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Abstract. We consider a quasilinear PDE system which models nonlinear vi-
brations of a thermoelastic plate defined on a bounded domain in R

n, n ≤ 3.
Existence of finite energy solutions describing the dynamics of a nonlinear
thermoelastic plate is established. In addition asymptotic long time behavior
of weak solutions is discussed. It is shown that finite energy solutions decay
exponentially to zero with the rate depending only on the (finite energy) size
of initial conditions. The proofs are based on methods of weak compactness
along with nonlocal partial differential operator multipliers which supply the
sought after “recovery” inequalities. Regularity of solutions is also discussed
by exploiting the underlying analyticity of the linearized semigroup along with
a related maximal parabolic regularity [1, 16,44].
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1. Introduction

In this paper we study the existence and exponential stability of solutions to a
quasilinear system arising in the modeling of nonlinear thermoelastic plates. The
mathematical analysis of thermoelastic systems has attracted a lot of attention
over the years. An array of new and fundamental results in the area of wellposed-
ness and stability of solutions to both linear and nonlinear thermoelasticity have
been contributed to the field (see [14,15,17,18,26,48,49] and references therein).

The focus of this paper is on thermoelastic plates and associated uniform sta-
bility issues. This particular class of problems has received considerable attention
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in recent years, particularly in the the context of some new developments in con-
trol theory. Questions such as exponential stability, controllability, observability,
unique continuation have been asked and partially answered for both linear and
nonlinear plates (see [30] and references therein). This includes discoveries such as

(1) exponential decays (without any mechanical dissipation) of energy in linear
models [4, 5, 11,27],

(2) boundary controllability and null controllability of linear plates [3,6,7,12,19,
22,23,29,35,39],

(3) analyticity of semigroups generated by linear models [37,40,43],
(4) unique continuation from the boundary and backward uniqueness [20,28,38],

and
(5) well-posedness and uniform decays of energy in semilinear thermoelastic mod-

els [8, 26,32–34].

While there is at present vast literature dealing with well-posedness and stability
of linear and semilinear thermoelastic equations (see above), the treatment of
quasilinear and fully nonlinear models defined on multidimensional domains is
much more subtle and requires different mathematical approaches.

A distinct feature of this paper is that it deals with global solutions, without
any smallness assumptions, to a multi-dimensional quasilinear thermoelastic plate
model. One of the fundamental difficulties is that perturbation type or fixed point
type of arguments, quite successful in semilinear analysis, are no longer applicable
to the strongly nonlinear cases. A different approach that is capable of handling
nonlinear terms in the equation is called for. It turns out that rather recent sharp
estimates, developed in the context of linear control theory, allows successful han-
dling of quasilinear models. This is the case in dealing with issues such as passing a
weak limit on nonlinear terms, accomplished by taking advantage of compensated
compactness methods based on nonlocal (PDO) multipliers, in deriving inverse
type inequalities. The latter is the necessary ingredient for stabilization, which de-
pends on recently developed observability estimates for thermoelastic plates [4,13].

The equations we consider arise from a model that takes into account the
coupling between elastic, magnetic and thermal fields in a nonlinear elastic plate
model (see [2, 9, 24, 25, 41]). In non-dimensional form, the equations we consider
are given below in (1.1)–(1.3). Although we consider the case when n ≤ 3, similar
equations were derived when n ≤ 2 for a current carrying plate in a magnetic field,
with the consideration of a physical nonlinearity of the plate material (see [2, 24,
25]). The nonlinearity arises from the nature of the magnetoelastic material, owing
to a nonlinear dependence between the intensities of the deformation and stress.
We also assume that the material nonlinearity is cubic, as in the original plate
model [24].

Let Ω be a bounded domain of R
n, n ≤ 3, with a smooth boundary ∂Ω.

Consider the system{
Wtt + Δ2W − ΔΘ + aΔ((ΔW )3) = 0

Θt − ΔΘ + ΔWt = 0

}
in Ω × (0, T ) (1.1)
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W = ΔW = Θ = 0 on ∂Ω × (0, T ) (Boundary Conditions) (1.2)⎧⎨
⎩

W (x, 0) = f(x) (x ∈ Ω); f ∈ W 2,4(Ω) ∩ W 1,2
0 (Ω)

Wt(x, 0) = g(x) (x ∈ Ω); g ∈ L2(Ω)
Θ(x, 0) = h(x) (x ∈ Ω); h ∈ L2(Ω)

⎫⎬
⎭ (Initial Conditions).

(1.3)

We assume that the material constant a is positive.
In this paper we study global existence and uniform decays in time of solutions

(W,Wt,Θ) ∈ L∞([0, T ];W 2,4(Ω) × L2(Ω) × L2(Ω)) to the above initial/boundary
value problem, where T > 0 is arbitrary.

In order to proceed with the exposition of our results, we introduce some
notation and definitions. Let

X :=
(
W 2,4(Ω) ∩ W 1,2

0 (Ω)
)
× L2(Ω) × L2(Ω)

Y := L2(Ω) ×
(
W 2,4(Ω) ∩ W 1,2

0 (Ω)
)′ × (W 2,2(Ω)

)′
.

Definition 1.1 (Weak solution). Let 0 < T ≤ ∞. By a weak solution of the ini-
tial/boundary value problem (1.1)–(1.3) we mean a triple

x :=(W,U,Θ)∈L∞([0, T );X
)
∩W 1,∞([0, T );Y

)
, with Θ∈L2

(
[0, T );W 1,2

0 (Ω)
)

such that the following equalities hold for almost all t ∈ [0, T ) and all test functions
ϕ1 ∈ L2(Ω), ϕ2 ∈ W 2,4(Ω) ∩ W 1,2

0 (Ω), ϕ3 ∈ W 2,2(Ω) ∩ W 1,2
0 (Ω):

〈Wt, ϕ1〉 = 〈U,ϕ1〉 (1.4)

〈Ut, ϕ2〉 = −〈ΔW,Δϕ2〉 − 〈∇Θ,∇ϕ2〉 − a
〈
(ΔW )3,Δϕ2

〉
(1.5)

〈Θt, ϕ3〉 = −〈∇Θ,∇ϕ3〉 − 〈U,Δϕ3〉 , (1.6)

where 〈 · , · 〉 denotes the inner product in L2(Ω) as well as the pairing of L4(Ω)
with its dual space L4/3(Ω).

In addition, the initial conditions (1.3) are satisfied in the Cw([0, T );X) topol-
ogy, where Cw([0, T );X) denotes the space of weakly continuous functions with
values in X.

Remark 1.2. Note that with (W,U,Θ) ∈ L∞([0, T ];X) and (Wt, Ut,Θt) ∈
L∞([0, T ];Y ), we actually have

(W,U,Θ) ∈ C
(
[0, T ];W 1,2(Ω) ×

(
W 2,4(Ω)

)′ × (W 2,2(Ω)
)′)

,

see [21, p. 286–289]. In particular, x = (W,U,Θ) is weakly continuous with respect
to the above extended topologies. By Lemma 3.3 in [52], x is weakly continuous
with the values in X. Moreover, x ∈ C([0, T ];Y ) where X ⊂ Y with compact
injection. In view of the above, the initial conditions can be interpreted either via
weak continuity with values in X or via strong continuity with values in X1 =
W 2−ε,4(Ω) × H−ε(Ω) × H−ε(Ω), for every ε > 0.
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It is not difficult to show that every classical solution (W,Θ) of the ini-
tial/boundary value problem (1.1)–(1.3) gives a weak solution (W,Wt,Θ) to the
system (1.4)–(1.6), and conversely (see Section 2.6) that every weak solution
(W,U,Θ) of (1.4)–(1.6) which is sufficiently smooth satisfies Wt = U and (W,Θ) is
a classical solution to the system (1.1)–(1.3). By forcing W and Θ to be in W 1,2

0 (Ω)
for a.e. t ∈ [0, T ], we ensure that the boundary conditions W |∂Ω = 0 and Θ|∂Ω = 0
are satisfied. The remaining boundary condition ΔW |∂Ω = 0 appears as a natural
boundary condition and will follow from the weak formulation of the system (see
Section 2.6).

