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Abstract. The following coupled damped Klein-Gordon-Schrödinger
equations are considered

iψt + ∆ψ + iα|ψ|2ψ = φψ in Ω × (0,∞), (α > 0)

φtt − ∆φ+ a(x)φt = |ψ|2χω in Ω × (0,∞),

where Ω is a bounded domain of R
n, n ≤ 3, with smooth boundary Γ and ω

is a neibourhood of ∂Ω. Here χω represents the characteristic function of ω.
Assuming that a ∈ W 1,∞(Ω) is a nonnegative function such that a(x) ≥
a0 > 0 a. e. in ω, polynomial decay rate is proved for every regular solution
of the above system. Our result generalizes substantially the previous results
given by the authors in the reference [CDC].
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1 Introduction

We consider the following model of Klein-Gordon-Schrödinger equations with
locally distributed damping



iψt + ∆ψ + iα|ψ|2ψ = φψ in Ω × (0,∞)
φtt − ∆φ+ a(x)φt = |ψ|2χω in Ω × (0,∞)
ψ = φ = 0 on Γ × (0,∞)
ψ(0) = ψ0 ∈ H1

0 (Ω) ∩H2(Ω),
φ(0) = φ0 ∈ H1

0 (Ω) ∩H2(Ω),
φt(0) = φ1 ∈ H1

0 (Ω),

(1.1)

where Ω is a bounded domain of R
n, n ≤ 3, with smooth boundary Γ and ω is an

open subset of Ω such that meas(ω) > 0. In what follows, α is a positive constant
and χω represents the characteristic function, that is, χ = 1 in ω and χ = 0 in
Ω\ω. We consider a ∈ W 1,∞(Ω) a nonnegative function such that

a(x) ≥ a0 > 0 a.e. in ω,

so that the nonlinearity |ψ|2 exists where the damping a(x)φt is, in fact, effective
and reciprocally. If the damping is effective in the whole domain, i. e., a(x) ≥
a0 > 0 a. e. in Ω we can consider χω ≡ 1 in Ω. This is required in order to turn
the system dissipative. Problem (1.1) has its origin in the canonical model of the
Yukawa interaction of conserved complex nucleon field ψ with neutral real meson
field φ given by 


iψt + ∆ψ = φψ in Ω × (0,∞)
φtt − ∆φ+ µ2φ = |ψ|2 in Ω × (0,∞)
ψ = φ = 0 on Γ × (0,∞)
ψ(0) = ψ0, φ(0) = φ0, φt(0) = φ1.

(1.2)

Where the positive constant µ represents the mass of a meson. Since we are
considering a bounded domain, for simplicity’s sale the term µ2 φ will be omitted.

It is important to note that problem (1.2) is not naturally dissipative. So,
the introduction of the dissipative mechanisms given by the terms α|ψ|2ψ and
a(x)φt are necessary to force the energy to decay to zero when t goes to infinity.
In fact, the dissipative K-G-S equation has been widely studied, see for example
the following references: [BoYo1], [BoYo3], [LaWa1], [LaWa2], [MoGoHa], [GaDa]
and references therein. The majority of works in the literature deal with linear
dissipative terms acting in both equations, except for the works [BoYo2] and
[CDC]. Very few is known, in terms of polynomial decay, regarding the natural
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nonlinear dissipation i |ψ|2ψ acting in the Schrödinger equation and, as far as
we are concerned, there is no result in the literature dealing with a localized
dissipation in the wave equation for this system. A natural question arises in this
context: it would be possible to consider a localized feedback i b(x)|ψ|2ψ acting in
the Schrödinger equation (instead of a mechanism of damping acting on the whole
domain) in order to obtain some decay rate? This is a hard open problem to be
solved since some ‘good terms’ are lost in the computations when we consider the
real (or imaginary) part of them. In the present paper, since we are considering a
nonlinear feedback acting in the Schrödinger equation and a linear localized one
acting in the wave equation, it is expected that the energy of the system decays
to zero polynomially. To prove this fact is the main goal of this paper.

We would like to mention other papers in connection with problem (1.2),
namely: Fukuda and Tsutsumi [FT1], [FT2], [FT3], [FT4], Bachelot and Chadam
[BaCha] and Hayashi and W. Von Wahl [HaVo]. In the above articles the unique
global existence to problem (1.2) is established and some conservation laws are
verified.

The strategy to prove polynomial and uniform decay rates to problem (1.1)
is to obtain integral inequalities of energy. For this purpose we have to use the
multiplier method due to L. F. Ho [Ho], which is detailed in Lions [Li2], combined
with integral inequalities that can be found in Komornik [K], (and references
therein) with new tools which come from the difficulty in dealing with this type
of coupled equations. Our result generalizes substantially the previous results due
to the authors Cavalcanti and Domingos Cavalcanti given in [CDC]. In [CDC] the
mechanism of damping is effective in the whole domain for both equations.

Our paper is organized as follows. In section 2 we give the precise assump-
tions and state our main result and in section 3 we give the proof of the main
theorem.

2 Main Result

In what follows let us consider the Hilbert space L2(Ω) of complex valued functions
on Ω endowed with the inner product

(u, v) =
∫
Ω u(x)v(x)dx,

and the corresponding norm
||u||22 = (u, u) .

We also consider the Sobolev space H1(Ω) endowed with the scalar product

(u, v)H1(Ω) = (u, v) + (∇u,∇v) .

