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1 Introduction

This paper is devoted to the study of the existence of solutions of the following
periodic boundary value problem

{
u′′(t) + f(t, u(t)) = g(t) 0 < t < 2π

u(0) − u(2π) = u′(0) − u′(2π) = 0
(1.1)
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where g is a bounded measurable function, and f : [0, 2π] × (u0, +∞) → R is
continuous, 2π−periodic in t and f(t, .) is singular at u0 ∈ R; the singularity
consists in the fact that the nonlinearity f(t, .) is unbounded from below in a
neighborhood of u0.

Nonlinear second order differential equations with singular restoring forces
describe, among other things, the dynamics of particules under the action of
Newtonian type forces caused by compressed gazes. Singular two-point boundary
value problems have received a great deal of attention. For a good account on
recent works we refer the reader to the monographs [1], [15] and the memoire [2].

The problem of existence of periodic solutions of autonomous and nonau-
tonomous singular second order differential equations, with or without a friction
term, have been investigated by many authors using a topological method based on
the topological degree theory and upper-lower solutions method. See for instance
[3-10], [12], [14], [17], [21] and [22]. In almost all these papers the differential
equation contains a friction term that does not allow the application of a vari-
ational method. Problem (1.1) is treated as a particular case. See for example
[3] and [12]. However, our assumptions are different, and moreover, the novelty
in our study consists in the application of a variational approach based on the
mountain pass theorem. The advantage, here, is that we are able to consider
the case when the singular nonlinearity f(t, .) is bounded from above that does
not meet the conditions to apply the topological approach, see for instance the
assumption (H4) in [4] and the assumptions of Theorem 4.1 in [3]. More precisely,
we state sufficient conditions on f such that solutions of (1.1) will be sought as
critical points of some functional in an appropriate Sobolev space. Moreover, this
functional is shown to have a mountain pass geometry. In fact, we shall use a
variant of the mountain pass theorem as stated in [18]. For definitions and results
on critical point theory, we refer to [11], [13], [18]. Other variants of the mountain
pass theorem can be found in [16], [19] and [20].

Finally, we should point out that our main result cannot be deduced trivially
from all the above cited works. It complementes quite well the results in [3], [4]
and [12].

2 Preliminaries

Let F (t, u) :=
∫ u

1+u0

f(t, s)ds. Then problem (1.1) has a variational structure with

corresponding functional ϕ given by

ϕ(u) :=
∫ 2π

0

[
1
2
u′(t)2 − F (t, u(t)) + g(t)u(t)

]
dt

and is defined on the Banach space (in fact it is a Hilbert space)

H1
2π :=

{
u : [0, 2π] → R absolutely continuous;u(0) = u(2π), u′ ∈ L2([0, 2π]; R)

}
,
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equipped with the norm

‖u‖ =
(∫ 2π

0
|u(t)|2dt +

∫ 2π

0
|u′(t)|2dt

) 1
2

,

for u ∈ H1
2π.

It is well known (see for instance [13]) that ϕ is well defined on H1
2π, con-

tinuously differentiable and weakly lower semicontinuous. Moreover, the critical
points of ϕ (i.e. u ∈ H1

2π such that ϕ′(u) = 0) are solutions of (1.1).
In our work, we shall use a variant of the mountain pass theorem (see [18]

for details) to prove our main result.

3 Main Result

Consider problem (1.1) with g : [0, 2π] → R is a bounded measurable function,
and f : [0, 2π] × (u0, +∞) −→ R is continuous and satisfies

(H1) lim
u→u+

0

f(t, u) = −∞ (uniformly in t)

(H2) limu→u+
0

F (t, u) = +∞ (uniformly in t)

(H3) M(t) := sup{f(t, s); u0 < s < +∞} is bounded

(H4) lim
u→+∞

∫ 2π

0
[F (t, u) − g(t)u]dt = +∞

(H5) D1F (t, u) :=
∂F

∂t
(t, u) exists and is nonnegative

The above problem was considered in [4] in the case f unbounded above

and satisfying (H1), (H2), (H5) and lim
u→+∞2

F (t, u)
u2 = µ(t), µ(t) > 0 such that

µ0 = supt µ(t) < 1
4 , using a topological approach based on the topological

degree theory and upper-lower solutions method. The fact that the nonlinear-
ity is unbounded from above and from below allows the author in [4] to exhibit
a constant upper solution and a constant lower solution, and then construct a
set Ω, which is admissible for the use of the topological degree. In the present
paper, we consider problem (1.1) when f is bounded above, i.e. we suppose that
M(t) := sup{f(t, s); u0 < s < +∞} ≤ M < +∞. In this case we cannot use the
approach of [4].

