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Abstract. Energetic solutions to rate-independent processes are usually con-
structed via time-incremental minimization problems. In this work we show
that all energetic solutions can be approximated by such incremental problems
if we allow for approximate minimizers, where the error in minimization has
to be of the order of the time step. Moreover, we study sequences of problems
where the energy functionals have a Γ-limit.
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1. Introduction

The concept of energetic solutions to rate-independent processes was introduced
in [22, 23] and further developed for example in [12, 16]; a recent survey is [19].
They allow for a mathematical treatment of a variety of evolution problems in
the material sciences, for example in elastoplasticity [5, 14, 28], phase transitions
in shape-memory alloys [1,2,15,25] and crack formation in brittle materials [9,11].
Optimal control problems based on energetic solutions are investigated in [29].

Recently, in [24] sequences of such problems have been studied in the frame-
work of Γ-convergence and conditions were derived that guarantee that solutions
of the problems in the sequence admit a limit point solving the limit problem.
Here we go the opposite direction and show that every solution to the limit prob-
lem originates from time-discrete solutions to the approximate problems. This
shows that the limit problem can be used effectively in the study of sequences of
rate-independent problems. Roughly speaking, the theory in [24] states that the
solution set is upper semi-continuous in the Γ-limit, whereas here we study the
lower semi-continuity.
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We now describe the general framework in order to introduce the main ideas.
Precise technical assumptions are postponed until Sections 2 and 4.

Let the state space Q of the system be the product of two Hausdorff topo-
logical spaces F and Z. As we will deal with sequences rather than with general
topology tools, all topological notions are to be understood in a sequential sense.
For example, compactness always means sequential compactness. Here F corre-
sponds to the elastic (or, more generally, non-dissipative) and Z to the internal
(or dissipative) variables. This splitting is typical in continuum mechanics with
dissipation, see [10, 13, 14, 32]. The system itself is modeled by two functionals:
an energy-storage functional E : [0, T ] × Q → R∞ := R ∪ {+∞} and a dissi-
pation distance D : Z × Z → [0,∞]. The triple (Q, E ,D) is called an energetic
rate-independent system.

The energy E models the elastic or non-dissipative part of the problem and
depends on the process time via a time-dependent loading. The value D(z0, z1)
denotes the minimal dissipated energy when the state is changed from z0 ∈ Z to
z1 ∈ Z. Because of this physical interpretation, we require the triangle inequality
and the positivity D(z1, z2) = 0 if and only if z1 = z2. However, we do not
require D to be symmetric as the physical dissipation might not have this property,
e.g. in elastoplasticity [14], in crack formation in brittle materials [9, 11], or in
damage [3, 10]. Although D acts only on the dissipative part Z of the underlying
state space Q, for q1 = (φ1, z1) and q2 = (φ2, z2) we also write D(q1, q2) when in
fact we mean D(z1, z2).

For a process z : [0, T ] → Z (only in the dissipation part of the state space)
and s, t ∈ [0, T ], define the total dissipation DissD(z; [s, t]) of z in the subinterval
[s, t] to be the total variation of z with respect to the quasimetric D, i.e.

DissD(z; [s, t]) := sup

⎧
⎨

⎩

N∑

j=1

D
(
z(τj−1), z(τj)

)
: s = τ0 < · · · < τN = t,N ∈ N

⎫
⎬

⎭
.

Again, for a process q : [0, T ] → F ×Z = Q with q(t) = (φ(t), z(t)), we also write
DissD(q; [s, t]) when we really mean DissD(z; [s, t]).

An energetic solution to the evolution system associated with E and D is
a process q : [0, T ] → Q that satisfies the stability condition (S) and the energy
balance (E) for all t ∈ [0, T ]:

(i) E
(
t, q(t)

)
≤ E(t, q̂) + D

(
q(t), q̂

)
for all q̂ ∈ Q (S)

(ii) E
(
t, q(t)

)
+ DissD

(
q; [0, t]

)
= E

(
0, q(0)

)
+

∫ t

0

∂tE
(
τ, q(τ)

)
dτ (E)

In this case, we also say that q is a solution of the energetic rate-independent
system (Q, E ,D).

The so-called stable sets

S(t) :=
{

q ∈ Q : E(t, q) < ∞ and E(t, q) ≤ E(t, q̂) + D(q, q̂) for all q̂ ∈ Q
}
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play a vital role in the theory and allow condition (S) to be rephrased into

q(t) ∈ S(t) for all t ∈ [0, T ] . (S’)

Additionally to (S) & (E), we prescribe a stable initial value q(0) = q0 ∈ S(0).
In the case that Q is a Banach space, E is convex and differentiable, and D

is given through D(z1, z2) = R(z2 − z1) with a convex, 1-homogeneous potential
R : Z → [0,∞], this notion is equivalent to the doubly-nonlinear differential
inclusion (cf. [6])

0 ∈ ∂R
(
q̇(t)

)
+ DE

(
t, q(t)

)
in Q∗ (SF)

and the variational inequality
〈
DE

(
t, q(t)

)
, v − q̇(t)

〉
+ R(v) −R

(
q̇(t)

)
≥ 0 for all v ∈ Q , (VI)

cf. [19,23]. In this setting, the notion of rate-independence manifests itself through
the 1-homogeneity of R. In contrast to (SF) and (VI), however, the energetic
formulation (S) & (E) is derivative-free and no linear structure of Q needs to be
assumed. This allows for the treatment of more general problems in continuum
mechanics, cf. Section 7 of [19] for a survey.

In the main existence proof of the theory one constructs approximate solu-
tions using a time-incremental problem. For this, let Π = (0, t1, . . . , tN−1, T ) be a
partition of the interval [0, T ] and consider:

{
For j = 1, . . . , N , inductively find qj ∈ Q such that

qj ∈ Argmin
{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
.

(IPΠ)

The existence result is then obtained by constructing limits of the discrete solutions
(qn

j )j=0,...,Nn
of (IPΠn), where Πn = (tn1 , tn1 , . . . , tnNn

) is a sequence of partitions
whose fineness

‖Πn‖ := max
k=1,...,Nn

(tnk − tnk−1) .

tends to 0 as n → ∞. Then, with the help of a generalized Helly’s selection prin-
ciple, we obtain a subsequence converging pointwise to a limit and this limit is
shown to be a solution, cf. [19] for a full exposition. One can now pose the ques-
tion whether every solution of (S) & (E) can be obtained in such a way. This,
unfortunately, is not true in general (see Counterexample 2.4). For many pur-
poses, however, it suffices to show that we can find a solution to an ε-approximate
incremental problem for ε > 0 and suitable partitions Π = (0, t1, . . . , tN−1, T ) of
[0, T ]:

{
For j = 1, . . . , N , inductively find qj ∈ Q such that

qj ∈ Argminε

{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
,

(AIPΠ
ε )

where we employed the set of ε-minimizers, ε ≥ 0, which, for a functional F :
X → R∞, is defined as

Argminε(F ) = Argminε

{
F (x) : x ∈ X

}
:=

{
x ∈ X : F (x) ≤ infX F + ε

}
.
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In Section 2, we will show the reverse approximability of all solutions to (S) &
(E) by discrete solutions to (AIPΠ

ε ) with ε = cR ‖Π‖, where cR is the reverse
approximation constant.

Afterwards, we investigate reverse approximability for sequences of problems.
These are given through sequences of energy functionals (Ek)k and dissipation
distances (Dk)k. For the kth problem, k ∈ N∞ = N ∪ {∞}, we denote by (Sk)
and (Ek) the solution conditions corresponding to (S) and (E), respectively. To
treat such sequences of problems, approximate incremental problems for sequences
are employed, cf. [24]: Let Π = (0, t1, . . . , tN−1, T ) be a partition of the interval
[0, T ], let ε > 0, and consider:

{
For j = 1, . . . , N , inductively find qj ∈ Q such that

qj ∈ Argminε

{
Ek(tj , q̂) + Dk(qj−1, q̂) : q̂ ∈ Q

}
.

