
contain the origin. Then the following hold.
(1) If there exists an odd continuous mapping from A to B, then γ(A) ≤ γ(B);
(2) If there is an odd homeomorphism from A to B, then γ(A) = γ(B);
(3) If γ(B) < ∞, then γ(A \ B) ≥ γ(A) − γ(B);
(4) Then n-dimensional sphere Sn has a genus of n + 1 by the Borsuk-Ulam

Theorem;
(5) If A is compact, then γ(A) < +∞ and there exists δ > 0 such that Uδ(A) ∈

Σ and γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X : ‖x − A‖ ≤ δ}.

The following version of the symmetric mountain-pass lemma is due to
Kajikiya [16].

Lemma 3.2. Let E be an infinite-dimensional space and I ∈ C1(E,R) and
suppose the following conditions hold.
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(C1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the
local Palais–Smale condition, i.e., for some c̄ > 0, in the case when
every sequence {uk} in E satisfying limk→∞ I(uk) = c < c̄ and
limk→∞ ‖I ′(uk)‖E∗ = 0 has a convergent subsequence;

(C2) For each k ∈ N , there exists an Ak ∈ Σk such that supu∈Ak
I(u) < 0.

Then either (R1) or (R2) below holds.
(R1) There exists a sequence {uk} such that I ′(uk) = 0, I(uk) < 0 and {uk}

converges to zero.
(R2) There exist two sequences {uk} and {vk} such that I ′(uk) = 0, I(uk) < 0,

uk �= 0, limk→∞ uk = 0, I ′(vk) = 0, I(vk) < 0, limk→∞ vk = 0, and {vk}
converges to a non-zero limit.

Remark 3.3. In [16], the functional I(u) is required to satisfy the Palais–Smale
condition in global. However, if I(u) satisfies the local Palais–Smale condition
with the critical value levels c ≤ 0, the results of Kajikiya’s, i.e., [16, Theorem
1] remain true.

Remark 3.4. From Lemma 3.2 we have a sequence {uk} of critical points such
that I(uk) ≤ 0, uk �= 0 and limk→∞ uk = 0.

In order to get infinitely many solutions we need some lemmas. Under
the assumptions of Theorem 1.1, we take ε = 1

λ1
(where λ1 is given in Sect. 1),

then by the definition of As, (2.2) and Lemma 2.1, for λ ∈ (0, 1
λ1

) we have

I(u) =
1
p

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx − 1
p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx − λ

∫

Ω

F (x, u)dx

≥ 1
p

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx − 1 + λεp∗(s)
p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx − λb(ε)|Ω|

≥ 1
p

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx

−1 + p∗(s)
p∗(s)

A−p∗(s)/p
s

(∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx

) p∗(s)
p

− λb

(
1
λ1

)

= A

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx − B

(∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx

) p∗(s)
p

− λC,

where

A =
1
p
, B =

1 + p∗(s)
p∗(s)

A−p∗(s)/p
s , C = b

(
1
λ1

)

.

Let Q(t) = Atp − Btp
∗(s) − λC. Then

I(u) ≥ Q(‖u‖).

Furthermore, there exists

λ∗ = min

{

λ1,
A(p − s)
C(N − s)

(
pA

p∗(s)B

)p/(p∗(s)−p)
}

> 0
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such that for λ ∈ (0, λ∗), Q(t) attains its positive maximum, that is, there
exists

R1 =
(

pA

p∗(s)B

)1/(p∗(s)−p)

such that

e1 = Q(R1) = max
t≥0

Q(t) > 0.

Therefore, for e0 ∈ (0, e1), we may find R0 < R1 such that Q(R0) = e0. Now
we define

χ(t) =

⎧
⎪⎨

⎪⎩

1, 0 ≤ t ≤ R0,

Atp−λC−e1
Btp∗(s) , t ≥ R1,

C∞, χ(t) ∈ [0, 1], R0 ≤ t ≤ R1.

Then it is easy to see χ(t) ∈ [0, 1] and χ(t) is C∞. Let ϕ(u) = χ(‖u‖) and
consider the perturbation of I(u):

G(u) =
1
p

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx − ϕ(u)
p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx − λϕ(u)
∫

Ω

F (x, u)dx.

(3.1)

Then

G(u) ≥ A

∫

Ω

(

|∇u|p−µ
|u|p
|x|p

)

dx−Bϕ(u)
(∫

Ω

(

|∇u|p−µ
|u|p
|x|p

)

dx

) p∗(s)
p

−λC

= Q(‖u‖),

where Q(t) = Atp − Bχ(t)tp
∗(s) − λC and

Q(t) =

{
Q(t), 0 ≤ t ≤ R0,

e1, t ≥ R1.

From the above arguments, we have the following:

Lemma 3.5. Let G(u) is defined as in (3.1). Then

(i) G ∈ C1(H1,p
0 (Ω), R) and G is even and bounded from below;

(ii) If G(u) < e0, then Q(‖u‖) < e0, consequently, ‖u‖ < R0 and I(u) = G(u);
(iii) There exists λ∗ such that, for λ ∈ (0, λ∗), G satisfies a local (PS) condi-

tion for

c < e0 ∈
(

0, min
{

e1,
p − s

p(N − s)
A

N−s
p−s
s − λc

(
p − s

2pλ(N − s)

)

|Ω|
})

.

Proof. It is easy to see (i) and (ii). (iii) are consequences of (ii) and Lemma 2.2.
�

Lemma 3.6. Assume that (H3) of Theorem 1.1 holds. Then for any k ∈ N ,
there exists δ = δ(k) > 0 such that γ({u ∈ H1,p

0 (Ω) : G(u) ≤ −δ(k)}\{0}) ≥ k.
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Proof. Firstly, by (H3) of Theorem 1.1, for any fixed u ∈ H1,p
0 (Ω), u �= 0, we

have

F (x, ρu) ≥ M(ρ)(ρu)p with M(ρ) → ∞ as ρ → 0.

Secondly, given any k ∈ N , let Ek be a k-dimensional subspace of H1,p
0 (Ω).

There then exist constant σk such that

‖u‖ ≤ σk|u|p, ∀u ∈ Ek.

Therefore for any u ∈ Ek with ‖u‖ = 1 and ρ small enough, we have

G(ρu) = I(ρu)

≤ ρp

p

∫

Ω

(

|∇u|p − µ
|u|p
|x|p

)

dx − ρp∗(s)

p∗(s)

∫

Ω

|u|p∗(s)

|x|s dx − λM(ρ)
∫

Ω

|u|pdx

≤
(

1
p

− λM(ρ)
σp

k

)

ρp

= −δ(k) < 0,

since lim|ρ|→0 M(ρ) = +∞. That is,

{u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈ H1,p
0 (Ω) : G(u) ≤ −δ(k)} \ {0}.

This completes the proof. �

Now we give the proof of Theorem 1.1 as following.

Proof of Theorem 1.1. Recall that

Σk = {A ∈ H1,p
0 (Ω) \ {0} : A is closed and A = −A, γ(A) ≥ k}

and define

ck = inf
A∈Σk

sup
u∈A

G(u).

By Lemmas 3.5 (i) and 3.6, we know that −∞ < ck < 0. Therefore, assump-
tions (C1) and (C2) of Lemma 3.2 are satisfied. This means that G has a
sequence of solutions {un} converging to zero. Hence, Theorem 1.1 follows by
Lemma 3.5 (ii). �
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