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Abstract. In this paper we classify the centers localized at the origin of coor-
dinates, the cyclicity of their Hopf bifurcation and their isochronicity for the
polynomial differential systems in R

2 of degree d that in complex notation
z = x + iy can be written as

ż = (λ + i)z + (zz)
d−5
2

(
Az4+jz1−j + Bz3z2 + Cz2−jz3+j + Dz5

)
,

where j is either 0 or 1, d is an arbitrary odd positive integer greater than or
equal to five, λ ∈ R, and A, B, C, D ∈ C. Note that if d = 5 we obtain special
families of quintic polynomial differential systems.
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1. Introduction and statement of the main results

One of the main problems in the qualitative theory of real planar polynomial dif-
ferential systems is the center-focus problem; i.e. to distinguish when a singular
point is either a focus or a center. The definition of center goes back to Poincaré
in [16]; i.e. a singular point of a vector field on the real plane surrounded by a
neighborhood fulfilled of periodic orbits with the unique exception of the singular
point. This article deals with the center-focus problem for a class of polynomial
differential systems which generalizes two families of quintic polynomial differen-
tial systems with homogeneous nonlinearities.

The classification of centers for the polynomial differential systems started
with the quadratic ones with the works of Dulac [9], Kapteyn [12,13], Bautin [2],
and references therein. Schlomiuk et al. in [17] described a brief history of the
problem of the center in general and of the quadratic case in particular. Here we
are mainly interested in finding new families of centers of polynomial differential
systems of arbitrary degree and in study their cyclicity and isochronicity.
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In our computations we use complex notation for real planar polynomial
differential systems for finding such new families of centers, so we will be inter-
ested in the expression of the Poincaré–Liapunov constants in complex notation.
The reason for using the complex notation is that it simplifies the computations
and the expressions of these constants. As far as we know the first in using this
complex notation was Żo�la̧dek in [19] and [20].

There are many partial results for the centers of polynomial differential sys-
tems of degree larger than 2. Here we only mention the ones which are more close
to our results. For example, the centers for cubic polynomial differential systems
of the form linear with homogeneous nonlinearities of degree 3 were characterized
by Malkin [14] and Vulpe and Sibirskii [18]. When the homogeneous nonlinearities
are of degree k > 3 the centers are not classified, but there are partial results for
k = 4, 5 see for instance Chavarriga and Giné [3,4], respectively.

In this paper we consider the polynomial differential systems in the real
(x, y)-plane that has a singular point at the origin with eigenvalues λ± i and that
can be written as

ż = (λ + i)z + (zz)
d−5
2

(
Az4+jz1−j + Bz3z2 + Cz2−jz3+j + Dz5

)
, (1)

where j is either 0, or 1, z = x + iy, d is an arbitrary odd positive integer greater
than or equal to five, λ ∈ R, and A,B,C,D ∈ C. When j = 0 we are considering
the class of systems

ż = (λ + i)z + (zz)
d−5
2 (Az4z + Bz3z2 + Cz2z3 + Dz5),

and when j = 1 we are considering the class of systems

ż = (λ + i)z + (zz)
d−5
2 (Az5 + Bz3z2 + Czz4 + Dz5).

The vector field associated to system (1) is formed by the linear part (λ+ i)z and
by a homogeneous polynomial of degree d formed by four monomials in complex
notation. Since the eigenvalues at the singular point located at the origin of sys-
tem (1) are λ ± i, the origin is either a weak focus or a center if λ = 0, see for
instance [1,15].

For systems (1) we want to determine the conditions that ensure that the
origin is a center or an isochronous center. Of course these systems for d = 5
coincides with two families of quintic polynomial differential systems of the form
linear terms with quintic homogeneous nonlinearities. So we call these classes of
polynomial differential systems (1) of degree d ≥ 5 the generalized quintic systems.

The first main result in this paper is the following theorem.

Theorem 1. For d ≥ 5 odd the following statements holds for system (1).
(a) It has a center at the origin if and only if one of the following three conditions

hold.
(a.1) λ = b1 = (4 + j)A/(2 − j) + C = 0,
(a.2) λ = b1 = Im(AC) = Im(A3D) = Im(C

3
D) = 0 when j = 0.

(a.3) λ = b1 = Im(AC) = Re(A3D2) = Re(C
3
D2) = 0 when j = 1.
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Moreover the centers satisfying conditions (a.1) are Hamiltonian, and the
ones satisfying conditions (a.2) and (a.3) are reversible.

(b) It has an isochronous center at the origin if and only if one of the following
two conditions hold.
(b.1) λ = B = D = 0, C = Ā,
(b.2) λ = B = D = 0, C = (3 + 2j − d)Ā/(1 + 2j + d) when j = 0, 1,
(b.3) λ = B = C = 0, D = −Ā2/A, d = 7 and j = 0.

We remark that the families of centers described in Theorem 1 are new, and
that the families of isochronous centers are also new because they did not appear
in the good survey of Chavarriga and Sabatini [5] on isochronous centers.

Now we want to study the maximum number of limit cycles bifurcating from
the origin for the class of polynomial differential systems (1). If we denote by Ed

the class of all systems of degree d of the form (1) we say that the origin of any
systems ż = w(z, z̄) with w ∈ Ed has cyclicity k with respect to Ed if any per-
turbation of this system inside the class Ed has at most k limit cycles in a small
neighborhood of the origin, and k is reached for some perturbation.

Theorem 2. The cyclicity of the equilibrium point z = 0 of system (1) when j = 0
with respect to Ed is less than or equal to five for d ≥ 29 odd, and less than or
equal to six for d ∈ {5, 7, . . . , 27}. More precisely the cyclicity is
(a) 0 for λ �= 0;
(b) 1 for λ = 0, b1 �= 0;
(c) 2 for λ = b1 = 0 �= 0, Im(AC) �= 0;
(d) 3 for

(d.1) λ = b1 = Im(AC) = 0, (d − 7)A + (d + 5)C �= 0;
(d.2) λ = b1 = Im(AC) = 0, (d − 3)A + (d + 1)C �= 0;

(e) 4 for
(e.1) λ = b1 = Im(AC) = (d − 7)A + (d + 5)C = 0, b2 �= 0;
(e.2) λ = b1 = Im(AC) = (d − 3)A + (d + 1)C = 0, b2 �= 0;

(f) 5 for
(f.1) λ = B = Im(AC) = (d − 7)A + (d + 5)C = 0, A2u + C

2
v �= 0;

(f.2) λ = B = Im(AC) = (d − 3)A + (d + 1)C = 0, A2u + C
2
v �= 0;

(g) 6 for λ = B = Im(AC) = (d − 7)A + (d + 5)C = A2u + C
2
v = 0, C �= 0,

d ∈ {5, 7, . . . , 27}.
Theorem 3. The cyclicity of the equilibrium point z = 0 of system (1) when j = 1
with respect to Ed is less than or equal to five for d ≥ 41 odd, and less than or
equal to six for d ∈ {5, 7, . . . , 39}. More precisely the cyclicity is
(a) 0 for λ �= 0;
(b) 1 for λ = 0, b1 �= 0;
(c) 2 for λ = b1 = 0 �= 0, Im(AC) �= 0;
(d) 3 for

(d.1) λ = b1 = Im(AC) = 0, (d − 17)A + (d + 15)C �= 0;
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(d.2) λ = b1 = Im(AC) = 0, (d − 7)A + (d + 5)C �= 0;
(e) 4 for

(e.1) λ = b1 = Im(AC) = (d − 17)A + (d + 15)C = 0, b2 �= 0;
(e.2) λ = b1 = Im(AC) = (d − 7)A + (d + 5)C = 0, b2 �= 0;

(f) 5 for
(f.1) λ = B = Im(AC) = ((d − 17)A + (d + 15)C = 0, A2u + C

2
v �= 0;

(f.2) λ = B = Im(AC) = (d − 7)A + (d + 5)C = 0, A2u + C
2
v �= 0;

(g) 6 for
(g.1) d ∈ {7, . . . , 39}, λ = B = Im(AC) = ((d − 17)A + (d + 15)C =

A2u + C
2
v = 0, D �= 0;

(g.2) d = 5, λ = B = 3A − 5C = 16|C|2 − 9|D|2 = 0, Re(D) �= 0.

