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1. Introduction

In this article, we study zero-sum differential games of mixed type with both
controls and stopping times. Differential games with controls alone have been
studied extensively (see [1] and references therein). Stochastic games with stopping
times are studied for a class of Markov processes in [6].

For nondegenerate diffusions, the differential games of mixed type have been
studied in [2,5]. In this case the authors have studied this problem via certain vari-
ational inequalities with bilateral constraints. Under a nondegeneracy assumption,
they prove the existence of a weak solution of the variational inequalities in certain
weighted Sobolev spaces. This result together with certain techniques from sto-
chastic calculus is then applied to get the desired results in stochastic differential
games of mixed type. In this paper we study the same problem for a deterministic
system. In such a case a classical solution to the corresponding variational inequali-
ties does not exist, even in optimal control problems [1]. We study the problem via
the theory of viscosity solutions. We transform the variational inequalities with
bilateral constraints to Hamilton–Jacobi–Isaacs equations associated with a dif-
ferential game problem with control only. Then using standard results from the
theory of viscosity solutions, we show that the value function of this differential
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game with control is the unique viscosity solution of the corresponding variational
inequalities. Then using penalization method we identify this unique viscosity so-
lution as the value function of the differential game of mixed type. We now describe
our problem.

Let Ui, i = 1, 2, be compact metric spaces. Let

b : R
d × U1 × U2 → R

d .

We assume that
(A1) b is continuous and there exists C1 > 0 such that for all ui ∈ Ui, i = 1, 2,

|b(x, u1, u2) − b(y, u1, u2)| ≤ C1|x − y| .
A measurable function u( · ) : [0,∞) → Ui is called an admissible control for the
player i, i = 1, 2. Let Ai, i = 1, 2 denote the set of all admissible controls for
player i. If the players choose controls (u1( · ), u2( · )) ∈ A1 ×A2, then the state of
the system evolves according to

ẋ(t) = b
(
x(t), u1(t), u2(t)

)
, t > 0

x(0) = x ,

}
(1.1)

where x is the initial state of system. Under the assumption (A1), (1.1) has a
unique (global) solution for all x ∈ R

d. Let

r : R
d × U1 × U2 → R

be the running payoff function and let

ψi : R
d → R, i = 1, 2

be the stopping payoffs. We assume that
(A2)(i) r, ψ1, ψ2 are continuous, and bounded by M .

(ii) There exists a constant C2 > 0 such that for all x, y ∈ R
d and ui ∈ Ui,

i = 1, 2
|η(x) − η(y)| ≤ C2|x − y|

for η = r( · , u1, u2), ψ1, ψ2.
(iii) ψ2 < ψ1.

Let λ > 0 be the discount factor. If the players choose controls (u1( · ), u2( · )) ∈
A1 ×A2 and stopping times (θ, τ) ∈ R

+ × R
+, then the total payoff is given by

R
(
x, u1( · ), θ, u2( · ), τ

)
=

∫ θ∧τ

0

e−λtr
(
x(t), u1(t), u2(t)

)
dt

+ e−λ(θ∧τ)
[
ψ1

(
x(θ)

)
χθ<τ + ψ2

(
x(τ)

)
χτ≤θ

]

where x( · ) is given by (1.1) under (u1( · ), u2( · )) with initial condition x(0) = x.
The aim of player 1 is to minimize the payoff R(x, u1( · ), θ, u2( · ), τ) over his

control and stopping times (u1( · ), θ), whereas player 2’s objective is to maximize
the same over his control and stopping times (u2( · ), τ).

As is the case with differential games with controls alone, we now introduce
the strategies in the sense of Elliott–Kalton. A strategy for the first player is a
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map α : A2 → A1 × [0,∞) which is nonanticipative in the sense that if for any t,
u2( · ), ũ2( · ) ∈ A2, u2(s) = ũ2(s) for all 0 ≤ s < t, then

α[u2](s) = α[ũ2](s) for all 0 ≤ s < t .

Let Γ denote the set of all nonanticipating strategies for player 1. Similarly nonan-
ticipating strategies for player 2 are defined; the set of all his strategies is denoted
by Δ. Let

V +(x) = sup
τ

inf
θ

sup
β∈Δ

inf
u1∈A1

R
(
x, u1( · ), θ, β

(
u1( · )

)
, τ

)
,

V −(x) = inf
θ

sup
τ

inf
α∈Γ

sup
u2∈A2

R
(
x, α

(
u2( · ), τ

)
, u2( · ), τ

)
.

The functions V + and V − are respectively called upper and lower value functions
of the differential game of mixed type. This differential game is said to have value
if both upper and lower value functions coincide.

