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Abstract. The following coupled damped Klein-Gordon-Schrédinger
equations are considered

iy + A +ialp*y = ¢p in Q x (0,00), (a > 0)
¢t — Ap+a(r)p = [¢[*xw in Qx (0,00),

where  is a bounded domain of R", n < 3, with smooth boundary I" and w
is a neibourhood of 92. Here ., represents the characteristic function of w.
Assuming that a € WH>(Q) is a nonnegative function such that a(z) >
ao > 0 a. e. in w, polynomial decay rate is proved for every regular solution
of the above system. Our result generalizes substantially the previous results
given by the authors in the reference [CDC].
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1 Introduction

We consider the following model of Klein-Gordon-Schrodinger equations with
locally distributed damping

ihy + A + ol = ¢ip in Q x (0, 00)
bue — Ap + a(z)dr = 1]*xw in Q x (0,00)
Yv=¢=0 on I x (0,00)

$(0) = v € Hy () N H?(Q),

$(0) = ¢o € Hy(Q) N H*(Q),

$:(0) = ¢1 € Hy(),

where Q is a bounded domain of R", n < 3, with smooth boundary I" and w is an
open subset of {2 such that meas(w) > 0. In what follows, « is a positive constant
and X, represents the characteristic function, that is, y = 1 in w and xy = 0 in
Q\w. We consider a € WH°(Q) a nonnegative function such that

a(x) > ap>0 ae. in w,

so that the nonlinearity [1|? exists where the damping a(z)d; is, in fact, effective
and reciprocally. If the damping is effective in the whole domain, i. e., a(z) >
ap > 0 a. e. in ) we can consider x,, = 1 in Q. This is required in order to turn
the system dissipative. Problem (1.1) has its origin in the canonical model of the
Yukawa interaction of conserved complex nucleon field 1 with neutral real meson
field ¢ given by

W + A = b in 2 x (0, 00)

bu — AP+ p2¢ = [ in Q x (0,00) (12)
Yp=¢=0 on T x (0,00) ’
$(0) = o, #(0) = o, ¢+(0) = ¢1.

Where the positive constant p represents the mass of a meson. Since we are
considering a bounded domain, for simplicity’s sale the term 2 ¢ will be omitted.

It is important to note that problem (1.2) is not naturally dissipative. So,
the introduction of the dissipative mechanisms given by the terms a|t)|*y) and
a(x)¢; are necessary to force the energy to decay to zero when ¢ goes to infinity.
In fact, the dissipative K-G-S equation has been widely studied, see for example
the following references: [BoYol], [BoYo3|, [LaWal], [LaWa2], [MoGoHal, [GaDa]
and references therein. The majority of works in the literature deal with linear
dissipative terms acting in both equations, except for the works [BoYo2] and
[CDC]. Very few is known, in terms of polynomial decay, regarding the natural
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nonlinear dissipation i [t/|?¢) acting in the Schrodinger equation and, as far as
we are concerned, there is no result in the literature dealing with a localized
dissipation in the wave equation for this system. A natural question arises in this
context: it would be possible to consider a localized feedback ib(x)||*1) acting in
the Schrodinger equation (instead of a mechanism of damping acting on the whole
domain) in order to obtain some decay rate? This is a hard open problem to be
solved since some ‘good terms’ are lost in the computations when we consider the
real (or imaginary) part of them. In the present paper, since we are considering a
nonlinear feedback acting in the Schrodinger equation and a linear localized one
acting in the wave equation, it is expected that the energy of the system decays
to zero polynomially. To prove this fact is the main goal of this paper.

We would like to mention other papers in connection with problem (1.2),
namely: Fukuda and Tsutsumi [FT1], [FT2], [FT3], [FT4], Bachelot and Chadam
[BaCha| and Hayashi and W. Von Wahl [HaVo]. In the above articles the unique
global existence to problem (1.2) is established and some conservation laws are
verified.