We have divided the paper as follows. In Sect. 2 we introduce some prelim-
inaries that will be used through all the paper. In Sect. 3 we provide the proof
of Theorem 1(a), while the proof of Theorem 1(b) is given in Sect. 4. Finally the
proof of Theorems 2 and 3 is given in Section 5.

2. Preliminaries

The resolution of Theorem 1 implies the effective computation of the Liapunov
constants as well as of the period constants. We write

A = a1 + ia2, B = b1 + ib2, C = c1 + ic2, D = d1 + id2.

Indeed writing (1) in polar coordinates, i.e. doing the change of variables r2 = zz
and θ = arctan(Imz/Rez), system (1) becomes

dr

dθ
=

λr + F (θ) rd

1 + G(θ) rd−1
, (2)

where

F (θ) = (a1 + c1) cos(2(1 + j)θ) − (a2 − c2) sin(2(1 + j)θ) + b1

+ d1 cos(6θ) + d2 sin(6θ),
(3)

G(θ) = (a2 + c2) cos(2(1 + j)θ) + (a1 − c1) sin(2(1 + j)θ) + b2

+ d2 cos(6θ) − d1 sin(6θ).

Clearly Eq. (2) is well defined in a sufficiently small neighborhood of the origin.
Therefore if system (1) has a center at the origin, then Eq. (2) defined in the
plane (r, θ) when θ̇ > 0 also has a center at the origin.

The transformation (r, θ) �→ (ρ, θ) defined by

ρ =
rd−1

1 + G(θ) rd−1

is a diffeomorphism from the region θ̇ > 0 into its image. As far as we know
the first in use this transformation was Cherkas in [7]. If we write Eq. (2) in the
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variable ρ, we obtain the following Abel differential equation
dρ

dθ
= (d − 1)G(θ)[λG(θ) − F (θ)]ρ3

+[(d − 1)(F (θ) − 2λG(θ)) − G′(θ)]ρ2 + (d − 1)λρ

= A(θ)ρ3 + B(θ)ρ2 + Cρ. (4)

These kind of differential equations appeared in the studies of Abel on the theory
of elliptic functions. For more details on Abel differential equations, see [6,10,11].

The solution ρ(θ, γ) of (4) satisfying that ρ(0, γ) = γ can be expanded in a
convergent power series of γ ≥ 0 sufficiently small. Thus

ρ(θ, γ) = ρ1(θ)γ + ρ2(θ)γ2 + ρ3(θ)γ3 + · · · (5)

with ρ1(θ) = 1 and ρk(0) = 0 for k ≥ 2. Let P : [0, γ0] → R be the Poincaré
map defined by P (γ) = ρ(2π, γ) and for a convenient γ0 > 0. Then, the values of
ρk(2π) for k ≥ 2 control the behavior of the Poincaré map in a neighborhood of
ρ = 0. Clearly system (1) has a center at the origin if and only if ρ1(2π) = 1 and
ρk(2π) = 0 for every k ≥ 2. Assuming that ρ2(2π) = · · · = ρm−1(2π) = 0 we say
that vm = ρm(2π) is the m-th Liapunov or Liapunov–Abel constant of system (1),
or simply the Liapunov constant of system (1).

The set of coefficients for which all the Liapunov constants vanish is called
the center variety of the family of polynomial differential systems. By the Hilbert
Basis Theorem, the center variety is an algebraic set. Necessary conditions to
have a center at the origin will be obtained by finding the zeros of the Liapunov
constants.

We note that the space of systems (1) with a center at the origin is invariant
with respect to the action group C∗ of change of variables z → ξz:

A → ξ(d−7)/2ξ̄(d−5)/2ξ4+j ξ̄1−jA, B → ξ(d−7)/2ξ̄(d−5)/2ξ3ξ̄2B,
(6)

C → ξ(d−7)/2ξ̄(d−5)/2ξ2−j ξ̄3+jC, D → ξ(d−7)/2ξ̄(d−5)/2ξ̄5D.

To show the sufficiency of the found conditions either we will look for the exis-
tence of a local analytic first integral defined in a neighborhood of the origin, or
we will show that system (1) is reversible. We recall that system (1) is revers-
ible with respect to a straight line if it is invariant under the change of variables
(z, t) → (w, τ) where w = eiγz, τ = −t for some γ real. For system (1) we have
the following result whose proof can be found in [8].

Lemma 4. System (1) is reversible if and only if A = −Ae−2(1+j)iγ , B = −B,
C = −Ce2(1+j)iγ and D = −De6iγ and for some γ ∈ R. Furthermore in this
situation the origin of system (1) is a center.

Once we have proven the existence of the so-called center variety of system
(1) we also want to determine which of the centers are isochronous. In that case,
let z = 0 be a center (that is, we assume that we are under the hypothesis that
guarantee that z = 0 is a center) and let V be a neighborhood of z = 0 such
that V \ {0} is covered with cycles surrounding z = 0. We can define a function,



662 J. Llibre and C. Valls NoDEA

the period function of z = 0 by associating to every point z of V the minimal
period of the cycle passing through z. The center z = 0 of system (1) is isochro-
nous if the period of all integral curves in V \ {0} is constant. The study of the
isochronous centers started when Huygens which studied the cycloidal pendulum.
This pendulum has isochronous oscillations in opposition to the monotonicity of
the period for the usual pendulum. The existence of isochronous centers for several
classes of systems has been studied in [5].

If we take the equation of θ′ = dθ/dt we obtain

T =
∫ 2π

0

dθ

θ′ =
∫ 2π

0

1
1 + G(θ)r(θ)d−1

dθ

=
∫ 2π

0

(1 − G(θ)ρ(θ)) dθ = 2π −
∫ 2π

0

G(θ)ρ(θ) dθ,

where ρ(θ) =
∑

j≥1 ρj(θ)γj is given in (5) and ρj(θ) are the terms giving rise to
the Liapunov–Abel constants. Then system (1) has an isochronous center at the
origin if it is a center and satisfies

∫ 2π

0

G(θ)�(θ) dθ =
∑
j≥1

(∫ 2π

0

G(θ)ρj(θ) dθ

)
γj = 0,

that is

T =
∫ 2π

0

dθ

θ′ = 2π −
∑
j≥1

Tjγ
j = 2π, (7)

if and only if

Tj =
∫ 2π

0

G(θ)ρj(θ) dθ = 0, for j ≥ 1. (8)

The constants Tj are called the period Abel constants.