The rest of our paper is structured as follows. In Section 2 we describe the
variational inequalities associated with the differential game problem. We estab-
lish the existence of a unique viscosity solution (in the class Cb(Rd) of bounded
continous functions) of these inequalities. In Section 3 we establish the existence
of value via penalization. As an application, we treat differential game with stop-
ping times alone and show the the existence of a saddle point equilibrium. We also
present a direct proof of this result. Section 5 contains some concluding remarks.

2. Hamilton–Jacobi–Isaacs variational inequalities

Let H+,H− : R
d × R

d → R be defined by

H+(x, p) = inf
u1∈U1

sup
u2∈U2

[
b(x, u1, u2) · p + r(x, u1, u2)

]
,

H−(x, p) = sup
u2∈U2

inf
u1∈U1

[
b(x, u1, u2) · p + r(x, u1, u2)

]
.

Consider the following Hamilton–Jacobi–Isaacs variational inequalities with bilat-
eral constraints

ψ2(x) ≤ v(x) ≤ ψ1(x) ∀ x
λv(x) − H+(x,Dv(x)) = 0 if ψ2(x) < v(x) < ψ1(x)
λv(x) − H+(x,Dv(x)) ≥ 0 if v(x) = ψ2(x)
λv(x) − H+(x,Dv(x)) ≤ 0 if v(x) = ψ1(x)

⎫
⎪⎪⎬

⎪⎪⎭
(2.1)

and
ψ2(x) ≤ v(x) ≤ ψ1(x) ∀ x

λv(x) − H−(x,Dv(x)) = 0 if ψ2(x) < v(x) < ψ1(x)
λv(x) − H−(x,Dv(x)) ≥ 0 if v(x) = ψ2(x)
λv(x) − H−(x,Dv(x)) ≤ 0 if v(x) = ψ1(x) .

⎫
⎪⎪⎬

⎪⎪⎭
(2.2)
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By a classical solution of (2.1), we mean a C1-function v satisfying (2.1). Similarly
a classical solution of (2.2) is defined. We now give an equivalent formulation of
these variational inequalities in the following theorem.

Theorem 2.1. Assume (A2)(iii). A function v ∈ C1(Rd) is a classical solution
of (2.1) if and only if it is a classical solution of the equation

max
{

min
{

λv(x) − H+
(
x,Dv(x)

)
;λ

(
v(x) − ψ2(x)

)}
;

λ
(
v(x) − ψ1(x)

)
}

= 0 . (2.3)

Similarly a function v ∈ C1(Rd) is a classical solution of (2.2) if and only if it is
a classical solution of the equation

min
{

max
{

λv(x) − H−(
x,Dv(x)

)
;λ

(
v(x) − ψ1(x)

)}
;

λ
(
v(x) − ψ2(x)

)
}

= 0 . (2.4)

Proof. Let v be a classical solution of (2.1). Suppose x is such that ψ2(x) < v(x) <
ψ1(x). Then

λv(x) − H+
(
x,Dv(x)

)
= 0 , v(x) − ψ2(x) > 0 , v(x) − ψ1(x) < 0 .

Thus (2.3) clearly holds in this case. Now if v(x) = ψ2(x), then

min
{

λv(x) − H+
(
x,Dv(x)

)
;λ

(
v(x) − ψ2(x)

)}
= 0 ,

and hence (2.3) is satisfied. Finally assume v(x) = ψ1(x), then

min
{

λv(x) − H+
(
x,Dv(x)

)
;λ

(
v(x) − ψ2(x)

)}
≤ 0 ,

and hence

max
{

min
{

λv(x) − H+
(
x,Dv(x)

)
;λ

(
v(x) − ψ2(x)

)}
;λ

(
v(x) − ψ1(x)

)
}

= 0 .

Thus v satisfies (2.3). We now show the converse. It is clear from (2.3) that v(x) ≤
ψ1(x). If v(x) = ψ1(x) for some x, then it clearly satisfies v(x) ≥ ψ2(x) by (A2)(iii).
Now let v(x) < ψ1(x). Then from (2.3), we have

min
{

λv(x) − H+
(
x,Dv(x)

)
;λ

(
v(x) − ψ2(x)

)}
= 0

and hence v(x) − ψ2(x) ≥ 0. Thus for all x, we have ψ2(x) ≤ v(x) ≤ ψ1(x). Now
let v(x) < ψ1(x). Then from above equation, we have

λv(x) − H+
(
x,Dv(x)

)
≥ 0 .

Similarly if v(x) > ψ2(x), we can show that

λv(x) − H+
(
x,Dv(x)

)
≤ 0 .
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Thus v is a classical solution of (2.1). This concludes the proof of the first part.
The second part of the theorem can be proved in a similar way. �

Remark 2.2. Under (A2)(iii), we can also show that a function v ∈ C1(Rd) is a
classical solution of (2.1) if and only if it is a classical solution of the equation

min
{

max
{

λv(x) − H+
(
x,Dv(x)

)
;λ

(
v(x) − ψ1(x)

)}
;λ

(
v(x) − ψ2(x)

)
}

= 0 .