The strategy to prove polynomial and uniform decay rates to problem (1.1)
is to obtain integral inequalities of energy. For this purpose we have to use the
multiplier method due to L. F. Ho [Ho|, which is detailed in Lions [Li2], combined
with integral inequalities that can be found in Komornik [K], (and references
therein) with new tools which come from the difficulty in dealing with this type
of coupled equations. Our result generalizes substantially the previous results due
to the authors Cavalcanti and Domingos Cavalcanti given in [CDC]. In [CDC] the
mechanism of damping is effective in the whole domain for both equations.

Our paper is organized as follows. In section 2 we give the precise assump-
tions and state our main result and in section 3 we give the proof of the main
theorem.

2 Main Result

In what follows let us consider the Hilbert space L?(2) of complex valued functions
on ) endowed with the inner product

(u,v) = fQ u(fc)md%

and the corresponding norm
[lull3 = (u, ).

We also consider the Sobolev space H!(€) endowed with the scalar product

(uv v)Hl(Q) = (uv U) + (vua VU) .

We define the subspace of H'(£2), denoted by H{(£2), as the closure of C§°(£) in
the strong topology of H*(£2). This space endowed with the norm induced by the
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scalar product

(UW)H(}(Q) = (Vu, Vv)
is, thanks to the Poincaré’s inequality
l[ulla < A|Vulla, for all u € Hy(Q); (2.1)
a Hilbert space. We set the norms
lully = Jo lu(@)|” dz, [Jullf, = [¢ [u(@)]”dL,  [Ju|le = esssup,eqlu()].

In the particular case when p = 4 we have the continuous immersion
L*(Q) — L*(Q) and consequently the following inequality holds

l[v]|2 < kl|v]]4, for all v € LY(Q), (2.2)

where k := meas()/4.

The following assumptions are made:
Assumption 2.1 We assume that a € WH°°(Q) is a nonnegative function such
that
a(z) >ay >0, a e inw. (2.3)
In addition,
If a(x) > ap > 0 in Q, then we consider x, =1 in . (2.4)
Assumption 2.2 We assume that w is a neighbourhood of T'(x0) where
[(zg) :={r el;(x—2° - v(z) >0} (2.5)
and v(zx) is the unit outward normal at x € T.

As an example of a domain {2 satisfying the above assumption let us consider
the figure 1 below:
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Figure 1

Tt is well known that under the Assumption 2.1, problem (1.1) is well posed
in the space H}(Q)NH?2(2) x H(Q) N H?(Q) x HE (), that is for any initial data
{tbo, o, $1} € HF(Q) N H2(Q) x HI(Q) N H?(Q) x HL(Q) there exists a unique
regular solution of (1.1) in the class

¥ € Lis, (0,00, HY(Q) N HA(Q)), ¢ € Li5, (0,00, HY(Q) N HA(R)), (2.6)
¢r € L5, (0, 00, Hy ((2)).

The energy associated to problem (1.1) is defined by

1

B() =5 [ (9(.0F + 90, ) +161(a.0)) do (27)

Now, we are in position to state our main result

Theorem 2.1 Assume that assumptions (2.1) and (2.2) hold and moreover that

-1
o > Y-, Then, there exists some positive constant C = C(E(0)) such that

following decay rate holds
CE(0)

<
E®) =573

,  forallt>0. (2.8)

for every regular solution of problem (1.1) in the class given in (2.6)

3 Uniform Decay Rates

In this section we work it regular solutions {¢(t), ¢(¢), ¢+(¢)} to problem (1.1), that
is, those ones that lie, for instance, in H} () N H2(Q) x H}(Q) N H?(2) x H ().
In what follows, for simplicity, we will denote u; = u’. So, multiplying the first
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equation of (1.1) by 1, the second equation by ¢’, integrating over £ and making
use of Green formula, we deduce that

I . 9 4 . )
/Qiljlbdx+z/ﬂ|vw| dx+a/ﬂ|z/;| dx = Z/Q‘Jb‘w dx (3.1)
1d o ) _— .

