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Abstract. We prove the existence of integral solutions to the nonlocal
Cauchy problem

u′(t) ∈ −Au(t) + F (t, u(t)), 0 ≤ t ≤ T ; u(0) = g(u)

in a Banach space X, where A : D (A) ⊂ X → X is m-accretive and such
that −A generates a compact semigroup, F : [0, T ]×X → 2X has nonempty,
closed and convex values, and is strongly-weakly upper semicontinuous with
respect to its second variable, and g : C

(
[0, T ] ; D (A)

)
→ D (A) . The case

when A depends on time is also considered.
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1 Introduction

This paper is concerned with the existence of solutions to the nonlocal Cauchy
problem

u′ (t) ∈ −Au (t) + F (t, u (t)) , t ∈ I := [0, T ] ; u (0) = g (u) , (1.1)

in a real reflexive, separable Banach space X. Here A : D (A) ⊂ X → X is a
nonlinear (possibly multivalued) operator on X, such that −A generates a compact
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semigroup of contractions on D (A), F : I × X → 2X\ {∅} denotes a closed and
convex valued multifunction, which is strongly-weakly upper semicontinuous with
respect to its second variable, and g : C

(
I; D (A)

)
→ D (A). The time dependent

counterpart of (1.1) , namely

u′ (t) ∈ −A (t) u (t) + F (t, u (t)) , t ∈ I := [0, T ] ; u (0) = g (u) , (1.2)

where {A (t) , t ∈ I} are m-accretive operators on X and generate a compact
evolution operator, is also discussed.

The study of nonlocal initial-value problems in Banach spaces was initiated
by Byszewski [15], who considered an equation of the form (1.1) with A linear,
F single valued, and g of a special structure. Results on fully nonlinear abstract
nonlocal Cauchy problem have been obtained in [2], [3], [4]. While we were con-
cluding the writing up of this article, Xue’s very recent work [28] has been brought
to our attention. These papers are primarily concerned with equations governed
by accretive operators and single-valued perturbations. To our knowledge, the
only existing result for (1.1) with A nonlinear and F multivalued is Theorem 3.8
in [4], where F is supposed to be closed-valued and lower semicontinuous in its
second variable. On the other hand, finite dimensional versions of (1.1) (with
A = 0) appear in [13], [21], while abstract semilinear evolution inclusions with
nonlocal initial conditions have been considered in [1], [9], [10], [11]. In partic-
ular, in [1], the problem (1.1) is analyzed under the assumption that −A is the
infinitesimal generator of a linear C0−semigroup on X, F is closed, convex valued
and upper semicontinuous in its second argument, and g is an integral operator.

The present work complements [4] by allowing F (., .) to be upper semi-
continuous in its second variable (as opposed to lower semicontinuous) and also
generalizes the theory of [1] to the case when A is fully nonlinear.

The plan of the paper is as follows. Section 2 contains background mate-
rial on multifunctions, m-accretive operators and evolution equations. The main
results for the problems (1.1) and (1.2) are stated in Section 3, while the proofs
are carried out in Section 4. Finally, Section 5 contains an example to which our
abstract theory applies.

2 Preliminaries

For further background and details pertaining to this section, we refer the reader
to [5], [6], [8], [14], [22], [24], [25], [26] and [27].

Let X be a real Banach space with norm ‖.‖ and dual (X∗, ‖.‖∗) . As usual,
2X stands for the family of all nonempty subsets of X and Ω denotes the closure
of a set Ω ∈ 2X . The collection of all nonempty closed (resp., nonempty, closed
and convex) subsets of X is denoted by P (X) (resp., Pc (X)). Let σ (X, X∗) be
the weak topology on X, which is known to be a Hausdorff topology. The space X
endowed with the σ (X, X∗) topology will be denoted by Xw. The duality mapping
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J : X → 2X∗
is defined by

J(x) =
{

x∗ ∈ X∗ : x∗(x) = ‖x‖2 = ‖x∗‖2
∗
}

, ∀x ∈ X.

If X∗ is uniformly convex, then J is single-valued and uniformly continuous on
bounded subsets of X. The so called upper semi-inner product on X, denoted by
〈., .〉+ is given by

〈y, x〉+ = sup {x∗(y) : x∗ ∈ J(x)} .