3. Proof of Theorem 1(a)

We divide the proof of Theorem 1(a) into different parts.

3.1. Sufficient conditions for a center

In this ssection we will see that conditions (a.1), (a.2) and (a.3) are sufficient to
have a center at the origin. For this we will prove that they have either a first
integral defined in a neighborhood of zero (and consequently the origin cannot be
a focus and must be a center), or they have the reversible symmetry described in
Lemma 4.

Under conditions (a.1) if we rescale system (1) by |z|d−5 it becomes

ż = iz|z|5−d + Az4+j z̄1−j + ib2z
3z̄2 − (4 + j)Ā

2 − j
z2−j z̄3+j + Dz̄5 = i

∂H

∂z̄
,
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where for d ≥ 5 odd with d �= 7 we have

H =
2

7 − d
|z|7−d − i

A

2 − j
z4+j z̄2−j + i

Ā

2 − j
z2−j z̄4+j +

b2

3
z3z̄3 − i

6
(Dz̄6 − D̄z6),

and for d = 7 we have

H = log |z|2 − i
A

2 − j
z4+j z̄2−j + i

Ā

2 − j
z2−j z̄4+j +

b2

3
z3z̄3 − i

6
(Dz̄6 − D̄z6).

Note that the integrals exp(H) for d = 7 and H for d ≥ 5 odd with d �= 7, are
real and well defined at the origin. Therefore the origin is a Hamiltonian center.

From the conditions (a.2) and (a.3), we obtain

B = −B̄,
Ā

A
=

C

C̄
,

(
Ā

A

)3

= −
(

−D

D̄

)j+1

,

(
C̄

C

)3

= −
(−D̄

D

)j+1

. (9)

Now let θ1, θ2 and θ3 such that eiθ1 = −Ā/A, eiθ2 = −C̄/C and eiθ3 =(−D̄/D)j+1.
Then by (9) we obtain

θ1 = −θ2(mod.2π) and 3θ2 = θ3(mod.2π). (10)

Now taking γ = θ1/(2(1 + j)) and using (10) we have

e−2(1+j)iγ = e−iθ1 = −A

Ā
, e2(1+j)iγ = eiθ1 = e−iθ2 = −C

C̄
,

and

e6iγ = e3iθ1/(1+j) = e−3iθ2/(1+j) = e−iθ3/(1+j) = −D

D̄
.

By Lemma 4 these imply that system (1) under conditions (a.2) and (a.3) is
reversible and consequently has a center at the origin.

3.2. Necessary conditions for a center

In this section we will see that conditions (a.1), (a.2) and (a.3) are necessary to
have a center at the origin. For this we will first compute the Liapunov constants
up to some order and then show that the zeros of those Liapunov constants are
precisely conditions (a.1), (a.2) or (a.3).

Proposition 5. The Liapunov constants of system (1) when j = 0 with d ≥ 5 odd
are

V1 = e2π(d−1)λ

V2 = b1,

V3 = −Im(AC),
V4 = 0,

V5 = Im
(
(2A + C)D[(d − 3)A + (d + 1)C][(d − 7)A + (d + 5)C]

)
,

V6 = Re
(

(2A + C)BD
[
(4d2 − 29d + 49)A2 + (4d2 + 2d − 54)AC

+ (11d + 13)C
2
])

,
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and

V7 = Im
(

(2A + C)D[A2u + C
2
v]

)

with

u = 288(5|A|2 − 6|D|2), v = −5760|A|2 + 4320|D|2 if d = 7,

and if d �= 7 odd then

u = (8,640 − 31,680d + 44,160d2 − 28,800d3 + 8,640d4 − 960d5)|A|2
− (41,910 − 48,248d + 29d2 + 6,541d3 + 64d4 − 278d5 − 19d6 + d7)|D|2

and

v = (−960 + 960d + 1,920d2 − 1,920d3 − 960d4 + 960d5)|A|2
+ (4,950 + 6,680d − 1,947d2 − 6,547d3 − 2,736d4 − 390d5 − 11d6 + d7)|D|2.

Furthermore V8 = 0 and

V9 = ρ9(2π) = Im
(

(2A + C)D(A2u1 + C
2
v1)

)
,

where

v1 =

{
−9u1, u1 = |C|4 if d = 5,
−5u1, u1 = |D|4 if d �= 5.

We remark that Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1}), for k = 1, . . . , 9 and also
modulo a positive constant.

Proof. Solving ρ′
1(θ) = (d − 1)λρ1(θ) and evaluating at θ = 2π we obtain v1 =

ρ1(2π) = e2π(d−1)λ. Then V1 = e2π(d−1)λ. In what follows we take λ = 0.
Substituting (5) into (4) we get that the functions ρk(θ) must satisfy

ρ′
2 = Gρ2

1,

ρ′
3 = Fρ3

1 + 2Gρ1ρ2,

ρ′
4 = 3Fρ2

1ρ2 + G
(
ρ2
2 + 2ρ1ρ3

)
,

ρ′
5 = 3F

(
ρ1ρ

2
2 + ρ2

1ρ3

)
+ 2G (ρ2ρ3 + ρ1ρ4) ,

ρ′
6 = F

(
ρ3
2 + 6ρ1ρ2ρ3 + 3ρ2

1ρ4

)
+ G

(
ρ2
3 + 2ρ2ρ4 + 2ρ1ρ5

)
,

(11)
ρ′
7 = 3F

(
ρ2
2ρ3 + ρ1ρ

2
3 + 2ρ1ρ2ρ4 + ρ2

1ρ5

)
+ 2G (ρ3ρ4 + ρ2ρ5 + ρ1ρ6),

ρ′
8 = 3F

(
ρ2ρ

2
3 + ρ2

2ρ4 + 2ρ1ρ3ρ4 + 2ρ1ρ2ρ5 + ρ2
1ρ6

)

+ G
(
ρ2
4 + 2ρ3ρ5 + 2ρ2ρ6 + 2ρ1ρ7

)
,

ρ′
9 = F

(
ρ3
3 + ρ2ρ3ρ4 + 3ρ1ρ

2
4 + 3ρ2

2ρ5 + 6ρ1ρ3ρ5 + 6ρ1ρ2ρ6 + 3ρ2
1ρ7

)

+ 2G (ρ4ρ5 + ρ3ρ6 + ρ2ρ7 + ρ1ρ8).

where we have omitted that all the functions depend on θ. Note that all these dif-
ferential equations can be solved recursively doing a integral between 0 and θ, and
recalling that ρk(0) = 0 for k ≥ 2. We have done all the computations of this paper
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with the help of the algebraic manipulator mathematica. These computations are
not difficult but are long and tedious.

Solving the equation ρ′
2 = Gρ2

1 we get that ρ2(2π) = 2π(d − 1)b1. Then
V2 = b1. From now on we take b1 = 0.

Now we compute the solution ρ3(θ) of ρ′
3 = Fρ3

1 + 2Gρ1ρ2, and we get that
ρ3(2π) = 2π(1 − d) Im(AC). Then V3 = −Im(AC).

Computing the solution ρ4(θ) from the differential equation for ρ4(θ), we
get ρ4(θ) and in particular we obtain that V4 = 0, being V4 equal to ρ4(2π) when
ρ2(2π) = ρ3(2π) = 0.