(AIPΠ
k,ε)

Obviously, this problem always has a solution. In Section 4 of [24] it is shown
that subsequences of solutions to (AIPΠ

k,ε) converge (in a certain sense) to a solu-
tion of (S∞) & (E∞). As for single problems, one can be interested in the reverse
question: To a given solution to (S∞) & (E∞) can one find solutions to the corre-
sponding approximate incremental problems (AIPΠ

k,ε)? This question is answered
positively in Section 4.

In other words, [24] shows that the limes superior (here in the topological
or Painlevé–Kuratowski sense with respect to pointwise convergence in Q) of (in-
terpolants of) the time-discrete solutions for the kth functionals Ek and Dk on
increasingly finer partitions is contained in the set of time-continuous solutions to
the limit problem associated with E∞ and D∞. We here show that also a reverse
inclusion holds (with slightly different choices of the partition fineness).

In Section 4 we also show that one cannot expect to find time-continuous
solutions to (Sk) & (Ek), which approximate a solution to (S∞) & (E∞).

Section 5 provides a more quantitative approach by assuming that everything
is defined in Banach spaces and that the Γ-convergence is more explicit. In partic-
ular, we discuss a kind of backward error analysis for space-time discretizations for
a phase transformation model that could be easily be generalized to elastoplastic-
ity as discussed in [14]. Finally, Section 6 discusses the relations to regularization
and relaxation.

The forthcoming work [30] will apply the results presented in this paper to
approximation schemes for optimal control problems involving rate-independent
systems.

2. Approximation for single problems

In this section, the approximability of solutions to (S) & (E) by discrete solutions
to (AIPΠ

ε ) is investigated.
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On E and D consider the following standard assumptions, cf. [19] for an
explanation of their physical relevance:

Control of the power ∂tE:

There exist cE
0 ∈ R, cE

1 > 0 such that:

If q ∈ Q satisfies E(s, q) < ∞ for some s ∈ [0, T ], then

(i) E(., q) ∈ C1([0, T ]) and

(ii)
∣
∣∂tE(t, q)

∣
∣ ≤ cE

1 (E(t, q) + cE
0 ) for all t ∈ [0, T ] .

(2.E)

Quasimetric:
For all z1, z2, z3 ∈ Z :

(i) D(z1, z2) = 0 if and only if z1 = z2 (positivity) and

(ii) D(z1, z3) ≤ D(z1, z2) + D(z2, z3) (triangle inequality).

(2.D)

By the Gronwall lemma, (2.E) immediately implies

E(t, q) + cE
0 ≤

(
E(s, q) + cE

0

)
ecE

1 |t−s| for all t, s ∈ [0, T ], q ∈ Q . (2.1)

Applying this estimate on (2.E), we get

|∂tE(t, q)| ≤ cE
1

(
E(s, q) + cE

0

)
ecE

1 |t−s| for all t, s ∈ [0, T ] , q ∈ Q . (2.2)

Hence, for an energetic solution q : [0, T ] → Q and for all t ∈ [0, T ], we have
the a-priori estimates

E
(
t, q(t)

)
+ cE

0 ≤
(
E
(
0, q(0)

)
+ cE

0

)
ecE

1 t , (2.3)
∣
∣∂tE

(
t, q(t)

)∣
∣ ≤ cE

1

(
E
(
0, q(0)

)
+ cE

0

)
ecE

1 t , (2.4)

DissD
(
q; [0, t]

)
≤

(
E
(
0, q(0)

)
+ cE

0

)
ecE

1 t , (2.5)

cf. Section 3.1 in [19].
Throughout this section, we silently assume (2.E) and (2.D) to hold. Note

that while here we only require these two conditions, for the existence of a solution
all results known so far need additional assumptions, cf. [19, 23].

We commence with a lemma which allows us to estimate the energy of ap-
proximate minimizers.

Lemma 2.1. Let q : [0, T ] → Q be a solution of (S) & (E) with initial value
q0 = q(0) ∈ S(0) and let Π = (0, t1, . . . , tN−1, T ) be a partition of the interval
[0, T ]. Let

qj := q(tj) for j = 1, . . . , N − 1 .

Then, for all δ ≥ 0 there exists M = M(q0, δ) ∈ R such that for all j = 1, . . . , N
and

q∗j ∈ Argminδ

{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
,

it holds that E(s, q∗j ) ≤ M for all s ∈ [0, T ]. Further, M(q0, δ) can be chosen
increasing in δ.
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Proof. First, we use the δ-minimality of q∗j to derive

E(tj , q∗j ) + D(qj−1, q
∗
j ) ≤ E(tj , qj−1) + D(qj−1, qj−1) + δ

= E(tj−1, qj−1) +
∫ tj

tj−1

∂tE(τ, qj−1) dτ + δ , (2.6)

where we exploited D(qj−1, qj−1) = 0. We can now use the growth estimate (2.2)
to deduce

∫ tj

tj−1

∂tE(τ, qj−1) dτ ≤
∫ tj

tj−1

cE
1

(
E(tj−1, qj−1) + cE

0

)
ecE

1 (τ−tj−1) dτ

=
(
E(tj−1, qj−1) + cE

0

)(
ecE

1 (tj−tj−1) − 1
)
. (2.7)

The a-priori bound (2.3) on the energy of the continuous solution provides the
necessary information to estimate the term E(tj−1, qj−1). Indeed,

E(tj−1, qj−1) + cE
0 ≤

(
E(0, q0) + cE

0

)
ecE

1 tj−1 ≤
(
E(0, q0) + cE

0

)
ecE

1 T =: L

where L = L(q0, c
E
0 , cE

1 ) only depends on q0, cE
0 , and cE

1 . We combine this with
the previous estimates (2.6), (2.7) to get

E(tj , q∗j ) ≤ E(tj , q∗j ) + D(qj−1, q
∗
j )

≤ E(tj−1, qj−1) +
(
E(tj−1, qj−1) + cE

0

)(
ecE

1 (tj−tj−1) − 1
)

+ δ

≤ L + L
(
ecE

1 T − 1
)

+ δ =: L1 = L1(q0, δ) .

Using (2.1) with s = tj , the result follows with M = (L1(q0, δ) + cE
0 )ecE

1 T − cE
0 .

The monotonicity claim is clear. �
We are now in a position to prove that every solution of (S) & (E) gives rise

to a solution of (AIPΠ
ε ).

Theorem 2.2. Let q : [0, T ] → Q be a solution of (S) & (E) with initial value
q0 = q(0) ∈ S(0). Then, there exists a constant cR = cR(q0) > 0 such that for
any partition Π = (0, t1, . . . , tN−1, T ) of the interval [0, T ], the values qj := q(tj),
j = 1, . . . , N , solve (AIPΠ

ε ) with ε = cR ‖Π‖, i.e.

qj ∈ ArgmincR‖Π‖
{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
for j = 1, . . . , N .

The quantity cR = cR(q0) is called the reverse approximation constant of the
problem.

Proof. The energy balance (E) implies

E(tj , qj) + DissD
(
q; [tj−1, tj ]

)
= E(tj−1, qj−1) +

∫ tj

tj−1

∂tE
(
τ, q(τ)

)
dτ .