Sd Q(|¢>| + |Vl )da:+/9a(x)|¢| dac_/w|¢| ¢ da. (3.2)

Taking the real part in (3.1) and adding the obtained result with (3.2) we
obtain

E(t) +a / [ dz + / a(@)|¢? dz = / W2 d. (3.3)

Next, we will analyze the last term on the RHS of (3.3). We have, from (2.3)
and making use of the Cauchy-Schwarz inequality that

[opsas <% [witaes [ at@ioPas (3.4

Combining (3.3) and (3.4) and considering « large enough such that 3 :=
-1
o — %~ >0 it holds that

1 71 alz /12 r — 41,
(0 <~ [ alloPdz—5 [ ot d. (35)

In order to prove Theorem 2.1 it is sufficient to prove an estimate of type
T
/ E%(t)dt < CE(S), forall0<S <T < +oo, (3.6)
s

for some positive constant C that does not depend onT. Then, employing Theorem
9.1 of Kormonik’s book [K] we deduce the desired decay rate in (2.8).

In order to prove inequality (3.6) we proceed in several steps.

Step 1. Multiplying the first equation of problem (1.1) by E% and the second
equation by E(t)(q - V¢), where ¢ € (W>°(Q2))", and following (verbatim) the
integration by parts of Lemma 3.7, Chap. I, of Lions [Li2] we deduce the following
identity:

S

T T
+/ E(t) %%@dmt—/ E(t)/\qp\Z(q-v@p)dxdt

S Q 658]' an afﬂk S

[E(t) / ('ﬁ' L ws)) dx} : 3 [ " [ @i alie - 1vo7) av
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. /STE@)/Q (2)¢/(q - Wﬁ)dmdt—f/ 0 [ e
+ oz/STE(t)/Q|1/)|4dxdt/QS /QE’(q~V¢)¢'dxdt
:;/STE(t)/F(q-y) <Zf> dr dt. (3.7)

In (3.7), for simplicity, we have omitted the variables of the functions under
the integral signs and, in addition, we have used the convention of summation of
repeated indexes.

Employing (3.7) with ¢(z) = m(z) = = — 29, for some 2° € R®, and taking
(2.5) into account, we arrive at

[E( )/Q (Ilﬁ2 + ¢/ (m qu)) deJrZ/STE(t)/Q[WP—|v¢|2]da:dt

+/STE(t)/Q|V¢|2dxdt—/TE(t)/ W2 (m - Vo) dz dt

+/TE(t)/a(x)¢(m vgzs)da;dt—l/s Bt /|¢| d dt

S/ /|w|4dxdt—/ /E (m - V)¢ drdt
< ;/STE(t) /F(IO)(m.V) (Zf) dr dt. (3.8)

Now, multiplying the second equation of problem (1.1) by Ef¢, with £ €
W1°(Q) and integrating by parts we obtain the following identity:

oo (e 3)e]
-/ B() [ wiodsas | B | elgp-ivopiama- | B0 [ etw

T T
-vg)da;dt+/s E'/Qqﬁ'&bdxdt—i—%/s E’/Qa§|¢|2dxdt. (3.9)

Taking £ = § € R in (3.9) and combining the obtained result with (3.8) we
have
T

[E()/Q('“"Qw( V¢>+5¢<¢'+‘f)>dx]s
+(%*5>/s E(t)/§2|¢'|2dxdt+(1+5fg) /STEa)/QmF]dzdt
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—/STE(t)/w|1/1|2(m.V¢)dmdt+/;E(t)/Qa(x)¢/(m,V(b)dmdt

= 0 [ dsiesa | "B [ ot o e
—5/ /|¢| o da dt — 5/ )/qb’qbdmdt
—g/s E'()/Q a(z )|¢|2dxdt—/ /E’ m - V¢)¢' dx dt

< ;/ST E(t) /Mo)(m V) @f)z dr dt. (3.10)