We define the subspace of H1(Ω), denoted by H1
0 (Ω), as the closure of C∞

0 (Ω) in
the strong topology of H1(Ω). This space endowed with the norm induced by the
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scalar product

(u, v)H1
0 (Ω) = (∇u,∇v)

is, thanks to the Poincaré’s inequality

||u||2 ≤ λ||∇u||2, for all u ∈ H1
0 (Ω); (2.1)

a Hilbert space. We set the norms

||u||pp =
∫
Ω |u(x)|p dx, ||u||pΓ,p =

∫
Γ |u(x)|p dΓ, ||u||∞ = ess supx∈Ω|u(x)|.

In the particular case when p = 4 we have the continuous immersion
L4(Ω) ↪→ L2(Ω) and consequently the following inequality holds

||v||2 ≤ k||v||4, for all v ∈ L4(Ω), (2.2)

where k := meas(Ω)1/4.

The following assumptions are made:

Assumption 2.1 We assume that a ∈ W 1,∞(Ω) is a nonnegative function such
that

a(x) ≥ a0 > 0, a. e. in ω. (2.3)

In addition,

If a(x) ≥ a0 > 0 in Ω, then we consider χω ≡ 1 in Ω. (2.4)

Assumption 2.2 We assume that ω is a neighbourhood of Γ(x0) where

Γ(x0) := {x ∈ Γ; (x− x0) · ν(x) > 0} (2.5)

and ν(x) is the unit outward normal at x ∈ Γ.

As an example of a domain Ω satisfying the above assumption let us consider
the figure 1 below:
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Γ(x0)

Γ\Γ(x0)ω Ω\ω x0
�����������

�������������

�����������������������������

�
x− x0

���
ν(x)

�
��x− x0 ν(x)

��•

Figure 1

It is well known that under the Assumption 2.1, problem (1.1) is well posed
in the space H1

0 (Ω)∩H2(Ω)×H1
0 (Ω)∩H2(Ω)×H1

0 (Ω), that is for any initial data
{ψ0, φ0, φ1} ∈ H1

0 (Ω) ∩ H2(Ω) × H1
0 (Ω) ∩ H2(Ω) × H1

0 (Ω) there exists a unique
regular solution of (1.1) in the class

ψ ∈ L∞
loc(0,∞, H1

0 (Ω) ∩H2(Ω)), φ ∈ L∞
loc(0,∞, H1

0 (Ω) ∩H2(Ω)), (2.6)
φt ∈ L∞

loc(0,∞, H1
0 ((Ω)).

The energy associated to problem (1.1) is defined by

E(t) :=
1
2

∫
Ω

(|ψ(x, t)|2 + |∇φ(x, t)|2 + |φt(x, t)|2
)
dx. (2.7)

Now, we are in position to state our main result

Theorem 2.1 Assume that assumptions (2.1) and (2.2) hold and moreover that

α >
a−1
0
2 . Then, there exists some positive constant C = C(E(0)) such that

following decay rate holds

E(t) ≤ CE(0)
1 + t

, for all t ≥ 0. (2.8)

for every regular solution of problem (1.1) in the class given in (2.6)

3 Uniform Decay Rates

In this section we work it regular solutions {ψ(t), φ(t), φt(t)} to problem (1.1), that
is, those ones that lie, for instance, in H1

0 (Ω) ∩H2(Ω) ×H1
0 (Ω) ∩H2(Ω) ×H1

0 (Ω).
In what follows, for simplicity, we will denote ut = u′. So, multiplying the first
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equation of (1.1) by ψ, the second equation by φ′, integrating over Ω and making
use of Green formula, we deduce that∫

Ω
ψ′ψ dx+ i

∫
Ω

|∇ψ|2 dx+ α

∫
Ω

|ψ|4 dx = −i
∫

Ω
φ|ψ|2 dx (3.1)

1
2
d

dt

∫
Ω
(|φ′|2 + |∇φ|2) dx+

∫
Ω
a(x)|φ′|2 dx =

∫
ω

|ψ|2φ′ dx. (3.2)

Taking the real part in (3.1) and adding the obtained result with (3.2) we
obtain

E′(t) + α

∫
Ω

|ψ|4 dx+
∫

Ω
a(x)|φ′|2 dx =

∫
ω

|ψ|2φ′ dx. (3.3)

Next, we will analyze the last term on the RHS of (3.3). We have, from (2.3)
and making use of the Cauchy-Schwarz inequality that∣∣∣∣

∫
ω

|ψ|2φ′ dx
∣∣∣∣ ≤ a−1

0

2

∫
ω

|ψ|4 dx+
1
2

∫
Ω
a(x)|φ′|2 dx. (3.4)

Combining (3.3) and (3.4) and considering α large enough such that β :=

α− a−1
0
2 > 0 it holds that

E′(t) ≤ −1
2

∫
Ω
a(x)|φ′|2 dx− β

∫
Ω

|ψ|4 dx. (3.5)

In order to prove Theorem 2.1 it is sufficient to prove an estimate of type∫ T

S

E2(t) dt ≤ CE(S), for all 0 ≤ S < T < +∞, (3.6)

for some positive constant C that does not depend on T . Then, employing Theorem
9.1 of Kormonik’s book [K] we deduce the desired decay rate in (2.8).

In order to prove inequality (3.6) we proceed in several steps.