Let I = [0, T ] , where 0 < T < ∞. We denote by C (I, X) (resp. L1 (I, X))
the Banach space of all continuous (resp. Bochner integrable) functions u : I → X

with norm ‖u‖∞ = supt∈I ‖u (t)‖ , (resp. ‖u‖1 =
∫ T

0 ‖u (t)‖ dt).
Let A be a (possibly multivalued) operator in X. We define the domain and

respectively, the range of A, by

D(A) := {x ∈ X : Ax 	= ∅} , R(A) :=
⋃

x∈D(A)

Ax.

The operator A is called accretive if 〈y′ − y, x′ − x〉+ ≥ 0 for all x, x′ ∈
D (A) , y ∈ Ax and y′ ∈ Ax′. If also R(Id + λA) = X, for each λ > 0, where Id is
the identity map on X, then A is said to be m-accretive.

By a celebrated result of Crandall and Liggett [17], if A is m-accretive, then
−A generates a semigroup of contractions {S (t) : t ≥ 0} on D (A). The respective
semigroup is said to be compact if S (t) maps bounded subsets of D (A) into
precompact subsets of D (A), for each t > 0.

Let A be m-accretive in X. For u0 ∈ D (A) and f ∈ L1 (I, X) we consider
the initial value problem:

u′ (t) ∈ −Au (t) + f(t), t ∈ I; u(0) = u0, (2.1)

whose solutions are meant in the sense of the following definition that is due to
Bénilan [12]:

Definition 1 An integral solution to (2.1) is a continuous function u : I → D (A)
with u (0) = u0, such that, for all x ∈ D (A), y ∈ Ax and all 0 ≤ s ≤ t ≤ T,

‖u(t) − x‖2 ≤ ‖u(s) − x‖2 + 2
∫ t

s

〈f(τ) − y, u(τ) − x〉+ dτ. (2.2)

It is well known that equation (2.1) has a unique solution u ∈ C
(
I,D (A)

)
.

The following proposition summarizes an important property of integral solutions:

Proposition 2 Let u and v be integral solutions of (2.1) that correspond to (u0, f)
and (v0, g) respectively (where u0, v0 ∈ D (A) and f, g ∈ L1 (I, X)). Then

‖u (t) − v (t)‖ ≤ ‖u0 − v0‖ +
∫ t

0
‖f (s) − g (s)‖ ds (2.3)

for all t ∈ I.
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Next, let {A (t) , t ∈ I} be a family of (possibly multivalued) operators on
X, of domains D (A (t)), with D (A (t)) = D (independent of t) which satisfy the
assumption:(

HA(t)
)

(i) R (Id + λA (t)) = X, for all λ > 0 and t ∈ I,

(ii) there exists a continuous function m1 : I → X and a continuous
nondecreasing function m2 : R

+ → R
+ (R+ := [0,∞)) such that

〈y1 − y2, x1 − x2〉+ ≥
− ‖m1 (t) − m1 (s)‖ ‖x1 − x2‖ m2 (max {‖x1‖ , ‖x‖2}) ,

for all x1 ∈ D (A (t)) , y1 ∈ A (t) x1, x2 ∈ D (A (s)) , y2 ∈ A (s) x2,
0 ≤ s ≤ t ≤ T.

In particular, for each t ∈ I, the operator A (t) is m-accretive. If
(
HA(t)

)
holds, then (see, e.g., [26]) the family {A (t) , t ∈ I} generates a so-called evolution
operator U (t, s) on D via the formula

U (t, s) x = lim
n→∞

n∏
i=1

(
Id +

t − s

n
A

(
s + i

t − s

n

))−1

x,

for all x ∈ D and all 0 ≤ s ≤ t ≤ T . The evolution operator U is said to be
compact if U (t, s) maps bounded subsets of D into precompact subsets of D, for
all 0 ≤ s < t ≤ T.

Consider the nonautonomous Cauchy problem

u′ (t) ∈ −A (t) u (t) + f(t), t ∈ I; u(0) = u0, (2.4)

where A (t) satisfies
(
HA(t)

)
, f ∈ L1 (I, X) and u0 ∈ D.

Definition 3 An integral solution of (2.4) is a function u ∈ C
(
I,D

)
satisfying

u (0) = u0 and the inequality

‖u(t) − x‖2 − ‖u(s) − x‖2 ≤ 2
∫ t

s

[〈f(τ) − y, u(τ) − x〉+
+ C ‖u(τ) − x‖ ‖m1 (τ) − m1 (θ)‖]dτ

for all 0 ≤ s ≤ t ≤ T, θ ∈ I, x ∈ D (A (θ)) , y ∈ A (θ) x, and C = m2(max{‖x‖,
‖u‖∞}), with m1 and m2 as in

(
HA(t)

)
(ii) .