Our main result reads as follows.

Theorem A. Assume (H1), (H2), (H3), (H4) and (H5) are satisfied. Then problem
(1.1) has at least one solution.
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Proof. The proof will be based on several claims.

For λ ∈ (u0, u0 + 1) we consider the following modified problem{
u′′(t) + fλ(t, u(t)) = g(t) 0 < t < 2π

u(0) − u(2π) = u′(0) − u′(2π) = 0
(3.1)

where fλ : [0, 2π] × R −→ R is defined by

fλ(t, u) =

{
f(t, u) u ≥ λ

f(t, λ) u < λ

Let Fλ(t, u) =
∫ u

u0+1
fλ(t, s)ds and consider the functional

ϕλ : H1
2π −→ R

defined by

ϕλ(u) =
∫ 2π

0

[
1
2
u′(t)2 − Fλ(t, u(t)) + g(t)u(t)

]
dt. (3.2)

It is well known (see for instance [13]) that ϕλ is well defined on H1
2π, continuously

differentiable and weakly lower semicontinuous. Moreover, the critical points of
ϕλ are solutions of (3.1).

Claim 1. ϕλ satisfies the Palais-Smale condition.
Let {un}n∈N

be a sequence in H1
2π such that {ϕλ(un)}n∈N

is bounded and
ϕ′

λ(un) −→ 0 as n → +∞ weakly in H1
2π ; i.e. there exist a constant c1 > 0 and

a sequence {εn}n∈N
⊂ R+ with εn → 0 as n → +∞ such that∣∣∣∣

∫ 2π

0

[
1
2
u′

n(t)2 − Fλ(t, un(t)) + g(t)un(t)
]

dt

∣∣∣∣ ≤ c1 for all n, (3.3)

and for every v ε H1
2π,∣∣∣∣

∫ 2π

0
[u′

n(t)v′(t) − fλ(t, un(t))v(t) + g(t)v(t)] dt

∣∣∣∣ ≤ εn‖v‖H1
2π

. (3.4)

We show that {un}n∈N has a bounded subsequence in H1
2π, and this will be enough

to derive the Palais-Smale condition.

Taking v(t) ≡ −1 in (3.4) we obtain∣∣∣∣
∫ 2π

0
[fλ(t, un(t)) − g(t)] dt

∣∣∣∣ ≤ εn

√
2π for all n.
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So that ∣∣∣∣
∫ 2π

0
fλ(t, un(t))dt

∣∣∣∣ ≤ εn

√
2π +

∣∣∣∣
∫ 2π

0
g(t)dt

∣∣∣∣ := c2. (3.5)

Let

I1,n := {t ∈ [0, 2π]; fλ(t, un(t)) ≥ 0} ,

and

I2,n := {t ∈ [0, 2π]; fλ(t, un(t)) < 0} .

It follows from (3.5) that∣∣∣∣∣
∫

I2,n

fλ(t, un(t))dt

∣∣∣∣∣ ≤ c2 +
∫

I1,n

fλ(t, un(t))dt ≤ c2 + 2πM,

where M is such that M(t) ≤ M for all t ∈ [0, 2π].

Hence, there exists c3 > 0 such that∫ 2π

0
|fλ(t, un(t))| dt ≤ c3 for all n. (3.6)

On the other hand, if we take, in (3.4), v(t) ≡ wn(t) := un(t) − ūn,where ūn is
the average of un over the interval [0, 2π],we get (taking into account (3.6))

c4‖wn‖H1
2π

≥
∫ 2π

0

[
1
2
w′

n(t)2 − fλ(t, un(t))wn(t) + g(t)wn(t)
]

dt

≥ 1
2
‖w′

n‖2
L2 − (c3 + ||g||L1) ||wn||L∞

≥ 1
2
‖w′

n‖2
L2 − c5‖wn‖H1

2π
.

Consequently, using the Poincaré-Wirtinger inequality for zero mean functions in
the Sobolev space H1

2π, there exists c6 > 0 such that

‖u′
n‖L2 ≤ ‖wn‖H1

2π
≤ c6. (3.7)

Suppose, now, that

‖un‖H1
2π

→ +∞ as n → +∞.