The stability qj−1 ∈ S(tj−1) gives E(tj−1, qj−1) ≤ E(tj−1, q̂) + D(qj−1, q̂) for all
q̂ ∈ Q. Together with D(qj−1, qj) ≤ DissD(q; [tj−1, tj ]) this gives

E(tj , qj) + D(qj−1, qj) ≤ E(tj−1, q̂) + D(qj−1, q̂) +
∫ tj

tj−1

∂tE
(
τ, q(τ)

)
dτ , (2.8)
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and we continue by estimating the integral term using the growth estimate (2.4)
to find

∫ tj

tj−1

∂tE
(
τ, q(τ)

)
dτ ≤

∫ tj

tj−1

cE
1

(
E(0, q0) + cE

0

)
ecE

1 τ dτ

≤ cE
1

(
E(0, q0) + cE

0

)
ecE

1 T (tj − tj−1) . (2.9)

Assuming E(tj−1, q̂) < ∞, the quantity E(tj−1, q̂) can be estimated using (2.2):

E(tj−1, q̂) = E(tj , q̂) −
∫ tj

tj−1

∂tE(τ, q̂) dτ

≤ E(tj , q̂) +
∫ tj

tj−1

cE
1

(
E(0, q̂) + cE

0

)
ecE

1 τ dτ . (2.10)

Now choose q̂ := q∗j with q∗j ∈ Argminδ

{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
for some

0 < δ ≤ min{1, ‖Π‖}. Such a q∗j always exists, and E(s, q∗j ) < ∞ for all s ∈ [0, T ].
By Lemma 2.1, we can bound E(0, q∗j ) in (2.10) by a constant M = M(q0, δ) ≤
M(q0, 1) =: M1 (note the monotonicity of M in δ), which does not depend on Π
(or any other quantities except q0). This gives

E(tj−1, q
∗
j ) ≤ E(tj , q∗j ) + cE

1 (M1 + cE
0 )ecE

1 T (tj − tj−1) . (2.11)

Plugging (2.9) and (2.11) into (2.8), we see

E(tj , qj) + D(qj−1, qj) ≤ E(tj , q∗j ) + D(qj−1, q
∗
j )

+ cE
1

(
E(0, q0) + M1 + 2cE

0

)
ecE

1 T ‖Π‖
≤ inf

{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
+ δ + c̃ ‖Π‖ ,

≤ inf
{
E(tj , q̂) + D(qj−1, q̂) : q̂ ∈ Q

}
+ cR ‖Π‖

where we have set c̃ := cE
1 (E(0, q0) + M1 + 2cE

0 )ecE
1 T and cR := 1 + c̃. As M1 only

depends on q0, so does cR, and the proof is complete. �
Remark 2.3. The proof also shows that one may replace ‖Π‖ by Δtj := tj − tj−1

in the expression for qj .

We close this section with an example showing that one cannot expect ap-
proximability by (IPΠ) instead of (AIPΠ

ε ).

Counterexample 2.4. On the space Q = [−1, 1] and in the time interval [0, T ] =
[0, 1], we consider the potential

E(t, q) := (1 + q)(1 − q) +
t

2
q

together with the dissipation distance D(u, v) := |v − u|. It is easily seen that
this potential fulfills all the requirements of the theory on the compact interval
[−1, 1]. The functional E(t, .) has precisely two (strict) local minima, one at −1
and the other at +1. There, E takes the values E(t,−1) = −t/2 and E(t,+1) = t/2,
respectively. The graph of E(t, .) lies above the supporting hyperplane through the
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points (−1, E(t,−1)) = (−1,−t/2) and (+1, E(t,+1)) = (+1, t/2); this hyperplane
is represented by the linear map q 	→ tq/2.

At t = 0, the set of stable states S(0) contains 0, because

E(0, q) + D(0, q) = 1 − q2 + |q| ≥ 1 = E(0, 0),

since q2 ≤ |q| in [−1, 1]. The following two processes are both solutions to the
energetic formulation (S) & (E) with initial value q0 = 0 ∈ S(0):

q−(t) :=

{
0 if t = 0,

−1 if t ∈ (0, 1]
and q+(t) :=

{
0 if t = 0,

+1 if t ∈ (0, 1]

We have −1,+1 ∈ S(t) for all t ∈ [0, 1]. For −1 this is clear since −1 is the global
minimum for all t ≥ 0. For +1, the hyperplane q 	→ tq/2 supports the graph of
E(t, .). This hyperplane has at most slope 1/2; therefore, if we add the linear map
q 	→ D(+1, q) = 1 − q (since q ∈ [−1, 1]) to the graph, we still have a hyper-
plane with negative slope −1/2 supporting E(t, .) + D(+1, .) and going through
(+1, E(t,+1)). Hence, also +1 ∈ S(t). We have thus established the validity of (S)
for q− and q+. Further, for t ∈ (0, 1], the energy balance (E) holds as well:

E
(
t, q±(t)

)
+ DissD

(
q±; [0, t]

)
= E(t,±1) + D(0,±1) =

±t

2
+ 1

= E(0, q0) +
∫ t

0

∂tE
(
τ, q±(τ)

)
dτ

since ∂tE(τ, q±(τ)) = ±1/2 for almost all τ ∈ [0, T ]. For t = 0, the energy balance
is trivial.

While both q− and q+ solve (S) & (E), the incremental problem (IPΠ) will
always select q−: In the first step, at time t1 > 0, we seek the global minimizer of
E(t1, .) +D(0, .). But this global minimizer clearly is −1. So, the discrete solution
will jump to q1 = −1 and, because −1 ∈ S(t) for all t, stay there forever. Passing
to the limit, we get the solution process q− from above. The other solution q+,
however, is not selected. This shows that not all solutions of (S) & (E) correspond
to discrete solutions if we only allow strict minimizers in the incremental problem.

Note that E(t, .) is the restriction of the double-well potential

(t, q) 	→ |1 − q| |1 + q| + t

2
q

to the interval [−1, 1]. We refrained from carrying out the example on a bigger
space for ease of notation only; everything works just the same for bigger intervals.

Hence, this example represents physically a phase-transition problem, where
the energies of the two phases change in the course of time due to a prescribed
loading (q 	→ tq/2). Our results therefore reflect that while there might be a
“preferred” solution q−, another solution, namely q+, can also occur if we allow
for small (in fact, arbitrarily small) perturbations. This is nothing else but the
instability of rate-independent evolution processes and seems to be well in line
with physical intuition.
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Remark 2.5. The last counterexample also shows that the error order ε = O(‖Π‖)
is optimal: If the solution q+ is to be selected, the discrete solution must jump from
0 to +1 at time t1. The difference between E(t1,−1) and E(t1,+1) is t1, hence the
error in the minimization of E(t1, .) + D(0, .) is t1 = O(‖Π‖) and nothing better
than linear order can be achieved.

In summary, the results of the this section suggest that (AIPΠ
ε ) is better

suited than (IPΠ) as a time discretization of (S) & (E). This holds especially in
numerical applications, cf. Section 5.

3. Sets of approximate minimizers and Γ-convergence

In this section, we provide some auxiliary results on ε-minimizers of Γ-converging
functionals. This preliminary considerations will be needed in the following section.
The result is stated in a little more generality than what is needed subsequently
in order to clarify ideas and avoid too much notational clutter.

In the following, let X be a Hausdorff space and, just like in Section 2,
all topological notions are to be understood in a sequential sense. The functional
F∞ : X → R∞ is called the (sequential) Γ-limit of the sequence (Fk)k of functionals
Fk : X → R∞, if it satisfies the following two conditions:

(i) For all x ∈ X and all (xk)k with xk → x the lim inf-inequality holds:

F∞(x) ≤ lim inf
k→∞

Fk(xk)

(ii) For all x ∈ X there exists a recovery sequence (xk)k,

i.e. xk → x and F∞(x) = lim
k→∞

Fk(xk).

