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1. Introduction and main result

We consider the displacement of two miscible species transported by a compressible
flow in a porous medium. Our aim is the study of the main mechanisms governing
for instance a nuclear waste-disposal problem, that is convection versus diffusion
and dispersion effects at high Peclet numbers, for the critical settings of high
Darcy rate of flow when the permeability of the rock is quite big. Let Q be a
domain of RN, N = 2 or 3, with smooth C! boundary I'. The unit normal pointing
outward  is denoted by v. The time interval of interest is (0,7), T' > 0. We set
Qpr = Q% (0,7) and 'y = T' x (0,7). We denote by p the pressure and by ¢
the mass concentration of one of the two components of the mixture. The Darcy
velocity is designated by u. Due to the mass and energy conservation (cf. [7,14,16]),
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the flow is governed by the following system satisfied in Q.

o k@)
d(x) Op + div(u) =0, wu u(c)vP7 (1.1)

¢(x) Opc + u- Ve — div(D(u)Ve) = 0. (1.2)

Note that the second part of Eq. (1.1) is the classical Darcy law for porous me-
dia. We neglect the gravitational terms for sake of clarity in the estimates below.
However no significant mathematical question arise when gravitational effects are
included. This model takes into account the crucial influence of the concentration
on the viscosity. A strong coupling is then induced in the system by the viscos-
ity p which is concentration dependent. The porosity and the permeability of the
medium are respectively denoted ¢ and k. The diffusion effects are modelized by
the tensor

D) = 6(Dn T+ Dy(w) = o Dt + lul(0260) + ar (1 - £w)) ).

where £(u);; = gigj/|g\2, ay and ar are the longitudinal and transverse dispersion
constants and D,,, is the molecular diffusion.

At high Peclet numbers, the effects of molecular diffusion become negligible
with respect to the dispersions ones (see for instance [4,7,15]). Therefore, we now
set Dy, = ¢ and we aim to study the asymptotic behavior of the system (1.1)—(1.2)
as € — 0 assuming that

O<ar<ar.

We thus consider the following equations in Q.

k
P Ope +div(u,) =0, u, =—-———
' (1) s

$Oce +u, - Voo — div (¢>(sfd + Dp(ys))Vc€> =0. (1.4)

Vpe, (1.3)

On the one hand, Equation (1.4) is at the limit of degenerate parabolic type. It
prevents from obtaining any estimate on the concentration gradient Ve.. On the
other hand, the second main difficulty of the problem is its very strong coupling. In
particular, the viscosity in Equation (1.3) is concentration dependent. The key idea
of this work is thus an astute and new combination of Equations (1.3) and (1.4)
to get an estimate for the space derivatives of the Darcy velocity w,.

We assume that the porosity ¢ and the permeability k are in W>°(Q) and
that they satisfy for some reals 0 < ¢_ < ¢ and 0 < k_ < k.

o <d(x) <y, k- <k(x)<ky ae in Q. (1.5)
Since the diffusion has the following properties

D(u )& € > ¢ (e + arlu|)[E]?,
D(u. )| < ¢4 (e +aplu))E], VEeRY, (1.6)
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we emphasize that System (1.3)—(1.4) is of parabolic type while the limit system
with ¢ = 0 is of degenerate parabolic type. We assume that the viscosity u is a
convex function belonging to W°°(0, 1) and is bounded as follows.

1" (c)
13 (c)
The inverse function 1/p is also supposed convex. These assumptions are satisfied

by the most usual models of viscosity. We cite in particular the Koval model [10]
where p is defined in (0, 1) by

O<p_<plc)<py, O<pu_< Ve e (0,1). (1.7)

uie) = p(0) (1+ (MY = 1)e) ™",

where M = p(0)/p(1) is the mobility ratio. Our arguments are also valid for
the Todd-Longstaff model [18], or the Fayers model [8] which are of the form
w(c) = (M'c+ M"(1—c))~%, where M" and M" are some nonnegative constants.
A model of the form p(c) = po + p1(c — crey) is sometimes used (cf. [16]), but it
would bring less difficulty in this work. For sake of convenience, the function pu
is continuously extended to R. System (1.3)—(1.4) is completed by the following
initial and boundary conditions.

uov=0 on I'r, p(z,0)=pinu(z) in Q,
D(u,)Vee-v=0 on I'r, c(x,0)=cpnu(z) in Q.
The initial data pi,;; € H* () and c¢;ni € L°°(Q) satisfy
0 < cipit(z) <1 ae.in €, (1.10)

/ Ton gni1 (|Vpinit|*) do < Ce?"T VneNN, (1.11)
Q

where the truncation function Ton gn+1 is defined in R by

T oz if 22 <gp <2t
ot (2) = 0 elsewhere.

Assumption (1.11) is used to control the dispersive effects due to the Darcy velocity
(see Section 3 below). Note that (1.11) is obviously fulfilled if p;,;; € W1>°(Q).
For any fixed € > 0, [5] proves the following existence result.

Theorem 1. Assuming (1.5)—(1.11), Problem (1.3)—(1.4), (1.8)~(1.9) admits a weak
solution (pe,ce) satisfying
i) the function p. € L>(0,T; L*(Q))NL2(0,T; H'(Q)) is solution of (1.1), (1.8)
verified in the space L*(0,T; H=(2));
ii) the function c. € L>=(Qp)NL2(0,T; HY(Q)) is such that 0 < c.(z,t) < 1 a.e.
mn QT,

The aim of the present paper is to state the following convergence and exis-
tence result.
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Theorem 2. Under the aforementioned hypotheses, there exists some functions
p € L0, T; L2(Q)) N L2(0,T; HY(Q)), w € L*(Qr) N L0, T; WH9(Q)) with 6 <
(6N +12)/(5N +38), and ¢ € L>(Qr) such that, up to extracted subsequences, the
following convergences hold true as € — 0.

pe —p ae. in Qp, Op.— Op weakly in LG(QT) ,
Vp: = Vp weakly in (L2 (QT))N ,
ce = ¢ x —weakly in L™ (Qr).

Moreover, (p,c) is a weak solution of the following degenerate parabolic problem.