Since (3.7) holds, we have, passing to subsequences if necessary, that either

mn := minun → −∞ as n → +∞, or
Mn := max un → +∞ as n → +∞.
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(i) Assume that the second possibility occurs. We have∫ 2π

0
[Fλ(t, un(t)) − g(t)un(t)] dt

=
∫ 2π

0

[(∫ un(t)

1+u0

fλ(t, s)ds

)
− g(t)un(t)

]
dt

=
∫ 2π

0

[(∫ Mn

1+u0

fλ(t, s)ds −
∫ Mn

un(t)
fλ(t, s)ds

)
− g(t)un(t)

]
dt

=
∫ 2π

0
[Fλ(t, Mn) − Mng(t)] dt −

∫ 2π

0

[∫ Mn

un(t)
(fλ(t, s) − g(t)) ds

]
dt

≥
∫ 2π

0
[Fλ(t, Mn) − Mng(t)] dt − ‖Mλ − g‖L1‖Mn − un‖C .

(Here Mλ(t) = sup{fλ(t, s); u0 < s < +∞}).

Thus, applying Sobolev and Poincaré’s inequalities to Mn − un(·),∫ 2π

0
[Fλ(t, Mn) − Mn g(t)] dt ≤

∫ 2π

0
[Fλ(t, un(t)) − g(t)un(t)] dt

+‖Mλ − g‖L1

√
2π c6 for all n.

Using (3.3) and (3.7) we see that the sequence∫ 2π

0
[Fλ(t, Mn) − Mn g(t)] dt is bounded.

This contradicts (H4).

(ii) Assume the first possibility occurs; i.e. mn → −∞ as n → +∞. We
replace Mn by −mn in the preceeding arguments, and we also arrive at a
contradiction.

Therefore ϕλ satisfies the Palais-Smale condition. This completes the proof
of the claim.

Let

Ω := {u ∈ H1
2π; minu > 1 + u0},

and

∂Ω =
{
u ∈ H1

2π; u(t) ≥ 1 + u0 for every t ∈ (0, 2π),

∃tu ∈ (0, 2π) : u(tu) = 1 + u0
}
.

We now proceed to show that ϕλ has a mountain pass geometry.
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Claim 2. There exists m > 0 such that inf
u∈∂Ω

ϕλ(u) ≥ −m whenever

λ ∈ (u0, u0 + 1).

For u ∈ ∂Ω, we have min u = u(tu) = 1 + u0 for some tu. Extending the
functions by 2π-periodicity, we can write

ϕλ(u) =
∫ tu+2π

tu

[
1
2
u′(t)2 − Fλ(t, u(t)) + g(t)u(t)

]
dt

≥
∫ tu+2π

tu

1
2
u′(t)2dt −

[∫ tu+2π

tu

(Mλ(t) − g(t))(u(t) − u0 − 1)dt

−
∫ tu+2π

tu

g(t)(u0 + 1)dt

]
.

Schwarz inequality and the fact that u′(t) = (u(·) − u0 − 1)′(t) imply

ϕλ(u) ≥ 1
2

||u(·) − u0 − 1)′||2L2 − ‖Mλ − g‖L2 · ‖u(.) − u0 − 1‖L2 + (1 + u0)‖g‖L1 .

Applying Poincaré’s inequality to u(·) − u0 − 1, we get

ϕλ(u) ≥ 1
2
‖u′‖2

L2 − γ‖Mλ − g‖L2‖u′‖L2 + (1 + u0)‖g‖L1 ,

where γ = γ(tu).
The above inequality shows that

ϕλ(u) → +∞ as ‖u′‖L2 → +∞.

When minu = 1 + u0, we have that ‖u(·) − u0 − 1‖H1
2π

→ +∞ is equivalent to
‖u′‖L2 → +∞.

• Hence ϕλ(u) → +∞ as ‖u‖H1
2π

→ +∞, u ∈ ∂Ω. We infer that ϕλ is coer-
cive, and so it has a minimizing sequence. The weak lower semicontinuity
of ϕλ yields

inf
u∈∂Ω

ϕλ(u) > −∞.

It follows that there exists m > 0 such that inf
u∈∂Ω

ϕλ(u) ≥ −m, and this is

true for all λ ∈ (u0, u0 + 1).

The proof of the claim is complete.

Claim 3. There exists λ0 ∈ (u0, u0 + 1) with the property that for every
λ ∈ (u0, λ0), any solution u of (3.1) satisfying ϕλ(u) ≥ −m is such that
min u ≥ λ0, and hence u is a solution of (1.1).

For, assume on the contrary that there are sequences {λn}n∈N and {un}n∈N

such that
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(i) λn ≤ u0 + 1
n

(ii) un is a solution of (3.1) with λ = λn

(iii) ϕλn(un) ≥ −m

(iv) minun < u0 +
1
n

Since f is bounded above by M and
∫ 2π

0
[fλn(t, un(t)) − g(t)] dt = 0, we

have

‖fλn(·, un(·))‖L1 ≤ c7, for some constant c7 > 0.