The (unique) Γ-limit of the sequence (Fk)k is denoted by F∞ = Γ-limk Fk.
Here, only the sequential notion of Γ-convergence is employed even though X

might not be first countable, in which case sequential and general topological
concepts differ. Still, in the calculus of variations it is often more convenient to
use sequences instead of neighborhoods and nets. For Γ-convergence in general
topological spaces, see [8].

We also need the following notion of uniform coercivity: A family (Fk)k,
k ∈ N, of functionals Fk : X → R∞ is called equi-mildly coercive if there exists a
compact set K ⊆ X with

infX Fk = infK Fk for all k ∈ N . (3.1)

The first result of this section shows that ε-minimizers of F∞ can be approx-
imated arbitrarily well by (ε + δ)-minimizers of the Fk, where δ > 0.

Proposition 3.1. Let Fk : X → R∞, k ∈ N, be equi-mildly coercive functionals
and assume F∞ = Γ-limk Fk. Then, for all ε ≥ 0 and x ∈ Argminε(F∞) and all
recovery sequences (xk)k for x (in particular xk → x) and for every δ > 0 it holds
that xk ∈ Argminε+δ(Fk) for all k ≥ k0 = k0(δ) with k0(δ) sufficiently large.
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Proof. From the convergence of infima with respect to Γ-convergence for equi-
mildly coercive functionals [4,8], we know that infX F∞ = limk→∞ infX Fk. Hence,
for k sufficiently large, it holds that

|infX F∞ − infX Fk| ≤
δ

2
.

Let now (xk)k be a recovery sequence at x, i.e. xk → x and F∞(x)=limk→∞ Fk(xk)
(because F∞ = Γ-limk Fk, there exists at least one such sequence). This implies,
again for k big enough, that

|Fk(xk) − F∞(x)| ≤ δ

2
.

Combining these two estimates with |F∞(x) − infX F∞| ≤ ε yields

|Fk(xk) − infX Fk| ≤ |Fk(xk)−F∞(x)|+|F∞(x)−infX F∞|+|infX F∞−infX Fk|

≤ δ

2
+ ε +

δ

2
= ε + δ ,

i.e. xk ∈ Argminε+δ(Fk) for all k sufficiently large. �

Remark 3.2. An inspection of the proof reveals that if infX Fk = infX F∞ for all
k ∈ N, then we do not need the assumptions of equi-mild coerciveness as it is
only needed for convergence of infima. This equality of infima is indeed easy to
fulfill in the calculus of variations: We can always set F ′

k := Fk + ck, where ck is
chosen precisely to ensure equality of infima. This translation does not change the
minimization problem associated with Fk, in particular ArgminFk = Argmin F ′

k.

One could hope to avoid the usage of the sequence (xk)k and conjecture that
an ε-minimizer of F∞ is also an nε-minimizer of Fk for some n ∈ N and for k
sufficiently large. Even if all the Fk are lower semicontinuous, however, this is not
the case as shown by the following counterexample.

Counterexample 3.3. Let X = [−1, 1] and for k ∈ N define

Fk(x) :=

{
−1 if x = 1/k ,

0 otherwise ,
and F∞(x) :=

{
−1 if x = 0 ,

0 otherwise .

Clearly, F∞ = Γ-limk Fk and all Fk, F∞ are lower semicontinuous. However, for
any ε ∈ [0, 1), the only ε-minimizer is x = 0, but x = 0 is no (ε+δ)-minimizer of
any Fk as long as ε + δ < 1.

The next counterexample shows that in Proposition 3.1 we cannot replace
the Γ-limit by the (sequential) Γ-limes inferior Γ-lim infk Fk of the sequence (Fk)k,
which is defined as the functional F∗ : X → R∞ with

F∗ = Γ-lim infk Fk := inf
{

lim inf
k→∞

Fk(xk) : xk → x
}

. (3.2)
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Counterexample 3.4. Let again X = [−1, 1] and for all k ∈ N define

Gk(x) :=

⎧
⎪⎨

⎪⎩

(−1)k if x = 1/k ,

−1/2 if x = 1 ,

0 otherwise ,
and G∗(x) :=

⎧
⎪⎨

⎪⎩

−1 if x = 0 ,

−1/2 if x = 1 ,

0 otherwise .

Clearly, G∗ = Γ-lim infk Gk, but the Gk do not Γ-converge. In fact, for x = 0, one
would need to construct a sequence (xk)k with −1 = G∗(0) ≥ lim supk→∞ Gk(xk).
But as G2l ≥ −1/2, it follows that lim supk→∞ Gk(xk) ≥ −1/2, which leads to the
contradiction −1 ≥ −1/2.

While for the subsequence (xkl
)l with kl = 2l + 1 and x2l+1 = 1/(2l + 1) we

even have x2l+1 ∈ Argminε(F2l+1) (without δ), the conclusion of Proposition 3.1
fails, because we cannot find a “whole” sequence (xk)k with xk ∈ Argminε+δ(Fk)
and xk → x: The only, say, 1/6-minimizer of G∗ is x∗ = 0 (ε = 1/6), but any
(1/6 + 1/6)-minimizer (δ = 1/6) for G2l must be x2l = 1 and hence the sequence
(xk)k cannot converge to x∗ = 0.

4. Approximation for sequences of problems

In this section we will show that, under suitable convergence assumptions on the
involved functionals, solutions to (S∞) & (E∞) can be approximated by solutions
to (AIPΠ

k,ε). Applications are given in Sections 5 and 6.
On the state space Q = F × Z, consider a sequence (Ek)k of energy-storage

functionals Ek : [0, T ] ×Q → R∞ as well as a limit energy E∞ : [0, T ] ×Q → R∞.
We require these functionals to fulfill the following assumption, where, for brevity,
we denote by N∞ the set N ∪ {∞}:

Uniform control of the power ∂tEk:

There exist cE
0 ∈ R, cE

1 > 0 such that for all k ∈ N∞ :

If q ∈ Q satisfies Ek(s, q) < ∞ for some s ∈ [0, T ], then

(i) Ek(., q) ∈ C1([0, T ]) and

(ii)
∣
∣∂tEk(t, q)

∣
∣ ≤ cE

1

(
cE
0 + Ek(t, q)

)
for all t ∈ [0, T ] .

(4.E1)

Equi-coercivity

For all t ∈ [0, T ] and E ∈ R, the set
⋃

k∈N

{
q ∈ Q : Ek(t, q) ≤ E

}
is relatively compact.

(4.E2)

Further, let us be given a sequence (Dk)k of dissipation distances Dk : Z ×
Z → [0,∞] and a limit dissipation D∞ : Z × Z → [0,∞]. We assume:

Quasimetric:
For all k ∈ N∞ and z1, z2, z3 ∈ Z :

(i) Dk(z1, z2) = 0 if and only if z1 = z2 (positivity) and

(ii) Dk(z1, z3) ≤ Dk(z1, z2) + Dk(z2, z3) (triangle inequality) .

(4.D)



28 A. Mielke and F. Rindler NoDEA

Of course, the Gronwall- and a-priori estimates (2.1)–(2.5) from Section 2 now
hold for all Ek with k ∈ N∞.

We want the functionals Ek and Dk to converge to E∞ and D∞, respectively,
in an appropriate sense:

Γ-limit for Ek:

For all t ∈ [0, T ] : E∞(t, .) = Γ-limk Ek(t, .) .
(4.Γ1)

Continuous convergence of Dk:

For all sequences (qk)k, (q̃k)k with qk → q, q̃k → q̃ that

additionally satisfy supk∈N

(
Ek(t, qk) + Ek(t, q̃k)

)
< ∞

for one (hence all) t ∈ [0, T ] : Dk(qk, q̃k) → D∞(q, q̃) .