Similarly a function v ∈ C1(Rd) is a classical solution of (2.2) if and only if it is a
classical solution of the equation

max
{

min
{

λv(x) − H−(
x,Dv(x)

)
;λ

(
v(x) − ψ2(x)

)}
;λ

(
v(x) − ψ1(x)

)
}

= 0 .

Theorem 2.1 motivates us to define viscosity solutions for (2.1) and (2.2)
using (2.3) and (2.4) respectively.

Definition 2.3. An upper semicontinuous function v : R
d → R is said to be a

viscosity subsolution of (2.1) if it is a viscosity subsolution of (2.3). Similarly a
lower semicontinuous function v : R

d → R is said to be a viscosity supersolution
of (2.1) if it is a viscosity supersolution of (2.3). A function which is both sub- and
supersolution of (2.1) is called a viscosity solution of (2.1). Similarly a viscosity
sub-, super- and solutions of (2.2) are defined.

In the classical case, it is quite clear from the proof of Theorem 2.1 that
under (A2)(iii), ψ2 ≤ v ≤ ψ1 if v is a classical solution of (2.3). We now show that
this remains true even for viscosity solutions.

Theorem 2.4. Assume (A2)(iii). Then a viscosity solution of (2.3) satisfies

ψ2(x) ≤ v(x) ≤ ψ1(x) , for all x ∈ R
d .

Similarly a viscosity solution of (2.4) satisfies above inequality.

Proof. Let x ∈ R
d. Choose xε ∈ R

d such that xε → x and D−v(xε) is nonempty
(see [1]). Assume v(x) < ψ2(x). Then we can assume that v(xε) < ψ2(xε). Since v
is a viscosity supersolution of (2.3), we have for any p ∈ D−v(xε),

max
{

min
{

λv(xε) − H+(xε, p);λ
(
v(xε) − ψ2(xε)

)}
;λ

(
v(xε) − ψ1(xε)

)
}

≥ 0 .

Since v(xε) < ψ1(xε)

min
{

λv(xε) − H+(xε, p);λ
(
v(xε) − ψ2(xε)

)}
≥ 0 .

Hence v(xε) ≥ ψ2(xε). Now letting ε → 0, we obtain v(x) ≥ ψ2(x) which is a
contradiction. Thus v(x) ≥ ψ2(x) for all x ∈ R

d. Now assume that there exists
x ∈ R

d such that ψ1(x) < v(x). Again we can find xε ∈ R
d such that xε → x



148 M. K. Ghosh, M. K. S. Rao and D. Sheetal NoDEA

as ε → 0, D+v(xε) is nonempty and v(xε) > ψ1(xε). Now since v is viscosity
subsolution, we have for any p ∈ D+v(xε)

max
{

min
{

λv(xε) − H+(x, p);λ
(
v(xε) − ψ2(xε)

)}
;λ

(
v(xε) − ψ1(xε)

)
}

≤ 0 ,

which in turn gives
v(xε) − ψ1(xε) ≤ 0 .

Now letting ε → 0, we obtain v(x) ≤ ψ1(x) which is a contradiction. Thus v(x) ≥
ψ1(x) for all x ∈ R

d. This completes the proof of the first part of the theorem.
The second part can be proved in an analogous way. �

We now address the question of showing the existence of unique viscosity
solutions of (2.1) and (2.2). This is done by showing that (2.1) and (2.2) are
equivalent to Hamilton–Jacobi–Isaacs equations corresponding to a differential
game problem with control only. This will achieved by augmenting the control
spaces with new controls, we transform the differential game of mixed type to
differential game with controls only This method is standard in the literature
(see [1], Chapter 3, Section 4.2).

Let ω1, ω2 be two symbols. We formulate a new differential game problem
with control only. In this game, Ūi is the set of controls for player i, where Ūi =
Ui ∪ {ωi}, i = 1, 2. Extend b, r to

b̄ : R
d × Ū1 × Ū2 → R

d , r̄ : R
d × Ū1 × Ū2 → R

respectively such that

b̄(x, ω1, · ) ≡ 0 , b̄(x, · , ω2) ≡ 0 ,

r̄(x, ω1, u2) = λψ1(x) ∀u2 ∈ U2 and r̄(x, · , ω2) = λψ2(x)

The state of the system evolves according to

˙̄x(t) = b̄
(
x̄(t), ū1(t) , ū2(t)

)
, t > 0

x̄(0) = x

}
(2.5)

where ūi : [0,∞) → Ūi, i = 1, 2 are measurable. Let Āi denote the set of all
measurable functions from [0,∞) into Ūi for each i = 1, 2. The payoff function is
given by

R̄
(
x, ū1( · ), ū2( · )

)
=

∫ ∞

0

e−λtr̄
(
x̄(t), ū1(t), ū2(t)

)
dt .