Solving the differential equation for ρ5(θ) we get ρ5(θ) and in particular we
obtain from the expression of v5 = ρ5(2π) the value of V5 given in the statement
of Proposition 5 modulo ρ2(2π) = ρ3(2π) = 0 and a positive constant. More
precisely we can check that if we multiply v5 by 24/(π(d − 1)) then

v5 = V5 − V3

(
(−46 − 36d + 10d2)a2d2 + (12 − 8d − 4d2)c2d2

+ (23 + 18d − 5d2)a1d1 + (24 − 16d − 8d2)(c1d1)
)
.

We compute the solution ρk(θ) for k = 6, . . . , 9 from the differential equation
for ρk(θ), we get ρk(θ), and in particular we obtain the expression for vk =
ρk(2π) given in the statement of Proposition 5 modulo ρ2(2π) = ρ3(2π) = · · · =
ρk−1(2π) = 0 and a positive constant. The computation of Vk for k = 6, . . . , 9 is
done in the same way as V5. This completes the proof of the proposition. �

Proposition 6. Let j = 0. For d ≥ 29 odd if V1 = 1, V2 = V3 = V4 = V5 = V6 =
V7 = 0, then either (a.1), or (a.2) holds. Furthermore for any d ∈ {5, 7, . . . , 27} if
V1 = 1, V2 = V3 = V4 = V5 = V6 = V7 = V8 = V9 = 0, then either (a.1), or (a.2)
holds.

Proof. We do the proof of the two statements simultaneously. From the fact that
V1 = 1 we get that λ = 0. Furthermore to make V3 = 0 we will consider two
different cases: C = 0 and C �= 0. In this last case we have that A = µC̄ with
µ ∈ R.

Case 1: C = 0. In this case

V5 = 2(d − 3)(d − 7)Im(A3D).

In view of the factors of V5 and since d ≥ 5 odd, we need to consider two different
subcases.
Subcase 1.1: Im(A3D) = 0. Therefore we are under the hypotheses of condition
(a.2).
Subcase 1.2: Im(A3D) �= 0 and d = 7. Since b1 = 0 we have

V6 = 84Re(A3BD) = −84b2Im(A3D).

To have V6 = 0 we must impose b2 = 0, that is B = 0. Then

V7 = 576(5|A|2 − 6|D|2)Im(A3D).
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In order to have V7 = 0 we must impose 5|A|2 = 6|D|2. Then V7 = V8 = 0 and

V9 = 2|D|4Im(A3D).

Since Im(A3D) �= 0 (and thus in particular D �= 0) we have that V9 �= 0 and this
case does not yield any center.

Case 2: A = µC̄, µ ∈ R. In this case

V5 = (2µ + 1)((d − 3)µ + (d + 1))((d − 7)µ + (d + 5))Im(C̄3D).

In view of the factors of V5 we need to consider four different subcases.
Subcase 2.1: µ = −1/2. Then we are under the hypotheses of condition (a.1).
Subcase 2.2: Im(C

3
D) = 0. Therefore we are under the hypotheses of condition

(a.2).
Subcase 2.3: µ = −(d + 1)/(d − 3), Im(C

3
D) �= 0. Since b1 = 0, we have

V6 = −4(d − 1)3(d + 5)
(d − 3)3

Re(BC
3
D) = −4(d − 1)3(d + 5)

(d − 3)3
b2Im(C

3
D).

Then, since d ≥ 5 odd, V6 = 0 if and only if b2 = 0, that is B = 0. Computing V7

we obtain

V7 =

{
−7776|D|2(d + 1)/(d − 3) − 2 if d = 7,
2(d + 5)2Cd|D|2/(d − 3)2 otherwise,

where

Cd = −2882 − 2548d + 3037d2 + 2975d3 − 264d4 − 262d5 − 19d6 + d7.

Since for d ≥ 5 odd, Cd �= 0, we have that D = 0, a contradiction with the fact
that Im(C

3
D) �= 0, and thus this condition does not yield a center.

Subcase 2.4: µ = −(d + 5)/(d − 7), d �= 7 and Im(C
3
D) �= 0. Since b1 = 0 we have

V6 = −28(d + 17)(d − 1)3

(d − 7)3
Re(BC

3
D) = −28(d + 17)(d − 1)3

(d − 7)3
b2Im(C

3
D).

Then, since d ≥ 5 odd, V6 = 0 if and only if b2 = 0, that is B = 0. Computing V7

we obtain

V7 =
(d2 + 16d − 17)
(d − 7)3(d − 3)2

Kd(C,D),

where

Kd(C,D) = 7,680(d − 1)3(d + 1)2(d2 − 2d − 11)|C|2
+ (d2 + 2d − 15)2(d6 − 26d5 − 96d4 + 776d3 + 245d2

− 4,902d − 25,806)|D|2.
Since for d ≥ 5 odd, d2 + 16d − 17 �= 0 and d2 − 2d − 11 > 0, and for d ≥ 29 odd
the quantity d6 −26d5 −96d4 +776d3 +245d2 −4, 902d−25, 806 is always positive,
we have that for d ≥ 29 odd in order to have V7 = 0 we must impose C = D = 0,
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a contradiction with the fact that Im(C
3
D) �= 0, and thus this condition does not

yield a center.
On the other hand, for d ∈ {5, 9, . . . , 25, 27} odd, with d �= 7, imposing

Kd(C,D) = 0, we have V7 = 0. Then V8 = 0 and

V9 =
4

(d − 7)3
(d3 − 3d2 − 285d + 935)|D|4Im(C

3
D).

Since when d is an integer, the quantity d3 − 3d2 − 285d + 935 is never zero,
we have that V9 = 0 if and only if D = 0, a contradiction with the fact that
Im(C

3
D) �= 0, and thus this condition does not yield a center. This completes the

proof of Proposition 6. �

Proposition 7. The Liapunov constants of system (1) when j = 1, with d ≥ 5 odd
are

V1 = e2π(d−1)λ

V2 = b1,

V3 = −Im(AC),
V4 = 0,

V5 = 0,

V6 = Re
(
(5A + C)D2[(d − 7)A + (d + 5)C][(d − 17)A + (d + 15)C]

)
,

V7 = Im
(
(5A + C)BD2[(5d2 − 15d − 302)A2 + (−5d2 + 130d + 499)AC

−(10d2 + 95d + 207)C
2
]
)
,

and

V8 = Re
(

(5A + C)D2[A2u + C
2
v]

)

where for d = 7,

u =
11

3584
(2,731|A|2 + 544|D|2), v = −121

25

(
695,415
681,472

|A|2 +
1,535
1,232

|D|2
)

,

for d = 17,

u = −11
63

(2,919|A|2 − 2,068|D|2), v =
121
25

(
260,785
3,993

|A|2 +
820
9

|D|2
)

,

and if d �= {7,17} odd then

u = 315(d − 1)2u1|A|2 + 2(d + 5)2(15 + d)2u2|D|2,
with

u1 = 329d5 − 3,025d4 − 21,654d3 + 144,334d2 + 1,202,429d + 1,976,915,

u2 = 43d4 − 1,600d4 + 10,260d3 + 61,470d2 − 345,295d + 351,154,

and

v = −315(d − 1)2v1|A|2 − 2(d + 5)3(15 + d)v2|D|2
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with

v1 = 329d5 + 5,487d4 + 36,202d3 + 184,910d2 + 950,525d + 2,121,875,

v2 = 43d4 + 317d3 + 2,611d2 + 9,271d + 430.