For all (w, u, θ) ∈ X we define the energy of the system E : X → R given by

E(w, u, θ) =
1
2
‖u‖2

L2 +
1
2
‖Δw‖2

L2 +
1
2
‖θ‖2

L2 +
a

4
‖Δw‖4

L4 . (1.7)

If x = (W,U,Θ) ∈ L∞([0, T );X) is a weak solution, then we also define the energy
(corresponding to x) by

E(t) := E
(
W (t), U(t),Θ(t)

)
=

1
2
‖U(t)‖2

L2

+
1
2
‖ΔW (t)‖2

L2 +
1
2
‖Θ(t)‖2

L2 +
a

4
‖ΔW (t)‖4

L4 .

Thus
E(0) =

1
2
‖g‖2

L2 +
1
2
‖Δf‖2

L2 +
1
2
‖h‖2

L2 +
a

4
‖Δf‖4

L4 .

The main result pertaining to global existence of finite energy solutions is
the following:

Theorem 1.3 (Global existence of finite energy solutions). Let 0 < T ≤ ∞ and
n ≤ 3. Then there exists a weak solution (in the sense of Definition 1.1) of the
initial/boundary value problem (1.1)–(1.3). Moreover, the energy inequality

E(t) +
∫ t

s

‖∇Θ(s)‖2
L2ds ≤ E(s) , s < t

holds for this weak solution.

Remark 1.4. The global solutions described by Theorem 1.3 are obtained via the
Faedo–Gelerkin method. It is shown that finite dimensional Galerkin approxi-
mations converge strongly to weak solutions. In view of the above, the proof of
Theorem 1.3 also provides an effective strongly convergent finite dimensiuonal
approximation of weak solutions.

Once global existence of finite energy solutions is established, a natural ques-
tion to ask is that of asymptotic stability. The dissipative mechanism in the model
is exhibited by the thermal component of the system. The nonlinear mechanical
component has no dissipation whatsoever and does not – by itself – cause any de-
crease of the energy. Thus any hope for having uniform decays of the energy must
be based on a possibility of propagating the decay from the thermal component
of the system (heat equation) onto the mechanical component (plate equation).
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And in fact this is indeed the case in linear models, where exponential decay rates
for the linear energy have been established [4,5,27] for linear thermoelastic plates
and more recently in [8, 13] for semilinear plates. The situation in the quasilinear
case is much more complex, due to the unboundedness of the nonlinear term with
respect to the topology induced by the energy. Nevertheless, we will be able to
show that for the initial conditions taken from any ball BX(0, R) in X, the cor-
responding weak solution decays exponentially to zero with a rate depending on
R (of arbitrary size) only (and not on the particular solution). The corresponding
result is the following:

Theorem 1.5 (Exponential decay of the energy). Let n ≤ 3, T = ∞, and R > 0.
Then there exists a constant C (independent of R) and a constant ωR (depending
on R) such that if (W (t), U(t),Θ(t)) is a solution of the initial/boundary value
problem (1.1)–(1.3) obtained in Theorem 1.3, with E(0) ≤ R, then

for all t ≥ 0 , E(t) ≤ CE(0)e−ωRt . (1.8)

Note that the constant ω given in (1.8) in Theoorem 1.5 depends on the size
of initial data E(0) ≤ R (this dependence is made explicit in the course of the
proof of the theorem). One may give a different formulation for the decay rates,
formula with the decay rate constant ω independent on R. The price to pay is the
fact that the amplitude constant C will depend on R. The corresponding result is
formulated below.

Corollary 1.6. Under the assumptions of Theorem 1.5 and with E(0) ≤ R we have:

for all t ≥ 0 , E(t) ≤ C(R,ω)e−ωt . (1.9)

where ω is any positive number such that ω < ω0 ≡ 1
T0

log T0+λ−1
1

7λ−1
1

, T0 is a solution

of the transcendental equation (3.18) and λ1 first eigenvalue of −Δ equipped with
Dirichlet boundary conditions. The R �→ C(R,ω) is increasing and C(R,ω) → ∞
as ω → ω0.

Remark 1.7. The constant ωR appearing in (1.8) becomes small when R is large.
(The explicit dependence is given in the course of the proof.) This leads to slow
decay rates for large initial data. Instead, the constant ω in (1.9) is independent
on R. Thus, in the case of large initial data the estimate given by (1.9) leads to
much faster decay rates.

Remark 1.8. The decay rates given by (1.8) or (1.9) apply to weak solutions that
are obtained in Theorem 1.3 as the strong limits of Faedo–Galerkin approxima-
tions. Since weak solutions, as defined by Definition 1.1, may not be unique, we
can not extend the validity of (1.8) to all weak solutions. However, the decay rates
given in (1.8) remain valid for all solutions that are sufficiently regular.

Remark 1.9. The two theorems stated above pertain to existence and uniform
decays of weak, or alternatively, finite energy solutions. With further restrictions
imposed on the initial data, one can prove existence and uniqueness of regular
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(in fact, classical) solutions. The corresponding result, which relies on methods of
nonlinear analytic semigroups and maximal regularity [44], will be given in the
Appendix.

2. Existence of a solution

In this section, we prove Theorem 1.3.
We note that the system represented by (1.1)–(1.3) can be seen as a non-

linear perturbation of an analytic semigroup (see the Appendix). However, the
resulting perturbation is not relatively bounded with respect to the generator,
and so perturbation theory for analytic semigroups [47] cannot be applied. This
presents major difficulty in studying existence of the finite energy solution claimed
by Theorem 1.3. In order to handle the difficulty, we shall resort to the compen-
sated compactness method along with the use of partial monotonicity generated
by the nonlinear term (the problem itself is not monotone!). The latter property
is instrumental in identifying limits correctly in the weak formulation.

2.1. Lyapunov function for the PDE system

Suppose that the system (1.4)–(1.6) has a solution

(W,U,Θ) ∈ C1
(
[0, T ];

(
W 2,4(Ω) ∩ W 1,2

0 (Ω)
)
× W 1,2(Ω) ×

(
W 2,2(Ω) ∩ W 1,2

0 (Ω)
))

.

It follows that (Wt, Ut,Θt) ∈ C([0, T ]; (W 2,4(Ω)∩W 1,2
0 (Ω))×W 1,2(Ω)×(W 2,2(Ω)∩

W 1,2
0 (Ω))). Let

E(t) =
1
2
‖U(t)‖2

L2 +
1
2
‖ΔW (t)‖2

L2 +
1
2
‖Θ(t)‖2

L2 +
a

4
‖ΔW (t)‖4

L4 .

Then by (1.4)–(1.6),

d

dt
E(t) = 〈U,Ut〉 + 〈ΔW,ΔWt〉 + 〈Θ,Θt〉 + a

〈
(ΔW )3,ΔWt

〉
= 〈Θ,ΔWt〉 + 〈Θ,Θt〉
= 〈Θ,ΔΘ〉 = −‖∇Θ‖2

L2 ≤ 0 .

