Steiner symmetrization: a weighted version of Pólya-Szegö principle

Luca ESPOSITO
D.I.I.M.A.

Via S. Allende
84081 Baronissi (Salerno), Italy e-mail: esposito@diima.unisa.it

Cristina TROMBETTI
Dip. di Matematica "R.Caccioppoli"
Complesso M. S. Angelo
Via Cintia
80126 Napoli, Italy
e-mail: cristina@unina.it

2000 Mathematics Subject Classification: 46E35, 26D15, 49J40.
Key words: Steiner symmetrization, Pólya-Szegö principle.

1 Introduction

Let us consider a Dirichlet integral of the type

$$
\mathcal{F}(u)=\int_{\Omega} f(D u) d x
$$

where u is a nonnegative Sobolev function with compact support in Ω. The well known Pólya-Szegö principle states that if u^{s} denotes the Steiner symmetrand of u, then:

$$
\begin{equation*}
\mathcal{F}\left(u^{s}\right) \leq \mathcal{F}(u) . \tag{1.1}
\end{equation*}
$$

Our aim is to study the case when the integrand f depends also on x and u. The only result in this direction have been obtained in [3] and [10]. Here we extend the results contained in the papers quoted above and discuss the equality case
in (1.1). In particular we characterize the functions for which from the equality

$$
\int_{\Omega} f(x, u, D u) d x=\int_{\Omega^{s}} f\left(x, u^{s}, D u^{s}\right) d x
$$

one can one deduce that $u=u^{s}$ up to translation.
This problem has been completely solved in [5] for an integrand independent of x and u, in the general setting of $B V$ functions.

It is clear that without any assumption on the dependence of the integrand f with respect to the x variable, the extremals in Pólya - Szegö principle could be not symmetric, and also inequality (1.1) could be false. Indeed introducing the functionals

$$
\begin{equation*}
\mathcal{G}_{\alpha}(u)=\int_{\mathbb{R}}\left(|y|^{\alpha / 2}\left|u^{\prime}(y)\right|\right)^{2} d y, \quad \alpha \geq 0 \tag{1.2}
\end{equation*}
$$

we show (see Section 4) that if $\alpha<2$ then $\mathcal{G}_{\alpha}(u)$ may even increase under symmetrization, while for $\alpha=2$ the Pólya-Szegö inequality holds but the extremals are not necessarely symmetric. This phenomenon is due to the fact that in the integral \mathcal{G}_{α} which is of the type

$$
\int_{\mathbb{R}} f\left(g(y) u^{\prime}(y)\right) d y
$$

the weight g is not convex for $\alpha<2$ and not strictly convex for $\alpha=2$. In this paper we show that for a multiple integral of the type

$$
\int_{\mathbb{R}^{n}} f\left(x^{\prime}, u(x), \nabla_{x^{\prime}} u(x), g(y) \nabla_{y} u(x)\right) d x
$$

where $x=\left(x^{\prime}, y\right), x^{\prime} \in \mathbb{R}^{n-1}, y \in \mathbb{R}$, the convexity of f with respect to the gradient and the stricty convexity of the weight g, not only ensure the validity of Pólya-Szegö inequality, but also force the extremals to be Steiner symmetric.

2 Preliminary results and definitions

This section is essentially devoted to recall some basic properties of Steiner symmetrization and sets of finite perimeter. In the following we denote the generic point $x \in \mathbb{R}^{n}(n \geq 2)$ by $x \equiv\left(x^{\prime}, y\right) \in \mathbb{R}^{n-1} \times \mathbb{R}$, where $x^{\prime}=\left(x_{1}, \ldots, x_{n-1}\right) \in$ $\mathbb{R}^{n-1}, y \in \mathbb{R}$ and the generic point $x \in \mathbb{R}^{n+1}$ by $x \equiv\left(x^{\prime}, y, t\right) \in \mathbb{R}^{n-1} \times \mathbb{R}_{y} \times \mathbb{R}_{t}$. For any measurable set $E \subset \mathbb{R}^{n}$, we define, for $x^{\prime} \in \mathbb{R}^{n-1}$, the slice of E through x^{\prime} in the y direction as :