Step 1. Multiplying the first equation of problem (1.1) by Eψ and the second
equation by E(t)(q · ∇φ), where q ∈ (W 1,∞(Ω))n, and following (verbatim) the
integration by parts of Lemma 3.7, Chap. I, of Lions [Li2] we deduce the following
identity:[

E(t)
∫

Ω

( |ψ|2
2

+ φ′(q · ∇φ)
)
dx

]T
S

+
1
2

∫ T

S

E(t)
∫

Ω
(div q)[|φ′|2 − |∇φ|2] dx dt

+
∫ T

S

E(t)
∫

Ω

∂φ

∂xj

∂qk
∂xj

∂φ

∂xk
dx dt−

∫ T

S

E(t)
∫
ω

|ψ|2(q · ∇φ) dx dt
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+
∫ T

S

E(t)
∫

Ω
a(x)φ′(q · ∇φ) dx dt− 1

2

∫ T

S

E′(t)
∫

Ω
|ψ|2dx dt

+ α

∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt−

∫ T

S

∫
Ω
E′(q · ∇φ)φ′ dx dt

=
1
2

∫ T

S

E(t)
∫

Γ
(q · ν)

(
∂φ

∂ν

)2

dΓ dt. (3.7)

In (3.7), for simplicity, we have omitted the variables of the functions under
the integral signs and, in addition, we have used the convention of summation of
repeated indexes.

Employing (3.7) with q(x) = m(x) = x− x0, for some x0 ∈ Rn, and taking
(2.5) into account, we arrive at[

E(t)
∫

Ω

( |ψ|2
2

+ φ′(m · ∇φ)
)
dx

]T
S

+
n

2

∫ T

S

E(t)
∫

Ω
[|φ′|2 − |∇φ|2] dx dt

+
∫ T

S

E(t)
∫

Ω
|∇φ|2dx dt−

∫ T

S

E(t)
∫
ω

|ψ|2(m · ∇φ) dx dt

+
∫ T

S

E(t)
∫

Ω
a(x)φ′(m · ∇φ) dx dt− 1

2

∫ T

S

E′(t)
∫

Ω
|ψ|2dx dt

+ α

∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt−

∫ T

S

∫
Ω
E′(m · ∇φ)φ′ dx dt

≤ 1
2

∫ T

S

E(t)
∫

Γ(x0)
(m · ν)

(
∂φ

∂ν

)2

dΓ dt. (3.8)

Now, multiplying the second equation of problem (1.1) by Eξφ, with ξ ∈
W 1,∞(Ω) and integrating by parts we obtain the following identity:[
E(t)

∫
Ω
φξ

(
φ′ +

φa

2

)
dx

]T
S

=
∫ T

S

E(t)
∫
ω

|ψ|2ξφ dx dt+
∫ T

S

E(t)
∫

Ω
ξ[|φ′|2−|∇φ|2] dx dt−

∫ T

S

E(t)
∫

Ω
φ(∇φ

·∇ξ) dx dt+
∫ T

S

E′
∫

Ω
φ′ξφ dx dt+

1
2

∫ T

S

E′
∫

Ω
aξ|φ|2 dx dt. (3.9)

Taking ξ = δ ∈ R in (3.9) and combining the obtained result with (3.8) we
have[

E(t)
∫

Ω

( |ψ|2
2

+ φ′(m · ∇φ) + δφ

(
φ′ +

φa

2

))
dx

]T
S

+
(n

2
− δ

) ∫ T

S

E(t)
∫

Ω
|φ′|2 dx dt+

(
1 + δ − n

2

) ∫ T

S

E(t)
∫

Ω
|∇φ|2] dx dt
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−
∫ T

S

E(t)
∫
ω

|ψ|2(m · ∇φ) dx dt+
∫ T

S

E(t)
∫

Ω
a(x)φ′(m · ∇φ) dx dt

−1
2

∫ T

S

E′(t)
∫

Ω
|ψ|2dx dt+ α

∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt

−δ
∫ T

S

E(t)
∫
ω

|ψ|2φdx dt− δ

∫ T

S

E′(t)
∫

Ω
φ′φdx dt

−δ

2

∫ T

S

E′(t)
∫

Ω
a(x)|φ|2 dx dt−

∫ T

S

∫
Ω
E′(m · ∇φ)φ′ dx dt

≤ 1
2

∫ T

S

E(t)
∫

Γ(x0)
(m · ν)

(
∂φ

∂ν

)2

dΓ dt. (3.10)

Denoting

χ :=
[
E(t)

∫
Ω

( |ψ|2
2

+ φ′(m · ∇φ) + δφ

(
φ′ +

φa

2

))
dx

]T
S

(3.11)

and choosing δ = n−1
2 if n ≥ 2 (or δ ∈ (0, 1/2) if n = 1) we deduce∫ T

S

E2(t) dt+ χ− 1
2

∫ T

S

E(t)
∫

Ω
|ψ|2dx dt

−
∫ T

S

E(t)
∫
ω

|ψ|2(m · ∇φ) dx dt

+
∫ T

S

E(t)
∫

Ω
a(x)φ′(m · ∇φ) dx dt− 1

2

∫ T

S

E′(t)
∫

Ω
|ψ|2dx dt

+ α

∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt− n− 1

2

∫ T

S

E(t)
∫
ω

|ψ|2φdx dt

− n− 1
2

∫ T

S

E′(t)
∫

Ω
φ′φdx dt− n− 1

4

∫ T

S

E′(t)
∫

Ω
a(x)|φ|2 dx dt

−
∫ T

S

∫
Ω
E′(m · ∇φ)φ′ dx dt ≤ 1

2

∫ T

S

E(t)
∫

Γ(x0)
(m · ν)

(
∂φ

∂ν

)2

dΓ dt. (3.12)

Next, we are going to estimate some terms in (3.12).

Estimate for I1 := − 1
2

∫ T
S
E(t)

∫
Ω |ψ|2dx dt.