(4.Γ2)

Note that conditions (4.Γ1) and (4.Γ2) together imply the joint Γ-convergence
E∞(t, .) + D∞(q, .) = Γ-limk(Ek(t, .) + Dk(q, .)) for all t ∈ [0, T ] and q ∈ Q.

Example 4.1. Let Q be a Banach space equipped with weak sequential conver-
gence and let Q be compactly embedded into another Banach space Q1. Because
Q ⊆ Q1, we can choose the Q1–Norm ‖.‖1 as our dissipation distance for all k,
i.e. D∞(u, v) = Dk(u, v) := D(u, v) := ‖v − u‖1. The compact embedding then en-
sures the continuity of D and hence also the continuous convergence of Dk to D∞.

This example shows that we can use the L1(Ω) norm as a weakly contin-
uous dissipation distance in H1(Ω), which is a common situation in continuum
mechanics [19].

After these preparations we can state the main result. It shows that solutions
to (S∞) & (E∞) can be “reversely approximated” by solutions to (AIPΠ

k,ε).

Theorem 4.2. Let the assumptions (4.E1), (4.E2), (4.D), (4.Γ1), and (4.Γ2) hold.
Moreover, let q∞ : [0, T ] → Q be a solution to (S∞) & (E∞) with initial value q0 =
q∞(0) ∈ S∞(0). Then, for all ε > 0, for all partitions Π = (0, t1, . . . , tN−1, T ) of
[0, T ] with ‖Π‖ ≤ ε/(2cR) (cR = cR(q0) > 0 is the reverse approximation constant
from Theorem 2.2 applied to E∞ and D∞), and for all k, there exist a discrete
solution qΠ

k := (qk
0 , qk

1 , . . . , qk
N ), defined on the partition Π, of the approximate

incremental problem (AIPΠ
k,ε) associated with Ek and Dk, such that qk

j → q(tj) as
k → ∞.

Proof. The main idea of the proof is to first construct a discrete solution
to (AIPΠ

∞,ε/2) and then show how this discrete solution can be changed to yield
a solution of (AIPΠ

k,ε) for k sufficiently large. In detail, however, some further
technicalities are needed.

As E∞ and D∞ fulfill all the prerequisites of Theorem 2.2, for a partition Π
sufficiently fine, i.e. ‖Π‖ ≤ ε/(2cR), we can find a discrete ε/2-solution q̃Π =
(q̃0, q̃1, . . . , q̃N ) for (AIPΠ

∞,ε/2), i.e.

q̃j ∈ Argminε/2

(
E∞(tj , .) + D∞(q̃j−1, .)

)
for j = 1, . . . , N .

Note that Theorem 2.2 uses the choice q̃j = q(tj).
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Assumptions (4.Γ1) and (4.Γ2) give E∞(tj , .)+D∞(q̃j−1, .)=Γ-limk(Ek(tj , .)+
Dk(q̃j−1, .)). Condition (4.E2) provides the equi-mild coerciveness (3.1) (in fact,
take E := E∞(tj , q̃j−1)+1 and observe that infQ

(
Ek(tj , .) + Dk(q̃j−1, .)

)
≤ E for

all k large enough). Hence, using Proposition 3.1 for each q̃j we find recovery
sequences (qk

j )k with qk
j → q̃j as k → ∞ and

Ek(tj , qk
j ) + Dk(q̃j−1, q

k
j ) ≤ infQ

(
Ek(tj , .) + Dk(q̃j−1, .)

)
+

ε

2
+

ε

6
(4.1)

for all j = 1, . . . , N and k sufficiently large.
Because qk

j → q̃j as k → ∞ and the energies are bounded for k sufficiently
large (cf. (4.1)), the continuous convergence assumption (4.Γ2) shows Dk(qk

j , q̃j) →
0 and Dk(q̃j , q

k
j ) → 0 as k → ∞, i.e.

max
{
Dk(qk

j , q̃j),Dk(q̃j , q
k
j )

}
≤ ε

6
(4.2)

for all j = 1, . . . , N and k sufficiently large.
So far we have constructed sequences and selected some k0 = k0(ε) large

enough such that (4.1) and (4.2) are fulfilled for all qk
j with k ≥ k0. We still need

to show that these qk
j form a discrete solution to (AIPΠ

k,ε).
For all k ≥ k0 and all j = 2, . . . , N , we find by the triangle inequality and

estimate (4.2)

infQ
(
Ek(tj , .) + Dk(q̃j−1, .)

)
≤ infQ

(
Ek(tj , .) + Dk(qk

j−1, .)
)

+ Dk(q̃j−1, q
k
j−1)

≤ infQ
(
Ek(tj , .) + Dk(qk

j−1, .)
)

+
ε

6
. (4.3)

In the case j = 1, we have qk
0 = q̃0 = q0 for all k and hence (4.3) also holds for

j = 1.
Now, using first the triangle inequality, then (4.1) and (4.2), and finally (4.3),

we deduce

Ek(tj , qk
j ) + Dk(qk

j−1, q
k
j ) ≤ Ek(tj , qk

j ) + Dk(q̃j−1, q
k
j ) + Dk(qk

j−1, q̃j−1)

≤ infQ
(
Ek(tj , .) + Dk(q̃j−1, .)

)
+

ε

2
+

ε

6
+

ε

6
≤ infQ

(
Ek(tj , .) + Dk(qk

j−1, .)
)

+
ε

2
+

ε

6
+

ε

6
+

ε

6
= infQ

(
Ek(tj , .) + Dk(qk

j−1, .)
)

+ ε . (4.4)

But this is just qk
j ∈ Argminε(Ek(tj , .) + Dk(qk

j−1, .)) for j = 1, . . . , N , and the
existence of solutions to (AIPΠ

k,ε) is shown for k ≥ k0 = k0(ε). Trivially, we can
fill up this sequence for k < k0 with arbitrary solutions to (AIPΠ

k,ε). The claim
qk
j → q̃j = q(tj) is clear by the choice of the qk

j and Theorem 2.2. �

To formulate the next result we have to strengthen the conditions on the
sequential convergence on Q, such that we are able to extract from a double
sequence a suitable diagonal sequence. For E ∈ R we introduce the sublevel sets

Λ(E) =
{

q ∈ Q : there exists (t, k) ∈ [0, T ] × N∞ with Ek(t, q) ≤ E
}

.
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The assumption reads as follows.

There exists a metric d : Q×Q → [0,∞)

such that for all E ∈ R and for all qk ∈ Λ(E) , k ∈ N∞ :

qk → q∞ if and only if d(qk, q∞) → 0 . (4.5)

The final result states that every solution of the energetic system (Q, E∞,D∞) can
be approximated by solutions of the approximate incremental problems (AIPΠn

kn,εn
),

if the partitions Πn, εn → 0, and kn → ∞ are chosen suitably.

Theorem 4.3. Let the assumptions of Theorem 4.2 and the new assumption (4.5)
hold. Moreover, let q∞ : [0, T ] → Q be a solution to (S∞) & (E∞) with initial
value q0 = q∞(0) ∈ S∞(0). Then, for every sequence εn → 0, there exists a
sequence of partitions Πn = (0, tn1 , . . . , tnN(n)−1, T ) of [0, T ] with ‖Πn‖ → 0 as
n → ∞, a sequence (kn)n of problem indices with kn → ∞ as n → ∞, and
discrete solution qΠn

kn
:= (qkn

0 , qkn
1 , . . . , qkn

N(n)), defined on the partition Πn, of the

approximate incremental problem (AIPΠn

kn,εn
) associated with Ekn

and Dkn
such

that the piecewise constant interpolants qn : [0, T ] → Q of these discrete solutions
converge on a dense subset T of [0, T ] to the solution q∞.

