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Abstract. In this paper we study the Schrödinger equation of the form

(Pλ) −�u + a(x)u = λb(x)f(u), x ∈ R
N , u ∈ H1(RN ),

where λ > 0 is a parameter, a and b are positive potentials, while the non-
linear term f : R → R is sublinear at infinity. Two cases will be considered:
(i) f is superlinear at the origin; (ii) f does not satisfy any asymptotical
property at the origin. In both situations, the existence of certain multiple
weak solutions of (Pλ) are established for some λ > 0.
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1 Introduction and main results

In this paper we consider the Schrödinger equation of the form

−�u + a(x)u = λb(x)f(u), x ∈ R
N , u ∈ H1(RN ), (Pλ)

which depends on the parameter λ > 0. Throughout the paper we assume that

(f0) f ∈ C(R, R), and there exist c > 0 and q ∈]0, 1[ such that

|f(s)| ≤ c|s|q for each s ∈ R.

1This work was supported by the Istituto Nazionale di Alta Matematica, when the author
visited the Department of Mathematics of the University of Catania, Italy, in June-July, 2005.
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Our interest in (Pλ), under hypothesis (f0), is motivated mainly by several
papers where the nonlinearity f is assumed to be superlinear at infinity, i.e., there
exist some numbers C > 0, s0 > 0 and p > 1 such that

|f(s)| ≥ C|s|p for each |s| ≥ s0. (1)

In particular, studying closely related problems to (Pλ), many authors use the
Ambrosetti-Rabinowitz type condition (see [2], [4], [5]) or some of its variant (see
[1], [8], [7]):

(AR) There is η > 2 such that

0 < ηF (s) ≤ f(s)s for each s ∈ R \ {0},

where F (s) =
∫ s

0 f(t)dt.

And as we know, condition (AR) implies (1) with p = η − 1, excluding clearly
(f0).

The potential a : R
N → R also has an important role concerning the exis-

tence and asymptotic behaviour of solutions of (Pλ). When a(x) = const. > 0,
or a is radially symmetric, it is natural to look for radially symmetric solutions
of (Pλ), see e.g., [5], [10], [11], [17], [19]. Apart from [11], in the aforementioned
papers the nonlinearity f fulfills (AR). Motivated by the work of Rabinowitz [12]
(where a ∈ C(RN , R), infRN a > 0, and a(x) → +∞ as |x| → +∞), Bartsch and
Wang [4] considered more general potentials:

(BW ) a ∈ C(RN , R) satisfies infRN a > 0, and for any M > 0

µ({x ∈ R
N : a(x) ≤ M}) < +∞,

where µ denotes the Lebesgue measure in R
N .

Under (BW ), Bartsch and Wang [4] proved the existence of infinitely many
solutions of (Pλ) (with b(x) = const. > 0 and any fixed λ > 0) when f : R → R

is subcritical, odd and verifies (AR). Furtado, Maia and Silva [7] studied (Pλ) in
the case when F : R → R (defined in (AR)) has some sort of resonance with a
local nonquadraticity condition at infinity, while the potential a verifies (BW ).
Gazzola and Rădulescu [8] studied (Pλ) when a verifies (BW ), f is not necessarily
continuous and satisfies an appropriate non-smooth (AR) condition.

In this paper we will use a weaker condition than (BW ), see Bartsch, Pankov
and Wang [3]. Namely, we assume

(a0) a ∈ L∞
loc(R

N ), essinfRN a > 0, and
for any M > 0 and any r > 0 there holds:

µ({x ∈ B(y, r) : a(x) ≤ M}) → 0 as |y| → +∞,

where B(y, r) denotes the open ball in R
N with center y and radius r > 0.
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Requiring (a0), Bartsch, Liu and Weth [2] proved recently the existence of three
solutions of (Pλ) (a positive, a negative, and a sign changing solution), e.g., if
b(x) = const. > 0, λ > 0 is arbitrarily fixed, f is subcritical and verifies (AR).
Due to (a0), the Hilbert space

E =
{

u ∈ H1(RN ) :
∫

RN

a(x)u2 < +∞
}

endowed with the inner product

(u, v)E =
∫

RN

(∇u∇v + a(x)uv) for each u, v ∈ E,

(and with the induced norm ‖ · ‖E) can be continuously embedded into Ll(RN )
whenever 2 ≤ l ≤ 2∗, and the embedding E ↪→ Ll(RN ) is compact when 2 ≤
l < 2∗, cf. Bartsch, Pankov and Wang [3]. Here, 2∗ denotes the critical Sobolev
exponent, i.e., 2∗ = 2N/(N − 2) for N ≥ 3 and 2∗ = +∞ for N = 1, 2.