Making use of the inequality ab ≤ 1
4εa

2 + εb2 and taking (2.2) and (3.5) into
account, we infer

|I1| ≤ k4

16ε

∫ T

S

∫
Ω

|ψ|4 dx dt+ ε

∫ T

S

E2(t) dt (3.13)

≤ − k4

16βε

∫ T

S

E′(t) dt+ ε

∫ T

S

E2(t) dt

≤ k4

16βε
E(S) + ε

∫ T

S

E2(t) dt.
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Estimate for I2 := − ∫ T
S
E(t)

∫
ω

|ψ|2(m · ∇φ) dx dt.
From now on we will denote

R := sup
x∈Ω

m(x) = sup
x∈Ω

|x− x0|. (3.14)

So, making use of the integral Cauchy-Schwarz inequality, the numerical
Hölder inequality, taking (2.7), (3.5) and (3.14) into account and also considering
the inequality ab ≤ 1

4εa
2 + εb2 we arrive at

|I2| ≤ R2

4ε

∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt+ 2ε

∫ T

S

E2(t) dt (3.15)

≤ R2

8εβ
E(0)E(S) + 2ε

∫ T

S

E2(t) dt.

Estimate for I3 := −n−1
2

∫ T
S
E(t)

∫
ω

|ψ|2φdx dt.
Using Cauchy-Schwarz inequality, making use the inequality ab ≤ 1

4εa
2

+ εb2 and taking (2.1), (2.7) and (3.5) into consideration, we can write

|I3| ≤ (n− 1)2λ2

16εβ
E(0)E(S) + 2ε

∫ T

S

E2(t) dt. (3.16)

Estimate for I4 := − 1
2

∫ T
S
E′(t)

∫
Ω |ψ|2dx dt.

From (2.7) and (3.5) we deduce

|I4| ≤ 1
2

∫ T

S

|E′(t)|E(t) dt = −1
2

∫ T

S

(E2(t))′ dt ≤ 1
2
E(0)E(S). (3.17)

Estimate for I5 := α
∫ T
S
E(t)

∫
Ω |ψ|4 dx dt.

Analogously, from (2.7) and (3.5) we obtain

|I5| ≤ −α

β

∫ T

S

E(t)E′(t) dt ≤ α

2β
E(0)E(S). (3.18)

Estimate for I6 := −n−1
2

∫ T
S
E′(t)

∫
Ω φ

′φdx dt.

Making use of Cauchy-Schwarz inequality and taking (2.1), (2.7) and (3.5)
into account, it holds that

|I6| ≤ (n− 1)λ
2

∫ T

S

|E′(t)|E(t) dt ≤ − (n− 1)λ
4

∫ T

S

(E2(t))′ dt (3.19)

≤ (n− 1)λ
4

E(0)E(S).
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Estimate for I7 := −n−1
4

∫ T
S
E′(t)

∫
Ω a(x)|φ|2 dx dt.

From (2.1), (2.7) and (3.5) we deduce

|I7| ≤ (n− 1)λ2

4
||a||∞

∫ T

S

|E′|
∫

Ω
|∇φ|2 dx dt (3.20)

≤ − (n− 1)λ2

4
||a||∞

∫ T

S

(E2(t))′ dt

≤ (n− 1)λ2

4
||a||∞E(0)E(S).

Estimate for I8 :=
∫ T
S
E(t)

∫
Ω a(x)φ

′(m · ∇φ) dx dt.
Making use of the Cauchy-Schwarz inequality, employing the inequality ab

≤ 1
4εa

2 + εb2, and considering (2.7), (3.5) and (3.14) we obtain

|I8| ≤ ||a||∞R2

4ε
E(0)E(S) + 2ε

∫ T

S

E2(t) dt. (3.21)

Estimate for I9 := − ∫ T
S

∫
ΩE

′(m · ∇φ)φ′ dx dt.
From Cauchy-Schwarz inequality it holds that

|I9| ≤ R

∫ T

S

|E′(t)|E(t) dt ≤ R

2
E(0)E(S). (3.22)

Combining (3.12)-(3.22) and choosing ε = 1/8, the following inequality holds

1
8

∫ T

S

E2(t) dt ≤ 1
2

∫ T

S

E(t)
∫

Γ(x0)
(m · ν)

(
∂φ

∂ν

)2

dΓ dt (3.23)

+ |χ| + C0E(S),

where

C0 =
[
k4 + (2R2 + 2(n− 1)2λ2 + α)E(0)

2β

+
(2 + (n− 1)λ+ (n− 1)λ2||a||∞ + 8||a||∞R2 + 2R)E(0)

4

]
.

Step 2. We now estimate the quantity 1
2

∫ T
S
E(t)

∫
Γ(x0)(m ·ν)

(
∂φ
∂ν

)2
dΓ dt in

terms of the damping term
∫ T
S
E(t)

∫
Ω a(x)|φ′|2 dx dt.

According to the proof of Lemma 2.3 in Lions [Li2] we can construct a
neighbourhood ω̂ of Γ(x0) such that

ω̂ ∩ Ω ⊂ ω (3.24)
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and a vector field h ∈ (C1(Ω))n such that

h = ν on Γ(x0); h · ν ≥ 0 a. e. in Γ, and (3.25)
h = 0 on Ω\ω̂, (3.26)

according to the figure 2 below.