¢pOp+diviu) =0 in Qp, where u= —ﬁVp, (1.12)

ule
¢ Oc+u-Ve—div(p Dy(w)Ve)=0 in Qr, (1.13)
w-v=0 on Tr, p(z,0)=Dppn(z) in Q, (1.14)

D,(w)Ve-v=0 on TI'r, c(z,0)=cpni(zr) in Q. (1.15)

Let us mention some papers dealing with this problem. Amirat, Hamdache
and Ziani consider in [1] the parabolic-hyperbolic problem with D,,, = Dp(u) =0
when the viscosity u is constant. The more realistic case Dy, = 0, Dp(u) # 0 and
= p(e) is treated by Amirat and Ziani in [3] for an incompressible flow, that is
when the divergence of the Darcy velocity w is fixed and then completely controlled.
The one-dimensional case has been more studied. We mention in particular Amirat
and Moussaoui who obtain in [2] an existence result for a model without diffusion
and dispersion but for a constant viscosity, and Choquet who considers in [6] the
asymptotic behavior of the model with respect to law Peclet numbers when the
viscosity is concentration dependent.

The paper is organized as follows. In Section 2, we begin by deriving clas-
sical energy estimates. To overcome the lake of regularity of the pressure p., we
then introduce a regularized pressure problem. In Section 3, combining astutely
this regularized problem with the concentrations one, original test functions and
renormalization arguments, we obtain an estimate in a space LY(0,T; W% () of
the velocity u.. Section 4 is finally devoted to the convergences results.

2. First a priori estimates and introduction of an auxiliary
regularized problem

We begin by giving the results which can be obtained by classical energy estimates
on Pb. (1.3), (1.8).

Lemma 1. We claim that the following uniform estimates hold true.
IPelloe 0. mi22(2)) + Pl 20 @) < €5 el z20pyy < C-

Furthermore, the function ¢p0;p. is uniformly bounded in L?(0,T; H=1(Q)) and the
sequence (p:) is compact in L*(Qr).
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Proof. We multiply Eq. (1.3) by p. and we integrate over ). Integrating by parts,

we obtain L
5 d o edr =0.
2dt/¢|p t)|? x—i—/ M(CE)Vp Vp.dx =0

Since ¢(z) > ¢— > 0 and k/p(c.) > k—/uy almost everywhere in €, the latter
relation and the Gronwall lemma give the first estimates of Lemma 1. Eq. (1.3)
then directly implies that ¢d;p. is uniformly bounded in L?(0,7; H~1()). Since
the embedding L%(Q) C (H'(£))’ is compact, we claim using a compactness result
of Aubin’s type (see [17]) that (¢p.) is sequentially compact in L?(0,T; (H*(Q))").
We thus can pass to the limit € — 0 in <¢p57p5>L2(0_’T;(H1(Q))/)XL2(O’T;H1(52)). Since
¢(x) > ¢— > 0 almost everywhere in 2, the compactness of the sequence (p.) in
L?(Qr) follows. U

We now perform energy estimates on the concentration problem (1.4), (1.9).

Lemma 2. The sequence (cc) is uniformly bounded in the space L*°(Q2r) and the
gradients satisfy the following uniform estimate.

12 + | ) Veel (2 aryn < O

Proof. We begin by recalling that the concentration c. is physically admissible in
the sense that 0 < ¢.(z,t) < 1 almost everywhere in Q7. The sequence (c.) is then
uniformly bounded in L (). We now multiply Eq. (1.4) by ¢. and we integrate
over (). We obtain
2dt/q§|cE \Qdm—i-/D )Vee - Vcedx+/(g€~Vce)c€dx:O. (2.1)
Q

Since ¢, is uniformly bounded in L (1), we can write using the Cauchy—Schwarz
and Young inequalities and Lemma 1

/(ga-vce)cgdx SC/ lu.| dx + QLQT/ lu| |Vee|? do
Q

<cw O‘T/\ (| IVe.? de

where the quantity C(t) is uniformly bounded in L!(0, 7). Using Assumption (1.6),
Relation (2.1) thus leads to

m/‘“ (- 0ot [ 6o (Gl +e) Ve do < ().

Bearing in mind the property ¢(z) > ¢ > 0 a.e. in 2, we prove Lemma 2 using
the Gronwall lemma. O

At this step, we clearly do not have enough compactness results to pass to
the limit in Pb. (1.3)—(1.4), (1.8)—(1.9). One of the main difficulties is the lake
of regularity of the pressure p. which does not allow other estimates than the
classical ones developped in Lemma 1. One of the main tool of our work is thus
the definition of an auxiliary “regularized” pressure problem. To this aim, we
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extend the concentration c. in a function ¢ € L?(IR; H'(IR)). We denote by p a
nonnegative function of C*° (]RN ‘H), with support in the unit ball and such that
[+ pl@,t)dzdt = 1. For any a > 0, we then set p®(z,t) = p(a/a,t/a)/aN T,
We define a regularized concentration ¢ using a convolution product

@ (1) = (0 % &) (x,1) :/ P (0 (@ — 1t — u) dydu.

RN+1

We denote by ¢2 the restriction of ¢ to Q7. The function ¢ € C*°(Qr) satisfies
as a — 0

¢ — ¢ strongly in  L*(0,T; H'(2)) . (2.2)

We also note that (¢%) is uniformly bounded in L*°(Q7). Now, for any o > 0, we

associate with ¢ a function pg solution of the following problem.

3 63 [e3 k (63 3
GOpS +div(ul) =0, ul= S mED] Vpd in Qrp, (2.3)
€
ud-v=0 on I'r, pi(z,0)=pi,(x) in Q, (2.4)

where the initial pressure p,,, is a function of C?(Q) such that
PSir — Pinit strongly in - H'(Q).

The existence of a unique solution p& to the parabolic problem with smooth coef-
ficients (2.3)—(2.4) is classical (see for instance [11]). Moreover, we assert that the
following results hold true.