Let Γ̄, Δ̄ denote the set of all nonanticipating strategies in this differential game of
players 1 and 2 respectively. Then the upper and lower value functions are defined
by

V̄ +(x) = sup
β∈Δ̄

inf
ū1∈Ā1

R̄
(
x, ū1( · ), β[ū1]( · )

)

V̄ −(x) = inf
α∈Γ̄

sup
ū2∈Ā2

R̄
(
x, α[ū2]( · ), ū2( · )

)
.
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Then by standard results [1], under (A1) and (A2), V̄ + and V̄ − respectively are
unique viscosity solutions of

λv(x) − H̄+
(
x,Dv(x)

)
= 0 (2.6)

and
λv(x) − H̄−(

x,Dv(x)
)

= 0 , (2.7)

in the class of bounded continuous functions, where H̄+, H̄− : R
d × R

d → R are
defined as follows:

H̄+(x, p) = inf
ū1∈Ū1

sup
ū2∈Ū2

[
b̄(x, ū1, ū2) · p + r(x, ū1, ū2)

]
,

H̄−(x, p) = sup
ū2∈Ū2

sup
ū1∈Ū1

[
b̄(x, ū1, ū2) · p + r(x, ū1, ū2)

]
.

We now establish our main theorem of this section which shows the equivalence
of (2.1), (2.2) with (2.6), (2.7) respectively.

Theorem 2.5. Assume (A2)(iii). A continuous function v : R
d → R is a viscosity

solution of (2.6) if and only if it is a viscosity solution of (2.1). Similarly a con-
tinuous function v : R

d → R is a viscosity solution of (2.7) if and only if it is a
viscosity solution of (2.2).

Proof. The proof of this theorem is a simple consequence of the observation that

H̄+(x, p) =
(
H+(x, p) ∨ λψ2(x)

)
∧ λψ1(x) (2.8)

and
H̄−(x, p) =

(
H−(x, p) ∧ λψ1(x)

)
∨ λψ2(x) . (2.9)

�
As a consequence of the above result we have the following existence and

uniqueness result for the solutions of (2.1) and (2.2).

Corollary 2.6. Assume (A1) and (A2). Then V̄ + and V̄ − are unique viscosity so-
lutions of (2.1) and (2.2) respectively in the class of bounded continuous functions.

Proof. Since (2.6) has a unique viscosity solution in the class of bounded continu-
ous functions given by V +, we get by Theorem 2.5, that V̄ + is the unique viscosity
solution of (2.1) in the class of bounded continuous functions. Similarly V − is the
unique viscosity solution of (2.2) in the class of bounded continuous functions. �

We can also provide comparison principle for the solutions of (2.1) and (2.2).
We omit the proof as it is direct from the Theorem 2.5.

Corollary 2.7. Let v, w be sub and super solutions of (2.1) in the class of bounded
continuous functions. Then v≤w. Anologous results holds for the solutions of (2.2).

Remark 2.8. In view of the Corollary 2.7, we can now give an alternative proof
of Theorem 2.4. The proof depends on the simple observation that that ψ2 is a
viscosity subsolution of (2.3) and ψ1 is a viscosity supersolution of (2.3).
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We say that the differential game problem of mixed type satisfies Isaacs
minimax condition if

H+(x, p) = H−(x, p) for all x, p ∈ R
d . (2.10)

The differential game problem with control constructed in this section is said to
satisfy Isaacs minimax condition, if for all x, p ∈ R

d, H̄+(x, p) = H̄−(x, p). We
now have the following theorem.

Theorem 2.9. Assume (A1), (A2) and let Isaacs minimax condition hold for the
differential game problem of mixed type. Then V̄ + ≡ V̄ −.

Proof. Using (2.8), (2.9) and (A2)(iii), it is easy to verify that H+(x, p) = H−(x, p)
if and only if H̄+(x, p) = H̄−(x, p) for all x, p ∈ R

d. Thus the Isaacs minimax
condition holds for the differential game problem with control only. Then by the
results of Chapter 8 in [1], V̄ + ≡ V̄ −. �

Remark 2.10. Let b(x, u1, u2) = b1(x, u1)+b2(x, u2), and r(x, u1, u2) = r1(x, u1)+
r2(x, u2), where bi : R

d × Ui → R
d and ri : R

d × Ui → R , i = 1, 2. Then Isaacs
minimax condition does hold for the differential game problem of mixed type. This
condition also holds in the framework of relaxed control. In this framework Ui =
P(Vi), i = 1, 2, where Vi is a compact metric space and P(Vi) is the space of prob-
ability measures on Vi; b(x, u1, u2) =

∫
V1

∫
V2

b̃(x, v1, v2)u2(dv2)u1(dv1), r(x, u1,

u2) =
∫

V1

∫
V2

r̃(x, v1, v2)u2(dv2)u1(dv1), for some functions b̃ : R
d ×V1 ×V2 → R

d

and r̃ : R
d × V1 × V2 → R. Assuming the conditions (A1) and (A2) on b̃, r̃, we can

verify Isaacs minimax condition by using Fan’s minimax theorem [4].