Recall that (2.4) has an unique integral solution for each u0 ∈ D and f ∈
L1 (I, X), provided that

(
HA(t)

)
is satisfied. Moreover, the following analog of

Proposition 2 is true:



Vol. 14, 2007 Multivalued evolution equations with nonlocal initial conditions 365

Proposition 4 Let
(
HA(t)

)
be satisfied and let u and v be integral solutions of

(2.4) corresponding to (u0, f) and (v0, g), respectively (with u0, v0 ∈ D and f,
g ∈ L1 (I, X)). Then the inequality (2.3) holds for all t ∈ I.

The remainder of this section is devoted to a brief review of multifunctions.
In what follows, the Banach space X will be assumed separable.

Let (Ω, Σ, µ) be a measure space and Φ : Ω → 2X . We say that Φ is mea-
surable if {ω ∈ Ω : Φ (ω) ∩ C 	= ∅} ∈ Σ for any closed subset C of X. If Ω ⊂ R

n

(n ≥ 1), then Σ is the σ−algebra of Lebesgue measurable subsets of Ω.
A function ϕ : Ω → X that satisfies ϕ (ω) ∈ Φ (ω) , µ − a.e. on Ω, is called

a selection of Φ. We define S1

Φ as the set of all selections of Φ that belong to
L1 (Ω, X) .

Let Y and Z be Hausdorff topological spaces and let Ψ : Y → 2Z . For A ∈ 2Z

we set

Ψ− (A) := {y ∈ Y : Ψ (y) ∩ A 	= ∅} , Ψ+ (A) := {y ∈ Y : Ψ (y) ⊂ A} .

The multifunction Ψ is said to be upper semi-continuous on Y (u.s.c., for
short) if the set Ψ+ (A) is open in Y for any open subset of A of Z.(Equivalently,
Ψ is u.s.c. if Ψ− (C) is closed in Y for each closed subset C of Z).

If Z = Xw and Ψ : Y → 2Z is u.s.c. and closed valued, then, by ([22],
Chapter 1, Proposition 2.17) Ψ is closed, that is,

Gr (Ψ) := {(y, z) ∈ Y × Z : z ∈ Ψ (y)}

is closed in Y ×Z. Conversely, if Ψ : Y → P (Z) is closed and locally compact (i.e.,
for each y ∈ Y , there exists a neighborhood U of y such that Ψ (U) is precompact),
then Ψ is u.s.c. (see ([22], Chapter 1, Proposition 2.23).

We will be mainly concerned with multifunctions F : I ×X → 2X satisfying

(
H1

F

)
For each x ∈ X, F (., x) is measurable,(

H2
F

)
For a.a. t ∈ I, F (t, .) is upper semicontinuous from X into Xw.

The following special form of the Convergence Theorem in [5], p.60, as given
in [27], p.120, will be used in the sequel:

Proposition 5 Let F : I × X → Pc (X) satisfy assumptions
(
H1

F

)
and

(
H2

F

)
.

Let un, fn : I → X (n ∈ N) be measurable functions such that un converges almost
everywhere on I to a function u : I → X and fn converges weakly in L1 (I, X)
to f : I → X. If fn (t) ∈ F (t, un (t)) , for all n ∈ N and almost all t ∈ I, then
f (t) ∈ F (t, u (t)) , a.e. on I.
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The final result of this section is the following:

Lemma 6 Let F : I × X → P (X) satisfy assumptions
(
H1

F

)
and

(
H2

F

)
, and let

u : I → X be a measurable function.
Then the multifunction t → F (t, u (t)) is measurable. If also there exists

ϕ ∈ L1
(
I, R+)

such that

|F (t, u (t))| := sup {‖w‖ : w ∈ F (t, u (t))} ≤ ϕ (t) , a.e. on I, (2.5)

then S1
F (.,u(.)) is a nonempty and closed subset of L1 (I, X). Moreover S1

F (.,u(.)) is
convex, provided that F is convex valued.