Hence

‖u′
n‖L∞ ≤ c8, for some constant c8 > 0.

Since ϕλn
(un) ≥ −m it follows that there must exist two constants R1 and

R2, with u0 < R1 < R2 such that

max{un(t); t ∈ [0, 2π]} ∈ [R1, R2],

otherwise, un would tend uniformly to u0 or +∞, and in this case ϕλn(un)
would go to −∞, (because of (H4) and ‖u′

n‖L∞ ≤ c8), which contradicts
ϕλn

(un) ≥ −m.

Let τ1
n, τ2

n be such that, for n large enough

un(τ1
n) = u0 +

1
n

< R1 = un(τ2
n).

Multiplying the differential equation in (3.1) by u′
n and integrating the

resulting equation on [τ1
n, τ2

n], or on [τ2
n, τ1

n], we get

J :=
∫ τ2

n

τ1
n

u′′
n(t)u′

n(t)dt +
∫ τ2

n

τ1
n

fλn(t, un(t))u′
n(t)dt

=
∫ τ2

n

τ1
n

g(t)u′
n(t)dt.

It is clear that

J = J1 +
1
2
[u′2

n(τ2
n) − u′2

n(τ1
n)],

where

J1 =
∫ τ2

n

τ1
n

fλn(t, un(t)u′
n(t)dt.
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Since g is integrable and ‖u′
n‖L∞ ≤ c8, it follows that J is bounded, and

consequently J1 is bounded On the other hand, we have

fλn(t, un(t))u′
n(t) =

d

dt
[Fλn(t, un(t))] − D1Fλn(t, un(t)).

Thus

J1 = Fλn
(τ2

n, R1) − Fλn

(
τ1
n, u0 +

1
n

)
−
∫ τ2

n

τ1
n

D1Fλn(t, un(t))dt.

The assumption (H5) implies that

J1 ≤ Fλn
(τ2

n, R1) − Fλn

(
τ1
n, u0 +

1
n

)
.

It follows from (H2) that J1 is not bounded. This is a contradiction.

Claim 4. ϕλ has a mountain-pass geometry for λ ≤ λ0.

Fix λ ∈ (u0, λ0] such that f(t, λ) < 0 for any t ∈ [0, 2π] . This is possible
because of (H1).

Fλ(t, u0) =
∫ u0

1+u0

fλ(t, s)ds = −
∫ u0+1

u0

fλ(t, s)ds

= −
∫ λ

u0

fλ(t, s)ds −
∫ u0+1

λ

fλ(t, s)ds

= −
∫ λ

u0

f(t, λ)ds −
∫ u0+1

λ

fλ(t, s)ds

= −(λ − u0)f(t, λ) −
∫ u0+1

λ

fλ(t, s)ds.

This implies that

Fλ(t, u0) > −
∫ u0+1

λ

f(t, s)ds =
∫ λ

u0+1
f(t, s)ds = Fλ(t, λ).

Hence

ϕλ(u0) = −
∫ 2π

0
Fλ(t, u0)dt +

∫ 2π

0
g(t)u0 dt

< −
∫ 2π

0
Fλ(t, λ)dt + u0‖g‖L1 .

Consider λ ∈ (u0, λ0] such that

Fλ(t, λ) >
m + ‖g‖L1u0

2π
for all t ∈ [0, 2π].

This is possible by (H2).
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It follows that ϕλ(u0) < −m − u0‖g‖L1 + u0‖g‖L1 or ϕλ(u0) < −m.
Also, using (H4) we can find R, sufficiently large so that R > 1 + u0 and

Fλ(t, R) >
m + R‖g‖L1

2π
for all tε[0, 2π].

This implies that

ϕλ(R) < −m.

Since Ω is a neighborhood of R, u0 /∈ Ω and

max{ϕλ(u0), ϕλ(R)} < inf
u∈∂Ω

ϕλ(u),

we are in the situation of the mountain-pass theorem (see [18]).

Claim 1 and Claim 4 imply that ϕλ has a critical point uλ such that

ϕλ(uλ) = inf
η∈Γ

max
0≤s≤1

ϕλ(η(s)) ≥ inf
u∈∂Ω

ϕλ(u),

where Γ := {η ∈ C([0, 1];H1
2π); η(0) = u0, η(1) = R}.

Since inf
u∈∂Ω

ϕλ(u) ≥ −m, it follows from claim 3 that uλ is a solution of (1.1).

This completes the proof of the main result.
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