Γ(x0)
Γ\Γ(x0)ω\ω̂

h = 0

ω̂ Ω\ω

���

h · ν = 1
		


���

h · ν ≥ 0

h · ν ≥ 0

h = 0 ���������������

�����������������

• x0

Figure 2

Applying the identity in (3.7) with q = h it holds that

1
2

∫ T

S

E(t)
∫

Γ(x0)

(
∂φ

∂ν

)2

dΓ dt

≤ 1
2

∫ T

S

E(t)
∫

Γ(x0)
(h · ν)︸ ︷︷ ︸

=1

(
∂φ

∂ν

)2

dΓ dt

+
1
2

∫ T

S

E(t)
∫

Γ\Γ(x0)
(h · ν)︸ ︷︷ ︸

≥0

(
∂φ

∂ν

)2

dΓ dt

=
[
E(t)

∫
Ω

( |ψ|2
2

+φ′(h · ∇φ)
)
dx

]T
S

+
1
2

∫ T

S

E(t)
∫
ω̂

(div h)[|φ′|2−|∇φ|2] dx dt

+
∫ T

S

E(t)
∫
ω̂

∂φ

∂xj

∂hk
∂xj

∂φ

∂xk
dx dt−

∫ T

S

E(t)
∫
ω̂

|ψ|2(h · ∇φ) dx dt

+
∫ T

S

E(t)
∫
ω̂

a(x)φ′(h · ∇φ) dx dt− 1
2

∫ T

S

E′(t)
∫

Ω
|ψ|2dx dt

+α
∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt−

∫ T

S

∫
Ω
E′(h · ∇φ)φ′ dx dt. (3.27)

In what follows we will estimate some terms on the RHS of (3.27).
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Estimate for J1 := − 1
2

∫ T
S
E′(t)

∫
Ω |ψ|2dx dt.

From (2.7) and (3.5) we deduce

|J1| ≤ −
∫ T

S

E′(t)E(t) dt ≤ 1
2
E(0)E(S). (3.28)

Estimate for J2 := α
∫ T
S
E(t)

∫
Ω |ψ|4 dx dt.

Analogously, from (2.7) and (3.5) we have

|J2| ≤ −α

β

∫ T

S

E(t)E′(t) dt ≤ α

2β
E(0)E(S). (3.29)

Estimate for J3 := − ∫ T
S
E(t)

∫
ω̂

|ψ|2(h · ∇φ) dx dt.
Using Cauchy-Schwarz and Hölder inequalities, making use the inequality

ab ≤ 1
4εa

2 + εb2 and taking (2.7) and (3.5) into consideration, we can write

|J3| ≤ ||h||2∞
4ε

∫ T

S

E(t)
∫

Ω
|ψ|4 dx dt+ 2ε

∫ T

S

E2(t) dt

≤ −||h||2∞
4εβ

∫ T

S

E(t)E′(t) dt+ 2ε
∫ T

S

E2(t) dt

≤ ||h||2∞
8εβ

E(0)E(S) + 2ε
∫ T

S

E2(t) dt. (3.30)

Estimate for J4 :=
∫ T
S
E(t)

∫
ω̂
a(x)φ′(h · ∇φ) dx dt.

From (2.7), (3.5) and analogously we have done above we obtain

|J4| ≤ ||h||2∞||a||∞
8ε

E(0)E(S) + 2ε
∫ T

S

E2(t) dt. (3.31)

Estimate for J5 := 1
2

∫ T
S
E(t)

∫
ω̂
(div h)[|φ′|2 − |∇φ|2] dx dt.

From (2.3), (2.7) and (3.5) we infer

|J5| ≤ ||h||W 1,∞

2 a0
E(0)E(s) +

1
2
||h||W 1,∞

∫ T

S

E(t)
∫
ω̂

|∇φ|2 dx dt. (3.32)

Estimate for J6 :=
∫ T
S
E(t)

∫
ω̂
∂φ
∂xj

∂hk

∂xj

∂φ
∂xk

dx dt.

We have

|J6| ≤ ||h||W 1,∞

∫ T

S

E(t)
∫
ω̂

|∇φ|2 dx dt. (3.33)
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Estimate for J7 := − ∫ T
S

∫
ΩE

′(h · ∇φ)φ′ dx dt. We have,

|J7| ≤ ||h||∞
∫ T

S

|E′(t)|E(t) dt ≤ ||h||∞
2

E(0)E(S) (3.34)

Denoting

Y :=
[
E(t)

∫
Ω

( |ψ|2
2

+ φ′(h · ∇φ)
)
dx

]T
S

(3.35)

and combining (3.27)-(3.35), we obtain

R

2

∫ T

S

E(t)
∫

Γ(x0)

(
∂φ

∂ν

)2

dΓ dt ≤ R|Y | + 4Rε
∫ T

S

E2(t) dt+RC1E(S)(3.36)

+
3R
2

||h||W 1,∞

∫ T

S

E(t)
∫
ω̂

|∇φ|2 dx dt,

where

C1 :=
[
1
2

+
α

2β
+

||h||2∞
8εβ

+
||a||∞||h||2∞

8ε
+

||h||W 1,∞

2 a0
+

||h||∞
2

]
E(0).

Combining (3.23) and (3.36) and choosing ε = 1/64R we deduce

1
16

∫ T

S

E2(t) dt (3.37)

≤ |χ| +R|Y | + (C0 +RC1)E(S)
3R
2

||h||W 1,∞

∫ T

S

E(t)
∫
ω̂

|∇φ|2 dx dt.