Proof. Since u : I → X is measurable, there exists a sequence (un)n∈N
of simple

functions from I to X, such that un converges to u, a.e. on I, as n → ∞. By(
H1

F

)
, the multifunction t → F (t, un (t)) is measurable for each n ∈ N. Using(

H2
F

)
, Propositions 2.13 and 2.17 in [22], Chapter 1, and Theorem 8.2.4 in [6] (cf.,

also [6], p.41, 313) we conclude that

F (t, u (t)) =
⋂
n≥1

⋃
k≥n

F (t, uk (t))

and that t → F (t, u (t)) is measurable, as a multifunction from I to X. Then, by
the Kuratowski-Ryll Nardzewski Theorem (see, e.g. [22], p.154), there exists a
measurable function v : I → X such that v (t) ∈ F (t, u (t)), t ∈ I. If (2.5) holds,
then v ∈ L1 (I, X) , hence S1

F (.,u(.)) 	= ∅. Recalling that F is closed valued, it is
easily verified that S1

F (.,u(.)) is closed in L1 (I, X) . Finally, if F also has convex
values, then it is immediate that S1

F (.,u(.)) is convex, as well. �

3 Statement of results

Throughout this section, X is supposed to be a real separable Banach space with
uniformly convex dual X∗, I := [0, T ] , with 0 < T < ∞, and R

+ := [0,∞) . We
study the nonlocal initial value problem (1.1) under the following assumptions:

(HA) A is an m-accretive operator in X, such that −A generates a compact
semigroup {S (t) : t ≥ 0} on D (A).

(Hg) g : C
(
I,D (A)

)
→ D (A) is such that

‖g (u) − g (v)‖ ≤ m ‖u − v‖∞ ,∀u, v ∈ C
(
I,D (A)

)
,

for some m with 0 < m < 1.

(HF ) F : I × X → Pc (X) satisfies:
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(i) F (., x) is measurable for each x ∈ X,
(ii) F (t, .) is upper semicontinuous from X to Xw for a.a. t ∈ I,

(iii) there exists a function γ : I ×R
+ → R

+ such that γ (., r) ∈ L1 (I, R)
for every r ∈ R

+, γ (t, .) is continuous and nondecreasing for a.a.
t ∈ I and

lim sup
r→∞

1
r

∫ T

0
γ (t, r) dt < 1 − m, (3.1)

where m is the same as in condition (Hg) , with the additional prop-
erty that

|F (t, x)| := sup {‖w‖ : w ∈ F (t, x)} ≤ γ (t, ‖x‖) , (3.2)

for a.a. t ∈ I, and all x ∈ D (A).

Definition 7 A function u ∈ C
(
I,D (A)

)
is called an integral solution of the

problem (1.1) if there exists f ∈ L1 (I, X) with f (t) ∈ F (t, u (t)) , a.e. on I, such
that u is an integral solution in the sense of of Definition 1, of (2.1) with g (u) in
place of u0.

Our basic existence result is the following:

Theorem 8 Let assumptions (HA) , (Hg) and (HF ) be satisfied. Then the set of
integral solutions of the problem (1.1) is a nonempty, compact subset of C (I, X) .

Next we are concerned with the existence of integral solutions to the problem
(1.2) , where the operators A (t) satisfy

(
HA(t)

)
, while F and g are subject to

conditions (HF ) and (Hg) , respectively, with the mention that in (Hg) , D (A) is
to be replaced by D. The corresponding modified assumption (Hg) will be denoted
by

(
H ′

g

)
.

Definition 9 A function u ∈ C
(
I,D

)
is said to be an integral solution of the

problem (1.2) if there exists f ∈ L1 (I, X) with f (t) ∈ F (t, u (t)) , a.e. on I, such
that u is an integral solution, in the sense of of Definition 3, of (2.4) , where u0 is
replaced by g (u) .