$$
\begin{equation*}
E_{x^{\prime}}=\left\{y \in \mathbb{R}:\left(x^{\prime}, y\right) \in E\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{E}\left(x^{\prime}\right)=\mathcal{L}^{1}\left(E_{x^{\prime}}\right), \tag{2.2}
\end{equation*}
$$

where \mathcal{L}^{1} denotes the Lebesgue outer measure in \mathbb{R}.
In the sequel π will denote the orthogonal projection over the first $(n-1)$ variables. Moreover for every $E \subset \mathbb{R}^{n}$ we will denote $\pi(E)^{+}$the essential projection of E onto \mathbb{R}^{n-1} that is

$$
\pi(E)^{+}=\left\{x^{\prime} \in \mathbb{R}^{n-1}: l_{E}\left(x^{\prime}\right)>0\right\} .
$$

The Steiner symmetral E^{s} of E about the hyperplane $\{y=0\}$ is defined as

$$
E^{s}=\left\{\left(x^{\prime}, y\right) \in \mathbb{R}^{n}:|y|<l_{E}\left(x^{\prime}\right) / 2\right\}
$$

Let $\Omega \subset \mathbb{R}^{n}$ be a bounded open set and let $u: \Omega \rightarrow \mathbb{R}$ be a nonnegative measurable function. We still denote by u the function

$$
u(x)= \begin{cases}u(x) & \text { for } x \in \Omega \tag{2.3}\\ 0 & \text { otherwise }\end{cases}
$$

The Steiner rearrangement u^{s} of u is defined as follows

$$
u^{s}\left(x^{\prime}, y\right)=\inf \left\{t>0: \mu_{u}\left(x^{\prime}, t\right) \leq 2|y|\right\} \quad\left(x^{\prime}, y\right) \in \mathbb{R}^{n-1} \times \mathbb{R}_{y}
$$

where

$$
\mu_{u}\left(x^{\prime}, t\right)=\mathcal{L}^{1}\left(\left\{y \in \mathbb{R}: u\left(x^{\prime}, y\right)>t\right\}\right)
$$

is the distribution function of $u\left(x^{\prime}, \cdot\right)$.
We define

$$
M\left(x^{\prime}\right)=\inf \left\{t>0: \mu_{u}\left(x^{\prime}, t\right)=0\right\} \quad \text { for } x^{\prime} \in \pi(\Omega)
$$

The measurable function $M\left(x^{\prime}\right)$ agrees with $\operatorname{esssup}\left\{u\left(x^{\prime}, y\right): y \in \Omega_{x^{\prime}}\right\}$ for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \pi(\Omega)$.

Remark 2.1 It is easy to prove that for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \mathbb{R}^{n-1}$, we have $u^{s}\left(x^{\prime}, y\right)>$ t for some $y \in \mathbb{R}$ and $t \in \mathbb{R}^{+}$if and only if $\mu_{u}\left(x^{\prime}, t\right)>2|y|$. This obviously implies

$$
\left\{\left(x^{\prime}, y\right): u\left(x^{\prime}, y\right)>t\right\}^{s} \text { is equivalent to } \quad\left\{\left(x^{\prime}, y\right): u^{s}\left(x^{\prime}, y\right)>t\right\} \quad \forall t>0 .
$$

Hence $u\left(x^{\prime}, \cdot\right)$ and $u^{s}\left(x^{\prime}, \cdot\right)$ are equidistributed for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \mathbb{R}^{n-1}$, and thus u and u^{s} are equidistributed.