Since f(0) = 0 (cf. (f0)), the element 0 is a solution of (Pλ) for every λ > 0.
In order to guarantee nonzero solutions for (Pλ) we require the following assump-
tions:

(b0) b ∈ L1(RN ) ∩ L∞(RN ), b ≥ 0, and

sup
R>0

essinf |x|≤Rb(x) > 0. (2)

(f1) f(s) = o(|s|) as s → 0.

(f2) sups∈R
F (s) > 0.

Theorem 1.1 Suppose (a0), (b0) and (f0) − (f2) hold. Then there exist an open
interval Λ ⊆ (0, ∞) and a number ν > 0 such that for every λ ∈ Λ problem
(Pλ) has at least two distinct nonzero weak solutions ui

λ (i ∈ {1, 2}) such that
‖ui

λ‖E ≤ ν for every λ ∈ Λ and i ∈ {1, 2}. In addition, if f(s) = 0 for each
s ∈] − ∞, 0], the solutions ui

λ are non-negative.

Not only in Theorem 1.1 but also in the aforementioned papers ([2], [4], [5],
[8], [16], [17], [19]), the superlinearity of f at the origin (i.e. hypothesis (f1)) is an
indispensable fact. The aim of the next result is to handle the situation when we
drop (f1). As it is expected, this step will be penalized: instead of standard weak
solutions of (Pλ) we will be able only to obtain multiple solutions for a closely
related (perturbed) problem to (Pλ). To state this result precisely, let us define
the functional F : E → R for each u ∈ E by

F(u) =
∫

RN

b(x)F (u(x))dx. (3)
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Theorem 1.2 Suppose (a0), (b0) and (f0) hold, and in addition f : R → R is
a nonzero, non-decreasing function. Then for each number ζ > 0 there exist a
number λ > 0 and w ∈ F−1([0, ζ[) ∩ C∞

0 (RN ) such that the problem

−�u + a(x)u = λb(x)f(u + w), x ∈ R
N (Pw

λ )

has at least three distinct weak solutions.

We emphasize that the conclusions of Theorems 1.1 and 1.2 do not hold
generally for every λ > 0. For detailed comments, see Section 4. In the next two
sections we will prove Theorems 1.1 and 1.2, respectively, applying two recent
critical point results of Ricceri [13, 15].

2 Proof of Theorem 1.1

A standard argument, which is based on the facts that b ∈ L1(RN ) ∩ L∞(RN ), f
satisfies (f0), and the embedding E ↪→ Lp(RN ) is continuous (2 ≤ p ≤ 2∗), shows
that the functional F : E → R, introduced in (3), is well defined, is of class C1,
and satisfies

F ′(u)(v) =
∫

RN

b(x)f(u(x))v(x) for each u, v ∈ E. (4)

Moreover, since E ↪→ Lp(RN ) is compact (2 ≤ p < 2∗) one can show that
F ′ is a compact operator. (For a similar argument, see Gonçalves and Miyagaki
[9].) In the sequel, we denote by κl > 0 the Sobolev embedding constant for
E ↪→ Ll(RN ), l ∈ [2, 2∗[, while ‖·‖Ll denotes the usual norm of Ll(RN ), 1 ≤ l ≤ ∞.

Define now the functional H : E×]0, +∞[→ R by

H(u, λ) =
1
2
‖u‖2

E − λF(u) for each (u, λ) ∈ E×]0, +∞[.

The weak solutions of the problem (Pλ) are precisely the critical points of H(·, λ).

Lemma 2.1 limρ→0+
sup{F(u): ‖u‖E<

√
2ρ}

ρ = 0.

Proof. Fix ε > 0 arbitrarily and a number 2 < p < 2∗. Due to (f0) and (f1), there
exists c(ε) > 0 such that

|f(s)| < ε(4‖b‖L∞κ2
2)

−1|s| + c(ε)|s|p−1 for each s ∈ R. (5)

For ρ > 0 define the set Aρ = {u ∈ E : ‖u‖E <
√

2ρ}. Due to (5), for every u ∈ Aρ

we have

F(u) ≤
∫

RN

b(x)|F (u(x))|dx ≤ ‖b‖L∞
(
ε(4‖b‖L∞κ2

2)
−1‖u‖2

L2 + c(ε)‖u‖p
Lp

)

≤ ε

2
ρ + ‖b‖L∞c(ε)κp

p(2ρ)p/2.
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Thus there exists ρ(ε) > 0 such that for every 0 < ρ < ρ(ε)

0 ≤ supu∈Aρ
F(u)

ρ
≤ ε

2
+ c′(ε)ρ

p−2
2 < ε,

which completes the proof. �

Lemma 2.2 For any λ > 0, the functional H(·, λ) is sequentially weakly lower
semicontinuous and satisfies the Palais-Smale condition.