The following counterpart of Theorem 8 is valid:

Theorem 10 Let assumptions
(
HA(t)

)
,

(
H ′

g

)
and (HF ) be satisfied. Then the

set of integral solutions of the problem (1.2) is a nonempty, compact subset of
C (I, X) .
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4 Proofs

Proof of Theorem 8. Without loss of generality, we assume that 0 ∈ D (A) .
We start with the initial value problem

u′ (t) ∈ −Au (t) + f (t) , t ∈ I; u (0) = g (u) , (4.1)

where f ∈ L1 (I, X) , A is m-accretive in X, and g satisfies (Hg) . By an inte-

gral solution to (4.1), we mean a function u ∈ C
(
I,D (A)

)
that satisfies the

requirements of Definition 1, with g (u) in place of u0.
We claim that the problem (4.1) has a unique integral solution that will be

denoted by uf . Indeed, for each v ∈ C
(
I,D (A)

)
, there exists a unique integral

solution uv of the initial value problem

u′ (t) ∈ −Au (t) + f (t) , t ∈ I; u (0) = g (v) , (4.2)

By (2.3) and (Hg) , we have

‖uv (t) − uw (t)‖ ≤ ‖g (v) − g (w)‖ ≤ m ‖v − w‖∞ ,∀t ∈ I,

hence

‖uv − uw‖∞ ≤ m ‖v − w‖∞ , (4.3)

for all v, w ∈ C
(
I,D (A)

)
. Since 0 < m < 1, (4.3) implies that v → uv is a strict

contraction in C
(
I,D (A)

)
. Therefore, by the Contraction Mapping Principle,

the map v → uv has a unique fixed point in C
(
I,D (A)

)
. Obviously, this is the

unique integral solution of (4.1) .
Next, we obtain an a-priori bound for all possible solutions of (1.1) . Let u

be an integral solution of (1.1) , in the sense of Definition 7. Accordingly, there
exists f ∈ L1 (I, X) with f (t) ∈ F (t, u (t)) , a.e. on I, such that u is an integral
solution of the related problem (4.1) .

Noting that each x ∈ D (A) can be viewed as the integral solution of (2.1)
with f (t) = y ∈ Ax and u0 = x, we obtain with the help of Proposition 2 that

‖u (t) − x‖ ≤ ‖g (u) − x‖ +
∫ t

0
‖f (s) − y‖ ds, t ∈ I, (4.4)

for a fixed x ∈ D (A) and y ∈ Ax. From (4.4) it follows that

‖u (t)‖ ≤ 2 ‖x‖ + ‖g (0)‖ + T ‖y‖ + ‖g (u) − g (0)‖ +
∫ T

0
‖f (s)‖ ds. (4.5)
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Using (Hg) and (HF ) (iii) in (4.5) we arrive at

(1 − m) ‖u‖∞ ≤ C +
∫ T

0
γ (s, ‖u‖∞) ds, (4.6)

where C = 2 ‖x‖ + ‖g (0)‖ + T ‖y‖ . This in conjunction with (3.1) implies that
there exists a finite positive constant M (which is independent of u) such that

‖u‖∞ ≤ M. (4.7)

Indeed, if this is not the case, one can construct a sequence (un)n∈N of integral
solutions of (1.1) , such that ‖un‖∞ → ∞, as n → ∞. Then, (4.6) leads to

(1 − m) ≤ lim sup
n→∞

∫ T

0 γ (s, ‖un‖∞) ds

‖un‖∞
≤ lim sup

r→∞
1
r

∫ T

0
γ (t, r) dt,

in contradiction with (3.1) . Hence, a constant M must exist such that (4.7) is
satisfied by all integral solutions u of (1.1). Let

ϕ (t) := γ (t, M) (4.8)

and remark (cf. (HF ) (iii)) that ϕ ∈ L1 (I, R) . Combining (3.2) , (4.7) and (4.8)
we get

|F (t, u (t))| ≤ ϕ (t) , a.e. on I, (4.9)

for each integral solution u of (1.1) . In view of (4.9), we may assume without lost
of generality that

|F (t, x)| ≤ ϕ (t) , ∀x ∈ X, a.e. on I. (4.10)

Otherwise, we replace F (t, x) by F̃ (t, x) = F (t, pM (x)) , where pM : X → X is
given by

pM (x) =
{

x if ‖x‖ ≤ M
M x

‖x‖ if ‖x‖ > M
, (4.11)

with M as in (4.7) . It is easily seen that all conditions in (HF ) are satisfied with
F̃ in place of F. In particular, one uses the strong-weak upper semicontinuity of F
and the continuity of pM to verify (ii) in (HF ) . As regards to (iii), simply remark
that ‖pM (x)‖ ≤ ‖x‖ , ∀x ∈ X, so that∣∣∣F̃ (t, x)

∣∣∣ ≤ γ (t, ‖pM (x)‖) ≤ γ (t, ‖x‖) ,

since γ is nondecreasing in its second variable.
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Assume that we have found an integral solution ũ of the problem (1.1) where
F has been replaced by F̃ . By (4.7) it follows that

‖ũ (t)‖ ≤ M, ∀t ∈ I,

and therefore (cf. (4.11)), pM (ũ (t)) = ũ (t) . As a result, F̃ (t, ũ (t)) = F (t, ũ (t)),
so that ũ (.) is an integral solution of our original problem (1.1) . Summarizing,
we will henceforth suppose that (4.10) holds.