Lemma 3.
(i) For any o > 0, the regularized pressure p& belongs to the space L*(0,T;
HY Q)N HY(0,T; L2(Q)) N L*(0,T; W22(Q)).
(ii) The following estimates are uniform with respect to o and e:

P2 N2, @) + P =0, 13220) < € w22y < €
16 0 || 20,101 (2)) < C

(iii) As o — 0, the sequence (p2) converges strongly in L?(Qr) to the solution p.
of Problem (1.3), (1.8). Furthermore

Vpd — Vp, strongly in (LQ(QT))N and a.e. in  Qr.
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Proof. We begin by multiplying Eq. (2.3) by 9;p%. Integrating by parts over €2, we
obtain

k
/¢|8tpg|2d$+/ﬁVp?'at(VP?)dxz/¢‘8tpg|2dx
Q Q:u’(cs)

1 d o

2d (-,t)-Vp2(-,t)dx
1 ?

= / o kVpZ - VpZ dx

2 2(c2)

Since 9;c¢ € C*°(Qr), using the Gronwall lemma and the bounds of the porosity,
permeability and viscosity given in (1.5) and (1.7), we then assert the existence of
a quantity C'(a) such that

190 | 2227y + 1P ]| o< (0,117 (02)) < Cla)

It implies in particular that divu® = —d;p% is also bounded in L?*(Q7). Further-
more, since u is a function of W°°(0,1) continuously extended to IR and since
ke Whee(Q), curlud is bounded like Ve A Vp2, that is in (L(Qr))Y. We con-
clude that u& is bounded in L?(0,7; H'(2)) and that there exists some constant
C(«) such that

P2 1| L2 (0,7, w22()) < C(a).

The proof of the uniform estimates in item (77) can be carried out exactly
like in Lemma 1. Using an argument of Aubin’s type, we conclude that (¢p?) is
sequentially compact in L2(0,T; (H'(€))’). On the other hand the function p®
is uniformly bounded in L2(0,T; H*(2)). We thus can pass to the limit o —
0 in the product <¢p57ps>L2(0T(H1(Q)) NxL2(0,T;HL(Q))- Since ¢ > ¢ > 0 ae.
in €, it proves the sequential compactness of (p@) in L?(Q2r). Using the other
uniform estimates of (i), we assert the existence of subsequences, not relabeled
for convenience, and of functions P. € L>(0,T;L*(Q)) N L?(0,T; H()) and
U, € (L*(Qr))Y, such that when a — 0

pe — P. weakly in L? (O,T; H! (Q)) and a.e. in  Qr,
ul — U, weakly in (L2(QT))N.

Since there is a subsequence of (¢2) which converges almost everywhere in Qp to

ce, we claim that the function P- is a solution of

PO P. +div(U.) =0, U.=— N(’; VP. in Qp,
U.-v=0 on I'p, P.z,0) = plmt(;v) in Q,

that is Problem (1.3), (1.8). Due to the uniqueness of the solution of this problem,
we can ensure that the whole sequence (p%) converges to P. = p. and that U, = u,
Now, let t € (0,T) and Q; = Q x (0,t). Multiplying (2.3) by p%, (1.3) by p. and
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integrating by parts over §;, we obtain almost everywhere in (0,7
1 1 k
7/ ¢ |p2 (-, 1) do — f/ & [Piin(x) | da +/ 5 Vpg - Vpl dads = 0,
Q M(Ca)

k
/qb|p8 ) de — = /(Z)|pmzt )2 dm—i—/ ——— Vp. - Vp.drds =0.
Q, p(ce)

We subtract these relations and let o« — 0. Since p2 converges to p. almost every-
where in Qp, we get

lim
a=0 Jq, p(c2)

Then, using the a.e. convergence of u(c%) to u(ce) in Qp, we compute

k
> - Vpl dxds = / ——— Vp. - Vp. dzds .
a, klce)

1
_ F(cs)l/z Vps)

1 N 1
(s 2 = e Ve e =0

Therefore, due to the properties of k& and 1/u, we conclude that

lim

1 (03
s [ (¥

Vpd — Vpe, ul —u, ae in Qp.

This ends the proof of the lemma. O

3. Estimate of the Darcy velocity

In this section, we use the auxiliary regularized problem (2.3)—(2.4) to obtain a
stronger estimate on the Darcy velocity u.. We aim to develop renormalisations
arguments (see [13]) to estimate u_ in L?(0,7; W1?(Q)). One of the crucial ideas
of the present paper is the astuteness in the proof of the following lemma.

Lemma 4. The following uniform estimates hold true for any 1 <i,j < N

H&'QEJH%Q(BM <2nC forany neNN,
Haiﬂe,j”iz(g) <C,

where the sets B, and B are defined by B, = {(x,t) € Qp; 2" < k2 (x)|Vp<(z,1)| <

21} and B = {(z,t) € Qp; 0 < k2(z)|Vpe(a,t)| < 1}, so that Qp = BU
(UnZOBn)-

Proof. For any given reals 0 < m < M and n > 0 such that m —n > 0, we consider
a truncation function 7)) ,, € C?(R) such that

0 if =< (m—n)?,

T;’%M(x): x if m?<az<M?,
0 if x> (M+mn)?.
For sake of clarity, we omit the subscript m, M and we set 7" = T." , . The idea

of the proof is to combine astutely the concentration equation with the regularlzed
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pressure one. We begin by checking the existence of three integrals. On the one
hand, we consider the term

p(ce) SRENT:
I, = T,(|k2 VpZ -Vesdo.
= [ BT i e Ve o
Since u. € (L%(Qr))Y, Ve. € (L2(27))Y and the other integrated terms belong
to L>=(Qr), we can ensure that the integral form I; belongs to L'(0,T). On the
other hand, we define I by

/
Ce 1 o 1 «
I2 - A 52((0 )) ¢ (5 + D;D(EE))VC;; : Tr/7(|k2ng |2)v(|k2vp8 |2) dl' °

We write I in the following way

20 c 1 1
I = / WACe) e T (VRS P) (R Ve V)R Ve
Q

p?(ce)
21 (ce e o R
+/Q /é((c u?)Vee - T)(|k*Vp2[?) (k% Vpe - V)k? Vp?
2 CE o
/S 2( (Qa) - DP(QE ))Vce
'Tr’,(leVpa'I )(WVP?-V)IC%VPS- (3.1)