Furthermore V9 = 0 and

V10 =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0 if d = 5,

Re
(
(5A + C)D2A2|D|4) if d = 17,

Re
(
(5A + C)D2C̄2|D|4) if d = 7, 9,

−Re
(
(5A + C)D2C̄2|D|4) if d = 11, 13, . . . , 39.

We remark that Vk ≡ ρk(2π) (mod. {V1, V2, . . . , Vk−1}), for k = 1, . . . , 10 and also
modulo a positive constant.

Proof. Proceeding as in the proof of Proposition 5 we readily obtain V1, V2 and
V3 as in the statement of that proposition. Now computing the solution ρk(θ) for
k = 4, 5 from the differential equation for ρk(θ) (see (11)), we get ρk(θ) and in
particular we obtain that Vk = 0, being Vk equal to ρk(2π) when ρ2(2π) = · · · =
ρk−1(2π) = 0 for k = 4, 5.

We compute the solution ρ6(θ) from the differential equation for ρ6(θ), we
get ρ6(θ), and in particular we obtain the expression for v6 = ρ6(2π) given in the
statement of Proposition 5 modulo ρ2(2π) = ρ3(2π) = 0 and a positive constant.
More precisely we can check that if we multiply v6 by 1536/((d+ 1)(d+ 3)π) then

v6 = V6 + V3

(
(−1, 662 − 88d + 22d2)(a2d

2
2 − a1d1d2 − a2d

2
1)

−(185 + 96d + 7d2)(c2d
2
2 − c2d

2
1 + 4c1d1d2)

)
.

We compute the solution ρk(θ) for k = 7, 8, 9, 10 from the differential equation
for ρk(θ) and also using

ρ′
10 = 3F

(
ρ2
3ρ4 + ρ2ρ

2
4 + 2ρ2ρ3ρ5 + 2ρ1ρ4ρ5 + ρ2

2ρ6 + 2ρ1ρ3ρ6 + 2ρ1ρ2ρ7

+ ρ2
1ρ8

)
+ G

(
ρ2
5 + 2ρ4ρ6 + 2ρ3ρ7 + 2ρ2ρ8 + 2ρ1ρ9 ).

We get ρk(θ) and in particular we obtain the expression for vk = ρk(2π) given
in the statement of Proposition 5 modulo ρ2(2π) = ρ3(2π) = ρk−1(2π) = 0 and
a positive constant. The computation of Vk is done in the same way as V6. This
completes the proof of the proposition. �

We introduce a new condition

(a.4) λ = b1 = 3A − 5C = 16|C|2 − 9|D|2 = 0 and d = 5 and j = 1.

Proposition 8. Let j = 1. For d ≥ 41 odd if V1 = 1, V2 = V3 = V4 = V5 = V6 =
V7 = V8 = 0, then either (a.1) or (a.3) holds. Furthermore for any d ∈ {7, . . . , 39}
if V1 = 1, V2 = V3 = V4 = V5 = V6 = V7 = V8 = V9 = V10 = 0, then either (a.1)
or (a.3) holds. Moreover, if d = 5 then if V1 = 1, V2 = V3 = V4 = V5 = V6 = V7 =
V8 = V9 = V10 = 0, then either (a.1), or (a.3), or (a.4) holds.
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Proof. We do the proof of the two propositions simultaneously. From the fact
that V1 = 1 we get that λ = 0. Furthermore to make V3 = 0 we will consider two
different cases: C = 0 and C �= 0. In this last case we have that A = µC̄, with
µ ∈ R.

Case 1: C = 0. In this case

V5 = 5(d − 7)(d − 17)Re(A3D2).

In view of the factors of V5 and since d ≥ 5 odd, we need to consider three different
subcases.
Subcase 1.1: Re(A3D2) = 0. Then we are under the hypotheses of condition (a.3).
Subcase 1.2: Re(A3D2) �= 0 and d = 7. Since b1 = 0, we have

V7 = −162b2Re(A3D2).

To have V7 = 0 we must impose b2 = 0, that is B = 0. Then

V8 =
55

3584
(2731|A|2 + 514|D|2)Re(A3D2).

Since Re(A3D2) �= 0 we have that V8 �= 0 and thus this case does not yield any
center.
Subcase 1.3: Re(A3D2) �= 0 and d = 17. Since b1 = 0, we have

V7 = 888b2Re(A3D2).

To have V7 = 0 we must impose b2 = 0, that is B = 0. Then

V8 = −55
63

(2919|A|2 − 2068|D|2)Re(A3D2).

Since Re(A3D2) �= 0 in order to have V8 = 0 we must impose 2919|A|2 = 2068|D|2.
Then V8 = V9 = 0 and

V10 = 5|D|4Re(A2D2).

In order to have V10 = 0 we must impose D = 0 but then Re(A3D2) = 0, a
contradiction. Hence this case does not yield any center.

Case 2: A = µC̄, µ ∈ R. In this case

V6 = (5µ + 1)((d − 7)µ + (d + 5))((d − 17)µ + (d + 15))Re(C̄3D2).

In view of the factors in V6 we need to consider four different subcases.
Subcase 2.1: µ = −1/5. Then we are under the hypotheses of condition (a.1).
Subcase 2.2: Re(C

3
D2) = 0. Therefore we are under the hypotheses of condition

(a.3).
Subcase 2.3: µ = −(d + 5)/(d − 7), Re(C

3
D2) �= 0 and d �= 7. Since b1 = 0, we

have

V7 = −8(140,632 + 60,379d + 2,470d2 − 1,240d3 − 70d4 + 5d5)
(d − 7)3

b2Re(C̄3D2).
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Since d ≥ 5 odd, V7 = 0 if and only if b2 = 0, that is B = 0. Computing V8 we
obtain

V8 = −11(d − 1)3(d + 8)π
6,048(d − 7)5

Re(C̄3D2)

× (
(d + 5)(5d2 + 6d − 83)(d − 7)2|D|2 + 63(d − 1)2(7d + 29)|C|2).

Since d ≥ 5 we have that V8 cannot vanish. So in this subcase we do not have a
center at the origin.
Subcase 2.4: µ = −(d + 15)/(d − 17), Re(C

3
D2) �= 0 and d �= 17. Since b1 = 0, we

have

V7 = −8(2,932,707 + 898,009d + 10,270d2 − 6,990d3−145d4 + 5d5)
(d − 17)3

b2Re(C̄3D2).

Since d ≥ 5 odd, V7 = 0 if and only if b2 = 0, that is B = 0. Computing V8 we
obtain

V8 =
(d − 1)3(d + 23)π

6,048(d − 17)5
Re(C̄3D2)

(
2,016(d − 1)2(49d − 277)|C|2

+(31d3 − 1,237d2 − 2,035d + 41,257)(d − 17)2|D|2).
Therefore if V8 = 0, then d ∈ {5, 7, . . . , 39}. Moreover if d ≥ 41 odd, V8 �= 0 and
thus it does not yield a center.