3. Existence of value via penalization

We assume (A1)–(A2) throughout this section. Consider the following penalized
equation

− λw(x) − 1
ε

(
w(x) − ψ1(x)

)+ +
1
ε

(
w(x) − ψ2(x)

)− = H−(
x,Dw(x)

)
,

x ∈ R
d , ε > 0 . (3.1)

In the following theorem, we prove the existence of viscosity solution to (3.1) and
the uniqueness in a suitable class of functions.

Theorem 3.1. There is a unique viscosity solution wε to (3.1) in Cb(Rd). Also wε

satisfies the following dynamic programming principle (DPP)

wε(x) = inf
α∈Γ

sup
u2∈A2

[∫ σ

0

e−λt

{
r
(
x(t), α[u2](t), u2(t)

)
− 1

ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+

+
1
ε

(
wε

(
x(t)

)
− ψ2

(
x(t)

))−}
dt + wε

(
x(σ)

)
]

for any σ ≥ 0.
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Proof. Rewrite the equation (3.1) as follows:

−
(

λ +
2
ε

)
wε(x) + wε(x) ∧ ψ1(x) + wε(x) ∨ ψ2(x)

= H−(
x,Dwε(x)

)
, x ∈ R

d . (3.2)

Now we can invoke the standard arguments (see [1]) to prove the existence of a
unique viscosity solution in Cb(Rd). Following Chapter VII, [1], we can prove the
DPP. �

We now provide a representation formula which is useful in proving the con-
vergence of wε as ε goes to zero. To this end, let Nε denote the set of all non-
negative measurable functions ν : R → R such that there is a sequence {νn} ⊂ C+

such that νn → ν pointwise and νn ≤ 1
ε , where C+ denotes the set of non-negative

continuous functions on R. Set

R̃
(
x, u1( · ), ν1( · ), u2( · ), ν2( · )

)
=

∫ ∞

0

e(−
∫ t
0 (λ+ν1(s)+ν2(s))ds)

{
r
(
x(t), u1(t), u2(t)

)

+ ν2(t)ψ2

(
x(t)

)
+ ν1(t)ψ1

(
x(t)

)}
dt

for ν1, ν2 ∈ Nε, ui ∈ Ai and x ∈ R
d.

Lemma 3.2. The unique viscosity solution wε of (3.1) in Cb(Rd) is given by

wε(x) = sup
ν2

inf
ν1

inf
α∈Γ

sup
u2∈A2

R̃
(
x, α[u2]( · ), ν1( · ), u2( · ), ν2( · )

)

= inf
ν1

sup
ν2

inf
α∈Γ

sup
u2∈A2

R̃
(
x, α[u2]( · ), ν1( · ), u2( · ), ν2( · )

)

= inf
α∈Γ

sup
u2∈A2

R̃
(
x, α[u2]( · ), ν̂1( · ), u2( · ), ν̂2( · )

)

where ν̂1(t) = 1
ε χ{wε(x(t))>ψ2(x(t))} and ν̂2(t) = 1

ε χ{wε(x(t))<ψ1(x(t))}.

Proof. Observe that

wε(x) = inf
α∈Γ

sup
u2∈A2

[∫ ∞

0

e−
∫ t
0 (λ+ν(s))ds

{
r
(
x(t), α[u2](t), u2(t)

)

− 1
ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+

+
1
ε

(
wε

(
x(t)

)
− ψ2

(
x(t)

))−

+ν(t)wε

(
x(t)

)
}

dt

]
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for any ν ∈ C+ and hence for any ν ∈ Nε. Then for any ν1, ν2 ∈ Nε, we have

wε(x) = inf
α∈Γ

sup
u2∈A2

∫ ∞

0

e−
∫ t
0 (λ+ν1(s)+ν2(s))ds

{
r
(
x(t), α[u2](t), u2(t)

)

+ ν2(t)ψ2

(
x(t)

)
+ ν1(t)ψ1

(
x(t)

)
+ ν1(t)

(
wε

(
x(t)

)
− ψ1

(
x(t)

))

− 1
ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+

+ ν2(t)
(
wε

(
x(t)

)
− ψ2

(
x(t)

))
− 1

ε

(
w

(
x(t)

)
− ψ2

(
x(t)

))−}
dt .