Then, we construct, as in Lemma 2.4 in Lions [Li] a function η ∈ W 1,∞(Ω)
satisfying

0 ≤ η ≤ 1 a.e. in Ω; η = 1 a. e. in ω̂, (3.38)
η = 0 a. e. in Ω\ω, (3.39)

|∇η|2
η ∈ L∞(ω). (3.40)

Taking ξ = η in the identity (3.9) it results that[
E(t)

∫
ω

φη

(
φ′ +

φa

2

)
dx

]T
S

=
∫ T

S

E(t)
∫
ω

|ψ|2ηφ dx dt

+
∫ T

S

E(t)
∫
ω

η[|φ′|2 − |∇φ|2] dx dt−
∫ T

S

E(t)
∫
ω

φ(∇φ · ∇η) dx dt

+
∫ T

S

E′(t)
∫
ω

φ′ηφ dx dt+
1
2

∫ T

S

E′(t)
∫
ω

a(x)η|φ|2 dx dt. (3.41)
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Next, let us analyze the terms on the RHS of (3.41).

Estimate for L1 :=
∫ T
S
E′(t)

∫
ω
φ′ηφ dx dt.

From (2.1), (2.7) and taking (3.5) and (3.38) into account, it holds that

|L1| ≤ 1
2
λE(0)E(S). (3.42)

Estimate for L2 := 1
2

∫ T
S
E′(t)

∫
ω
a(x)η|φ|2 dx.

Analogously, we deduce that

|L2| ≤ λ2||a||∞
2

E(0)E(S). (3.43)

Estimate for L3 :=
∫ T
S
E(t)

∫
ω

|ψ|2ηφ dx dt.
Analogously to the above estimates and now considering the inequality

ab ≤ 1
4εa

2 + εb2, it follows that

|L3| ≤ 1
8εβ

E(0)E(S) + 2ελ2
∫ T

S

E2(t) dt. (3.44)

Estimate for L4 :=
∫ T
S
E(t)

∫
ω
η|φ′|2 dx dt.

From (2.3), (2.7), (3.5) and (3.38) we arrive at

|L4| ≤ a−1
0 E(0)E(S). (3.45)

Estimate for L5 := − ∫ T
S
E(t)

∫
ω
φ(∇φ · ∇η) dx dt.

From (3.38)–(3.40), we can write

|L5| ≤ 1
2

∫ T

S

E(t)
∫
ω

η|∇φ|2 dx (3.46)

+
1
2

∣∣∣∣
∣∣∣∣ |∇η|2η

∣∣∣∣
∣∣∣∣
L∞(ω)

∫ T

S

E(t)
∫
ω

|φ|2 dx dt.

Defining

Z :=
[
E(t)

∫
ω

φη

(
φ′ +

φa

2

)
dx

]T
S

(3.47)

and combining (3.41)–(3.47) we obtain∫ T

S

E(t)
∫
ω

η|∇φ|2dx dt ≤ |Z| + C2E(S) + 2ελ2
∫ T

S

E2(t) dt (3.48)

+
1
2

∫ T

S

E(t)
∫
ω

η|∇φ|2 dx+
1
2

∣∣∣∣
∣∣∣∣ |∇η|2η

∣∣∣∣
∣∣∣∣
L∞(ω)

∫ T

S

E(t)
∫
ω

|φ|2 dx dt,



Vol. 15, 2008 Klein-Gordon-Schrödinger 105

where

C2 :=
[
λ

2
+
λ2||a||∞

2
+

1
8εβ

+ a−1
0

]
E(0).

Combining (3.37) and (3.48), choosing ε = 1/64λ2 and having in mind that∫ T

S

E(t)
∫
ω̂

η|∇φ|2 dx dt =
∫ T

S

E(t)
∫
ω̂

|∇φ|2 dx dt

we deduce

1
32

∫ T

S

E2(t) dt (3.49)

≤ |χ| +R|Y | + |Z| + (C0 +RC1 + 3C2||h||∞)E(S)

+
3R
4

||h||W 1,∞

∣∣∣∣
∣∣∣∣ |∇η|2η

∣∣∣∣
∣∣∣∣
L∞(ω)

∫ T

S

E(t)
∫
ω

|φ|2 dx dt.

On the other hand, from (3.11), (3.35) and (3.47), the following estimate
holds

|χ| +R|Y | + |Z| ≤ C3E(0)E(S) (3.50)

where C3 is a positive constant such that C3 = C3(R, ||a||∞, λ, ||h||∞). Then,
(3.49) and (3.50) yield∫ T

S

E2(t) dt ≤ C E(0)E(S) + C

∫ T

S

E(t)
∫

Ω
|φ|2 dx dt, (3.51)

where C is a positive constant such that

C = C(R, ||a||∞, ||h||∞, λ, ||h||W 1,∞ , k, n, α, β, a0).

Step 3. Let T0 > 0 considered sufficiently large for our purpose. We will
prove the following lemma:

Lemma 3.1 For all T > T0 there exists a positive constant C = C(T0, E(0)) such
that if (ψ, φ) is the regular solution of (1.1) with initial data {ψ0, φ0, φ1} we have∫ T

S

∫
Ω

|φ|2 dx dt

≤ C(T0, E(0))

[∫ T

S

∫
Ω
a(x)|φ′|2 dx dt+

∫ T

S

∫
Ω

|ψ|4 dx dt
]
, (3.52)

for 0 ≤ S < T < +∞.
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Proof. We argue by contradiction. Let us suppose that (3.52) is not verified and
let {ψk(0), φk(0), φ′

k(0)} be a sequence of initial data where the corresponding
solutions {ψk, φk} with Ek(0) uniformly bounded in k, verifies

lim
k→+∞

∫ T
S

∫
Ω |φk|2 dx dt∫ T

S

∫
Ω a(x)|φ′

k|2 dx dt+
∫ T
S

∫
Ω |ψk|4 dx dt

= +∞. (3.53)