The above argument is only formal, since it relies on additional regularity of the
solutions. On the other hand, it indicates that the sought after solutions should
have a-priori bounds in the topology of X and that the energy is non-increasing,
suggesting some sort of dissipation. We shall make this argument rigorous by con-
sidering the appropriate finite dimensional approximations of the original system.
Weak lower semicontinuity of the energy functional will allow us to conclude that
the energy inequality is valid for the original PDE system. We also note that the
dissipation is weak, since it affects only one component of the state vector. Nev-
ertheless we will be able to show that this effect propagates, giving exponential
decay rates on the entire system (see Theorem 1.5).
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2.2. Faedo–Galerkin approximations

Let (ek)k∈N be normalized eigenfunctions of the negative Laplacian with Dirichlet
boundary conditions:

−Δek = λkek in Ω ,

ek|∂Ω = 0 .

The {ek | k ∈ N} is an orthogonal basis of W 1,2
0 (Ω), and form an orthonormal

basis of L2(Ω). Let V N := span{em| m = 1, . . . , N} and XN := V N × V N × V N .
We seek

WN (x, t) =
N∑

k=1

wN
k (t)ek(x) ;

UN (x, t) =
N∑

k=1

uN
k (t)ek(x) ; ΘN (x, t) =

N∑
k=1

θN
k (t)ek(x) (2.1)

which satisfy⎧⎨
⎩

〈UN − WN
t , em〉 = 0

〈UN
t + Δ2WN − ΔΘN + aΔ((ΔWN )3), em〉 = 0〈

ΘN
t − ΔΘN + ΔUN , em

〉
= 0

⎫⎬
⎭ m ∈ {1, . . . , N} (2.2)

⎧⎪⎨
⎪⎩

WN (x, 0) =
∑N

k=1〈f, ek〉ek(x)
UN (x, 0) =

∑N
k=1〈g, ek〉en(x)

ΘN (x, 0) =
∑N

k=1〈h, ek〉ek(x)

⎫⎪⎬
⎪⎭ on Ω (Initial Conditions). (2.3)

2.3. System of ODEs

We note that (WN , UN ,ΘN ) given by (2.1) satisfy (2.2)–(2.3) if and only if the co-
efficient functions (wN

1 , . . . , wN
N , uN

1 , . . . , uN
N , θN

1 , . . . , θN
N ) satisfy the following sys-

tem of ODEs:
⎧⎨
⎩

ẇN
m(t) = uN

m(t)
u̇N

m(t) = −λ2
mwN

m(t) + λmθN
m(t) + a

〈(∑N
k=1 wN

k (t)Δek

)3
, λmem

〉
θ̇N

m(t) = −λmθN
m(t) − λmuN

m(t)

⎫⎬
⎭

m ∈ {1, . . . , N} (2.4)

with the initial conditions⎧⎨
⎩

wN
m(0) = 〈f, em〉

uN
m(0) = 〈g, em〉

θN
m(0) = 〈h, en〉

⎫⎬
⎭ m ∈ {1, . . . , N} . (2.5)

As the right hand side of (2.4) is locally Lipschitz, it follows that the above system
of ODEs has a local solution in a maximal time interval [0, TN ) for some TN > 0.
Multiplying (2.4) by em and adding the results, we obtain (2.2)–(2.3).
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2.4. Lyapunov function for the ODE system

Let xN := (WN , UN ,ΘN ), and define EN : R
3N → R by

EN (xN ) := E(xN )

=
1
2
(
||ΔWN ||2L2 + ||UN ||2L2 + ||ΘN ||2L2

)
+

1
4
||ΔWN ||4L4

=
1
2

∥∥∥∥∥
N∑

k=1

ukek

∥∥∥∥∥
2

L2

+
1
2

∥∥∥∥∥
N∑

k=1

λkwkek

∥∥∥∥∥
2

L2

+
1
2

∥∥∥∥∥
N∑

k=1

θkek

∥∥∥∥∥
2

L2

+
a

4

∥∥∥∥∥
N∑

k=1

λkwkek

∥∥∥∥∥
4

L4

.

It follows from the linear independence of ek’s and Δek’s that EN is positive
definite.

If (WN , UN ,ΘN ) given by (2.1) satisfy (2.2)–(2.3), then we define

EN (t) := EN

(
wN

1 (t), . . . , wN
N (t), uN

1 (t), . . . , uN
N (t), θN

1 (t), . . . , θN
N (t)

)
. (2.6)

It can be verified that

d

dt
EN (t) = −

∥∥∥∥∥
N∑

k=1

θN
k (t)∇ek

∥∥∥∥∥
2

L2

= −||∇ΘN ||L2 ≤ 0 . (2.7)

So we can conclude that the solution to (2.4) with initial conditions (2.5) is
bounded. Consequently from ODE theory, we obtain existence and uniqueness of
the finite-dimensional solution xN ∈ C([0, TN ];XN ) satisfying the ODE system,
which in addition, is a-priori bounded. Thus TN = +∞.

2.5. Uniform bounds

Since
d

dt
EN (t) = −‖∇ΘN (t)‖2

L2 ≤ 0 , (2.8)

it follows that EN (t) ≤ EN (0). But

EN (0) =
1
2
‖UN (0)‖2

L2 +
1
2
‖ΔWN (0)‖2

L2 +
1
2
‖ΘN (0)‖2

L2 +
a

4
‖ΔWN‖4

L4 .

Consequently

EN (0) ≤ 1
2
‖g‖2

L2 +
1
2
‖Δf‖2

L2 +
1
2
‖h‖2

L2 +
a

4
‖Δf‖4

L4 = E(0) . (2.9)

In particular, EN (0) is uniformly bounded in N .
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2.6. Weak solution

In order to show that the definition of weak solution is meaningful and describes
the original PDE problem, we need to verify that every classical solution is a weak
solution, and that every weak solution which is sufficiently smooth is a classical
solution. The first part is straightforward and it follows by projecting the classical
solution on the L2 space. For the second part, consider a weak solution that is
sufficiently smooth. In the formulation of weak solutions, we first take test func-
tions φi which are in C∞

0 (Ω). It is easy to show by a straightforward application of
Green’s formula and the density of C∞

0 (Ω) in L2(Ω), that the equations (1.1) are
satisfied. It suffices to reconstruct the boundary condition ΔW = 0 on ∂Ω. (The
other two boundary conditions are encoded in the definition of the weak solution.)
By using (1.1) in the weak formulation, applied with an arbitrary test function
φ2 ∈ W 2,4(Ω) ∩ W 1.2

0 (Ω), and integrating by parts, we obtain the following trace
relations: ∫

∂Ω

(
ΔW − Θ + a(ΔW )3

) ∂

∂ν
φ2ds = 0

for all φ2 ∈ W 2,4(Ω)∩W 1.2
0 (Ω). By the surjectivity in the trace theorem, it follows

that for any z ∈ W 3/4,4(∂Ω), there exists a φ2 ∈ W 2,4(Ω) ∩ W 1.2
0 (Ω) such that

∂
∂ν φ2 = z on ∂Ω [53]. Hence

∫
∂Ω

(
ΔW − Θ + a(ΔW )3

)
zds = 0

for all z ∈ W 3/4,4(∂Ω). Since Θ = 0 on ∂Ω, it follows by density that

ΔW + a(ΔW )3 = 0 on ∂Ω .

Consequently, ΔW = 0 on ∂Ω (since a > 0), as desired.