Denoting

X = {E(t)/g <|¢2|2 +¢'(m-Ve) +dp (¢’ + d’;)) da:E (3.11)

and choosing 6 = 251 if n > 2 (or 6 € (0,1/2) if n = 1) we deduce

/ST ()dt+x77/ /|1/)|2dxdt
-/ "B [ wim- o) dear
+/TE(t)/a(:17)¢) (m - Vqﬁ)d:z:dtff/ /|w|2d:rdt
/ / 0 d

n—1 T
— E' E' alx 2dxd
/ i <t>/Q (2)|[? du dt

/ /E’ m-Vo)¢ drdt < = / E(t) /F(zo)(m-l/) <Zf>2 arr de.  (3.12)

Next, we are going to ebtlmate some terms in (3.12).
Estimate for I :== —3 S (t) Jq |¢|2dacdt

Making use of the mequahty ab < -a? +eb® and taking (2.2) and (3.5) into
account, we infer

1

|| < 165/ /|1p|4dxdt+€/ E%(t) (3.13)
< E'(t)dt E2(t
= 16ﬂ5/ +s/
k4
<

1600 (S)+s/s E2(t) dt.
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FEstimate for Iy :== — fg E(t) [, [0 (m - V) da dt.
From now on we will denote
R :=supm(z) = sup |z — 2°|. (3.14)
z€Q z€Q

So, making use of the integral Cauchy-Schwarz inequality, the numerical
Holder inequality, taking (2.7), (3.5) and (3.14) into account and also considering
the inequality ab < ﬁaz + eb? we arrive at

|| < / /|w|4dxdt+25/ E3(t (3.15)
R2
< (0)E<S>+2e/s (1) dt.

Estimate for I := — 251 fST E(t) [ |[4[*¢da dt.

Using Cauchy-Schwarz inequality, making use the inequality ab < éaQ
+ eb? and taking (2.1), (2.7) and (3.5) into consideration, we can write

(n—1)2\2

I
[fs] = 16e0

—— " E© +2g/ E3(t (3.16)

Estimate for Iy := —1 fST E'(t) [, [¥]*dx dt.
From (2.7) and (3.5) we deduce

1

T T
ni<s [ E@EGd=—; [ (Eeya<3Eo B, 67

FEstimate for Iy := afST E(t) [ [v]* da dt.
Analogously, from (2.7) and (3.5) we obtain

1A <_7/ E(t) E'(t dt<% (0) B(S). (3.18)

Estimate for Ig := —%71 fg E'(t) fQ ¢’ ¢ dx dt.
Making use of Cauchy-Schwarz inequality and taking (2.1), (2.7) and (3.5)
into account, it holds that

i< OS2 [ ipwiEoa

IN

. T
—W/S (E2(t)) dt (3.19)

0= DA g0y ().
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Estimate for I := — 252 [T E/(t) [, a(x)|6|? de dt.
From (2.1), (2.7) and ( 5) we deduce

(n_l)/\2 r / 2
< Sl [ 1 [ (90 i (3.20)
n— 2 T
< - [y a
< DX ) B(S).

4

Estimate for Iy := fST (t) Jo alx)d' (m - Vo) du dt.
Making use of the Cauchy-Schwarz inequality, employing the inequality ab

< £a? +eb?, and considering (2.7), (3.5) and (3.14) we obtain
2
IIs] < ”“”jR +25/ E(t (3.21)

Estimate for Iy := — fST Jo E'(m - V)¢ dudt.
From Cauchy-Schwarz inequality it holds that

|19 < R/ t)dt < RE(O) E(S). (3.22)
Combining (3.12)-(3.22) and choosing e = 1/8, the following inequality holds

1T 1T o (02)
8/5 E2(t)dt < 2/5 E(t)/mo)( )<ay> dr dt (3.23)

where
E* + (2R% +2(n — 1)20%2 + ) E(0)
Co =
20
N (24 (n— DA+ (n — D)A?|al|oo + 8||al|cc R? + 2R)E(0)]
1 )

2
Step 2. We now estimate the quantity %fST E(t) fr(mo)(m-y) (%) dl' dt in
terms of the damping term fST (t) [ a(z)|¢'|? dx dt.