If $E \subset \mathbb{R}^{n}$ is a measurable set, and $x \in \mathbb{R}^{n}$, the density of E at x is defined as follows

$$
D(E, x)=\lim _{r \rightarrow 0} \frac{\mathcal{L}^{n}\left(E \cap B_{r}(x)\right)}{\mathcal{L}^{n}\left(B_{r}(x)\right)}
$$

and the essential boundary of E is the Borel set

$$
\partial^{*} E=\mathbb{R}^{n} \backslash\left\{x \in \mathbb{R}^{n}: D(E ; x)=0 \quad \text { or } D(E ; x)=1\right\}
$$

We recall that an open set $E \subset \mathbb{R}^{n}$ is a set of finite perimeter if $\mathcal{H}^{n-1}\left(\partial^{*} E\right)<$ $+\infty$. By Theorem 3.61 in [1] and Theorem 4.5.11 in [8] this definition is equivalent to the one given in [6] and for every open set of $\mathbb{R}^{n}, \mathcal{H}^{n-1}\left(\partial^{*} E \cap \Omega\right)$, coincides with the perimeter of E in $\Omega, P(E, \Omega)$, as defined in [6].

If $u: \Omega \rightarrow \mathbb{R}$ is a measurable function the approximate upper and lower limit of u at a point x are defined as the functions

$$
u_{+}(x)=\inf \{t: D(\{u>t\}, x)=0\} \text { and } u_{-}(x)=\sup \{t: D(\{u<t\}, x)=0\},
$$

respectively. The function u is approximately continuous at a point $x \in \Omega$ if $u^{-}(x)=u^{+}(x)<\infty$. Finally we will denote by C^{u} the Borel set of all points where u is approximately continuous, and by $S^{u}=\Omega \backslash C^{u}$.

We define the precise representative u^{*} of u

$$
u^{*}(x)= \begin{cases}\frac{u_{-}(x)+u_{+}(x)}{2} & \text { if } u_{-}(x) \text { and } u_{+}(x) \text { are both finite } \\ 0 & \text { otherwise }\end{cases}
$$

Remark 2.2 Observe that, if $u \in W^{1,1}(\Omega)$, then

$$
u_{+}(x)=u_{-}(x)=u^{*}(x) \quad \text { for } \mathcal{H}^{n-1}-\text { a.e. } x \in \Omega
$$

From the above definition it follows that

$$
\begin{equation*}
\partial^{*}\{u>t\} \subset\left\{u^{-} \leq t \leq u^{+}\right\} \quad \text { for every } t \in \mathbb{R} \tag{2.4}
\end{equation*}
$$

Moreover (see (2.20) in [4]) for \mathcal{L}^{1}-a.e. t

$$
\mathcal{H}^{n-1}\left(\left\{u^{-} \leq t \leq u^{+}\right\} \backslash \partial^{*}\{u>t\}\right)=0
$$

We also recall the coarea formula (see for example [1] pg 159)
Proposition 2.1 If $u \in W^{1,1}(\Omega)$ and $g: \Omega \rightarrow[0,+\infty]$ is a Borel function, then

$$
\begin{align*}
& \int_{\Omega} g(x)|\nabla u| d x=\int_{-\infty}^{+\infty} d t \int_{\partial^{*}\{u>t\} \cap \Omega} g(x) d \mathcal{H}^{n-1} \\
& \quad=\int_{-\infty}^{+\infty} d t \int_{\left\{u^{*}=t\right\} \cap \Omega} g(x) d \mathcal{H}^{n-1} . \tag{2.5}
\end{align*}
$$

The next lemma gives the representation formulas for the approximate gradient of the distribution function of a Sobolev function. For the proof see [5] and [9].

Lemma 2.1 Let Ω be an open bounded subset of \mathbb{R}^{n}, and let u be a nonnegative function from $W_{0}^{1,1}(\Omega)$. Then $\mu_{u} \in B V\left(\omega \times \mathbb{R}_{t}^{+}\right)$, for any open set $\omega \subset \subset \pi_{n-1}(\Omega)$, and, for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \pi(\Omega)$,

$$
\begin{align*}
& \nabla_{t} \mu_{u}\left(x^{\prime}, t\right)=-\int_{\left\{y: u^{*}\left(x^{\prime}, y\right)=t\right\}} \frac{1}{\left|\nabla_{y} u\right|} d \mathcal{H}^{0} \tag{2.6}\\
& \nabla_{i} \mu_{u}\left(x^{\prime}, t\right)=\int_{\left\{y: u^{*}\left(x^{\prime}, y\right)=t\right\}} \frac{\nabla_{i} u}{\left|\nabla_{y} u\right|} d \mathcal{H}^{0} \quad i=1, \ldots, n-1 \tag{2.7}
\end{align*}
$$

for \mathcal{L}^{1}-a.e. $t \in\left(0, M\left(x^{\prime}\right)\right)$.