Since Ek(t) is non-increasing and Ek(0) remains bounded then, we obtain a
subsequence, still denoted by {ψk, φk} which verifies

ψk ⇀ ψ weak star in L∞(0, T ;L2(Ω)), (3.54)
φk ⇀ φ weak star in L∞(0, T ;H1

0 (Ω)), (3.55)
φ′
k ⇀ φ′ weak star in L∞(0, T ;L2(Ω)), (3.56)
ψk ⇀ ψ weakly in L4(0, T ;L4(Ω)), (3.57)

We also have, employing compactness results (see Theorem 5.1 in Lions [Li])
that

φk → φ strongly in L2(0, T ;L2(Ω)). (3.58)

Now, from (3.53) and (3.55) we deduce that

limk→+∞
∫ T
S

∫
Ω a(x)|φ′

k|2dx dt = 0, (3.59)

limk→+∞
∫ T
S

∫
Ω |ψk|4dx dt = 0, (3.60)

From now on let us focus our attention on the coupled wave equation

φ′′
k − ∆φk + a(x)φ′

k = |ψk|2χω in Ω × (0, T ) (3.61)

Let us divide our proof in two cases (in what concerns the limit φ above):
(a) φ 
= 0.
Passing to the limit when k → +∞ in (3.61) taking into account the above

convergence, we deduce that

φ′′ − ∆φ = 0 in L2(0, T ;H−1(Ω))
φ = 0 on L2(0, T ;H1/2(Γ))
φ′ = 0 a. e. in ω × (0, T ),

(3.62)

and for φ′ = v, we obtain, in the distributional sense that

v′′ − ∆v = 0 in D′(Ω × (0, T ))
v = 0 on Γ × (0, T ) ( in H−1(0, T ;H1/2(Γ)))
v = 0 a. e. in ω × (0, T ).

(3.63)
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From standard uniqueness results for the wave equation we conclude that
v ≡ 0, that is, φ′ ≡ 0. Returning to (3.62) we obtain the following elliptic equation
for a. e. t ∈ (0, T ) : 


−∆φ = 0 in Ω
φ = 0 on Γ
φ′ = 0 in ω,

(3.64)

Multiplying (3.64) by φ we deduce that
∫
Ω |∇φ|2 dx = 0, which implies that

φ ≡ 0, which is a contradiction.
Now, we consider the other case when
(b) φ ≡ 0.
Defining

ck :=
[∫ T
S

∫
Ω |φk|2 dx dt

]1/2
(3.65)

φ̂k = 1
ck
φk, ψ̂k = 1

ck
ψk, (3.66)

we obtain ∫ T
S

∫
Ω |φ̂k|2 dx dt = 1. (3.67)

Besides,

Êk(t) =
1
2

[∫
Ω

|ψ̂k|2 dx+
∫

Ω
|φ̂′
k|2 dx+

∫
Ω

|∇φ̂k|2 dx
]

=
1

2c2k

[∫
Ω

|ψk|2 dx+
∫

Ω
|φ′
k|2 dx+

∫
Ω

|∇φk|2 dx
]
,

that is,

Êk(t) =
1

2c2k
Ek(t). (3.68)

On the other hand, multiplying (3.3) by Ek(t) and integrating over (S, T ),
we deduce

E2
k(T ) = E2

k(S) − 2α
∫ T

S

Ek(t)
∫

Ω
|ψk|4 dx dt− 2

∫ T

S

Ek(t)
∫

Ω
a(x)|φ′

k|2 dx dt

+2
∫ T

S

Ek(t)
∫
ω

|ψk|2φ′
k dx dt. (3.69)

From the fact that Ek(t) ≥ Ek(T ) for all t ∈ [S, T ] and taking (3.67) into
account, we obtain∫ T

S

E2
k(t) dt ≥ [T − S]E2

k(T )

= [T − S]E2
k(S) − 2α[T − S]

∫ T

S

Ek(t)
∫

Ω
|ψk|4 dx dt
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−2[T − S]
∫ T

S

Ek(t)
∫

Ω
a(x)|φ′

k|2 dx dt

+2[T − S]
∫ T

S

Ek(t)
∫
ω

|ψk|2φ′
k dx dt. (3.70)

Combining (3.51) and (3.70) and making use of Cauchy-Schwarz inequality
taking (2.3) into account, we infer

[T−S]Ek(S)Ek(S)

≤ (2(α+ 2) + 2a−1
0 )[T − S]Ek(S)

{∫ T

S

∫
Ω

|ψk|4 dx dt+
∫ T

S

∫
Ω
a(x)|φ′

k|2 dx dt
}

+C Ek(S) + C Ek(S)
∫ T

S

∫
Ω

|φk|2 dx dt.

The last inequality yields for a large T ,

Ek(S) ≤ C(T, a0, α)

{∫ T

S

∫
Ω

|ψk|4 dx dt+
∫ T

S

∫
Ω
a(x)|φ′

k|2 dx dt

+
∫ T

S

∫
Ω

|φk|2 dx dt
}

(3.71)

Having in mind that Ek(t) ≤ Ek(S) for all t ∈ [S, T ], applying inequality
(3.71) and dividing both sides by

∫ T
S

∫
Ω |φk|2 dx dt it holds that

Ek(t)
∫ T

S

∫
Ω |φk|2 dx dt ≤ C(T, a0, α)

{ ∫ T
S

∫
Ω |ψk|4 dx dt+∫ T

S

∫
Ω a(x)|φ′

k|2 dx dt
∫ T

S

∫
Ω |φk|2 dx dt + 1

}
(3.72)

Since in view of (3.53) we have

lim
k→+∞

∫ T
S

∫
Ω |ψk|4 dx dt+

∫ T
S

∫
Ω a(x)|φ′

k|2 dx dt∫ T
S

∫
Ω |φk|2 dx dt

= 0, (3.73)

then, from (3.72) there exists M > 0 such that

Ek(t)
c2k

≤ C(T, a0, α)(M + 1), for all t ∈ [S, T ] (3.74)

and for all k ∈ N.