We now introduce the set K ⊂ L1 (I, X) by

K =
{
f ∈ L1 (I, X) : ‖f (t)‖ ≤ ϕ (t) , a.e. on I

}
. (4.12)

Clearly, K is nonempty, closed and convex. In addition, K is uniformly integrable,
hence, by [18], p.101, it is compact in L1

w (I, X) , where L1
w (I, X) denotes the space

L1 (I, X) equipped with its weak topology. We also note (see Theorem V.6.3 in
[19]) that K, endowed with the relative L1

w (I, X) topology is a metric space.
Define the map F : K → 2L1(I,X) by

F (f) := S1
F (.,uf (.)) =

{
v ∈ L1 (I, X) : v (t) ∈ F (t, uf (t)) a.e. on I

}
, (4.13)

where uf (.) denotes the integral solution of (4.1) , for a given f ∈ K.
By (HF ) and Lemma 6, we conclude that F (f) has nonempty, closed and

convex values. Moreover, in view of (4.9) , F (K) ⊂ K. We regard K as a com-
pact convex subset, denoted as Kw, of L1

w (I, X) and show that F is u.s.c. from
Kw into 2Kw . By Proposition 2.23 in [22], Chapter 1 (cf., also Theorem 2.5
in [25]) it is sufficient to prove that its graph Gr (F) is sequentially closed in
Kw × Kw.

Let (fn, vn) ∈ Gr (F) with fn → f and vn → v in L1
w (I, X) , as n → ∞.

From (4.12) , (4.4), (4.5) and (Hg) , it follows that {ufn
}n∈N

is bounded in C (I, X) ,
and consequently, {g (ufn)}n∈N

is bounded in X.
We now show that {ufn}n∈N

is precompact in C (I, X) . To accomplish this,
we reason as follows. (A comparable argument was independently used by Xue
[28], in a different context.)

Let X := C
(
I,D (A)

)
and define the operator L : X → X 0 by

(Lw) (t) = w (t) − S (t) g (w) ,∀t ∈ I, w ∈ X , (4.14)

where X0 = {u ∈ C (I, X) : u (t) = w (t) − S (t) g (w) , t ∈ I, for some w ∈ X}
and {S (t) : t ≥ 0} denotes the contraction semigroup generated by −A. By(Hg) ,
it is easily verified that L is one-to-one and onto, and that L−1 is continuous on
X0, see [28], Lemma 2.5. Accordingly, we write

ufn (t) = L−1 (wfn) (t) , t ∈ I, n ∈ N (4.15)

where (cf. (4.14)),

wfn
(t) = ufn

(t) − S (t) g (ufn
) . (4.16)
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On account of (HA) , one can invoke [7] (see also [16], Theorem 2.1) to infer that
{wfn

(.)}n∈N
is precompact in C ([δ, T ] , X) for any 0 < δ < T. Next, since by

(4.16) ,

wfn
(0) = g (ufn

) − g (ufn) = 0,∀n ∈ N,

the set {wfn
(0)}n∈N

is trivially compact in X. To prove the equicontinuity of
{wfn

(.)}n∈N
at t = 0, remark that zn (.) = S (.) g (ufn) can be viewed as an

integral solution of

z′ (t) ∈ −Az (t) , t ∈ I; z (0) = g (ufn) .

Applying Proposition 2, we obtain

‖wfn (t) − wfn (0)‖ = ‖ufn (t) − zn (t)‖ ≤
∫ t

0
‖fn (s)‖ ds, ∀t ∈ I.

Recalling that fn ∈ K (see (4.12)), we conclude that

‖wfn
(t) − wfn

(0)‖ ≤
∫ t

0
ϕ (s) ds, ∀t ∈ I.