We bear in mind that the term 77 (|k% Vp2|?) ensures that we work in a subdomain
where the components of Vpg, and then of u2 and D, (u2), belong to L>°. Then,
since Ve. € (L2(Q7))N, p& € L2(0,T;W22(Q)) and k € WH°(Q), the first two
terms of the latter decomposition belong to L'(0,T). Let us now study the third
one. We recall that by Lemma 3, u converges to u. almost everywhere in Qrp.
Thus, for a “sufficiently small” real «, the set where |Dp(u,) — Dp(u)| > 1 has a
negligible measure. We thus consider that the term D, (u,) — Dp(ug) in the third

£
integral of (3.1) belongs to (L>(Q7))N". And the same tools as previously let us
claim that this third integral and then Iy are in the space L'(0,T). Finally, we
consider I3 defined by

132‘/9(/1/(06)) Tn(‘k%Vp?F)gb({f-l-Dp(gs)) Vcs.vcsdx.

12 (ce)

Using the same decomposition on the term D(u.) than in (3.1), we can check
that I3 also belongs to L'(0,7). We now note that an integration by parts gives

L+L+IL=1 —/Qdiv(qb (E—l—Dp(gg))Vca) ZQ((CE)) (k3 Vpe|2) da

Using the concentration equation (1.4) and the latter existence results for Iy, I
and I3, we thus conclude that

/gb@tcgi (k2P de = —1) — I — I € L0, T).  (3.2)
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We now note that

(Cs) 1 d ¢

2 _ % a2
¢8t em Ty (k> Vpe ) do = — = e )Tﬁ(|k Vpe|?) da
“, Wi) ouT, (KEVpEP) do, (33)
where
1 ¢ ¢>k
_ ]41 « k‘ o (™
2/9 p(ce) Ou(Ty (k> VpET) / (k> Vp2|*) Ve - V(0ip2)

. (bk / 1 2 )
— [ div T/ (k> Vp2|?) Vpe | 9p2
/Q (M(Ce) 77(| p | ) p tD
, k
— T (|k2 Vp2|? div<v g) Oyt
/Q¢ 77(| p |) ,U(Ca) p tP,
, k
- T”k2V§2( vvg“?)ag
| oTiwEvE P (s o2 v (V) ) o
, k
— [ T/(|k2Vp2|? <
/Q ?7(‘ pel) plce)
- [ 0Tk vae ) e
+/ ¢T’(|k;%vpa|2)div<(k ko ) vp“) Op
o : p(cd)  plee) <) e
- [omiiwie ) x (s Vi vOuER) ) at
o c p(ce) : :

1 k
_ T/ ki a2 @ « .
A "7(‘ Vpe' ) (ILL(CE) V(b) atpe

Therefore, using (3.2)—(3.3) and the latter relation, we conclude that

e V¢> Oepe

1
= ) (e DY) Ver TRV PV (KRR P) d
i e+ Dy(u.))Ve. - T)) e pel?) dx

\ 1 1
+2/ T (|k2Vp2|? div((—) kvpg> o2 dx
o STV ey ~ e ‘f
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—2 [ ki) (S

—2/¢T" Ik Vpe[?) —

o qu) OpY dx

k

ey (Vo2 VOREVRER) 0t d (3.4)
We now aim to obtain estimates, uniform with respect to e, for the terms of
the right-hand side of the latter relation. Using the Cauchy—Schwarz and Young
inequalities, we can write for any 6 > 0

p(ce) SSNT:
T,(|k2VpZ|7)u, - Ve
A MZ(CE) 77(| ‘ )

<3 / b_arlu.| T, (VP2 )| Ve ?
c i
+5 [l I vpeR)
Q
<3 /Q bl | [T, (K Vp2?)| | Ve ?
C (a3 l (e
+ 5 [ el kb epe )
Q
C o 1 o2
% [ el = 12 17,052 092 )
Q
5 /Q o_arlu| T, (kF VP2 )| Ve ?

C(M +n 1o o
+ SO [ 7, (o)

c « B «
+g/9(\@€\—Iysl)lTn(WVpEIQ)\- (3.5)

The second term of the right-hand side of (3.4) writes

I
Ce AV 2V
_/Qu( )(b(HDp(gs))wg.T,;(|k2vp€|2)v(lkzws ) d

w2 (ce)
() N N
:_2/ P o (ki vpe ) S ([ Do (e0i + Dylwn)y) djee
o 13(ce) = =
Differentiating the Darcy law, we obtain —kd7p2 — 8;p20:k = p/(c2)d; 054] +

p(c2)diug ;. The first term of the right-hand 51de of the latter relation gives in (3.6)

2/QMQ( L G (VD2 ) VR (e 4 Dyfu)) Vs Ve d

- [ H o e ) VP (e 4 Dy () Ve Veeda
o M3(ce)
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_/2u’(ca)u’(02)< ¢ 0 )
o K(ce) p(ee)  plee)
x T (|k2Vp2[?) [k2 Vp2 [ (e + Dp(u,))
x Ve. - Vee do — / 2C) (W'(c2) = p'(cc)) &

o m3(ce)
x T (k2 Vp2[?) [k2Vp2|? (e + Dp(u,)) Vee - Ve, da . (3.7)

With the second term in the expression of —kd7;p2 —d;p2d;k in (3.6), the Cauchy—
Schwarz inequality and Assumption (1.5) for k, we get

N
‘ /Q ¢T, (K Vpe|? Z((Z £6i; + Dp(u, )”)005)

N
X (Z 0,2 8iu§fj)> dx

1/2
<C Z </ T, ( |k2Vp€\ )||87;ugj|2d:c)

7,7=1
) 1/2
x ( / |T4<|k2Vp3|2>|<52+aL|ug|2>|Vp§|2|Vc|2dx) .