Proof. We use a sequence of nested partitions Πn ⊆ Πn+1 with ‖Πn‖ ≤ εn/(2cR),
where cR = cR(q0) > 0 is the reverse approximation constant from Theorem 2.2.
Then, T :=

⋃
n∈N

Πn is dense in [0, T ].
Applying Theorem 2.2 we find, for all n ∈ N, a sequence ((qn,k

j )j=0,...,N(n))k∈N

in QN(n) of solutions to (AIPΠn

k,εn
), such that

qn,k
j → q(tnj ), E(tnj , qn,k

j ) → E
(
tnj , q(tnj )

)
for all n ∈ N j = 0, . . . , N(n) .

With E := sup
{
E∞(t, q(t)) : t ∈ [0, T ]

}
< ∞ (cf. [19]), we find K(n) ∈ N, such

that max
{
Ek(tnj , qn,k

j ) : j = 0, 1, . . . , N(n)
}
≤ E+1 for all k ≥ K(n). Thus, we

can employ assumption (4.5) on the set Λ(E+1) and obtain, for fixed n ∈ N,

δ(n, k) = max
{

d
(
qn,k
j , q(tnj )

)
: j = 0, 1, . . . , N(n)

}
→ 0 for k → ∞ .

Choose the subsequence (kn)n∈N such that kn ≥ K(n) and δ(n, kn) ≤ 1/n

and define the solutions (qkn
0 , . . . , qkn

N(n)) via qkn
j := qn,kn

j . Since the sequence of
partitions is nested, for each t ∈ T there exists an m(t) such that t ∈ Πn for
n ≥ m(t), i.e., t = tnJ(t,n). Thus,

d
(
qn(t), q(t)

)
= d

(
qn,kn

J(t,n), q(t
n
J(t,n))

)
≤ δ(n, kn) ≤ 1/n for n ≥ m(t) .

This is the desired convergence result, and the theorem is established. �

Remark 4.4. The convergence result in Theorem 4.3 can be strengthened to con-
vergence for all t ∈ [0, T ]. One first uses the ideas in the proof of Helly’s selection
principle (cf. e.g. [16, 24]) to show that zn(t) → z∞(t) for all t. For this one em-
ploys the uniform a priori bound on the dissipation and includes all jump points
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of z∞ into T . Next, one needs to impose the further assumption that the global
minimizer φ = Φ(t, z) of E(t, · , z) is unique. Then, it can be shown φn(t) → φ(t)
as well, cf. [16].

Just like in Section 2, we cannot expect strict approximability of solutions
to (S∞) & (E∞) by discrete solutions of (IPΠ

k ) instead of (AIPΠ
k,ε). This, in fact,

has been settled already in Counterexample 2.4, because the latter shows that
even for a constant sequence of functionals, we cannot get strict approximability.

To conclude this section, we further show that one cannot expect approxima-
bility of solutions to (S∞) & (E∞) by time-continuous solutions to (Sk) & (Ek)
instead of approximate time-incremental solutions to (AIPΠ

k,ε).

Counterexample 4.5. Consider the state space Q = [0, 1], the time interval [0, T ] =
[0, 2] and the energy functionals

E∞(t, q) := −q and Ek(t, q) :=
q2

2k
− q for k ∈ N

for t ∈ [0, 2] and q ∈ R. Also, choose Dk(q1, q2) = D∞(q1, q2) := D(q1, q2) :=
|q2 − q1|. As initial value we select q0 = 0. This setting can be seen as a degener-
ately convex problem in the limit k = ∞ with strictly convex approximations for
k ∈ N. The process

q∞(t) :=

{
0 if t ∈ [0, 1) ,

1 if t ∈ [1, 2] ,
is one of the many solutions of the rate-independent formulation associated with
E∞ and D. The stable states S∞(t) are easily seen to be the whole space, i.e.
S∞(t) = S∞(0) = [0, 1], thus the stability condition is trivially fulfilled. For t ∈
[0, 1), the energy balance is trivial and for t ∈ [1, 2] we have

E∞
(
t, q∞(t)

)
+ DissD

(
q∞; [0, t]

)
= E∞(t, 1) + D(0, 1) = −1 + 1 = 0

= E∞(0, q0) +
∫ t

0

∂tE∞
(
τ, q∞(τ)

)
dτ .

Hence, q∞ is an energetic solution of (S∞) & (E∞). We now show that q∞ cannot
be approximated by solutions to (Sk) & (Ek).

For all k ∈ N, the stable sets Sk(t) = Sk(0) again are the whole space [0, 1],
since it holds for all q, q̂ ∈ [0, 1] that

Ek(t, q̂) + D(q, q̂) − Ek(t, q)

=
q̂2 − q2

2k
+ (q − q̂) + |q̂ − q|

=

{
(q̂2 − q2)/(2k) if q̂ ≥ q

(q − q̂)(2 − (q̂ + q)/(2k)) ≥ (q − q̂)(2 − k−1) if q̂ < q

}

≥ 0 ,

i.e. q ∈ Sk(t). Now, the zero-process qk ≡ 0 trivially is a solution of (Sk) & (Ek)
and because the problem is strictly convex and the stable sets are convex, we
immediately get the uniqueness of this solution [19, Theorem 4.2]. But the zero-
process does not approximate q∞ in any reasonable sense.



32 A. Mielke and F. Rindler NoDEA

5. Quantitative backward error analysis

In this section we use the shorthand E = E∞ and D = D∞. Moreover, without
loss of generality, we assume that the energies E(t, q) and Ek(t, q) are uniformly
bounded from below by a positive constant. Hence, we may choose the constant
cE
0 to be 0.

The aim of this section is twofold. Under additional quantitative continuity
assumptions we prove exact estimates for the reverse approximation. Using this
we then provide an example where the Γ-convergence is realized as numerical
approximation via Galerkin subspaces Vk ⊆ Q, where Q now is a Banach space
and the projections Pk : Q → Vk ⊆ Q satisfy Pkq → q for all q ∈ Q.

We consider the limit functionals E : [0, T ]×Q → R and D : Q×Q → [0,∞)
as above. Moreover, we have functionals Ek and Dk such that

Ek(t, q) = +∞ for q ∈ Q \ Vk .

On the other hand, the main assumptions involve continuity properties of E
and D:

|E(t, q) − E(t, q̂)| ≤ c

2
(
E(t, q) + E(t, q̂)

)
‖q − q̂‖ , (5.1)

|D(q0, q1) −D(q̂0, q̂1)| ≤ c(‖q0 − q̂0‖ + ‖q1 − q̂1‖) (5.2)

Further, we assume quantified estimates on the approximations. For all q, q̃ ∈
Vk and all t ∈ [0, T ] we have an αk > 0 such that

|Ek(t, q) − E(t, q)| ≤ E(t, q)αk (5.3)

|Dk(q0, q1) −D(q0, q1)| ≤
αk

2
(
E(t, q0) + E(t, q1)

)
(5.4)

Lemma 5.1. Let q : [0, T ] → Q be given such that

Eq = sup
{
E
(
t, q(s)

)
: s, t ∈ [0, T ]

}
< ∞ ,

δk = sup
{
‖Pkq(t) − q(t)‖ : s, t ∈ [0, T ]

}
< ∞

Moreover, assume αk ≤ 1 and cδk ≤ 1/2. Then,

sup
{
E
(
t, Pkq(s)

)
: s, t ∈ [0, T ]

}
≤ 2Eq , (5.5)

sup
{
Ek

(
t, Pkq(s)

)
: s, t ∈ [0, T ]

}
≤ 4Eq . (5.6)

Proof. Using (5.1) we have for q̂ := Pkq(s)

E(t, q̂) − E
(
t, q(s)

)
≤ c

2

(
E
(
t, q(s)

)
+ E(t, q̂)

)
δk ,

which implies

E(t, q̂) ≤ 1 + cδk/2
1 − cδk/2

E
(
t, q(s)

)
≤ 5

3
Eq .

Hence, (5.5) is established and (5.6) follows by applying (5.3) to q = Pkq(s). �
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To simplify notation in the proof of the main result of this section (cf. The-
orem 5.3), we introduce

ιk(t, q) := inf
{
Ek(t, q̂) + Dk(q, q̂) : q̂ ∈ Q

}

and similarly for the limit functionals E and D. The next result is a quantitative
version of Lemma 2.1.