If d ∈ {5, 7, . . . , 39} and V8 = 0, then a computation shows that V9 = 0.
When d = 5, V8 = 0 becomes 16|C|2−9|D|2 = 0. Computing V10 when d = 5

we get that V10 = 0 and we are under the assumptions (a.4).
When d ∈ {7, 9, . . . , 39} computing V10, after modulo a positive constant we

have

V10 =

{
|D|4Re(C

3
D2) if d = 7, 9,

−|D|4Re(C
3
D2) if d = 11, 13, . . . , 39.

Since D �= 0 (otherwise Re(C
3
D2) = 0 we get that V10 �= 0 and this condition

does not yield a center. This completes the proof of Proposition 8. �

Proposition 9. Condition (a.4) does not provide a center at the origin.

Proof. Making the change z → w = ξz with ξ = C
−1/4

to system (1) and using
(6) we obtain that system (1) under the assumptions (a.4), i.e. with d = 5,
λ = B = 3A − 5C = 16|C|2 − 9|D|2 = 0 and Re(C

3
D2) �= 0 can be written

as

ẇ = iw +
(

5
3
w5 + ww4 +

4
3
eiθw5

)
, (12)

with sin θ �= 0, i.e. θ ∈ (0, 2π) \ {π}. For system (12) (in view of Proposition 8)
we have that V2 = · · · = V10 = 0. Now using ρ1, . . . , ρ10 computed in the proof of
Proposition 7 and using that
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ρ′
11 = 3F (ρ3ρ

2
4 + ρ2

3ρ5 + 2ρ2ρ4ρ5 + ρ1ρ
2
5 + 2ρ2ρ3ρ6 + 2ρ1ρ4ρ6

+ρ2
2ρ7 + 2ρ1ρ3ρ7 + 2ρ1ρ2ρ8 + ρ2

1ρ9) + 2G(ρ1ρ10 + ρ5ρ6

+ρ4ρ7 + ρ3ρ8 + ρ2ρ9),

ρ′
12 = −F (−3ρ2

1ρ10 − ρ3
4 − 6ρ3ρ4ρ5 − 3ρ2ρ

2
5 − 3ρ2

3ρ6 − 6ρ2ρ4ρ6

−6ρ1ρ5ρ6 − 6ρ2ρ3ρ7 − 6ρ1ρ4ρ7 − 3ρ2
2ρ8 − 6ρ1ρ3ρ8 − 6ρ1ρ2ρ9)

−G(−2ρ1ρ11 − 2ρ10ρ2 − ρ2
6 − 2ρ5ρ7 − 2ρ4ρ8 − 2ρ3ρ9),

ρ′
13 = 3F (ρ2

1ρ11 + 2ρ1ρ10ρ2 + ρ2
4ρ5 + ρ3ρ

2
5 + 2ρ3ρ4ρ6 + 2ρ2ρ5ρ6

+ρ1ρ
2
6 + ρ2

3ρ7 + 2ρ2ρ4ρ7 + 2ρ1ρ5ρ7 + 2ρ2ρ3ρ8 + 2ρ1ρ4ρ8

+ρ2
2ρ9 + 2ρ1ρ3ρ9) + 2G(ρ1ρ12 + ρ11ρ2 + ρ10ρ3 + ρ6ρ7 + ρ5ρ8 + ρ4ρ9).

we get that V11 = V12 = 0 and V13 = sin θ, where Vk ≡ ρk(2π) modulo {V1, V2, . . . ,
Vk−1}) for k = 11, 12, 13, and also modulo a positive constant. Since sin θ �= 0,
we get that V13 �= 0. This implies that system (12) does not have a center at the
origin, and consequently condition (a.4) does not provide a center. �

4. Proof of Theorem 1(b)

We divide the proof of Theorem 1(b) into different parts.

4.1. Sufficient conditions for an isochronous center

In this subsection we will see that conditions (b.1), (b.2) and (b.3) are sufficient
to have an isochronous center. For this we will prove that under conditions (b.1)
or (b.2) or (b.3) Eq. (7) holds.

Since in assumptions (b.1) or (b.2) of (b.3), we can assume that A �= 0
(otherwise we will obtain the linear center), we can make the change of variables

ω = ξz where ξ =
(

Ad+1+2j

A
d−3−2j

)1/(4(d−1)(1+j))

, (13)

and system (1) with hypothesis (b.1) becomes

z′ = iz + (zz̄)(d−5)/2(z4+jz1−j + z2−jz3+j). (14)

Rewriting (14) in polar coordinates we obtain

r′ = 2rd cos 2θ, θ′ = 1,

and clearly (7) holds.
Now system (1) with hypothesis (b.2) becomes

z′ = iz + (zz̄)(d−5)/2

(
z4+jz1−j − d − 3 − 2j

d + 1 + 2j
z2−jz3+j

)
.
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In polar coordinates it has the form

r′ =
4(1 + j)rd

d + 1 + 2j
cos(2(1 + j)θ), θ′ = 1 +

2(d − 1)
d + 1 + 2j

rd−1 sin(2(1 + j)θ). (15)

Therefore

dr

dθ
=

4(1 + j)rd cos(2(1 + j)θ)
d + 1 + 2j + 2(d − 1)rd−1 sin(2(1 + j)θ)

with r(0) = r0.

Then integrating it and since r(θ) ≥ 0 for any θ we get that r(θ)1−d is equal to

−2(d − 1) sin(2(1 + j)θ) +
√

(d + 1 + 2j)2r2−2d
0 + 4(d − 1)2 sin2(2(1 + j)θ)

d + 1 + 2j
.

(16)

Note that√
(d + 1 + 2j)2r2−2d

0 + 4(d − 1)2 sin2(2(1 + j)θ) > |2(d − 1) sin(2(1 + j)θ)|,
and thus r(θ) given in (16) is positive. Therefore, introducing (16) into (15) we
have that

∫ 2π

0

dθ

θ′ =
∫ 2π

0

⎛
⎝1 − 2(d − 1) sin(2(1 + j)θ)√

4(d − 1)2 sin2(2(1 + j)θ) + (d + 1 + 2j)2r2−2d
0

⎞
⎠ dθ

= 2π,

since the function

2(d − 1) sin(2(1 + j)θ)/
√

4(d − 1)2 sin2(2(1 + j)θ) + (d + 1 + 2j)2r2−2d
0

is odd in θ.
Now system (1) with hypothesis (b.3) becomes

z′ = iz + (zz̄)z̄
(
z4 − z̄4

)
. (17)

In polar coordinates Eq. (17) has the form

r′ = r7(cos(2θ) − cos(6θ)), θ′ = 1 + r6(sin(2θ) + sin(6θ)). (18)

Note that system (18) has an invariant of the form

I = I(t, r, θ) = 6θ + 4r6 cos3(2θ) − 6t.

Here I is invariant in the sense that dI/dt is zero on the solutions of system (18).
From this invariant we can express the time in function of the variables (r, θ, I)
as follows

t = θ +
2
3
r6 cos3(2θ) − I

6
.
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Let r(θ) be a solution of system (18) sufficiently close to the origin. Since the ori-
gin is a center, we get that r(2π) = r(0) in a certain neighborhood of the origin.
Thus

T = t(2π) − t(0) =
[
2π +

2
3
r(2π)6 − I

6

]
−

[
2
3
r(0)6 − I

6

]
= 2π.

This completes the sufficiency of the conditions (b.1), (b.2) and (b.3).