Introducing |u2| in the latter relation and using the definition of 7;,, we obtain

i=1 j=1

N 1/2
< | S op o, | | |<C Z </ T3 (k2 V2| )Il&u?,j|2>

j=1 7,7=1

N N
‘ / ¢T'(|k2Vps| ) > ((Z (€0ij + Dp(uc)ij) @-cs)

1/2
X T2 (|2 V2| )I(€2+aLlusIUS+aL|u€|(|ug|—u?))IVp?FIVcaF)

N 1/2 1
< S coren ([@ruwbmer) ([ mosempliow?)

i,j=1

A~
S

1/2

N 1/2
+ ZC(/ T2 (k3 V2 P) | (e — >Vp?|2|ws|2)

i,j=1

: 1/2
x ( RACeer |2)
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and then
N N

’/ ¢T/|kVp€\)Z Z€5U+D 2)ij) Djce

i=1 j=1

N
Zajp? iug; < ZC M+,7)3/2

i,j=1

1/2 1/2
x ( / |Tn<|kzv]os|2>|) ([ vz os, )
QﬂBm M Q

1/2
iy c(/ T (kP2 )] i )

7,7=1

1/2
1 «@ (a3
([ T T Pl ] = 2D 902 9 ) (3.5)
where the quantity C(t) is uniformly bounded in L?(0,T’) thanks to Lemma 2. We
have denoted by By, s the set of points of  such that m < [k*/2Vp2(-,t)| < M.

Now, for any given real § > 0, let f5(|k= Vp2|? \/T’ (|k=Vp2|2) + 6). Integrat-
ing by parts, one easily checks that

/fa kv >\auej|2dxf/f5 VP2 2) (div(w®)? + [eurl () ?) da

+2Z/f5 (K} Vp2 2)ue,

7]
x (= g, 0;(|k> Vpe )
+0;ul,0;(|k=Vp2|?)) da .

i,j=1

Letting § — 0, we obtain

Z/\T’ V2| >||agq|2dxf/ T (kA Vp2 ) (div(u)?

i,j=1
+ [eurl(u®)[?) dx

23 [ sion (7313 Vo2 )T (44 0 ),
i#]
x (= O 03[k Ve )
+0jul,0;(|k=Vp2|?)) da . (3.9)
We denote I, the second term of the right-hand side of (3.9). We note that
lim 1, =0
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because the regularities Té’(\k%Vp?P)mg‘ 2 € L™(Qr), p& € L?(0,T;W22(Q))
and k € W1>(Q) imply that the integrated function belongs to L'(Q7). We
bear in mind that div(u®) = —0p2 and |curl(u)| < C(|Ve2| + 1)|Vpg|. Then,
using (3.9) in (3.8) and the Young inequality, we get for any § > 0

(e (e) SIits
‘g/ﬂ e Tk )Y ((Z(eéiﬁDp(ug)w)@st)

i=1 j=1
N
x [ > 0 om; | | da
j=1

1/2
M +1)3/? 1 o
scm%/ Tk VpeP)de | I,
Q

m NBum,m

1/2
+C(/Q ITr';(IkZVpS‘F)Ius(lugl—u?)IVPSIQIVCEIQd:E) I

ReUTES )

— T, (K5 09 )| de

Qr‘leJ\/j
C
+ g/ 175152 Vo2 ) e | (e | = [u2])| VP2 |Vee | dae
Q

. M 3/2
+5 [ T (3 2 )] 94 P da + (1) DT
Q

1/2 1/2
( | meivse) dx) ([ et el ez + 12 92 2
QﬁBmJM Q
) 1/2
e ( T bl — ) 95 Ve dx)
) 1/2
x ( / |T4<k2Vps|2>(|Vc§|+1>2ws|2dx) | (3.10)
We have
M+n 3/2 P 1/2
(G Vi [ mEvee)
m QI’WB"L,M

1/2
l (0% (0 (0%
x ( [ e Py ez 171 F)

1/2
M+ 7\ s
gc( *”) (/ |Tn<|k2Vp?2>|dw>
m QN B, m

1/2
x ( [T Ve + 1>2dx)
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and using the Young inequality

M+ 3/2 o
% /QB T, (ke ? (/ Tk VP2 ?)] (IVe2] + 1)2
NBm, M

1/2
x|Vp32) < sC / oo | T (K VP2 )] | [V2]? [Vea]? do

M+77)3 1 «
+C(5mg,/m3 Lfn(|k2vps|2)|d$

+C(M+n)/Q T, (k¥ VpeP)| do
e / T2 (kT2 )] (2] — )| Vp2 2 Ve Pda

430 [Tk Vp ) e |Vp2 PV — Ve Pldo
Q

for any 6 > 0. We thus obtain in (3.10)
N N
‘ / ) o1y |kt Ve )2 | (22 (6i + Dylue)ig) Dyee

N 1/2

(M + n)*/? / 1 2
X 9;pg Oul < C(t)——>— T,(|kzVp2 I
(g : )) WO ([ makep)

1/2
+C(/ 175 (12> V2 )] o s | - IU?IIVPSIQIV%IQ) I

M +n)® 1o, a lo,a
Al [ Vel + COOr+a) [ 1T, 95
Qann,]ﬂ Q

+C(t)
C l (3 (e} (e
+g/Q\T7;<\kQVpE|2>\|u€|<|u5|—m€ ) Ve Ve ?
+5 / T2 (K3 VP2 2] |02 2 + 6 / b | T (K3 Vp212)| | [Vp2[? Ve 2
Q Q

1/2
- O)(M + )2 ( [ TR ] — a9 |Vcs|2)

()5 / T (K3 VP2 ) [l2] — L || [V (V22 (3.11)
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Another term of (3.4) is estimated as follows. We write

1 1
(k2 k p® d
/¢T (k=] )dw((MC) (e )) Vpg) e
/(bT’ (k= Vp2 ) (( Cg o+ LAC )Vcs) -Wp?) Opg dx

C? H (Cs)

/QST’ k2 Vp2|?) ( @) (€)> div(kVp2) Oppl dx . (3.12)

Finally, using the Cauchy-Schwarz and Young inequalities and the regularity of
the porosity ¢ € WH>(Q), we get for any ¢ > 0

‘/ T ( |k2Vps <()Vps qu) OpS dx:

<o [Tk Ve P e P+ S [ T3k V62 P de. (3.1)
Q Q

We now collect Estimates (3.5), (3.7), (3.11)—(3.13) in (3.4). Denoting by C a
generic quantity belonging to L'(0,T), we obtain for any § > 0

a [l _¢
dt Q,u(cs)

+/ (Wf) (co) Ty (k2 VD2 ) 6 (1 = 20) (¢ + ar|u )| Ve |* dr
o\ M

C(t 1 C(t) (M 3 1
< Q(Mﬂy)/Tn(|k5vpg|2)dx+ﬁﬂ/ T, (|k2Vp2|?) dx
o Q o m? QN B Mt

T, (AP o+ [ T 0212) (26— 20) e de
Q

C(M +
SLAL N /|T/ VP P)| [Vpe]? da
7/ | — 2T (K02 P?)
o [ |- - TRV (e + onlu ) [V Ve da
u(e2) u() ) PR
+c/ 1(c2) = (e ITL(RFTp2 )] (K3 Vp2 P (¢ + Dy(u.)) Ve - Ve da

+ / (T3 k2 2) o] — ] V922 (Ve 2+ V2 ) da
1 @ Cg « ' Ce
+ [omrrvp| (- 4% vee o+ £

N(Cs)
+f ¢|T4<|k%w§|2>\ LU ik vpe)] |02 da
Q M(Cg) N(Ca)

1/2
M+77 3/2 1 o
+C% /Q T, (k2 Vp2 [P dx | 1,

Vc€> -kVp¢

|0¢p| da

ﬁBmyM
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1/2
1 (a7 « (a3
+C(/Q lTé(lkWpEQ)lluellue—IueIIIVpEIZVCEIQdI> I

Vpg - V(IVp2|?) 0yp dx| .

+2] JREATRTES (3.14)
Q

k
p(ce)
Now we choose m = 2™ and M = 2"*! n € IN and we let 7 tend to 0. Note that
the function 7, then converges to the function 7" defined by

{x if 227 < g < 227 F2

I(z) = 0 elsewhere.

We recall that lim,,_¢ I,, = 0. The last term of the right-hand side of Relation (3.13)
also tends to zero with n because ¢Té’(|k%Vp§|2)(k/,u(c€))|Vp§‘|2 € L>®(Qrp),
op € L*(Qr) and p¢ € L*(0,T; W2(Q)). Then, letting n — 0 in (3.14), we
obtain

d ¢ L 2 / (% 2 2
4 T(EFVpe?) de + | o T (kEVp22)2(1 — 6) 9,02 da
o [ TR e+ [ o (VR0 - 8) 0t
"
(%) @ TU TP 01 0) 6 + arlu ) [VecP o
Q
2n , on
< g(t)/T(|k§Vp?|2)dx+ 0 (3.15)
Q

where C(t) is uniformly bounded in L'(0,T). We have defined the quantity C,
by

C o 1 o
Calt) = 5 [ [lucl = 12|74 V2 ?) do
1 1

e / _
olp(ee)  ule)

+C / 1/ (c2) — ' (co)| T ([k2Vp2?) |2 Vp2|? (e + ap|u.|)| Ve |* da
Q

T'(|k2Vpe %) (e + ap|u]) | Vp2? [Vee | da

¢ 1 o o o «
+ g/ﬂT’(lk“’Vpe %) e |lue] = |u]] [VDEP (IVee]? + [Ve2|?) do

li (e /
+0 [ TR \—“ () Geo 4 ) g | 190 092 o
Q

) V< T e
|div(EVp)| |0l | dx . (3.16)

e | - L

- [OOSR | s

In view of the results of Lemma 3, for any fixed € > 0, all the integrals in (3.16)

are of the form fﬂ( f& — fo)g2dx where f& converges to f. almost everywhere in

Q7 and g2 is uniformly bounded with respect to o in L!(Qr). We conclude that
for any ¢t € (0,7) and any fixed € > 0,
t

lirrb Cu(s)ds=0. (3.17)
o— 0
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Let us turn back to Relation (3.15). We recall that by (1.7), p”(c)/p2(¢) > p_ > 0.
One can choose § > 0 such that 1 — 2§ > d, > 0. Using the Gronwall lemma on
Relation (3.15), we then get

¢ 1 2 2"f/ ¢ 1 2
T(|k2Vp2|7)de <e* ' | ——=T(|k2Vp,..|*) dx
e T VEP) o fles) | VPnil')

t
+C+ / Co(s)e 2" gs.
0
Thus, using Assumption (1.11), we conclude that
t
/ T (R VpL ) |0upS 2 dads < 2"c+/ 1Co(s)] =20 ds
(N 0

Besides, letting 1 to 0 in (3.9) and using the latter result, we obtain

N
Z/ (kP P) |8ig§fj\2dzds§/ (K Vp2 ) (div(w®)?
ij=17%k t

+lewl(u)P?) deds
<c [ TP (oue P

+ (IVtc?I +1)%|Vp2?) dads
<200 [ o]

—1—2"0/ [u||Ved|? dads + C
Q

t
< 2"c+0/ |Ca(s)|e™2" (7 ds.
0

Now we let a tend to 0 in the latter relation. In view of the result (3.17) and of
the strong convergences stated in Lemma 3 (iii), we conclude that for any n € IN
and 1 <14, <N

9sa 5325, < 2C, (3.18)

where the set B, is defined by B, = {(z,t) € Qp; 2" < k2 |Vp.(z,t)| < 271}
We finish with some words about the estimate in B announced in the lemma.
We do not detail its proof because it is completely similar to the one carried for
the estimate in B,. One simply has to follow the previous lines, choosing m = 0
and M = 1. Furthermore, the proof in this case is more simple because one does
not have to introduce the technical artifice of dividing by m (in (3.8) for instance).
Indeed, we have here M? = M = 1. This ends the proof of the lemma. O

The second step of our renormalization method is the following lemma.