According to the proof of Lemma 2.3 in Lions [Li2] we can construct a
neighbourhood & of T'(z%) such that

oNQCcw (3.24)
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and a vector field h € (C*(Q))" such that

h=v on I'(zY); h-v>0 a.e inTl, and (3.25)
h=0 on Q\&, (3.26)

according to the figure 2 below.

h -

Figure 2

Applying the identity in (3.7) with ¢ = h it holds that

/ / o () dr dt
<§/S E(t)/w ( ) dr dt

AL R0 (8 e
T

= [z [ (Mrsve) ] +4 [ p0 [@ontsr-vonaa

S

T D¢ Ohy, O T )
+/S E(t)/a%ax]axkd xdt — / E(t)/|w| (h- V) dz dt

+/TE(t)/ a(z)¢' (h - v¢)dxdt—1/s E'(t /|w|2dxdt

/ /\w\4dxdt // (h-V¢)¢ dx dt. (3.27)

In what follows we will estimate some terms on the RHS of (3.27).
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Estimate for Jy := —1 ;E’(t) Jo [¥|?da dt.
From (2.7) and (3.5) we deduce

] < — /E dt<2E(0)E(S).

Estimate for Jy := afST E(t) [, [¥]* dx dt.
Analogously, from (2.7) and (3.5) we have

|.J2] <—f/ E(t)E'(t dt<%E(O)E(S).

Estimate for Js := — [+ E(t 2(h- V) da dt.

NoDEA

(3.28)

(3.29)

Using Cauchy-Schwarz and Holder inequalities, making use the inequality

h 2
|J5] < I ” / /|¢|4dxdt+25/ E2(t
S

_||h||?>o , 5
< e /S E(t)E(t)dt+2s/S B2(t) dt

%E(O)E(S)—i—%/g E%(t) dt

Estimate for Jy := fST E(t) [, a(x)¢'(h-Vo)dxdt.

From (2.7), (3.5) and analogously we have done above we obtain

h||? < p
|J4| < H || 8||a|| _|_2€/ E2

Estimate for Js == 3 fs (t) [, (divh)[|¢'|* — |V|?] da dt.
From (2.3), (2.7) and (3.5) we infer

R|| .00 1 T
il < P 5) B(s) + Sl [ B [ V672 v
S @

2a0

FEstimate for Jg := fg B(t) [, 20 9l 00 gy gy,

BJL’J' 61]‘ 8Ik
We have

T
| J6| < th\wmo/s E(t)[ V|2 da dt.

< éaQ + eb? and taking (2.7) and (3.5) into consideration, we can write

(3.30)

(3.31)

(3.32)

(3.33)
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Estimate for J; := — fST Jo E'(h - V)¢’ dx dt. We have,

T
1 < Nl [ 1B @B a1 < M= (o) s) (3.34)
Denoting
_ K g
Y,_waé< +¢Usz> ]S (3.35)

and combining (3.27)-(3.35), we obtain
R [T 09\ T
5/ E(¢) / () i dt < R|Y|+4R5/ E%(t)dt + RCy E(S)(3.36)
I'(z9) S

ov
3R T
+ Dl [ B0 [ 190P dsar,
S 5]

1 Rl12 | Nallsol P2 | lRllwiee | [lAlloo
C — ES E(0).
! { +2ﬁ+ 83 8¢ T T T2 0)

where

Combining (3.23) and (3.36) and choosing ¢ = 1/64R we deduce
1 ey ar (3.37)
16

3R T )
< x|+ BIY| + (Co+ RODE(S) 5 llwrs [ B0) [ (90 do .

Then, we construct, as in Lemma 2.4 in Lions [Li] a function n € W (Q)
satisfying

0<n<1 ae. in Q; n=1la. e in @, (3.38)
n=0 a. e in QNw, (3.39)
'W‘ € L(w). (3.40)

Taking £ = 7 in the identity (3.9) it results that

[E(t) [ on (¢>’+ ‘Z“) dx]: - A " B [ ono dzar
+ " B [l = 1vor) i~ [ " B [ o(vo- v dsa
+/STE’(t)/w¢’n¢dxdt+;/STE/(t)/wa(x)m(;SFdxdt. (3.41)
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Next, let us analyze the terms on the RHS of (3.41).