Lemma 5.2. Let q : [0, T ] → Q be a solution to the system associated with the
functionals E and D, where E satisfies (4.E1). Then, for all s, t ∈ [0, T ] we have

ι
(
s, q(s)

)
≤ ecE

1 |t−s|ι
(
t, q(s)

)
. (5.7)

Moreover, if Π = (0=t0, t1, . . . , tN=T ) is a partition, then (q(tj))j solves (AIPΠ
ε(Π))

with
ε(Π) = 2(ecE

1 ‖Π‖ − 1)Eq . (5.8)

Proof. For estimate (5.7) choose qρ in Argminρ E(t, .) + D(q(s), .). Then, we have

ι
(
s, q(s)

)
= E

(
s, q(s)

)
≤ E(s, qρ) + D

(
q(s), qρ

)

≤ ecE
1 |t−s|(E(t, qρ) + D

(
q(s), qρ

))
≤ ecE

1 |t−s|(ι
(
t, q(s)

)
+ ρ

)
,

where the first estimate uses stability of q(s), the second follows from (2.1), and
the third is the definition of qρ. For ρ → 0 we obtain estimate (5.7).

Using the energy balance (E) and (2.2) we find with ιj := ι(tj , qj)=E(tj , q(tj)),

E(tj , qj) + D(qj−1, qj) ≤ E(tj , qj) + DissD
(
q; [tj−1, tj ]

)

= E(tj−1, qj−1) +
∫ tj

tj−1

∂tE
(
τ, q(τ)

)
dτ

≤ ιj−1 +
∫ tj

tj−1

cE
1 ecE

1 (τ−tj−1)Eq dτ .

Using (5.7) with s = tj−1 and t = tj we proceed to get

E(tj , qj) + D(qj−1, qj) ≤ ecE
1 (tj−tj−1)ι(tj , qj−1) + (ecE

1 (tj−tj−1) − 1)Eq .

Using ι(tj , qj−1) ≤ E(tj , q(tj−1)) ≤ Eq and tj−tj−1 ≤ ‖Π‖, we obtain

E(tj , qj) + D(qj−1, qj) ≤ ι(tj , qj−1) + 2(ecE
1 ‖Π‖ − 1)Eq ,

and (5.8) is established. �

Theorem 5.3. Let q : [0, T ] → Q be a solution to the energetic system (Q, E ,D).
Let the assumptions of Section 4 as well as the estimates (5.1)–(5.4) hold and let
δk and Eq be defined as in Lemma 5.1. Then, for all k ∈ N such that cδk ≤ 1/2
and αk ≤ 1, and all partitions Π = (0 = t0, t1, . . . , tN = T ) of [0, T ], the sequences
(Pkq(tj))j=0,...,N are solutions to (AIPΠ

k,ε̂(k,Π)) with

ε̂(k,Π) = Eq

[
2(ecE

1 ‖Π‖ − 1) + 11αk + 5cδk

]
.



34 A. Mielke and F. Rindler NoDEA

Proof. For short notation let qk
j = Pkq(tj) and qj = q(tj). We use the assump-

tions (5.3) and (5.4) and the a-priori estimates (5.5) and (5.6) to estimate as
follows:

Ek(tj , qk
j ) −Dk(qk

j−1, q
k
j ) ≤ E(tj , qk

j ) + D(qk
j−1, q

k
j ) + 4Eqαk

≤ E(tj , qj) + D(qj−1, qj) + Eq(4αk + 3cδk) . (5.9)

Next we estimate ιk(tj , qk
j−1) from below using ι(tj , qj−1). For this let ρ0 :=

Ek(tj , qk
j−1) − ιk(tj , qk

j−1), which implies ρ0 ≥ 0. If ρ0 = 0, then

ιk(tj , qk
j−1) = Ek(tj , qk

j−1) ≥ E(tj , qk
j−1) − 2Eqαk

≥ E(tj , qj−1) − Eq(2αk + 2cδk) ≥ ι(tj , qj−1)

− Eq(2αk + 2cδk) . (5.10)

If ρ0 > 0, we find, for each ρ ∈ (0, ρ0), a qρ ∈ Vk with Ek(tj , qρ) + Dk(qk
j−1, qρ) ≤

Ek(tj , qk
j−1) ≤ 4Eq and qρ ∈ Argminρ(Ek(tj , .) + Dk(qk

j−1, .). Hence, we estimate

ιk(tj , qk
j−1) ≥ −ρ + Ek(tj , qρ) + Dk(qk

j−1, qρ)

≥ −ρ + E(tj , qρ) + D(qk
j−1, qρ) − 7Eqαk

≥ −ρ + E(tj , qρ) + D(qj−1, qρ) − Eq(7αk + cδk)

≥ −ρ + ι(tj , qj−1) − Eq(7αk + cδk) .

Taking the limit ρ ↘ 0 and combining with the case ρ0 = 0, see (5.10), we find

ι(tj , qj−1) ≤ ιk(tj , qk
j−1) + Eq(7αk + 2cδk) . (5.11)

We conclude by noting that Lemma 5.2 gives

E(tj , qj−1) + D(qj−1, qj) ≤ ι(tj , qj−1) + ε(Π)

with ε(Π) defined in (5.8). Combining this with (5.9) and (5.11) we have

Ek(tj , qk
j−1) + Dk(qk

j−1, q
k
j ) ≤ ιk(tj , qk

j−1) + ε(Π) + Eq(11αk + 5cδk) ,

which gives the desired result for ε̂(k,Π). �

We consider an example for phase transitions on a smooth, bounded domain
Ω ⊆ R

d with d ≥ 2. The state space is Q = Z = H1(Ω) with dissipation distance

D(q0, q1) := ‖q1 − q0‖L1(Ω) . (5.12)

The energy functional takes the form

E(t, q) :=
∫

Ω

1
2

∣
∣∇q(x)

∣
∣2 + G

(
q(x)

)
− f(t, x)q(x) dx , (5.13)

where the loading f satisfies f ∈ C1([0, T ] × Ω). The potential G ∈ C2(R; R) has
a bounded second derivative G′′ and is coercive, i.e., there is C > 0 such that
G(q) ≥ q2/C − C. It is important to note that G may be nonconvex, such that
also E(t, .) : Q → R may be nonconvex. Thus, in general, the energetic solutions
for the functionals E and D will not be continuous in time (even for the L1-norm).
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Moreover, uniqueness of solutions under an initial condition q(0) = q0 cannot be
expected, cf. [19].

The classical existence results apply (see [16,23]) giving solutions

q ∈ L∞(
[0, T ]; H1(Ω)

)
∩ BV

(
[0, T ]; L1(Ω)

)

for each stable initial datum q0 ∈ H1(Ω). However, the stability condition q(t) ∈
S(t) gives the variational inequality

Δq − G′(q) + f(t, · ) ∈ ∂ Sign(0) = [−1, 1] .

We assume that the domain is a convex polytope and that f is bounded. Then,
elliptic regularity implies

q ∈ L∞(
[0, T ]; H2(Ω)

)
.