2.7. Weak convergence of the Faedo–Galerkin approximations

From the uniform Lyapunov estimate (2.9) for the Galerkin approximations, we
obtain that for all t ∈ [0, T ],

‖ΔWN ( · , t)‖L2 , ‖ΔWN ( · , t)‖L4 , ‖UN ( · , t)‖L2 , ‖ΘN ( · , t)‖L2

are all bounded sequences. Also
∫ T

0
||∇ΘN (t)||L2dt is bounded by the norms of

the initial data. Moreover, after accounting for WN = ΘN = 0 on the boundary,
elliptic theory and the Poincaré inequality give control of the W 2,4(Ω) norm of
WN and the H1

0 (Ω) norm of ΘN . Thus

WN is a bounded sequence in L∞([0, T ];W 2,4(Ω)
)
,

UN is a bounded sequence in L∞([0, T ];L2(Ω)
)
,

ΘN is a bounded sequence in L∞([0, T ];L2(Ω)
)
∩ L2

(
[0, T ];H1

0 (Ω)
)
.
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Step 1. Weak convergence. Therefore there exist subsequences which converge in
the weak star topology of the respective spaces. We denote the respective limits
by W,U,Θ. For simplicity of notation, we renumber the sequences and assume
without loss of generality that the sequences themselves converge in the weak star
topology of the appropriate spaces.

Thus

WN ⇀∗ W in L∞([0, T ];W 2,4(Ω)
)
,

UN ⇀∗ U in L∞([0, T ];L2(Ω)
)
,

ΘN ⇀∗ Θ in L∞([0, T ];L2(Ω)
)
, (2.10)

ΘN ⇀ Θ in L2
(
[0, T ];H1(Ω)

)
,

where we have also used the reflexivity of L2([0, T ];H1(Ω)). We also obtain that

UN
t ⇀ Ut in L2

(
[0, T ];W 2,4(Ω)′

)
,

Δ−1ΘN
t ⇀∗ Δ−1Θt in L∞([0, T ];L2(Ω)

)
,

where Δ−1 denotes the inverse of the Laplacian with zero Dirichlet boundary
conditions. In particular, by the Aubin–Simon Lemma [51], this implies that:

WN → W strongly in C
(
[0, T ];H2−ε(Ω)

)
,

ΘN → Θ strongly in C
(
[0, T ];H−ε(Ω)

)
, (2.11)

ΘN → Θ strongly in L2
(
[0, T ];H1−ε(Ω)

)
,

where ε > 0 can be taken arbitrarily small.
The above convergence allows us to pass the limit on all linear terms in

the weak formulation of the system. The passage of the limit on the nonlinear
term is more involved and requires additional arguments. Indeed, note that since
ΔWN (t) is uniformly bounded in L4(Ω), it follows that (ΔWN )3 is bounded in
L∞([0, T ];L4/3(Ω)). So there exists an η ∈ L∞([0, T ];L4/3(Ω)) such that (ΔWN )3

⇀∗ η in L∞([0, T ];L4/3(Ω)) (again on a subsequence). But we do not know if η
coincides with (ΔW )3, since we do not have any compactness to conclude this. As
we shall see later, this desired conclusion will be drawn by exhibiting some sort of
compensated compactness.

Let ϕ ∈ C∞
0 ([0, T ]; R) and m ∈ N be arbitrary. From (2.2) we have

∫ T

0

(
〈UN

t , em〉 +
〈
ΔWN − ΘN + a

(
(ΔWN )3

)
,Δem

〉)
ϕ(t) dt = 0

∫ T

0

(
〈ΘN

t , em〉 − 〈ΘN + UN ,Δem〉
)
ϕ(t) dt = 0
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for N ≥ m. Letting N → ∞ and using the weak star convergence of WN , UN ,
UN

t , ΘN , ΘN
t and (ΔWN )3, we conclude that∫ T

0

(
〈Ut, em〉 + 〈ΔW − Θ + aη,Δem〉

)
ϕ(t) dt = 0 (2.12)

∫ T

0

(
〈Θt, em〉 − 〈Θ + U,Δem〉

)
ϕ(t) dt = 0 . (2.13)

Since ϕ ∈ C∞
0 ([0, T ]; R) was arbitrary and any test function ψ ∈ W 2,4(Ω) can

be approximated (with strong convergence) by finite linear combinations of em, it
follows that

〈Ut, ψ〉 + 〈ΔW − Θ + aη,Δψ〉 = 0

〈Θt, ψ〉 − 〈Θ + U,Δψ〉 = 0

for almost every t ∈ [0, T ]. Because W 1,2
0 (Ω) is a closed subspace of W 1,2(Ω), and

hence weakly closed, it follows that also W (t) ∈ W 1,2
0 (Ω).

Next we show that the initial conditions are satisfied. Let

ϕ ∈ L1
(
[0, T ];W 2,4(Ω) ∩ W 1,2

0 (Ω)
)
∩ C∞([0, T ];C∞(Ω)

)
be such that ϕ(T ) = 0. Then∫ T

0

〈UN , ϕ〉 dt =
∫ T

0

〈WN
t , ϕ〉 dt = −

〈
fN , ϕ(0)

〉
−
∫ T

0

〈WN , ϕt〉 dt

∫ T

0

〈U,ϕ〉 dt =
∫ T

0

〈Wt, ϕ〉 dt = −
〈
W (0), ϕ(0)

〉
−
∫ T

0

〈W,ϕt〉 dt .

By the weak star convergence, we obtain fN ⇀ W (0). From the construction,
we also have fN ⇀ f , and so 〈W (0), ϕ(0)〉 = 〈f, ϕ(0)〉. Since ϕ was arbitrary,
it follows that W (0) = f . In the same way, one shows that U(0) = g and that
Θ(0) = h.

Step 2. Strong convergence of the velocity. The main task that remains is to
identify η with (ΔW )3. The proof of this fact will proceed through several lemmas.
To achieve this, we first improve the convergence of UN .

Lemma 2.1. Let n ≤ 3. Then UN → U strongly in L2([0, T ];L2(Ω)).

Proof. Let (WN , UN ,ΘN ) denote the Galerkin approximation at step N , and let
(W,U,Θ) be its weak limit asserted in (2.10). We shall use the notation W̃N :=
WN −W , and a similar notation is used for the other two variables. Let PN be the
orthogonal projection (with respect to the inner product of L2(Ω)) of the space
V := W 2,4(Ω) ∩ H1

0 (Ω) onto V N .
We obtain the following system satisfied for W̃N , Θ̃N and all test functions

ψ, φ ∈ V :〈
ŨN

t + Δ2W̃N − ΔΘ̃N + aΔ
(
(ΔWN )3 − η

)
, ψ
〉

=
〈
βN , (I − PN )ψ

〉
〈Θ̃N

t − ΔΘ̃N + ΔŨN , φ〉 =
〈
γN , (I − PN )φ

〉
, (2.14)



700 I. Lasiecka, S. Maad and A. Sasane NoDEA

where the error terms are

βN := UN
t + Δ2WN − ΔΘN + aΔ(ΔWN )3 and γN := ΘN

t − ΔΘN + ΔUN .