Estimate for Ly := fS E'(t) [, ¢'nodx dt.
From (2.1), (2.7) and taking (3.5) and (3.38) into account, it holds that

ILy| < %AE(O)E(S). (3.42)

Estimate for Ly := %fST E'(t) [, a(z)n||? da.
Analogously, we deduce that

N2|al| oo
1| < 2l

E(0) E(S). (3.43)

Estimate for Ls := fg E() [, |¥[*n¢ dx dt.
Analogously to the above estimates and now considering the inequality

< ﬁ(f + eb?, it follows that

(0) E(S) + 2e\? /S ’ E%(t) dt. (3.44)

L
Lal < 5P

FEstimate for Ly = fST E(t) [ nl¢'|* dx dt.
From (2.3), (2.7), (3.5) and (3.38) we arrive at
|La| < ag ' E(0) E(S). (3.45)

Estimate for Ls == — [4 E(t) [, 6(Vé - V) dx dt.
From (3.38)—(3.40), we can write

1 T
sl < 5 [ B [ 0lvep s (3.46)
1 |V77‘2 T 2
= a4l E da dt.
H Loo(w)/s (t)/w|¢| vl
Defining
T
7= {E(t) / on <¢ ¢“) d:c} (3.47)
w S

and combining (3.41)—(3.47) we obtain

T
/ E(t)/n|V¢|2dxdt§ | Z| + Cy E(S)+2e)\2/ E2(t)dt  (3.48)

S
/ / |p|? da dt,
L (w)

T 2
+3 [ B0 [avepass 5|

2 Js
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where

A N?alls .

Combining (3.37) and (3.48), choosing € = 1/64\? and having in mind that
T T
/ E(t)/ NIV o2 da dt = / E(t)/ V6|2 da dt
s ) S o

L
32
< \XI + RIY[+|Z] + (Co + RCy + 3C2|[h]|o0) E(S)

3R [Val* / / |p|* daz dt.
Lo ()

+T||h||W1=°°
On the other hand, from (3.11), (3.35) and (3.47), the following estimate
holds

we deduce

T
E2(t) dt (3.49)

IXI+ RIY[+]Z] < C3 E(0) E(S) (3.50)

where C5 is a positive constant such that C5 = C3(R,||a||cc, A, ||||co). Then,
(3.49) and (3.50) yield

/ E*(t)dt < C E(0 +C/ /\¢|2dxdt, (3.51)
Q

where C' is a positive constant such that

C= C(R7 HaHCXH ||h||00’)\7 Hh‘|W1*°°7kan7a7ﬁaa/0)~

Step 3. Let Ty > 0 considered sufficiently large for our purpose. We will
prove the following lemma:

Lemma 3.1 For all T > Tj there exists a positive constant C = C(Ty, E(0)) such
that if (¢, @) is the regular solution of (1.1) with initial data {1, do, $1} we have

/ST/ 62 da dt

<C’TO7

// |q§|2dxdt+/ /|w|4dxdt] (3.52)

for0 < S < T < 4.
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Proof. We argue by contradiction. Let us suppose that (3.52) is not verified and
let {11 (0), ¢x(0), #,(0)} be a sequence of initial data where the corresponding
solutions {t, ¢} with Ej(0) uniformly bounded in k, verifies

T
lim Is Jo|én]" dadt = +00
koo [ [0 a(x)|¢h[2dedt + [3 [, ||t da dt

(3.53)

Since Ej(t) is non-increasing and Ej(0) remains bounded then, we obtain a
subsequence, still denoted by {, ¢} which verifies

Y — 1 weak star in L>(0,T; L*()), (3.54)
br — ¢ weak star in L>(0,T; H (), (3.55)
#), — ¢ weak star in L>°(0,T; L*(Q2)), (3.56)
Y — v weakly in L*(0,T; L*(Q)), (3.57)

We also have, employing compactness results (see Theorem 5.1 in Lions [Li])
that

ér — ¢ strongly in L*(0,T; L*(Q2)). (3.58)
Now, from (3.53) and (3.55) we deduce that

g oo [g fo a(x)|@}|2dz dt = 0, (3.59)
limg oo fg fo [0x|*dz dt =0, (3.60)

From now on let us focus our attention on the coupled wave equation
¢~ Ay +al2)d), = n[2x in 2 x (0,T) (3.61)

Let us divide our proof in two cases (in what concerns the limit ¢ above):

(a) ¢#0.