Our application of Γ-convergence relates to a sequence of numerical approx-
imations, as is discussed in much greater detail in [21]. For this we choose a se-
quences (Tk)k of triangulations, such that the maximal diameters

hk = ρ(Tk) with ρ(T ) := max
{

diam(T ) : T ∈ T
}

tend to 0. However, as our estimates are quantitative, we give estimates for all
triangulations. Thus, we simplify the notation by using the subscript T instead
of k.

Let VT ⊂ Q = H1(Ω) be a space of continuous, piecewise linear functions
(finite-element space) associated with T . By PT we denote the H1-orthogonal
projection of Q onto VT , which satisfies

PT q → q in H1(Ω) for ρ(T ) → 0 ,

There exists C > 0 such that for all q ∈ H2(Ω) : ‖PT q − q‖Q ≤ Cρ(T ) ‖q‖H2(Ω) .

For any given T we define

DT (q, q̂) := D(q, q̂) ,

ET (t, q) :=
∫

Ω

1
2
|∇q|2 dx +

∑

T∈T

vol T
d + 1

d∑

j=0

[
G

(
q(XT

j )
)
− f(t,XT

j )q(XT
j )

]
,

where (XT
j )j=0,...,d are the vertices of the tetrahedron T ∈ T . For q ∈ VT one has

|ET (t, q) − E(t, q)| ≤ E(t, q)α(T ) ,

where the class of triangulations must be restricted in such a way that α(T ) → 0
for ρ(T ) → 0. For instance, for quasi-uniform meshes one has α(T ) ≤ Cquρ(T )2,
where the constant Cqu only depends on the lower bound of the interior angles.

Thus, (5.3) and (5.4) hold. Of course, (5.1) and (5.2) hold trivially. Moreover,
δk in Lemma 5.1 is given as

δT = sup
{
‖PT q(t) − q(t)‖ : t ∈ [0, T ]

}
≤ Cρ(T )‖q‖L∞([0,T ];H2(Ω)) .

As a result, we obtain the following reverse approximation result which can be seen
as a type of justification of a backward error analysis of space-time discretization.
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Theorem 5.4. Let Q = H1(Ω) and E, D be as given in (5.12) and (5.13) with
G and f as specified. Let q : [0, T ] → Q solve the rate-independent energetic
system (Q, E ,D). Then, there exists a constant C∗ such that the following holds: If
Π = (0 = t0, t1, . . . , tN = T ) is a partition of [0, T ] with fineness ‖Π‖ and T is a
triangulation of Ω with ‖Π‖+ρ(T )+α(T ) ≤ 1/C∗, then the sequence (qTj )j=0,...,N

defined via qTj := PT q(tj) is a solution to (AIPΠ
T ,ε) with ε = C∗

(
‖Π‖ + ρ(T ) +

α(T )
)

and satisfies
∥
∥qTj − q(tj)

∥
∥
Q ≤ C∗ρ(T ) for j = 0, 1, . . . , N .

6. Regularization and relaxation

6.1. An example with a regularized functional

Let the state space Q be the Sobolev space H1(0, 1) equipped with its weak topol-
ogy. Consider the functionals

Ek(t, z) :=
∫ 1

0

1
k

(
z′′(x)

)2 + W
(
z′(x)

)
+ G

(
z(x)

)
− f(t, x)z(x) dx , (6.1)

E∞(t, z) :=
∫ 1

0

W ∗∗(z′(x)
)

+ G
(
z(x)

)
− f(t, x)z(x) dx , (6.2)

where f : [0, T ]× [0, 1] → R is a prescribed loading G is as in the previous section.
The double-well potential is given via W (s) := min{(s− 1)2, (s+1)2} and has the
convexification W ∗∗ with W ∗∗(s) = W (s) for |s| ≥ 1 and W ∗∗(s) = 0 on [−1, 1].
In order to apply Ek, we need twice (weak) differentiability of z, which is only
given in the subspace H2(0, 1). We therefore set Ek := +∞ on H1(0, 1) \ H2(0, 1).
Hence, Ek can be seen as a regularization of E given via

E(t, z) :=
∫ 1

0

W
(
z′(x)

)
+ G

(
z(x)

)
− f(t, x)z(x) dx , (6.3)

which is not weakly lower semi-continuous on H1(0, 1). All the Ek have closed
and bounded sublevels in H2(0, 1). Owing to the compact embedding H2(0, 1)

c
↪→

H1(0, 1), these sublevels are compact in the weak topology of H1(0, 1).
Further, for all k we use the L1(0, 1)–norm as dissipation distance, i.e.

D(u, v) := ‖v − u‖1. Thus, solutions to the rate-independent energetic system
(Q, Ek,D) exist by the standard results of the theory [12, 16, 19] and satisfy the
differential inclusion

0 ∈ Sign(∂tz)+
1
k

∂4
xz− ∂x

(
DW (∂xz)

)
+G′(z)− f(t, .) a.e. in (t, x) ∈ [0, T ]×Ω

together with a smooth stable initial condition z(0, .) = z0 ∈ H2(0, 1). Similarly,
solutions to the problem associated with E∞ and D satisfy

0 ∈ Sign(∂tz) − ∂x

(
DW ∗∗(∂xz)

)
+ G′(z) − f(t, .) a.e. in (t, x) ∈ [0, T ] × Ω .
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It is well-known that the Ek Γ-converge to E∞ and all assumptions on the Ek

are also easily seen to hold for adequately chosen loadings f [7, 26]. Further, as
noted in Example 4.1, the constant sequence of dissipation distances converges in
the required sense.

From the results in [24] we know that solutions to the incremental prob-
lem (IPΠ

k ) for the kth problem admit a subsequence converging to a solution
of (S∞) & (E∞). Now, the results of Section 4 imply that every solution to (S∞)
& (E∞) can be approximated by solutions to (AIPΠ

k,ε).

6.2. An example for relaxation

We might encounter energy functionals E : Q → R∞ for which an infimizing se-
quence converges, but the limit is no minimizer of E . Such functionals E cannot
have closed sublevels, i.e. they are not lower semicontinuous. In applications, this
situation is caused by the development of microstructure [26,27]. In order to ana-
lyze the macroscopic behavior of minimizers of such functionals, we can “relax” E
to its lower semicontinuous envelope E∗∗ : Q → R∞ and study the problem associ-
ated with the new functional E∗∗. The framework of Γ-convergence is designed in
such a way that if we take the Γ-limit of the constant sequence (E)k, we arrive at
the relaxation E∗∗ of E [4,8]. Thus, we can apply the methods developed above in
order to understand the connection between the original and the relaxed problem.

In [24] it is shown that the relaxed problem is not “too small”, i.e. a sequence
of solutions to the approximate incremental problem (AIPΠ

ε ) for the original energy
functional E admits a limit point, which is an energetic solution to (S∗∗) & (E∗∗) for
the relaxed functional E∗∗. In this work, we have shown that the relaxed problem
also is not “too big”, i.e. for every solution of (S∗∗) & (E∗∗) we can find an
associated sequence of solutions to (AIPΠ

ε ).
Concretely, one can examine the energies E and E∞ from the last subsection

(see (6.3) and (6.2)) once again to realize that E∞ is the relaxation of E . Again, our
results are applicable and show reverse approximability of the relaxed problems
by approximate solutions to the non-relaxed problems.

In the terminology of the relaxation theory for rate-independent problems as
introduced in [17, 18], we have shown the lower incremental relaxation condition.
Such a conditions has previously been seen to hold in the special case of the
theory of phase-transitions in elastic solids [31]. See also [15,20] for models where
a gradient Young-measure relaxation is employed.
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