Note that

ν1(t)
(
wε

(
x(t)

)
− ψ1

(
x(t)

))
− 1

ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+

≤ 0

and

ν2(t)
(
wε

(
x(t)

)
− ψ2

(
x(t)

))
− 1

ε

(
wε

(
x(t)

)
− ψ2

(
x(t)

))−
≥ 0

since ν1, ν2 ∈ Nε and the equality holds true for νi = ν̂i for i =, 1, 2. Thus it follows
that

wε(x) ≥ inf
α∈Γ

sup
u2∈A2

∫ ∞

0

e−
∫ t
0 (λ+ν1(s)+ν2(s))ds

{
r
(
x(t), α[u2](t), u2(t)

)

+ ν2(t)ψ2

(
x(t)

)
+ ν1(t)ψ1

(
x(t)

)
+

(
ν1(t)

(
wε

(
x(t)

)
− ψ1

(
x(t)

))

− 1
ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+
)}

dt

and

wε(x) ≤ inf
α∈Γ

sup
u2∈A2

∫ ∞

0

e−
∫ t
0 (λ+ν1(s)+ν2(s))ds

{

r
(
x(t), α[u2](t), u2(t)

)

+ ν2(t)ψ2

(
x(t)

)
+ ν1(t)ψ1

(
x(t)

)
+

(
ν2(t)

(
wε

(
x(t)

)

− ψ2

(
x(t)

))
− 1

ε

(
w

(
x(t)

)
− ψ2

(
x(t)

))−)}

dt

for any ν1 and ν2. Also the inequalities become equalities when νi = ν̂i, i = 1, 2.
Using these inequalities, the desiring result follows. �

We next derive some estimates on wε.

Lemma 3.3. There is a constant C > 0 depending on b, r, ψ1 and ψ2 such that
(
wε − ψ1(x)

)+ ≤ Cε and
(
wε − ψ2(x)

)− ≤ Cε .
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Proof. For any α ∈ Γ, u2( · ) ∈ A2 and non-negative measurable functions ν1, ν2,
we have using integrations by parts

ψ1(x) = −
∫ ∞

0

e−
∫ t
0 (λ+ν1(s)+ν2(s))ds

{
b
(
x(s), α[u2](s), u2(s)

)
.Dψ1

(
x(s)

)

− λψ1

(
x(s)

)
− ψ1

(
x(s)

)(
ν1(s) + ν2(s)

)}
ds .

Hence from Lemma 3.2, we have

wε(x) − ψ1(x)

= inf
ν1

sup
ν2

inf
α∈Γ

sup
u2∈A2

∫ ∞

0

e−(λt+
∫ t
0 (ν1(s)+ν2(s))ds)

{
r
(
x(t), α[u2](t), u2(t)

)

+ b
(
x(t), α[u2](t), u2(t)

)
.Dψ1

(
x(t)

)
− λψ1

(
x(t)

)

+ ν2(s)
{

ψ2

(
x(s)

)
− ψ1

(
x(s)

)}
}

dt .

Thus for ν1 = 1
ε , we have

wε(x) − ψ1(x) ≤ sup
ν2

inf
α∈Γ

sup
u2∈A2

∫ ∞

0

e−(λt+ 1
ε t+

∫ t
0 ν2(s)ds)

{
r
(
x(t), α[u2](t), u2(t)

)

+ b
(
x(t), α[u2](t), u2(t)

)
.Dψ1

(
x(t)

)
− λψ1

(
x(t)

)}
dt .

Now using the bounds of b, r, ψ1, we can find C > 0 such that
∣
∣r

(
x(t), α[u2](t), u2(t)

)
+ b

(
x(t), α[u2](t), u2(t)

)
.Dψ1

(
x(t)

)
− λψ1

(
x(t)

)∣∣ ≤ C .

Also
e−(λt+ 1

ε t
∫ t
0 ν2(s)ds) ≤ eλt+ 1

ε t

for any ν2. Now using these bounds, we obtain

wε(x) − ψ1(x) ≤ C
ε

λε + 1
for some positive constant C. Thus

(
wε − ψ1(x)

)+ ≤ Cε .

In an analogous way we can prove
(
wε − ψ2(x)

)− ≤ Cε .

This completes the proof of the lemma. �
We are now ready to prove the convergence of wε( · ) to a continuous function

v( · ) where v( · ) is a viscosity solution of the variational inequalitiy (2.2). This
is the content of the following theorem. We adapt Barles–Perthame procedure to
prove this theorem (see [1, Chapter V]).