Passing to the limit when & — +oo in (3.61) taking into account the above
convergence, we deduce that

¢ — A¢ =0in L2(0,T; H(Q))
¢ =0 on L*(0,T; H/*(T)) (3.62)
¢ =0 a. e in wx(0,7),

and for ¢’ = v, we obtain, in the distributional sense that

v —Av=01in D'(2 x (0,7))
v=0onT x (0,7) (in H~(0,T; H/?(T))) (3.63)
v=0 a. e in wx(0,7).
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From standard uniqueness results for the wave equation we conclude that
v = 0, that is, ¢’ = 0. Returning to (3.62) we obtain the following elliptic equation
for a. e. t € (0,7 :

—A¢p=01in Q
¢=0o0nT (3.64)
¢ =0 in w,

Multiplying (3.64) by ¢ we deduce that [, |[V$|* dz = 0, which implies that
¢ = 0, which is a contradiction.
Now, we consider the other case when

(b) ¢ = 0.
Defining
1/2
en = [[4 Jolonl?* duat] (3.65)
S = Lo, r= L, (3.66)
we obtain

Ja Jioy |dx|? da dt = 1. (3.67)

Besides,

B = 5| [P dos [ (6P [ 190 ]

1
= 52 [/ \wk\Qdaj—&—/ \¢§€|2dx—|—/ |V¢)k|2daj},
. LJa Q Q

. 1
Ei(t) = 202
k

On the other hand, multiplying (3.3) by Ej(¢) and integrating over (S,T),
we deduce

T T
EX(T) = E,%(S)_za/S Ek(t)/ﬂ|wk|4dxdt—2/s Ek(t)/ga(x)mwdxdt

that is,

Ei(t). (3.68)

T
+2/S Ek(t)/ |V |* b}, da dt. (3.69)

From the fact that Fy(t) > Ey(T) for all t € [S,T] and taking (3.67) into
account, we obtain

/ "Bt > (1 S)ET)
S

T
(7= SIBH(S) ~20(7 = 5] [ Butt) [ ot dode
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T
9T - 8] / Ex(t) / o) 64 da dt

S

T
+2[T—S]/ Ek(t)/ [n|2 @), dex dt. (3.70)

S

Combining (3.51) and (3.70) and making use of Cauchy-Schwarz inequality
taking (2.3) into account, we infer

[T—S]Ex(S)Ex(5)

< (2(a+2) 4+ 2a5H)[T — S] Ex(S {//|wk|4dxdt+// |¢k2da:dt}

+CEk(S)+CEk(S)/S /Q\gék|2dxdt.

The last inequality yields for a large T,

E(S) < C(T, a, {/ /wk\‘*dde// )| L2 da dt
+/S /Q|</>k2dmdt} (3.71)

Having in mind that Fx(t) < Ex(S) for all ¢t € [S,T], applying inequality
(3.71) and dividing both sides by fST Jo [6x[? da dt it holds that

____Ex®) JE [ 1 |* dx dt+ [T [, a(@)|d}|? da dt }
Theraa < ¢ a0, ) { T a +11 (3.72)

Since in view of (3.53) we have

fs Jo |wk|4dxdt+fs Jo a(x)|¢,|? da dt

=0, (3.73)
k—>+oo fS fQ |¢k|2 dx dt
then, from (3.72) there exists M > 0 such that

Ei(t)

2 < C(T,ap,0)(M + 1), for all t € [S, T (3.74)
and for all £ € N.
Consequently, from (3.68) and (3.74) it results that