We will derive the error for ŨN by using suitable multipliers. An important fact
which will be used without further mentioning is that both Δ and Δ−1 (with
Dirichlet boundary conditions) leave V N invariant, and that PN commutes with
Δ. Because of this

(I − PN )γN = 0

(I − PN )βN = a(I − PN )Δ(ΔWN )3 . (2.15)

We apply (2.14) with ψ := Δ−1Θ̃N = Δ−1(ΘN − Θ), and integrate from 0 to T .
Note that Δ−1(ΘN − Θ)(t) ∈ V for almost all t. This follows from the regularity
of the limit elements (2.10) and the embedding H1(Ω) ⊂ L4(Ω) for n ≤ 3.

Using (2.14), we obtain
∫ T

0

(
− 〈ŨN ,Δ−1Θ̃N

t 〉 + 〈ΔW̃N , Θ̃N 〉 − ‖Θ̃N‖2 + a
〈
(ΔWN )3 − η, Θ̃N

〉)
dt

= −
〈
ŨN ,Δ−1Θ̃N

〉∣∣∣T
0

+
∫ T

0

〈
βN , (I − PN )Δ−1Θ̃N

〉
dt . (2.16)

On the other hand, using (2.15) we also have

Δ−1Θ̃N
t = Θ̃N − ŨN . (2.17)

Combining the last two equations, we obtain∫ T

0

‖ŨN‖2
L2dt =

∫ T

0

(
〈ŨN , Θ̃N 〉 − 〈ΔW̃N , Θ̃N 〉

+ ‖Θ̃N‖2 − a
〈
(ΔWN )3 − η, Θ̃N

〉)
dt

−
〈
ŨN (t),Δ−1Θ̃N (t)

〉∣∣∣T
0

+
∫ T

0

〈
βN , (I − PN )Δ−1Θ̃N

〉
dt . (2.18)

It is easy to see that all the terms on the right side of this equality converge to zero
as N → ∞. Indeed, uniform boundedness of ŨN and ΔW̃N (t) in L2([0, T ];L2(Ω))
by (2.10), along with the strong convergence Θ̃N → 0 in L2([0, T ];H1−ε(Ω)) ⊂
L2([0, T ];L2(Ω)) allows us to conclude that the first three terms converge to 0. As
for the fourth term, we use uniform boundedness of ‖(ΔW̃N )3(t)−η(t)‖L4/3 along
with the strong convergence to zero Θ̃N in L2([0, T ];H1−ε(Ω)) ⊂ L2([0, T ];L4(Ω))
when n ≤ 3. For the fifth term we invoke the uniform bound for ‖ŨN‖ and
strong convergence to zero of ‖Δ−1Θ̃N (t)‖ for all t. For the sixth term, we use the
representation in (2.15) to obtain〈
(I − PN )Δ(ΔWN )3,Δ−1Θ̃

〉
=
〈
(ΔWN )3, (I − PN )Θ̃

〉
=
〈
(ΔWN )3, (I − PN )Θ

〉
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where ‖(ΔWN (t))3‖L4/3 is bounded and (I − PN )Θ converges strongly to zero in

the space L2([0, T ];H1(Ω)). Finally, we conclude that
∫ T

0
‖ŨN (t)‖2dt → 0, which

proves the lemma. �

Step 3. Identification of the nonlinear limit. The strong convergence asserted in
Lemma 2.1 allows us to prove that η coincides with the correct quantity.

Lemma 2.2. Let n ≤ 3. Then

(ΔWN )3 ⇀ (ΔW )3 in L2
(
[0, T ];L4/3(Ω)

)
(2.19)

Proof. The proof is based on a monotonicity argument and an application of [10,
Lemma II.1.3]. We first note that the operator G(W ) := Δ(ΔW )3 is maximal
monotone as considered from W 2,4(Ω) into its dual. We know that

G(WN ) ⇀ Δη in W 2,4(Ω)′

and
WN ⇀ W in W 2,4(Ω) .

In order to identify η with (ΔW )3, we invoke Lemma 3.1 in [10] which requires
that

lim sup
〈
G(WN ) − Δη,WN − W

〉
≤ 0 . (2.20)

In order to establish the inequality required in (2.20), we go back to the first
equation in (2.14). As the test function we choose ψ := W̃N . Integration from 0
to T gives∫ T

0

(
‖ΔW̃N‖2

L2 + a
〈
(ΔWN )3 − η,ΔW̃N

〉)
dt

=
∫ T

0

(
‖ΔW̃N‖2

L2 + a
〈
G(WN ) − Δη, W̃N

〉)
dt

=
∫ T

0

(
‖ŨN‖2

L2 − 〈Θ̃N ,ΔW̃N 〉 −
〈
βN , (I − PN )W̃N

〉)
dt (2.21)

− 〈ŨN , W̃N 〉
∣∣∣T
0

.

We claim that all the four terms on the right hand side of (2.21) converge to
zero. Indeed, the first term converges to zero by virtue of Lemma 2.1. For the
second term, we invoke the uniform boundedness of ‖ΔW̃N (t)‖L2 along with strong
convergence of ΘN in L2([0, T ];H1(Ω)) ⊂ L2([0, T ];L2(Ω)). For the third term we
use the representation in (2.15)〈

βN , (I − PN )W̃
〉

=
〈
βN , (I − PN )W

〉
=
〈
(ΔWN )3, (I − PN )ΔW

〉
→ 0 ,

where we have used the uniform bound ‖(ΔWN )3‖L4/3 along with the strong con-
vergence of (I − PN )ΔW in L4(Ω).

Finally, for the fourth term we argue as before. The bound on ‖Ũ(t)‖ along
with the strong convergence of W̃N in C([0, T ];L2(Ω)) completes the argument.
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Thus, (2.20) follows from (2.21) and the fact that the right hand side of (2.21)
converges to 0. �

Lemma 2.2 allows us to pass the limit in the approximate equation. In addi-
tion, due to lower semicontinuity of the energy, the energy inequality holds for all
weak solutions. This concludes the proof of Theorem 1.3.

Remark 2.3. Note that the result of Lemma 2.2 yields an even stronger conclusion.
It says that WN → W strongly in L2([0, T ];W 2,2(Ω)). Lemma 2.1 provides ad-
ditional convergence UN → U strongly in L2([0, T ];L2(Ω)). This conclusion may
be useful in assessing convergence of the finite-dimensional approximation to the
original equation.

3. Uniform stability of solutions

3.1. Exponential decay of the ODE solutions.

From (2.8) we infer that the energy of the ODE system is nondecreasing. Since
ΘN = 0 implies that xN = 0, La Salle’s invariance principle implies strong stability
of the ODE system.

Our main task is to show that the obtained stability and decay rates are
uniform in N . This will be asserted in the theorem that follows.

Theorem 3.1. Let n ≤ 3. Then there exists a constant C such that for every R > 0
there exists a constant ωR such that if (WN , UN ,ΘN ) is a solution of (2.2)–(2.3)
with E(0) ≤ R, then

∀t ≥ 0 , EN (t) ≤ CEN (0)e−ωRt ,

where EN is defined by (2.6) and the constants C, ωR are independent on N .

We apply the method of multipliers introduced by Avalos and Lasiecka [5]
for linear thermoelastic problems. The method uses two multipliers

M1(W,U,Θ) := Δ−1Θ and M2(W,U,Θ) := W ,

where as before Δ denotes the Laplacian with zero Dirichlet boundary conditions.
We note that all the calculations are performed on finite-dimensional Galerkin
solutions. This avoids potential issues with low regularity of weak solutions, where
the latter may not permit for rigorous justification of PDE estimates.