Proof. Since F ′ is a compact operator, the functional F is sequentially weakly
continuous, see [20, Corollary 41.9]. Since the function E � u 
→ ‖u‖2

E is sequen-
tially weakly lower semicontinuous, the first statement holds.

Fix λ > 0. Since H′(·, λ)(u) = u − λF ′(u), u ∈ E, in view of [20, Example
38.25] it is enough to show the coercivity of H(·, λ). By (f0) and (b0) one has

H(u, λ) =
1
2
‖u‖2

E − λF(u) ≥ 1
2
‖u‖2

E − λcκq+1
2 ‖b‖L2/(1−q)‖u‖q+1

E .

Since q < 1, then H(u, λ) → +∞ as ‖u‖E → +∞, as claimed. �

The main ingredient in the proof of Theorem 1.1 is a Ricceri-type critical
point theorem, see [14, 15]. Here, we recall a refinement of this result, established
by Bonanno [6].

Theorem 2.1 (see [6, Theorem 2.1]) Let X be a separable and reflexive real
Banach space, and let Φ, J : X → R be two continuously Gâteaux differentiable
functionals. Assume that there exists x0 ∈ X such that Φ(x0) = J(x0) = 0 and
Φ(x) ≥ 0 for every x ∈ X and that there exists x1 ∈ X, ρ > 0 such that

(i) ρ < Φ(x1) and supΦ(x)<ρ J(x) < ρ J(x1)
Φ(x1)

.

Further, put

a =
ζρ

ρ J(x1)
Φ(x1)

− supΦ(x)<ρ J(x)
,

with ζ > 1, assume that the functional Φ − λJ is sequentially weakly lower semi-
continuous, satisfies the Palais-Smale condition and

(ii) lim‖x‖→+∞(Φ(x) − λJ(x)) = +∞,

for every λ ∈ [0, a].
Then there is an open interval Λ ⊂ [0, a] and a number ν > 0 such that for

each λ ∈ Λ, the equation Φ′(x)−λJ ′(x) = 0 admits at least three distinct solutions
in X having norm less than ν.

Proof of Theorem 1.1. Apply Theorem 2.1 with X = E, Φ = 1
2‖ · ‖2

E ,
J = F . Due to (b0) and (f2), there exist R0 > 0 and s0 ∈ R such that bR0 =
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essinf |x|≤R0b(x) > 0 and F (s0) > 0, respectively. Choose further a number 0 <
ε < 1 such that

bR0F (s0)εN − ‖b‖L∞ max
[−|s0|,|s0|]

F (1 − εN ) > 0. (6)

Moreover, let uε ∈ E such that uε(x) = s0 for any x ∈ B(0, εR0), uε(x) = 0 for
any x ∈ R

N \ B(0, R0), and ‖uε‖L∞ ≤ |s0|. Denoting by ωN the volume of the
unit ball in R

N , by means of (6) one has

F(uε) ≥ bR0F (s0)εNRN
0 ωN − ‖b‖L∞ max

[−|s0|,|s0|]
F (1 − εN )RN

0 ωN > 0.

Due to Lemma 2.1, one can fix a small number ρ = ρ(ε) > 0 such that
√

2ρ <
‖uε‖E and

sup{F(u) : ‖u‖E <
√

2ρ}
ρ

<
2F(uε)
‖uε‖2

E

.

Therefore, choosing x0 = 0, x1 = uε, ζ = 1+ε, and taking into account Lemma 2.2,
the hypotheses of Theorem 2.1 are verified with

a =
1 + ε

2F(uε)‖uε‖−2
E − sup{F(u) : ‖u‖E <

√
2ρ}ρ−1

.

Then there is an open interval Λ ⊂ [0, a] and a number ν > 0 such that for any
λ ∈ Λ, the functional H(·, λ) admits at least three distinct critical points ui

λ ∈ E
(i ∈ {1, 2, 3}), having norm less than ν, concluding the first part of Theorem 1.1.
When f ≡ 0 on the set ] − ∞, 0], a standard argument shows that the negative
part of a solution ui

λ should be zero, as claimed.