Ei(t) < C(T, a0, a)(M +1), for all t € [S,T] (3.75)

and for all k£ € N.
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Then, in particular, from (3.73) we deduce
. T n . r a(z)|¢h |? dx dt
limg— 4 oo fS fQ a(x)\¢;€|2 dr dt =limg_— 400 fsfégfn(‘(zl‘fldz = 0, (376)

. JE [ 1wl dadt
llmkgq»oo m = 07 (377)

and from and (3.75), for a subsequence {9, ¢x}, we obtain

Y — 1 weak star in  L>(0,T; L*(Q2)), (3.78)
b — ¢ weak star in L>(0,T; H} (), (3.79)
¢, — ¢ weak star in L>(0,T; HL(Q)), (3.80)
ér — ¢ strongly in L2(0,T; L*(Q)). (3.81)

In addition, gﬁk satisfies the equation

H — Ay + a@)d), = 2 im0 x (0,7)

¢ =0onT x (0,7) (3.82)
=0 a e in wx(0,7T).

Passing to the limit when k£ — 400 taking the above convergence into
account, we get
¢ —Ap=0 in Qx(0,T)
¢=0onT x (0,7) (3.83)
¢’ =0 a.e in wx(0,7).

Then, v = ¢’ verifies, in the distributional sense

v/ —Av=0 in D'(Qx(0,T))
v=0o0onT x (0,T) (in a weak sense) (3.84)
v=0 a. e in wx(0,7T).

Applying uniqueness standard results it comes that v = ngS’ = 0. Returning
to (3.83) we obtain, for a. e. t € (0,7 that

~Ap=0 in Q
p=0onT (3.85)
¢ =0 in w.

Multiplying the above equation by <;AS, we deduce

0:—/§2Aq§q3dx:/ﬂ|Vq3\2dx,
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that is, ¢ = 0. From this fact, from (3.67) and (3.81) we obtain a contradiction.
So, Lemma 3.1 is proved. O
Combining (3.51) and (3.52) it holds that

/Tﬁ@ﬁ§0E®Ew%
S

where C' = C(Ty, E(0), R, ||a]|ccs [|P]oos A, [|B]|wi.o0, ky 1y, B, ), independent of
T. So, the estimate given in (3.6) is proved as desired to show. Consequently
Theorem 2.1 is proved. a

Remark 3.1 Following the method developed in this paper combined with those
ones introduced in the literature by Zuazua [Zua] it is also possible to treat
semi-linear coupled waves, that is, systems given by

Wy + Ay + ioz|z/1|2w = ¢ in Q x (0, 00)
bt — Ap + f(@) + a(x)d; = [1]*X. in Q x (0,00 (3.86)
¥(0) = o € HF (), u(0) =up € H{(Q), u(0) =uy € L*(Q),

where f is a real function satisfying the following assumptions:
feCHR), f(0) =0, f(s)s >0 for all s #0,
and
If'(s)] < C[1+ |s|*~1], forall s € R, 1§k0§%, n>2
and 0 < kg < oo,n=1,2.
Remark 3.2 As mentioned in the introduction of this paper, an interesting open

question is to investigate uniform decay rates when one has localized dissipations
in both equations, namely,

ity + A+ iab(x)|Y)?Y = ¢t in Q x (0, 00)
b1t — Ad + a(z)pr = |¥|*x0 in Q x (0,00) (3.87)
P(0) = 4o € Hg(Q), u(0) = up € Hy(Q), u:(0) = uy € L*(),

where
a(x) >ap >0 and b(x) >by >0 a.e inw.

Unfortunately, the method developed in the present manuscript fails, mainly
because of the coupled Schrodinger equation. Perhaps, it would be interesting to
investigate the case where we have localized damping acting in the whole domain.
More precisely, assume that a, b € L3°(€2) verifying

a(x) +b(x) >ap>0 a e in €

as considered in Cavalcanti and Oquendo [CaOgq/ for the wviscoelastic wave
equation.
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