This implies that {wfn
(.)}n∈N

is equicontinuous at t = 0, as desired. In sum-
mary, by the Ascoli-Arzelà Theorem (cf., e.g., [27], Theorem 1.3.1), it follows
that {wfn

(.)}n∈N
is precompact in Xo. This, in conjunction with (4.15) and the

continuity of L−1 on X , implies that {ufn
(.)}n∈N

in precompact is X as claimed.
Without loss of generality, we can assume that

ufn
→ u in C (I, X) , as n → ∞, (4.17)

for some u ∈ C (I, X) . In view of (4.17) and the fact that vn → v weakly in
L1 (I, X) with vn ∈ F (fn) (that is (cf. (4.13)), vn (t) ∈ F (t, ufn (t)) , a.e. on I),
we can apply Proposition 5 to conclude that

v (t) ∈ F (t, u (t)) , a.e. on I. (4.18)

Finally, since X∗ is uniformly convex, the duality map J : X → X∗ is single
valued and continuous. By (2.2) and the definition of 〈., .〉+ (see Section 2), we
have

‖ufn(t) − x‖2 ≤ ‖ufn(s) − x‖2 + 2
∫ t

s

J (ufn(t) − x) (fn(τ) − y) dτ, (4.19)

for all x ∈ D (A), y ∈ Ax and all 0 ≤ s ≤ t ≤ T. Using (4.17) , the fact that
fn → f weakly in L1 (I, X) , and the uniform continuity of J, we can pass to the
limit as n → ∞ in (4.19) to obtain

‖u(t) − x‖2 ≤ ‖u(s) − x‖2 + 2
∫ t

s

〈f(τ) − y, u(τ) − x〉+ dτ, (4.20)
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for all x ∈ D (A), y ∈ Ax and all 0 ≤ s ≤ t ≤ T. Recalling that ufn (0) = g (ufn
) ,

and employing (Hg) and (4.17) , we infer that

u (0) = g (u) . (4.21)

From (4.20) and (4.21) , it follows that u = uf . This, together with (4.18) , enables
us to conclude that v ∈ F (f) , which completes the proof of the the sequential
closedness of Gr (F) .

We can now invoke the Kakutani-Ky Fan Fixed Point Theorem [20] to deduce
that there exists f̂ ∈ K such that f̂ ∈ F

(
f̂
)

. By (4.13) , it is obvious that the
corresponding integral solution of the problem (4.1) , denoted by uf̂ , is an integral
solution of the problem (1.1) , in the sense of Definition 7. This shows that the set
of integral solutions of the problem (1.1) is a nonempty subset of C (I, X) , which
will be denoted by S.

It remains to show that S is compact in C (I, X) . Let (un)n∈N
be a sequence

in S , hence un = ufn for some fn ∈ K, with fn (t) ∈ F (t, un (t)) , a.e. on I.
Recalling that K is compact in L1

w (I, X) and arguing as before, we may assume
(without changing the notation for subsequences) that un → u in C (I, X) , fn → f
weakly in L1 (I, X) , as n → ∞. We then conclude (compare to (4.17)-(4.20)) that
u = uf , with f (t) ∈ F (t, u (t)) , a.e. on I. In other words, u ∈ S and the proof of
Theorem 8 is complete. �

Proof of Theorem 10. One follows, step by step, the proof of Theorem 8,
with the mention that A (t) , D,

(
HA(t)

)
, Definition 3 and Proposition 4 are now

used in place of A, D (A), (HA) , Definition 1 and Proposition 2, respectively. In
addition, in (4.14) , (4.16) and the definition of zn (t) , S (t) is to be replaced by
U (t, 0) . One must also adapt the theory in [24] (see in particular Theorems 2,
3, 4 and Lemma 4) to obtain the needed compactness property of the solution
map (u0, f) → u, where u0 varies in a bounded subset of D, f lies in a uniformly
integrable subset of L1 (I, X) and u denotes the corresponding integral solution
of (2.4) , and justify the passage to the limit in the time-dependent counterpart
of (4.19) (cf. Definition 3). The details are left to the reader. �

5 An example

In this section we illustrate the applicability of our abstract theory, by discussing
the obstacle type problem


∂u
∂t − ∆u = v on I × Ω,
−∂u

∂ν ∈ β (u) on I × Γ,

u (0, x) =
∫ T

0 h (s, u (s, x)) ds on Ω,
v ∈ L1

(
I, L2 (Ω)

)
, 0 ≤ v (t, x) ≤ q (t, x, u (t, x)) on I × Ω.