Lemma 5. The sequence (u_) is uniformly bounded in L°(0,T; W19(Q)) for any

real 0 such that 1 <6 < (6N +12)/(5N + 8).
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Proof. Let 0 be a real number, 1 < 6 < 2. Using the Holder inequality, we write

0/2
/B |5iy€’j|9 dzdt < (/B |3&6’j|2 dxdt) B, 102

where |B,| denotes the measure of B,,. We note that on B,, we have |u.| >
C'2" where the constant C' depends only on variations of the functions k and pu.
Therefore,

C
Bal £ 50 [ luclast)| dod.
2 B,

By the Holder inequality, we also have

1/s
/|us(x,t)|dxdt<</ |us(x,t)sdxdt) |B,|"*",

n n

for any s,s’ > 1 with 1/s + 1/s’ = 1. This produces
C
‘Bn| S / |EE(1',t)|SdJCdt
27’15 Bn
Thus, in view of inequality (3.18),

c 1-6/2
o 0 - s
/Bn |0iu, ;(z,t)]” dzdt < S s(1=0/2)=072) (/Bn lu.(z,t)] dacdt)

and then

> / 0w, ; (=, t)|? dzdt

n>0
c 1-0/2
< Z% n(s(1-0/2)-0/2) (/Bﬂ lu(z,t)]° dxdt) . (3.19)

We now choose s > /(2 —6). Using the discrete Holder inequality, the right-hand
side of inequality (3.19) is majorized as

Z 1 ( 1-6/2
on(s(1=0/2)=0/2) / |UE|dedt>
n>0 2 (st /2)-6/2) B,

1/r 1/r'

1 s (1-6/2)r"
< | X woemamm Z(/ . |* ddt

n>0 n>0 7 Bn
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with 1/r +1/r" = 1. Choosing r’ = 2/(2 — ), we infer from (3.19)

1-6/2
Z/ |8¢@57j|9da¢dt <C Z/ lu.|® dedt
By, By,

n>0 n>0
1-6/2
<C (/ Iuelsdmdt) VI<i,j<N. (3.20)
Qr

Now we recall that [, [diu. ;|*dzdt < C. So, with (3.20), we have established the
estimate

1-6/2
/ O, |” dedt < C |1+ (/ |u€|sdmdt> V1<i,j<N, (321
QT ’ QT

for any s > 0/(2 — 0). We now write the following Gagliardo—Nirenberg inequality
1/2 1/2
el < a0 192 o2/ gy

where s is such that 1 = 3 (5rxqg; + 5), that is s = 40(N +2) /(N6 + 2(N +2)).

The condition s > 6/(2 — 0) is fulfilled provided that 6 < (6N + 12)/(5N + 8).
Integrating from 0 to T" and using the Holder inequality, we deduce that

2(N+2) N6
T 0 NO+2(N+2) 2(N+2) NO+2(N+2)
lu.|® dedt < |0iu, ;|"dx |pe|” ¥ dx dt
Qr 0 Q Q

2(N+2)

T NO2(N+3)
< //|8¢g5j|0dzdt
0o Ja '
T NOTANTD
2(N+2)
X //|p5| N dxdt .
0 Q

We recall that the function p. is uniformly bounded in the space L?(0,T; H'(Q)) C
L2(0,T; L2N/(N=2)(Q)) and in L>®(0,T; L?()). By interpolation, p. is thus also
uniformly bounded in L2N+2/N(Qr). Thus, using the latter relation in (3.20), we
obtain

2(N+2)
) No+2(N+2)

/ \6&5}”9 dxdt < C+C (/ |a&5)j‘0 dxdt
Qr ’ Qr

Since 2(N + 2)/(NO + 2(N + 2)) < 1, the latter relation gives the result of the
lemma. (]

4. Convergence results as ¢ — 0 and proof of Theorem 2

The results of the previous sections and classical Sobolev embedding allow to
assert the existence of p € L>°(0,T; L2(Q))NL2(0,T; H (Q2))nWh9(0,T; L (2)) N
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L0, T; W24/3(Q)), u € L*(Q7) N L0, T; WH(Q)) and ¢ € L°(Qr) such that,
for extracted subsequences not relabeled for convenience,

pe —p ae in Qp,
Oips — Oyp  weakly in LQ(QT) ,
Up. = Vp weakly in (L*())" 1 (L°(0,7; W1’4/3(Q)))N,
ce — ¢ * —weakly in  L>®(Qr),
and these functions satisfy the following limit equations in Q7
b

¢Op+divie) =0, u=-k Vpe ,
ﬂ(cs)

¢ Ope+u.-Vee — div(Dy(u.)Vee) =0,

where f. denotes the weak ad hoc limit of f..
Our first step is to explicit @_c:.

Lemma 6. Up to extracted subsequences, we have

u, ¢ — uc weakly in (L2(QT))N.

Proof. Multiplying Eq. (1.4) by a function € L*(0,T;W'*(Q)), one easily
checks that the function ¢d;c. is uniformly bounded in L*/3(0,T; (W1H4(Q))).
By Lemma 2, ¢c. — ¢c weakly in L9(0,T; L*(Q)) for any ¢ > 1. By Lemmas 1
and 5, u, — u weakly in (L°(0,T; W19(Q)))¥ N (L?(27))". Since we have the
following embedding

Wwho(Q) c L*(Q) = (L2(Q)) ¢ (W (@) c (W),

the embedding W1?(Q) C L?(Q) being compact, we can use a Aubin’s type com-
pactness argument (see [9] Lemma 6) to assert that

u.pc. —ugc in (D’(QT))N.

The result of the lemma follows from the property ¢(z) > ¢_ > 0in £ . (]

Now, we are able to give an explicit value for the limit velocity.

Lemma 7. The limit velocity is defined by the following Darcy law.

k

u=-
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Proof. Let us write the equations satisfied by the functions pu(c.) and 1/u(ce) in
Qr.

dOuulce) + u. - Vpuler) = div(6 (eId + Dy (u.)) Va(c.) )
=—u"(c.) ¢ (sId + Dp(gs))Vcs Ve, ,

1 1 . 1
POt T Y ey~ <¢ (eld+D P(“E))Vm))
= I (CE)’U(:ZC) )_32M (Cs) (b (Eld + Dp(ﬂg))vcs Ve, .