4.2. Necessary conditions for an isochronous center

In this subsection we will see that conditions (b.1) or (b.2) or (b.3) are necessary
to have an isochronous center. For this we will first compute the period constants
up to some order and then show that the zeros of those period constants are
precisely conditions (b.1) or (b.2) or (b.3).

We note that since ρ1(θ) = 1, then from (3) and (8) we have T1 = 2πb2.
Then since by either condition (a.1), or (a.2) we have b1 = 0, from now on we will
assume that B = 0.

Now we compute T2 using ρ2(θ) computed in Proposition 5, and Eqs. (3)
and (8). We get that after dividing by π/(6(1 + j)) it is equal to

T2 =3(d−3−2j)|A|2 + 12(1 + j)Re(AC) − 3(d + 1 + 2j)|C|2−(1 + j)(d + 5)|D|2.
We distinguish two different cases.

Case 1: A = 0. In this case T2 becomes

T2 = − π

6(1 + j)
(
3(d + 1 + 2j)|C|2 + (1 + j)(d + 5)|D|2).

In order that T2 = 0 we must impose C = D = 0. Then A = B = C = 0, which
is not possible otherwise we have the linear center. Therefore this case does not
provide an isochronous center.

Case 2: A �= 0. In this case since from V2 = 0 we have that Im(AC) = 0 we get
that C = µA with µ ∈ R. We will consider two different subcases.
Subcase 2.1: µ = −(4 + j)/(2 − j). In this case C = −(4 + j)A/(2 − j) and we are
under the hypothesis (c.1). Then T2 becomes

T2 = −π(d + 5)
6

(|D|2 + 9(1 + j)2|A|2).
Since A �= 0, we get that T2 �= 0. Therefore this case does not provide an isochro-
nous center.
Subcase 2.2: µ ∈ R \ {−(4 + j)/(2 − j)}. In this case C = µA and we are in
hypothesis (a.2) or (a.3). We consider two subcases.
Subcase 2.2.1: j = 0. By the change of variables (13) we can rewrite system (1)
as

w′ = iw + (ww)(d−5)/2[w4w + µw2w3 + D̃w5].
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Since we are in assumptions (a.2) we must have d̃2 = 0. Computing T2 under
these assumptions we have

T2 = 3(d − 3) + 12µ − 3(d + 1)µ2 − (d + 5)d̃2
1,

modulo a non-zero constant. From now on we write d1 instead of d̃1.
We compute T3 using ρ3(θ) given in Proposition 5, (3) and (8), and we get

that T3 = 0. Then we compute T4 using ρ4(θ) given in Proposition 5, (3) and (8).
We get

T4 = 6d3µ4 + 36d2µ4 − 6dµ4 − 36µ4 + 9d3µ3 − 57d2µ3 − 201dµ3

+ 3d3d1µ
3 + 19d2d1µ

3 + 21dd1µ
3 + 5d1µ

3 + 105µ3 − 3d3µ2

− 87d2µ2 − 72d2
1µ

2 + 471dµ2 + 6d3d1µ
2 − 14d2d1µ

2 − 94dd1µ
2

− 42d1µ
2 + 267µ2 − 9d3µ + 57d2µ + 81dµ + 3d3d1µ − 37d2d1µ

+ 69dd1µ + 109d1µ − 993µ − 3d3 + 51d2 + 288d2
1 − 345d − 4d2d1

+ 40dd1 − 84d1 + 657.

In a similar way we get that T5 = 0 and

T6 = 25,200d5µ6 + 170,100d4µ6 + 169,032d3µ6 − 2,723,724d2µ6

−2,717,544dµ6 + 30,312µ6 + 66,150d5µ5 − 626,328d4µ5

−2,606,616d3µ5 − 3,813,360d2µ5 + 38,116,794dµ5 − 2,245,432d2d1µ
5

−780,864dd1µ
5 + 1,464,568d1µ

5 + 29,285,616µ5 + 23,625d5µ4

−1,655,352d4µ4 + 9,527,220d3µ4 − 3,306,270d2µ4 + 2,509,776d2
1µ

4

+122,443,659dµ4 − 2,969,176d2d1µ
4 + 29,288,560dd1µ

4

+17,417,736d1µ
4 + 24,043,134µ4 − 61,425d5µ3 + 50,616d4µ3

+12,626,676d3µ3 + 3,447,360d3
1µ

3 − 71,324,322d2µ3 + 37,275,552d2
1µ

3

+188,967,453dµ3 − 31,864d2d1µ
3 + 28,661,808dd1µ

3 − 61,447,064d1µ
3

−287,978,454µ3 − 51,975d5µ2 + 1,532,214d4µ2 + 2,083,968d4
1µ

2

−9,689,418d3µ2 + 34,255,872d3
1µ

2 + 8,294,568d2µ2 + 241,880,112d2
1µ

2

−23,792,511dµ2 + 4,725d5d1µ
2 − 61,488d4d1µ

2 − 405,720d3d1µ
2

+6,347,642d2d1µ
2 − 34,036,205dd1µ

2 − 53,904,858d1µ
2 − 333,174,702µ2

−4,725d5µ + 575,712d4µ − 9,831,060d3µ + 46,013,184d3
1µ

+67,722,258d2µ + 344,248,704d2
1µ − 307,776,015dµ + 9,450d5d1µ

−198,576d4d1µ + 792,288d3d1µ + 3,448,340d2d1µ − 49,503,930dd1µ

+140,875,756d1µ + 560,100,246µ + 3,150d5 − 46,962d4 − 8,335,872d4
1

−195,834d3 − 17,418,240d3
1 + 5,150,850d2 − 20,975,040d2

1 − 15,241,836d

+4,725d5d1 − 137,088d4d1 + 1,424,808d3d1 − 7,789,726d2d1

+28,911,043dd1 − 45,139,458d1 + 7,693,848.
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Both constants T4 and T6 are modulo the previous constants and modulo a positive
contant.

The period constants T2, T4 and T6 are polynomials in the variables d, d1

and µ. We want to study the zeros (d, d1, µ) of T2, T4 and T6 with d ≥ 5 an odd
positive integer. For doing that we consider the resultant of T2 and T4 with respect
to µ. This resultant is a polynomial f1 in the variables d and d1. After we consider
the resultant of T2 and T6 with respect to µ. This resultant is a polynomial f2 in
the variables d and d1. The polynomials f1 and f2 have in common the factors
(1 + d)2(5 + d)d3

1. We define the polynomials g1 and g2 as the polynomials f1 and
f2 divided by (1 + d)2(5 + d)d3

1. Then we consider the resultant of g1 and g2 with
respect to d1. This resultant is a polynomial h in the variable d. It easy to check
that the unique positive odd integer root ≥ 5 of the polynomial h is d = 7. In short
the common zeros (d, d1, µ) of T2, T4 and T6 must have either d1 = 0, or d = 7.

Assume d1 = 0. Then T2 = −3(µ−1)(d−3+(1+d)µ) and T2 divides T4 and
T6. So d1 = 0 and either µ = 1 or µ = (3 − d)/(d + 1) vanish T2, T4 and T6. The
case d1 = 0 and µ = 1 corresponds to the condition (b.1) of Theorem 1. The case
d1 = 0 and µ = (3 − d)/(d + 1) corresponds to the condition (b.2) of Theorem 1.
Hence these two conditions are necessary for having an isochronous center.