(5.1)

Here I = [0, T ] , Ω is a bounded domain in R
n (n ≥ 1) with a smooth
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boundary Γ, x = (x1, ..., xn) ∈ Ω, β is a multivalued operator in R, h : I ×R → R,
q : I × Ω × R → R

+ and ∂/∂ν denotes the outward normal derivative to Γ.
We impose the following restrictions on the data of the problem (5.1) :

(Hβ) β is m-accretive in R with 0 ∈ β (0) ;

(Hh) h : I × R → R satisfies:

(i) h (., r) is measurable for each r ∈ R and h (., 0) ∈ L1 (I, R) ,

(ii) h (t, .) is continuous for a.a. t ∈ I,

(iii) there exists k ∈ L1
(
I, R+)

such that

|h (t, r) − h (t, r)| ≤ k (t) |r − r|
for almost all t ∈ I and all r, r ∈ R;

(Hq) q : I × Ω × R → R
+ satisfies

(i) q (., ., r) is measurable for each r ∈ R,

(ii) q (t, x, .) is continuous for a.a. (t, x) ∈ I × Ω,

(iii) there exist two functions a ∈ L1
(
I, L2 (Ω)

)
and b ∈ L1 (I, R) , such

that, for almost all (t, x) ∈ I × Ω and all r ∈ R, one has a (t, x) ,
b (t) ≥ 0 and

q (t, x, r) ≤ a (t, x) + b (t) |r| .

Let X = L2 (Ω, R) , equipped with the norm ‖.‖2 (defined by ‖u‖2 =(∫
Ω u2 (x) dx

) 1
2 , ∀u ∈ L2 (Ω, R)). This is a separable Hilbert space. Define the

operator A in X by

Au = −  u, D (A) =
{

u ∈ H2 (Ω) : −∂u

∂ν
∈ β (u) , a.e. on Γ

}
. (5.2)

By (Hβ) and [27], Remark 2.6, it follows that A is m-accretive in X, with
D (A) = X, and −A generates a compact semigroup on X. Next we introduce the
functional g : C (I, X) → X by

g (u) (x) =
∫ T

0
h (s, u (s, x)) ds, ∀u ∈ C (I, X) , a.e. on Ω. (5.3)

From (Hh) it follows that g is well defined and

‖g (u) − g (u)‖2 ≤ ‖k‖1 ‖u − u‖∞ , ∀u, u ∈ C (I, X) . (5.4)

Finally, let F : I × X → 2X be given by

F (t, u) = {v ∈ X : 0 ≤ v (x) ≤ q (t, x, u (x)) , a.e. on Ω} . (5.5)
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Using (Hq) , we conclude that F has nonempty, closed and convex values
and F (., u) is measurable for all u ∈ X; see [23], p.191 and [6], Theorem 8.14.
Also

|F (t, u)| = sup {‖w‖2 : w ∈ F (t, u)} ≤ ‖a (t, .)‖2 + b (t) ‖u‖2 . (5.6)

Moreover, Proposition 2.2.3 in [22], Chapter 1, and the analysis in [23], p.191
imply that F (t, .) is u.s.c. from X into Xw for a.a. t ∈ I. See also [25], Theorem
2.5.

It is now obvious that with the identifications (5.2) , (5.3) , and (5.5) , we can
rewrite (5.1) , in the form (1.1) , in the space X = L2 (Ω, R) . On account of the
above discussion (cf. in particular (5.4) and (5.6)), we conclude that assumptions
(HA) , (HF ) and (Hg) are satisfied, provided that

‖k‖1 + ‖b‖1 < 1. (5.7)

(Note that, by (5.4) , (5.7) one can take m = ‖k‖1 in (Hg) , and that (5.6) and
(5.7) imply that (3.1) and (3.2) hold with γ (t, r) = ‖a (t, .)‖2 + b (t) r.

By a generalized solution of (5.1) , we mean an integral solution of its abstract
equivalent (1.1) in the space X = L2 (Ω, R) , with the identifications (5.2) , (5.3) ,
and (5.5) , in the sense of Definition 7. A direct application of Theorem 8 yields:

Theorem 11 Let conditions (Hβ) , (Hh), (Hq) and (5.7) be satisfied. Then the
set of generalized solutions of the problem (5.1) is a nonempty, compact subset of
C

(
I, L2 (Ω, R)

)
.
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