3 Proof of Theorem 1.2

Lemma 3.1 infE F = 0; supE F = +∞.

Proof. Since f(0) = 0 (see (f0)), and f is non-decreasing, it is easy to prove that
the function F (s) =

∫ s

0 f(t)dt is non-negative for any s ∈ R. Since F(0) = 0, and
the potential b is non-negative, see (b0), the first assertion of the lemma holds.
Furthermore, since f is nonzero and non-decreasing, then sup

R
F = +∞. Let

{an} ⊂ R be a sequence such that F (an) → +∞ as n → +∞. By (b0), one can
fix R0 > 0 such that bR0 = essinf |x|≤R0b(x) > 0. Let {un} ⊂ E be such that
un(x) = an for any x ∈ B(0, R0). Since b and F are non-negative functions, one
has

sup
E

F ≥ F(un) ≥ bR0F (an)RN
0 ωN → +∞

as n → +∞, as claimed. �



Vol. 14, 2007 Multiple solutions of a sublinear Schrödinger equation 297

Lemma 3.2 Let ζ > 0 and γ ∈ R be two fixed numbers. Then there exist u =
u(ζ, γ) ∈ E and r = r(ζ, γ) > 0 such that F(u) = ζ, and u(x) = γ for any
x ∈ B(0, r).

Proof. Fix ζ ∈]ζ,+∞[, and R0 > 0 such that bR0 = essinf |x|≤R0b(x) > 0 (cf. (b0)).
Fix r > 0 so small that

2r < R0; (7)

‖b‖L∞ max
[−|γ|,|γ|]

FωN (2r)N < ζ; (8)

ζ(1 − (2r/R0)N ) > ζ. (9)

Let u0 ∈ E be such that u0(x) = γ for any x ∈ B(0, r), u0(x) = 0 for any
x /∈ B(0, 2r), and ‖u0‖L∞ ≤ |γ|. Then, due to (8) one has

F(u0) =
∫

RN

b(x)F (u0(x))dx

≤ ‖b‖L∞F (γ)ωNrN + ‖b‖L∞ max
[−|γ|,|γ|]

FωN (2N − 1)rN

< ζ.

On the other hand, since infR F = 0 and sup
R

F = +∞, there exists ξ ∈ R such
that

F (ξ) = ζ(bR0ωNRN
0 )−1. (10)

According to (7), we may define u1 ∈ E such that u1(x) = γ for any x ∈ B(0, r),
and u1(x) = ξ for any x ∈ B(0, R0) \ B(0, 2r). Since the functions b and F are
non-negative, by (9) and (10) we have

F(u1) ≥ F (ξ)essinf2r≤|x|≤R0b(x)ωN (RN
0 − (2r)N ) > ζ.

Define the set

Sγ
r = {u ∈ E : u(x) = γ for each x ∈ B(0, r)}.

Taking into account the above constructions, we have two elements u0, u1 ∈ Sγ
r

such that F(u0) < ζ < F(u1). Since the function E � u 
→ F(u) is continuous
and the set Sγ

r is connected (because it is convex), then there exists u ∈ Sγ
r such

that F(u) = ζ. �

Lemma 3.3 Let ζ > 0 be a fixed number. Then the set F−1([ζ,+∞[) is not
convex.
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Proof. Since f is non-decreasing, then F ′ is monotone, cf. (4) and (b0). Therefore,
F is a convex function and the level set F−1(] − ∞, ζ]) is convex. If we assume
that F−1([ζ,+∞[) is also convex, then F−1(ζ) = F−1(] − ∞, ζ]) ∩ F−1([ζ,+∞[)
will be convex as well. Thus, in order to get the conclusion of the lemma, it is
enough to prove that F−1(ζ) is not convex.

To this end, recall that f(0) = 0 and f is a nonzero function, i.e., there exists
γ ∈ R such that f(γ) �= f(0) = 0. By Lemma 3.2, there exist u0, u1 ∈ E and r > 0
such that u0(x) = 0 and u1(x) = γ for any x ∈ B(0, r), and u0, u1 ∈ F−1(ζ).
Arguing by contradiction, suppose that

F(tu0 + (1 − t)u1) = ζ for each t ∈ [0, 1]. (11)

After a differentiation in (11) in rapport of t and by using (4) one has∫
RN

b(x)f(tu0(x) + (1 − t)u1(x))(u0(x) − u1(x))dx = 0

for any t ∈ [0, 1]. Choosing in particular t = 0 and t = 1 in the above relation,
one has ∫

RN

b(x)[f(u0(x)) − f(u1(x))](u0(x) − u1(x))dx = 0.