Assume d = 7 and d1 �= 0. Then

T2 = −12(d2
1 + 2µ2 − µ − 1),

T4 = −24
(−156µ4 − 88d1µ

3 + 42µ3 + 3d2
1µ

2 − 28d1µ
2 + 72µ2

+8d1µ + 30µ − 12d2
1 + 12

)
.

Doing the resultant of T2 and T4 with respect to d1 we obtain the polynomial

(µ − 1)µ(2µ + 1)(10, 433µ3 − 3, 117µ2 − 3, 168µ − 260).

Substituting d = 7 and µ for every one of the six roots of the previous polynomial
in T2, T4 and T6 we get three polynomials in the variable d1. Taking into account
that d1 �= 0, the unique set of the three polynomials which have a common root
is the set corresponding to d = 7 and µ = 0. Moreover the common root is
(d, µ, d1) = (7, 0,−1). This case corresponds to the condition (b.3) of Theorem 1.
Hence this condition is necessary for having an isochronous center.
Subcase 2.2.2: j =1. By the change of variables in (13) we can rewrite system (1) as

w′ = iw + (ww)(d−5)/2[w5 + µww4 + D̃w5].

Since we are in assumptions (a.3) we have that

d̃2
1 − d̃2

2 = 0, that is d̃1 = ±̃d2.

Here we study the case d̃2 = d̃1. The case d̃2 = −d̃1 provides the same results and
can be analyzed in the same way.

Computing T2 with these assumptions we have

T2 = 3(d − 5) + 24µ − 3(d + 3)µ2 − 4(d + 5)d̃2
1,

modulo a non-zero constant. From now on we write d1 instead of d̃1.
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Computing the period constants as in the subcase 2.2.1 we obtain

T3 = 0,

T4 = 25d3µ4 + 325d2µ4 + 859dµ4 + 327µ4 + 30d3µ3 − 634d2µ3

− 4,038dµ3 − 2,270µ3 − 20d3µ2 − 580d2µ2 − 768d2
1µ

2 + 7,748dµ2

+ 13,588µ2 − 30d3µ + 634d2µ − 314dµ − 27,170µ − 5d3 + 255d2

+ 19,200d2
1 − 4,255d + 15,525,

T5 = −23,350d2µ5 − 99,900dµ5 − 89,550µ5 + 36,545d2µ4 + 486,064dµ4

+ 807,687µ4 − 100d4µ3 + 1,510d3µ3 + 46,186d2µ3 + 62,400d2
1µ

3

− 849,518dµ3 − 3,233,710µ3 − 100d4µ2 + 5,030d3µ2 − 111,940d2µ2

+ 763,952d2
1µ

2 + 221,738dµ2 + 6,902,168µ2 + 100d4µ − 1,510d3µ

− 44,596d2µ − 3,400,000d2
1µ + 1,205,546dµ − 7,343,620µ + 100d4

− 5,030d3 + 97,155d2 + 4,101,200d2
1 − 963,930d + 2,957,025.

These period constants Tk are modulo the previous constants {Tl : l = 2, . . . , k−1}
and modulo a positive contant.

The period constants T2, T4 and T5 are polynomials in the variables d, d1

and µ. We want to study the zeros (d, d1, µ) of T2, T4 and T5 with d ≥ 5 an odd
positive integer. For doing that we consider the resultant of T2 and T4 with respect
to µ. This resultant is a polynomial f1 in the variables d and d1. After we consider
the resultant of T2 and T5 with respect to µ. This resultant is a polynomial f2 in
the variables d and d1. The polynomials f1 and f2 have in common the factors
(3 + d)2d4

1. We define the polynomials g1 and g2 as the polynomials f1 and f2

divided by (3 + d)2d4
1. Then we consider the resultant of g1 and g2 with respect

to d1. This resultant is a polynomial h in the variable d. It easy to check that the
unique positive odd integer root ≥ 5 of the polynomial h is d = 13. In short the
common zeros (d, d1, µ) of T2, T4 and T5 must have either d1 = 0, or d = 13.

Assume d1 = 0. Then T2 = −3(µ−1)(d−5+(3+d)µ) and T2 divides T4 and
T5. So d1 = 0 and either µ = 1 or µ = (5 − d)/(d + 3) vanish T2, T4 and T5. The
case d1 = 0 and µ = 1 corresponds to the condition (b.1) of Theorem 1. The case
d1 = 0 and µ = (5 − d)/(d + 3) corresponds to the condition (b.2) of Theorem 1.
Hence these two conditions are necessary for having an isochronous center.

Assume d = 13 and d1 �= 0. Then

T2 = −24(3d2
1 + 2µ2 − µ − 1),

T4 = −768
(−158µ4 + 125µ3 + d2

1µ
2 + 36µ2 − 13µ − 25d2

1 + 10
)
.

Doing the resultant of T2 and T4 with respect to d1 we obtain the polynomial

339,738,624(µ − 1)2(2µ + 1)2(7µ − 1)2(34µ − 5)2.

Substituting d = 13 and µ for every one of the four roots of the previous poly-
nomial in T2, T4 and T5 we get three polynomials in the variable d1. Taking into
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account that d1 �= 0, the unique set of the three polynomials which have a common
root is the set corresponding to d = 13 and µ = 1/7. The common roots are d1 =
±3

√
2/7. But computing T6 and evaluating it at (d, µ, d1) = (13, 1/7,±3

√
2/7),

it is not zero. Consequently there are no more candidates for isochronous centers.
This completes the proof of Theorem 1(b).

5. Proof of Theorems 2 and 3

We do the proofs of Theorems 2 and 3 in two subsections.

5.1. Proof of Theorem 2

Due to the relation between the Liapunov constants and the coefficients of the
Poincaré map near the origin of system (1) (see the introduction and the references
quoted there) to prove Theorem 2 it is well known that if we can choose d ≥ 29
odd with the five focal values satisfying |V1| << |V3| << |V5| << |V6| << |V7|
and V3V1 < 0, V5V3 < 0, V6V5 < 0 and V7V6 < 0, then the cyclicity is five.
Moreover if for d ∈ {5, 7, . . . , 27} we can choose the six focal values satisfying
|V1| << |V3| << |V5| << |V6| << |V7| << |V9| and V3V1 < 0, V5V3 < 0, V6V5 < 0,
V7V6 < 0 and V9V7 < 0, then the cyclicity is six. From the expressions of the Lia-
punov constants given in Propositions 5 and 6 it follows after some computations
that the previous inequalities hold and consequently Theorem 2 is proved.

5.2. Proof of Theorem 3

As in the previous subsection in order to prove Theorem 3 it is well known that
if we can choose d ≥ 41 odd with the six focal values satisfying |V1| << |V2| <<
|V3| << |V6| << |V7| << |V8| and V2V1 < 0, V3V2 < 0, V6V3 < 0, V7V6 < 0
and V8V7 < 0, then the cyclicity is five. Moreover if for d ∈ {7, 9, . . . , 39} we
can choose the seven focal values satisfying |V1| << |V2| << |V3| << |V6| <<
|V7| << |V8| << |V10| and V2V1 < 0, V3V2 < 0, V6V3 < 0, V7V6 < 0, V8V7 < 0 and
V10V8 < 0, then the cyclicity is six. From the expressions of the Liapunov con-
stants given in Propositions 7 and 8 it follows easily that the previous inequalities
hold and so Theorem 3 is proved.
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