We note that the structure of these equations is completely similar to the one
of (1.4), with right-hand sides in L'(€27). One easily checks that ¢d;u(c.) and
#0,(1/u(ce)) are uniformly bounded in L (0, T; (W14(9))’). We then use the same
tools as in the proof of the previous lemma for the sequences (¢u(c.)) (respectively
¢/ u(c.)) and u, (respectively Vp. bounded in L?(0,T; W4/3(Q)) with the com-
pact embedding W%/3(Q) ¢ L?()). We conclude that

— 1 1 N
u, p(ce) ~up(cs), V -V in (L*(Q .
—€ /LL( 8) —:u‘( 6) Pe M(CE) p /J/(Cg) ( ( T))
Since we also know the weak convergences u u(c.) = —kVp. — —kVp and

Vp:(1/p(ee)) = =k~ tu. — —k~'u in (L*(Q7))Y, we conclude that on the one
hand

1
Vp = fkap. (4.1)

U= -

lce)

On the other hand, since the functions p and 1/u are convex, we can assert that

(u(ig))_l < u(e) < p(ce). Relation (4.1) thus implies that

1 —k
Vp =

o) = fkap = mVp. (4.2)

u=—
Lemma 7 is proven. O

The result of the previous lemma let us claim that the limit pressure is
solution of (1.12). We now prove the following compactness results.

Lemma 8. We claim that, up to extracted subsequences,

Vp. — Vp strongly in (L2 (QT))N and a.e. in  Qp,

u, — u strongly in (LQ(QT))N and a.e. in  Qr,
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Proof. We multiply Eq. (1.3) by p. and Eq. (1.12) by p. Integrating by parts over
Q; =Q x(0,t) for any t € (0,T"), we obtain

k
/¢|p5 |2dl'77/ ¢|p1nu‘ )| dl“i’/ 7vpsvp5d$d810,
Q M(Ce)

k
/¢|P |2d95— /¢|pzmt )| dx—i—/ ——Vp-Vpdrds =0.
p(c)

Thus, using the a.e. convergence of p. to p in 7, we conclude that

e—0

lim/ LVpE-VpE dxds:/ LVp-Vpdacds.
Q N(Cs) Q, M(C)

Using the latter relation and the two last expressions of u given in (4.2), we now
compute

——|Vp.|* dxds
. M(CE)

v
a, Hlce)
f/ uE~Vpdxds>
Q4
k 2 1 2
= —|Vp|*dzds+ | k |Vp|* dxds
a, H(c) o, Klce)
1
- k
/Qt plce)

7/ L|Vp|2dxd5 =0.
a, H(c)

Since k/p(ce) > k—/ug > 0 almost everywhere in Qr, the latter relation proves
the strong convergence of Vp. to Vp in (L?(Q7))N

Let us consider the behavior of (u_). Since we now know that Vp. strongly
converges to Vp in (L?(Qr))Y, we can assert that the weak limit in L'(Q7) of
pulea)u, ~u, = —kVp.-u. is —kVp-u = p(c)u-u = plce)u-u (see (4.2)). We thus
compute

lim plee) |u. — ul? dedt = lim (/
Qr =0 \Ja

. 2 T
i f, et =

dxds — / u, - Vpdzds
Q

dxds

e—0

p(ce)u, - u. drdt + / pu(ce)u - u dedt

T Qr

—/ ,u(cs)ga-gdxdt—/ ,u(cg)ue-udxdt)
QT QT
=/ p(c)u- @dxdt+/ plce) u-udzdt

Qr

Qr

—/ ples) u- gdmdt—/ ple)u-udrxdt =0.
QT QT
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Since p(ce) > p— > 0 almost everywhere in Qp, the latter relation proves the
strong convergence of u_ to u in (L?(Q7))N. O

We now aim to explicit the limit convection term u, - V..
Lemma 9. The following convergence hold true.
u, - Ve, = u-Ve weakly in L4/3(QT) .
Proof. We begin by dividing 27 in two sets:
Qr =DUD®, with D= {(z,t) € Qr; |u(z,t)| #0}.
Obviously we have

lin})gs-VcE:O:g-Vc in L4/3(Dc)—weak.
E—

We now consider the convergence problem in D. Writing u, - Ve, = div(u.c.) +
ceO0ype and bearing in mind Lemma 6, it reminds to explicit the limit of c.0yp. in
L?(D). Let f be the function defined in R, by f(z) = (x + 1)%/2(°~1). Note that
the functions f and 1/f are convex since 1 < 6 < 2. We also define a sequence v,
by
ve = f(ce) |u.|.

We then exactly follow the lines of the proof of Lemma 7 (except that we now
know that u_ strongly converges to u) to conclude that

1 1 1
v = v.

= fle) fle)  fle)

We then compute

02 dadt

lve — v|? dedt = liH(l) </ |u | ve dzdt +
£— Qr

72/ gefudxdt) =0.
Qr
We infer from the latter relation

ve = fleo) Ju| —v=f(c)|u] in L*(Qr) andae. in Qp.
We then can pass to the limit in the product vf("*l)/ ‘)atpa which is uniformly
bounded in L*(27). We get
v?(efl)/Gatps _ (Cs + 1)‘E€|2(971)/Q96tp‘S N U2(071)/08tp _ (C+ 1)|Q‘2(971)/08tp'
Since |uc| converges almost everywhere in Qr to |u|, the latter result implies that

C.Oipe — cOyp In Le(D)

1
o flee)

lim _—
e=0 Jo, f(cs)

and then
u, Ve = div(uce) + c.0pe — u-Ve = div(ue) + cdgp  in L4/3(D) .

Lemma 9 is proven. U



Vol. 15 (2008) Asymptotic Analysis for a Compressible Flow 781

Finally we note that the same arguments as in the latter proof lead to
U ; Oice — u; O;c in L4/3(QT), v1<i,j<N.
Using besides the a.e. convergence of u, to u, we conclude that
« . N
D,(u2)Vee — Dp(u)Ve in (L4/3 Q).
This ends the proof of Theorem 2.
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