Consequently, from (3.68) and (3.74) it results that

Êk(t) ≤ C(T, a0, α)(M + 1), for all t ∈ [S, T ] (3.75)
and for all k ∈ N.
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Then, in particular, from (3.73) we deduce

limk→+∞
∫ T
S

∫
Ω a(x)|φ̂′

k|2 dx dt = limk→+∞
∫ T

S

∫
Ω a(x)|φ′

k|2 dx dt
∫ T

S

∫
Ω |φk|2 dx dt = 0, (3.76)

limk→+∞
∫ T

S

∫
Ω |ψk|4 dx dt

∫ T
S

∫
Ω |φk|2 dx dt = 0, (3.77)

and from and (3.75), for a subsequence {ψk, φk}, we obtain

ψ̂k ⇀ ψ̂ weak star in L∞(0, T ;L2(Ω)), (3.78)

φ̂k ⇀ φ̂ weak star in L∞(0, T ;H1
0 (Ω)), (3.79)

φ̂′
k ⇀ φ̂′ weak star in L∞(0, T ;H1

0 (Ω)), (3.80)

φ̂k → φ̂ strongly in L2(0, T ;L2(Ω)). (3.81)

In addition, φ̂k satisfies the equation

φ̂′′
k − ∆φ̂k + a(x)φ̂′

k = |ψk|2
ck

in Ω × (0, T )
φ̂k = 0 on Γ × (0, T )
φ̂′
k = 0 a. e. in ω × (0, T ).

(3.82)

Passing to the limit when k → +∞ taking the above convergence into
account, we get 


φ̂′′ − ∆φ̂ = 0 in Ω × (0, T )
φ̂ = 0 on Γ × (0, T )
φ̂′ = 0 a. e. in ω × (0, T ).

(3.83)

Then, v = φ̂′ verifies, in the distributional sense

v′′ − ∆v = 0 in D′(Ω × (0, T ))
v = 0 on Γ × (0, T ) ( in a weak sense)
v = 0 a. e. in ω × (0, T ).

(3.84)

Applying uniqueness standard results it comes that v = φ̂′ = 0. Returning
to (3.83) we obtain, for a. e. t ∈ (0, T ) that


−∆φ̂ = 0 in Ω
φ̂ = 0 on Γ
φ̂′ = 0 in ω.

(3.85)

Multiplying the above equation by φ̂, we deduce

0 = −
∫

Ω
∆φ̂ φ̂ dx =

∫
Ω

|∇φ̂|2 dx,
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that is, φ̂ = 0. From this fact, from (3.67) and (3.81) we obtain a contradiction.
So, Lemma 3.1 is proved. �

Combining (3.51) and (3.52) it holds that∫ T

S

E2(t) dt ≤ C E(0)E(S),

where C = C(T0, E(0), R, ||a||∞, ||h||∞, λ, ||h||W 1,∞ , k, n, α, β, a0), independent of
T . So, the estimate given in (3.6) is proved as desired to show. Consequently
Theorem 2.1 is proved. �

Remark 3.1 Following the method developed in this paper combined with those
ones introduced in the literature by Zuazua [Zua] it is also possible to treat
semi-linear coupled waves, that is, systems given by


iψt + ∆ψ + iα|ψ|2ψ = φψ in Ω × (0,∞)
φtt − ∆φ+ f(φ) + a(x)φt = |ψ|2χω in Ω × (0,∞)
ψ(0) = ψ0 ∈ H1

0 (Ω), u(0) = u0 ∈ H1
0 (Ω), ut(0) = u1 ∈ L2(Ω),

(3.86)

where f is a real function satisfying the following assumptions:

f ∈ C1(R), f(0) = 0, f(s) s > 0 for all s 
= 0,

and

|f ′(s)| ≤ C[1 + |s|k0−1], for all s ∈ R, 1 ≤ k0 ≤ n

n− 2
, n > 2

and 0 < k0 < ∞, n = 1, 2.

Remark 3.2 As mentioned in the introduction of this paper, an interesting open
question is to investigate uniform decay rates when one has localized dissipations
in both equations, namely,


iψt + ∆ψ + iα b(x)|ψ|2ψ = φψ in Ω × (0,∞)
φtt − ∆φ+ a(x)φt = |ψ|2χω in Ω × (0,∞)
ψ(0) = ψ0 ∈ H1

0 (Ω), u(0) = u0 ∈ H1
0 (Ω), ut(0) = u1 ∈ L2(Ω),

(3.87)

where
a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0 a. e. in ω.

Unfortunately, the method developed in the present manuscript fails, mainly
because of the coupled Schrödinger equation. Perhaps, it would be interesting to
investigate the case where we have localized damping acting in the whole domain.
More precisely, assume that a, b ∈ L∞

+ (Ω) verifying

a(x) + b(x) ≥ α0 > 0 a. e. in Ω,

as considered in Cavalcanti and Oquendo [CaOq] for the viscoelastic wave
equation.
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