Theorem 3.4. The unique viscosity solution wε( · ) to (3.1) in Cb(Rd) converges to
a continuous function v( · ) in Cb(Rd) as ε → 0 and v( · ) is the unique viscosity
solution in Cb(Rd) of the variational inequality (2.2).
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Proof. Lemma 3.3 guarantees that wε is uniformly bounded. Thus the half-limits

v−(x) = lim inf
(y,ε)→(x,o+)

wε(y)

v+(x) = lim sup
(y,ε)→(x,o+)

wε(y)

are well-defined. We also have

ψ2 ≤ v− , v+ ≤ ψ1 .

We now prove that v+ is a viscosity subsolution of the variational inequal-
ity (2.2). Suppose ψ2(x̄) < v+(x̄) and v+ − φ has a strict local maximum at x̄ for
a smooth function φ. Choose xε such that wε − φ has a local maximum at xε and
xε → x̄ as ε → 0. Therefore

λwε(xε) −
1
ε

(
wε(xε) − ψ1(xε)

)+ +
1
ε

(
wε(xε) − ψ2(xε)

)− ≤ H−(
x,Dφ(xε)

)
.

Multiplying both sides by (wε(xε) − ψ1(xε))− and noting the facts that
1
ε

(
wε(xε) − ψ1(xε)

)+(
wε(xε) − ψ1(xε)

)− = 0

and
1
ε

(
wε(xε) − ψ2(xε)

)−(
wε(xε) − ψ1(xε)

)− ≥ 0

we obtain (
λwε(xε) − H−(

x,Dφ(xε)
))(

wε(xε) − ψ1(xε)
)− ≤ 0 .

Now letting ε → 0, we get
(
λv+(x̄) − H−(

x̄,Dφ(x̄)
))(

v+(x̄) − ψ1(x̄)
)− ≤ 0 .

This proves that v+ is viscosity subsolution of the variational inequality (2.2).
Similarly we can prove v− is a viscosity supersolution of the variational inequal-
ity (2.2). Now using comparison principle (see Corollary 2.7), we have v+ ≤ v−.
Also by definition we have v− ≤ v+. Thus v+ ≡ v− and v is viscosity solution
to (2.2). Uniqueness follows from the comparison principle. �

We now show that the viscosity solution v( · ) of the variational inequal-
ity (2.2) is indeed the value function of the differential game of mixed type. We
establish this result in the following theorem.

Theorem 3.5. The unique viscosity solution v in Cb(Rd) of the variational inequal-
ity (2.2) is the lower value function of the differential game of mixed type.

Proof. Using DPP, we have

wε(x) = inf
α∈Γ

sup
u2∈A2

[ ∫ σ

0

e−λt

{
r
(
x(t), α[u2](t), u2(t)

)
− 1

ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+

+
1
ε

(
wε

(
x(t)

)
− ψ2

(
x(t)

))−}
dt + e−λσwε

(
x(σ)

)
]
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for any σ ≥ 0. Hence

wε(x) ≥ inf
α∈Γ

sup
u2∈A2

[ ∫ σ

0

e−λt

{
r
(
x(t), α[u2](t), u2(t)

)

− 1
ε

(
wε

(
x(t)

)
− ψ1

(
x(t)

))+
}

dt

+ e−λσwε

(
x(σ)

)
]

.

Let θm = inf{t ≥ 0 : v(x(t)) + 1/m ≥ ψ1(x(t))}. Then for σ = θm ∧ τ for
τ ≥ 0, we obtain
∫ θm∧τ

0

e−λt
(
wε

(
x(t)

)
− ψ1

(
x(t)

))+

dt ≤
∫ θm∧τ

0

e−λt

(
wε

(
x(t)

)

−
(

v
(
x(t)

)
+

1
m

))+

dt

≤
(∫ θm∧τ

0

e−λtdt

)(
‖wε − v‖∞ − 1

m

)+

.

Since wε → v, for sufficiently small ε, the term on RHS is zero. Therefore

wε(x) ≥ inf
α∈Γ

sup
u2∈A2

[∫ θm∧τ

0

e−λtr
(
x(t), α[u2](t), u2(t)

)
dt

+e−λ(θm∧τ)wε

(
x(θm ∧ τ)

)
]

for sufficiently small ε. Now letting ε → 0, we obtain

v(x) ≥ inf
α∈Γ

sup
u2∈A2

[∫ θm∧τ

0

e−λtr
(
x(t), α[u2](t), u2(t)

)
dt + e−λ(θm∧τ)v

(
x(θm ∧ τ)

)
]

≥ inf
α∈Γ

sup
u2∈A2

[∫ θm∧τ

0

e−λtr
(
x(t), α[u2](t), u2(t)

)
dt

+ e−λ(θm∧τ)
{

v
(
x(θm)