If (WN , UN ,ΘN ) is a solution of (2.2)–(2.3), then it follows from (2.7) that
for every t ≥ 0

EN (t) +
∫ t

0

‖∇ΘN (s)‖2
L2 ds = EN (0) . (3.1)

We write
EN (t) := Ek

N (t) + Ep
N (t) ,
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where

Ek
N (t) :=

1
2
‖UN (t)‖2

L2 (kinetic part)

Ep
N (t) :=

1
2
‖ΔWN (t)‖2 +

1
2
‖ΘN (t)‖2 +

a

4
‖ΔWN‖4 (potential part) . (3.2)

We split the proof of Theorem 3.1 into a series of lemmas. In the first two
lemmas we estimate the kinetic and potential parts of the energy separately. Let
T > 0 be arbitrary.

Lemma 3.2 (Recovery of kinetic energy). Let n ≤ 3 and (WN , UN ,ΘN ) be a
solution of (2.2)–(2.3). Then for every ε > 0

∫ T

0

Ek
N (t) dt ≤ λ−1

1

(
EN (0) + EN (T )

)
+ 4ε

∫ T

0

EN (t) dt

+
C2E1/2(0)a2

2ε

∫ T

0

‖∇ΘN‖2
L2 dt ,

where C is the Sobolev constant of the embedding H1(Ω) ⊂ L4(Ω).

Proof. Note that M1(WN (t), UN (t),ΘN (t)) ∈ V N . From the second equation
of (2.2) it follows (after integrating by parts in time) that

0 = −
〈
Δ−1ΘN (T ), UN (T )

〉
+
〈
Δ−1ΘN (0), UN (0)

〉
+
∫ T

0

〈
Δ−1ΘN

t (t), UN (t)
〉
dt

−
∫ T

0

(〈
Δ−1ΘN (t),Δ2WN (t)

〉
−
〈
Δ−1ΘN (t),ΔΘN (t)

〉

+ a

〈
Δ−1ΘN (t),Δ

((
ΔWN (t)

)3)〉)
dt .

By Green’s theorem, this implies

0 = −
〈
Δ−1ΘN (T ), UN (T )

〉
+
〈
Δ−1ΘN (0), UN (0)

〉
+
∫ T

0

〈
Δ−1ΘN

t (t), UN (t)
〉
dt

−
∫ T

0

(〈
ΘN (t),ΔWN (t)

〉
− ‖ΘN (t)‖2

L2

+ a
〈
ΘN (t),

(
ΔWN (t)

)3〉)
dt . (3.3)

By the last equation in (2.2), and since V N is invariant under Δ−1, we have

0 =
〈
Δ−1ΘN

t (t) − ΘN (t) + UN (t), UN (t)
〉
. (3.4)
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Equations (3.3) and (3.4) together imply

0 = −
〈
Δ−1ΘN (T ), UN (T )

〉
+
〈
Δ−1ΘN (0), UN (0)

〉

+
∫ T

0

(〈
ΘN (t), UN (t)

〉
− ‖UN (t)‖2

L2

)
dt

−
∫ T

0

(〈
ΘN (t),ΔWN (t)

〉
− ‖ΘN (t)‖2

L2 + a
〈
ΘN (t),

(
ΔWN (t)

)3〉)
dt .

Then for every ε > 0 we have

∫ T

0

‖UN (t)‖2
L2 dt −

(∫ T

0

‖ΘN (t)‖2
L2 dt

)1/2(∫ T

0

‖UN (t)‖2
L2 dt

)1/2

≤ λ−1
1

(
EN (0) + EN (T )

)
+ ε

∫ T

0

‖ΔWN (t)‖2
L2 dt

+
(

1 +
1
4ε

)∫ T

0

‖ΘN (t)‖2
L2 dt − a

∫ T

0

〈
ΘN (t),

(
ΔWN (t)

)3〉
dt .

It now follows that
∫ T

0

‖UN (t)‖2
L2 dt ≤ 2λ−1

1

(
EN (0) + EN (T )

)
+ 2ε

∫ T

0

‖ΔWN (t)‖2
L2 dt

+ λ−1
1

(
3 +

1
2ε

)∫ T

0

‖∇ΘN (t)‖2
L2 dt

− 2a

∫ T

0

〈
ΘN (t),

(
ΔWN (t)

)3〉
dt . (3.5)

It remains to estimate the nonlinear term. We have by the Hölder inequality, the
Sobolev embedding H1(Ω) ⊂ L4(Ω), and the energy inequality,

∫ T

0

∣∣∣〈ΘN (t),
(
ΔWN (t)

)3〉∣∣∣ dt ≤
∫ T

0

‖ΘN (t)‖L4‖ΔWN (t)‖3
L4 dt

≤ C

∫ T

0

‖ΔWN (t)‖3
L4‖∇ΘN (t)‖L2 dt

≤ C

(∫ T

0

‖ΔWN (t)‖6
L4 dt

)1/2

×
(∫ T

0

‖∇ΘN (t)‖2
L2 dt

)1/2

≤ CE1/4(0)

(∫ T

0

‖ΔWN (t)‖4
L2

)1/2
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×
(∫ T

0

‖∇ΘN (t)‖2
L2 dt

)1/2

≤ ε

a

∫ T

0

EN (t) dt

+
C2E1/2(0)a

4ε

∫ T

0

‖∇ΘN (t)‖2
L2 dt . (3.6)

The statement of the lemma now follows from (3.5) and (3.6). �

Lemma 3.3 (Recovery of potential energy). Let (WN , UN ,ΘN ) be a solution
of (1.4)–(1.6). Then
∫ T

0

Ep
N (t) dt ≤ 1

λ1

(
EN (0) + EN (T )

)
+ 2

∫ T

0

Ek
N (t) dt +

1
2λ1

∫ T

0

‖∇ΘN‖2
L2 dt .

Proof. Clearly
∫ T

0

Ep
N (t) dt ≤ 1

2

∫ T

0

(
‖ΔWN (t)‖2

L2 + a‖ΔWN‖4
L4 + ‖ΘN‖2

L2

)
dt . (3.7)

We multiply the second equation of (2.2) by the coefficients of M2(WN (t), UN (t),
ΘN (t)), sum from m = 1 to N , and integrate from 0 to T . After integrating by
parts in t, and adding the term

∫ T

0
‖ΘN (t)‖2

L2 dt to both sides of the equation, we
obtain ∫ T

0

(
‖ΔWN (t)‖2

L2 + a‖ΔWN (t)‖4
L4 + ‖ΘN (t)‖2

L2

)
dt

= −WN (T )UN (T ) + WN (0)UN (0) +
∫ T

0

(
‖UN (t)‖2

L2

+
〈
ΘN (t),ΔWN (t)

〉
+ ‖ΘN (t)‖2

L2

)
dt

≤ λ−1
1

(
EN (0) + EN (T )

)

+
∫ T

0

(
‖UN (t)‖2

L2 + ε‖ΔWN (t)‖2 +
1

4λ1ε
‖∇ΘN (t)‖2

)
dt ,

where ε > 0 is arbitrary. Since ‖ΔWN (t)‖2
L2 ≤ 2Ep

N (t), it follows that

(2 − 2ε)
∫ T

0

Ep
N (t) dt

≤ λ−1
1

(
EN (0) + EN (T )

)
+
∫ T

0

(
‖UN (t)‖2

L2 +
1

4λ1ε
‖∇ΘN (t)‖2

)
dt ,

and by choosing ε = 1/2, the result follows. �
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Proof of Theorem 3.1. By combining the estimates of Lemma 3.2 and Lemma 3.3,
we obtain ∫ T

0

EN (t)dt ≤ 3
λ1

(
EN (0) + EN (T )

)
+ 8ε

∫ T

0

EN (t)dt

+

(
C2
√

E(0)a2

ε
+

1
2λ1

)∫ T

0

‖∇ΘN (t)‖2
L2dt ,

and so by choosing ε = 1/16 we have∫ T

0

EN (t) dt ≤ 6
λ1

(
EN (0)+EN (T )

)
+
(

32C2
√

E(0)a2 +
1
λ1

)∫ T

0

‖∇ΘN (t)‖2 dt .