Since the potential b is non-negative and f is non-decreasing, we obtain

b(x)[f(u0(x)) − f(u1(x))](u0(x) − u1(x)) = 0 for a.e. x ∈ R
N .

On the other hand, hypothesis (b0) asserts the existence of a number R0 > 0
such that bR0 = essinf |x|≤R0b(x) > 0. Now, applying the last relation on the ball
B(0, min{R0, r}) and exploring the choice of u0 and u1, respectively, we are led
to f(γ)γ = 0, which contradicts the choice of the number γ. Thus, (11) is false,
i.e., the set F−1(ζ) is not convex. �

Now, we are in the position to prove Theorem 1.2. To do this, we recall
another recent critical point theorem of Ricceri which is derived by an ingenious
application of a recent result of Tsar’kov [18], and it was applied to solve a two
point boundary value problem for ordinary differential equations, see [13].

Theorem 3.1 (see [13, Theorem 2]) Let X be a real Hilbert space and J : X → R

a continuous Gâteaux differentiable, nonconstant functional, with compact deriva-
tive, such that

lim sup
‖x‖→+∞

J(x)
‖x‖2 ≤ 0. (12)

Then, for each r ∈] infX J, supX J [ for which the set J−1([r, +∞[) is not convex
and for every set S ⊆ X dense in X, there exist x0 ∈ J−1(]−∞, r[)∩S and λ > 0
such that the equation

x = λJ ′(x) + x0

has at least three distinct solutions.
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Proof of Theorem 1.2. We apply Theorem 3.1 by choosing X = E,
J = F , and S = C∞

0 (RN ). As in the previous section, we have that F is of
class C1, and F ′ is compact. Indeed, here we used only (f0) and the fact that
b ∈ L1(RN ) ∩ L∞(RN ). Lemma 3.2 implies in particular that F is not a constant
functional. By using (f0), one has

F(u) =
∫

RN

b(x)F (u(x))dx ≤ cκq+1
2 ‖b‖L2/(1−q)‖u‖q+1

E .

Thus, the inequality (12) is clearly verified, since q < 1. Taking into account
Lemmas 3.1 and 3.3, for every ζ ∈]0, +∞[ there exist w ∈ F−1(] − ∞, ζ[) ∩
C∞

0 (RN ) = F−1([0, ζ[) ∩ C∞
0 (RN ) and λ > 0 such that the equation

v = λF ′(v) + w, (13)

has three distinct solutions, say vi ∈ E, i ∈ {1, 2, 3}. Due to (13) and (4), the
elements vi are weak solutions of the equation

−�v + a(x)v = λb(x)f(v) − �w + a(x)w, x ∈ R
N .

Therefore, the elements ui = vi − w are weak solutions of (Pw
λ ). This concludes

the proof.

4 Concluding remarks

A.) In Theorems 1.1 and 1.2, the inequality (2) in hypothesis (b0) cannot be
dropped (see also [11] for a similar argument). If we omit (2), we can simply take
b ≡ 0, obtaining only the trivial solution for (Pλ). Moreover, the non-negativity
of the potential b is exploited in the proof of Theorem 1.2.

B.) In spite of the fact that hypotheses of Theorems 1.1 and 1.2 are verified, the
conclusions do not hold in general for every parameter λ > 0, as we mentioned in
the first section. In the sequel, we give two such examples.

B1. Let f(s) = (arctan(s))2. The function f verifies clearly (f0)−(f2). However,
if 0 < λ < (π‖b‖L∞κ2

2)
−1, the problem (Pλ) has only the zero solution.

Indeed, observe that the critical points of H(·, λ) are precisely the fixed
points of the operator Aλ = λF ′. Since Aλ is a contraction for the above-
specified λ′s, Aλ has a unique fixed point. Since Aλ(0) = 0 (due to the fact
that f(0) = 0), then 0 will be the unique solution of (Pλ).

B2. Let f(s) = arctan(s). The function f verifies (f0) (but not (f1)). Whenever
0 < λ < (‖b‖L∞κ2

2)
−1, the problem (Pw

λ ) has a unique solution for every
element w ∈ C∞

0 (RN ). Indeed, for a fixed w ∈ C∞
0 (RN ), the weak solutions

of (Pw
λ ) appear as v − w, where the elements v are fixed points of the

operator Aw
λ (v) = λF ′(v) + w (cf. (13)), which is a contraction for each

λ ∈]0, (‖b‖L∞κ2
2)

−1[. Thus Aw
λ has a unique fixed point.
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