)
χ{θm≤τ} + ψ1

(
x(σ)

)
χ{τ<θm}

}
]

≥ inf
α∈Γ

sup
u2∈A2

[∫ θm∧τ

0

e−λtr
(
x(t), α[u2](t), u2(t)

)
dt

+ e−λ(θm∧τ)
{

ψ2

(
x(θm)

)
χ{θm≤τ} + ψ1

(
x(τ)

}
χ{τ<θm}

]

− 1
m

= inf
α∈Γ

sup
u2∈A2

R
(
x, α[u2]( · ), θm, u2( · ), τ

)
− 1

m
.
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Since τ is arbitrary,

v(x) ≥ sup
τ

inf
α∈Γ

sup
u2∈A2

R
(
x, α[u2]( · ), θm, u2( · ), τ

)
− 1

m
.

Hence

v(x) ≥ inf
θ

sup
τ

inf
α∈Γ

sup
u2∈A2

R
(
x, α[u2]( · ), θ, u2( · ), τ

)
− 1

m
.

Letting m → ∞, we obtain v(x) ≥ V −(x). Similarly we can prove the other
inequality. This completes the proof of the theorem. �

We now state the corresponding result for the upper value of the differential
game of mixed type.

Theorem 3.6. The unique viscosity solution v of the variational inequality (2.1) is
the upper value function of the differential game of mixed type.

Combining Theorems 3.5 and 3.6, we obtain our main theorem.

Theorem 3.7. Under Isaacs minimax condition (2.10), the differential game of
mixed type has value, i.e., V + ≡ V − and the value is the unique viscosity solution
in Cb(Rd) of both the HJI variational inequalities (2.1) and (2.2).

4. Existence of a saddle point

The aim of this section is to prove the saddle point equilibrium for the differential
game described in first section when there is no control i.e., differential game with
stopping times alone.

We now assume b, r are independent of u1, u2. Note that in this case, Isaacs
minimax condition is satisfied vacuously. Thus value function v exists and is the
unique bounded continuous viscosity solution of (2.1) (and hence (2.2)). Let x ∈
R

d. Let the stopping times θ̂, τ̂ be defined by:

θ̂(x)=inf
{

s≥0 : v
(
x(s)

)
=ψ2

(
x(s)

)}
, τ̂(x)=inf

{
s≥0 : v

(
x(s)

)
=ψ1

(
x(s)

)}
,

where x( · ) is a solution of

ẋ(t) = b
(
x(t)

)
, t > 0 , x(0) = x .

Then for each t ∈ [0, θ̂ ∧ τ̂), v(x(t)) ∈ (ψ2(x(t)), ψ1(x(t))). Let C denote the set of
all x ∈ R

d such that ψ2(x) < v(x) < ψ1(x). Then v is a viscosity solution of

λv(x) − b(x) ·Dv(x) − r(x) = 0 (4.1)

in C. Then we have the following main theorem of this section.

Theorem 4.1. For each x ∈ R
d, (θ̂, τ̂) is a saddle point equilibrium.
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Proof. From the results of previous section, we have

v(x) = inf
θ≥0

sup
τ≥0

R(x, θ, τ) = sup
τ≥0

inf
θ≥0

R(x, θ, τ) .

We now show that
v(x) = R(x, θ̂, τ̂) .

If x �∈ C, we have either v(x) = ψ1(x) or v(x) = ψ2(x). Then either θ̂ = 0 or τ̂ = 0.
It is obvious to note that in either case v(x) = R(x, θ̂, τ̂). We now assume x ∈ C.
Now applying the Proposition 5.18 and Remark, Chapter II, [1] to (4.1), we get
for any 0 ≤ θ < θ̂ ∧ τ̂ ,

v(x) = e−λθv
(
x(θ)

)
+

∫ θ

0

r
(
x(t)

)
dt .

Now letting θ → θ̂ ∧ τ̂ , we obtain

v(x) = R(x, θ̂, τ̂) .

Thus (θ̂, τ̂) constitutes a saddle point equilibrium. �

5. Conclusions

In this paper we have studied a differential game problem of mixed type where each
player uses both control and stopping times. By transforming this differential game
problem of mixed type to a differential game with control only, we have shown that
the variational inequalities associated with the differential game problem of mixed
type have a unique viscosity solution. We then proceeded to prove the existence
of value of differential game of mixed type via the penalization arguments. In
Section 4, we have treated a special case of a differential game with only stopping
times. Here we have established the existence of a saddle point equilibrium. This
problem has been studied by Stettner in [6] for a class of Markov processes using
the semigroup formulation. Thus the result for this special case in Section 4 is
subsumed by the corresponding results in [6]. We have, however, used the method
of viscosity solutions to arrive at the same result.
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