From the energy identity (3.1), we estimate EN (0) in terms of EN (T ) and in terms
of the damping which, in turn, leads to:∫ T

0

EN (t) dt ≤ 12
λ1

EN (T ) +
(

32C2
√

E(0)a2 +
7
λ1

)∫ T

0

‖∇ΘN (t)‖2 dt . (3.8)

Since EN (t) ≥ EN (T ) for t < T ,

TEN (T ) ≤ 12
λ1

EN (T ) +
(

32C2
√

E(0)a2 +
7
λ1

)∫ T

0

‖∇ΘN (t)‖2 dt . (3.9)

Hence (
T − 12

λ1

)
EN (T ) ≤

(
32C2

√
E(0)a2 + 7λ−1

1

) ∫ T

0

‖∇ΘN (t)‖2
L2 dt .

Defining

K(s) :=
32C2

Ω

√
sa2 + 7λ−1

1

T − 6λ−1
(3.10)

and by choosing T > 6/λ1, we have

EN (T ) ≤ K
(
E(0)

) ∫ T

0

‖∇ΘN (t)‖2
L2 dt .

So by (3.1), (
1 + K

(
E(0)

))
EN (T ) ≤ K

(
E(0)

)
EN (0) .

Consequently,

EN (T ) ≤ K(E(0))
1 + K(E(0)

EN (0) = γE(0)EN (0) , (3.11)

where

γs :=
K(s)

1 + K(s)
< 1 . (3.12)

Propagating the above estimate over the intervals [kT, (k+1)T ], k = 1, 2, . . .,
we obtain

EN

(
(k + 1)T

)
≤ K(E(T ))

1 + K(E(kT ))
EN (kT ) = γE(kT )EN (kT ) (3.13)
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Now we notice that γs is an increasing function of s. Indeed, this follows from the
definition of γs and the fact that K(s) is also an increasing function of s. Thus
γs1 ≤ γs2 , whenever s1 ≤ s2. Since the energy E(kT ) is decreasing in k, we obtain
that

γE(kT ) ≤ γE(0) for all k = 1, 2 . . . .

Thus
EN

(
(k + 1)T

)
≤ γE(0)EN (kT ) , k = 1, 2 . . . . (3.14)

This yields
EN (kT ) ≤ γk

E(0)EN (0) , k = 0, 1, 2 . . . . (3.15)

Since γE(0) < 1, one obtains γk
R ≤ e−ωRkT with

ωR = − log γR

T
> 0 .

Thus, for t ∈ [kT, (k + 1)T ] we have

E(t) ≤ E(Tk) ≤ E(0)e−ωRkT ≤ CE(0)e−ωRt

where the constant C satisfies:

C = eωRT ≤ T + λ−1
1

7λ−1
1

.

This gives the final conclusion in the statement of the theorem. �

3.2. Exponential stability of the PDE solutions

We observe that the same proof as that of Theorem 3.1 works for any smooth
solution by using the multipliers −Δ−1Θ and W in place of Δ−1ΘN and WN ,
respectively. Since we have not proved the existence of smooth solutions of the
system (1.1)–(1.3), we use the Galerkin approximations and weak convergence to
prove exponential decay of the weak solution.

Proof of Theorem 1.5. We begin by observing that using the estimates in The-
orem 3.1, we can rework the argument in Subsection 2.7 so that we have the
existence of a weak solution for all t ≥ 0.

From the proof of Theorem 1.3 it follows that

WN ⇀ W in L2
(
[0, T ];W 2,2(Ω)

)
,

UN ⇀ U in L2
(
[0, T ];L2(Ω)

)
,

ΘN ⇀ Θ in L2
(
[0, T ];L2(Ω)

)
,

ΔWN ⇀ ΔW in L2
(
[0, T ];L4(Ω)

)
.

Take [t, t + h] ⊂ [0,∞). The norm in L2([t, t + h];L4(Ω)) is weakly lower semicon-
tinuous. Hence ∫ t+h

t

E(s) ds ≤ lim inf
N→∞

∫ t+h

t

EN (s) ds .
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So by Theorem 3.1,

1
h

∫ t+h

t

E(s) ds ≤ CE(0)
h

∫ t+h

t

e−ωRs ds , (3.16)

where we have used EN (0) ≤ E(0). Then the limit as h → 0 of the left-hand side
of (3.16) exists for almost all t ≥ 0 [50, Theorem 7.11, p. 141]. Consequently, for
almost all t ≥ 0, E(t) ≤ CE(0)e−ωRt. �

3.3. Proof of the corollary

We need to show that the decay rates ωR can be made independent on R. Our
starting point is the estimate in Theorem 1.5. Let E(0) ≤ R and let r > 0 be an
arbitrary positive constant. The constant C is given in (1.8) and is independent on
R. We select the entrance time tR when the solution enters the ball B(0, r). This
implies E(tR) ≤ CRe−ωRtR ≤ r, hence tR = max{0,− log r

CR

ωR
}. With the above

notation the semigroup property and the estimate (1.8) imply

E(t) ≤ Cre−ωr(t−tR) , t ≥ tR .

The dissipativity relation yields E(t) ≤ R for t ≥ 0, and hence the following
cumulative estimate holds:

E(t) ≤ max{R,Cr}eωrtRe−ωrt = C(R, r)e−ωrt .

We also recall that

ωR = − 1
T

log γR = − 1
T

log
K(R)

1 + K(R)

where K(R) is given by (3.10). Maximizing ωr with respect to r leads to taking
r = 0 in K(r), given by (3.10), and gives

ω0 = sup
R>0

ωR =
1
T

log
(

T + λ−1
1

7λ−1
1

)
.

Since C(R, r) → ∞ when r → 0 we take a suboptimal value of s = ε2 which then
leads to

ωε =
1
T

log
(

T + λ−1
1 + 32C2

Ωa2ε

7λ−1
1 + 32C2

Ωa2ε

)
. (3.17)

We clearly have ωε → ω0 as ε → 0.
Optimizing the above expression with respect to the choice of time T ∈

(6λ−1
1 ,∞) yields the optimal value T 0 given by

T 0 + c

b
= e

T b
T0+c , (3.18)

where b := 7λ−1
1 + 32C2

Ωa2ε and c := λ−1
1 + 32C2

Ωa2ε.
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Summing up, the “optimal” decay rates are given by ω0
ε given by expres-

sion (3.17) with T replaced by T0 resulting from solving (3.18). The constant
C(R, ε) is estimated by

C(R, ε) = ReωεtR = Reωεω−1
R log(CRε2) = R

(
CR

ε−2

)ωεω−1
R

,

which explicitly computed gives

ωεω
−1
R = log

T0 + λ−1
1 + 32C2

Ωεa2

7λ−1
1 + 32C2

Ωεa2
×
(

log
T0 + λ−1

1 + 32C2
Ω

√
Ra2

7λ−1
1 + 32C2

Ω

√
Ra2

)−1

.

Clearly, C(R, ε) → ∞ when ε → 0. The proof of the corollary is completed.

4. Appendix

In this section we shall present results pertaining to existence of smooth solutions
corresponding to the nonlinear problem (1.1)–(1.3). This is based on an approach
which is very different from the one used before in this paper and leading to weak
and global solutions. This approach relies on an explicit use of the analyticity of the
semigroup corresponding to the linear part of the model. A critical role is played
by the estimates reflecting “maximal regularity” of solutions to non-autonomuos
abstract parabolic equations [1, 44]. The resulting theory will lead to either local
in time, or global and small data existence and uniqueness of smooth (classical)
solutions, where the smoothness is measured with respect to Hölder continuity.
The result obtained is as follows:

Theorem 4.1. With reference to the problem (1.1)–(1.3).
Let x(0) := (ΔW (0),Wt(0),Θ(0)) ∈ X1 ≡ C1+ε(Ω) × C1+ε(Ω) × C1+ε(Ω),

where ε > 0 is arbitrary. Then there exists a time T0 > 0 such that x(t) =
(ΔW (t), U(t),Θ(t)) is a unique classical solution satisfying
(1) (ΔW,U,Θ) ∈ [C([0, T0] × Ω)]3 ∩ [C1((0, T0] × Ω)]3

(2) (Δ2W,ΔU,ΔΘ) ∈ [C((0, T0] × Ω)]3.
If in addition, (ΔW (0), U(0),Θ(0)) ∈ [C2

0 (Ω)]3, the the solution is strict, and the
regularity described above extends to the closed intervals [0, T0].

The same conclusion holds with an arbitrary T0 < ∞, provided however that
|x(0)|X1 ≤ r, for r sufficiently small.

Remark 4.2. Theorem 4.1 establishes existence and uniqueness of classical solu-
tions defined on some interval [0, T0]. Instead of having solutions local in time one
could also obtain, by following the methods in [44] solutions that are global in
time at the expense of restricting the analysis to suitably small data. One way or
another, this type of result pertains only to local (in time or space) solutions. This
is in contrast with Theorem 1.3, which asserts global solutions, however of limited
regularity. Combining both types of results with the aim of obtaining a full scale
of spaces with various degrees of regularity, appears to be an open and difficult
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problem. The technicalities and methodology involved in the two approaches are
very different and incompatible.

Proof. Step 1. Abstract parabolic problem and maximal regularity. We shall first
represent the original PDE system (1.1)–(1.3) as an abstract parabolic system. To
accomplish this we define [39,43] Z := ΔW and set x := (Z,U, θ). The differential
operator Δ, equipped with zero Dirichlet boundary conditions, generates an an-
alytic semigroup on L2(Ω). With the above notation, the original system can be
written in the following operator form:

xt = Δ

⎡
⎣ 0 1 0

−1 0 1
0 −1 1

⎤
⎦x − aΔ

⎡
⎣ 0

φ(Z)
0

⎤
⎦ , (4.1)

where φ(s) := s3. Denoting

A := Δ

⎡
⎣ 0 1 0

−1 0 1
0 −1 1

⎤
⎦ , (4.2)

it is easily seen that A is the generator of an analytic semigroup on H := L2(Ω)×
L2(Ω) × L2(Ω) and (4.1) can be rewritten as

xt = Ax + AF (x) (4.3)

where
F (x) := −a

[
φ(Z) 0 0

]�
.

Equation (4.3) is a nonlinear abstract parabolic system defined on H. The nonlin-
earity enters via the generator A, and so solvability of the system must depend on
“maximal regularity” properties [16, 44]. Since maximal regularity does not hold
within the context of the L∞([0, T ];H)-topology [44], one should consider the prob-
lem within the framework of interpolation spaces based on the C(Ω)-topology. To
accomplish this, we shall adopt and follow the framework of [44].

First of all we will be considering Δ : Dom(Δ) ⊂ C(Ω) → C(Ω) with

Dom(Δ) =
{
φ ∈ C(Ω),Δφ ∈ C(Ω), φ = 0 on ∂Ω

}
.

Moreover Dom(Δ) ⊃ {φ ∈ C2(Ω), φ = 0 on ∂Ω}. It is known [44] that Δ generates
an analytic semigroup on C(Ω). However, the generator has peculiar properties
that include:
(1) it is not densely defined,
(2) it is not strongly continuous.

The operator A, whose action is defined in (4.2) is also an extended generator of
an analytic semigroup on

X := C(Ω) × C(Ω) × C(Ω)

with Dom(A) := Dom(Δ) × Dom(Δ) × Dom(Δ).



Vol. 15 (2008) Nonlinear Thermoelasticity 711

Step 2. Representation as a quasilinear abstract parabolic system. Rewriting

Δφ(u) = φ′(u)Δu + φ′′(u)|∇u|2 ,

we obtain from (4.3) that

xt = Ax − a
[

0, φ′(Z)ΔZ + φ′′(Z)|∇Z|2, 0
]�

.

Denoting

A(t, x) = A(x) := A − a

⎡
⎣ 0 0 0

φ′(Z)Δ 0 0
0 0 0

⎤
⎦
�

, (4.4)

leads us to the consideration of a quasilinear system :

xt = A(x)x + f(x) , (4.5)

where
f(x) ≡ −a

[
0 φ′′(Z)|∇Z|2 0

]�
.

Equation (4.5) is a quasilinear abstract parabolic system studied in [44]. In fact,
Theorem 2.1 in [45] gives local existence and uniqueness of solutions under several
hypotheses imposed on A(x) and f(x).

Step 3. Verification of the hypotheses for Theorem 2.1. We shall use the notation
from [45]. The standing hypotheses (i) and (ii) on page 397 require that for any
open set U ∈ DA(θ,∞) [16, 44], with some θ ∈ (0, 1), A(x) : U → L(D,X) and
f(x) are locally Lipschitz with respect to x ∈ B(x0, r) ⊂ DA(θ,∞). This is to say,

||A(x) − A(y)||L(D,X) + |f(x) − f(y)|X ≤ K|x − y|DA(θ,∞) (4.6)

for x, y ∈ B(x0, r) ⊂ DA(θ,∞).
The above is satisfied by taking θ > 1

2 . For this it suffices to note the presence
of ∇ in the definition of f and the characterization [45]

DA(∞, θ) ∼
{

x ∈
[
C2θ(Ω)

]3|x = 0 on ∂Ω
}

for θ �= 1/2 .

Requirement (ii) in Theorem 2.1 is that A(x0) for x0 ∈ U is a generator of an
analytic semigroup on X. This folllows from the fact that A(x) is strongly elliptic
on the strength of φ′ ≥ 0). Indeed, the operator A(x) can be written as

A(x0) =
[
I − aφ′(Z0)M

]
A

where the matrix M is equal to

M ≡

⎡
⎣ −1 1 −1

0 0 0
0 0 0

⎤
⎦

It is easy to see that for each x0 = (Z0, U0, θ0) ∈ U the matrix I − aφ′(Z0)M is
non-singular on the strength of φ(Z) ≥ 0. Since A generates an analytic semigroup,
so does A(x0).
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Thus [45, Theorem 2.] gives local existence and uniqueness of classical solu-
tions for any initial data x(0) ∈ [C1+ε

0 (Ω)]3. Similarly, stronger regularity of initial
datum x(0) ∈ Dom(A)×Dom(A)×Dom(A) implies that the obtained solution is
strict. This implies the second part of Theorem 4.1. The third part of the Theorem
follows from the fact that A generates an exponentially stable analytic semigroup.
Thus, time globality of small data solutions follows from the theory presented
in [46]. �
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