3 A weighted version of Pólya - Szegö inequality

In this section $g: \mathbb{R} \rightarrow[0,+\infty[$ will be a non zero, even, convex function. It is known (see [2] for the general n-dimensinal case) that if $E \subset \mathbb{R}$ is a bounded set of finite perimeter, E^{s} is the open interval centered at the origin having the same measure as E then

$$
\begin{equation*}
\int_{\partial^{*} E} g(y) d \mathcal{H}^{0} \geq \int_{\partial E^{s}} g(y) d \mathcal{H}^{0} \tag{3.1}
\end{equation*}
$$

Moreover the following result holds true.

Proposition 3.1 Let $E \subset \mathbb{R}$ be a bounded set of finite perimeter. Assume that

$$
\int_{\partial^{*} E} g(y) d \mathcal{H}^{0}=\int_{\partial E^{s}} g(y) d \mathcal{H}^{0}
$$

then E is equivalent to an interval; if the function g is strictly convex then E is equivalent to an interval centered at the origin.

Proof. Since E is a bounded set of finite perimeter, then by Proposition 3.52 in [1] we may assume with no loss of generality that E is the union of a finite number of pairwise disjoint intervals. Let us set $\alpha=\min \{y \in E\}$ and $\beta=\max \{y \in E\}$. Obviously $E \subset[\alpha, \beta]$. If $|E|=\beta-\alpha$ then $E=[\alpha, \beta]$ and the claim follows. If $|E|<\beta-\alpha$ we consider $\gamma>0$ be such that

$$
[-\gamma, \gamma] \subset\left[\frac{\alpha-\beta}{2}, \frac{\beta-\alpha}{2}\right] ; \quad 2 \gamma=|E|
$$

Hence, recalling that g is increasing in $[0,+\infty[$, even and convex, we have

$$
\begin{aligned}
& \int_{\partial E^{s}} g(y) d \mathcal{H}^{0}=\int_{\partial[-\gamma, \gamma]} g(y) d \mathcal{H}^{0} \leq \int_{\partial\left[\frac{\alpha-\beta}{2}, \frac{\beta-\alpha}{2}\right]} g(y) d \mathcal{H}^{0} \\
& \quad \leq \int_{\partial[\alpha, \beta]} g(y) d \mathcal{H}^{0}<\int_{\partial E} g(y) d \mathcal{H}^{0}
\end{aligned}
$$

thus getting a contradiction. Hence E is an interval. If g is strictly convex the claim follows since

$$
\begin{equation*}
g(\alpha)+g(\beta)>2 g\left(\frac{\alpha-\beta}{2}\right) \tag{3.2}
\end{equation*}
$$

Remark 3.1 Let us mention that one can deduce that the set E is an interval centered at the origin, also in the case that g is just strictly convex in some subinterval $(c, d) \subset[\alpha, \beta] \equiv E$ since in this case (3.2) is still satisfied.

Here and in the following we assume $u \in W_{0}^{1,1}(\Omega)$ and we still denote by u its zero extension outside of Ω defined in (2.3).

We consider $f:\left(x^{\prime}, u, \xi^{\prime}, z\right) \in \mathbb{R}^{n-1} \times \mathbb{R} \times \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow[0,+\infty[$ a continuous function such that
$f:\left(\xi^{\prime}, z\right) \in \mathbb{R}^{n-1} \times \mathbb{R} \rightarrow f\left(x^{\prime}, u, \xi^{\prime}, z\right) \in \mathbb{R}$ is convex for every $x^{\prime} \in \mathbb{R}^{n-1}, u \in \mathbb{R} ;$
$f: z \in \mathbb{R} \rightarrow f\left(x^{\prime}, u, \xi^{\prime}, z\right) \in \mathbb{R}$ is even and increasing for every x^{\prime},
$\xi^{\prime} \in \mathbb{R}^{n-1}, u \in \mathbb{R}, y>0, ;$
$f\left(x^{\prime}, u, 0\right)=0$ for every $x^{\prime} \in \mathbb{R}^{n-1}, u \in \mathbb{R}$,
and we define the following integral functional:

$$
\begin{equation*}
\mathcal{F}: u \in W_{0}^{1,1}(\Omega) \rightarrow \int_{\Omega} f\left(x^{\prime}, u, \nabla_{1} u, \ldots, \nabla_{n-1} u, g(y) \nabla_{y} u\right) d x \tag{3.6}
\end{equation*}
$$

Our aim is to prove that the functional \mathcal{F} decreases under Steiner symmetrization.

Theorem 3.1 Let \mathcal{F} be the functional defined in (3.6) with f satisfying (3.3)-(3.5). The following inequality holds:

$$
\begin{align*}
& \int_{\Omega^{s}} f\left(x^{\prime}, u^{s}(x), \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y) \nabla_{y} u^{s}\right) d x \\
& \quad \leq \int_{\Omega} f\left(x^{\prime}, u(x), \nabla_{1} u, \ldots, \nabla_{n-1} u, g(y) \nabla_{y} u\right) d x \tag{3.7}
\end{align*}
$$

for every nonnegative function $u \in W_{0}^{1,1}(\Omega)$.

Proof. Step 1. We first assume that u satisfies

$$
\begin{equation*}
\mathcal{L}^{1}\left(\left\{y: \nabla_{y} u\left(x^{\prime}, y\right)=0\right\} \cap\left\{y: 0<u\left(x^{\prime}, y\right)<M\left(x^{\prime}\right)\right\}\right)=0 \tag{3.8}
\end{equation*}
$$

for a.e. $x^{\prime} \in \pi(\Omega)$ such that $M\left(x^{\prime}\right)>0$. This technical assumption will be removed by means of an approximation argument in the next step. Let us recall that if $u \in W^{1,1}(\Omega)$, then for \mathcal{L}^{n-1} a.e. $x^{\prime} \in M(\Omega), u^{*}\left(x^{\prime}, \cdot\right)$ is an absolutely continuous function in $\Omega_{x^{\prime}}$ and

$$
\begin{equation*}
\nabla_{y} u\left(x^{\prime}, y\right)=\frac{d}{d y}\left[u^{*}\left(x^{\prime}, \cdot\right)\right](y) \quad \text { for } \mathcal{L}^{1} \text { a.e } y \in \Omega_{x^{\prime}} \tag{3.9}
\end{equation*}
$$

Let us choose a point x^{\prime} such that (3.8) and (3.9) hold and such that $u^{*}\left(x^{\prime}, \cdot\right)$ is absolutely continuous. Notice that for such a point (see Lemma 3.3 in [4]) we have also that

$$
\begin{equation*}
\mathcal{L}^{1}\left(\left\{y: \nabla_{y} u^{s}\left(x^{\prime}, y\right)=0\right\} \cap\left\{y: 0<u^{s}\left(x^{\prime}, y\right)<M\left(x^{\prime}\right)\right\}\right)=0 . \tag{3.10}
\end{equation*}
$$

In order to simplify the notation in the remaining part of the proof, we shall still denote by u the precise representative of the Sobolev funtion u. The same convention will be applied to u^{s}. Coarea formula ensures that

$$
\begin{align*}
& \int_{\partial^{*}\left\{y: u^{s}\left(x^{\prime}, y\right)>0\right\}} f\left(x^{\prime}, u^{s}, \nabla u^{s}\left(x^{\prime}, y\right)\right) d y \\
& \quad=\int_{0}^{M\left(x^{\prime}\right)} d t \int_{\left\{y: u^{s}\left(x^{\prime}, y\right)=t\right\}} \frac{1}{\left|\nabla_{y} u^{s}\right|} f\left(x^{\prime}, u^{s}, \nabla u^{s}\left(x^{\prime}, y\right)\right) d \mathcal{H}_{y}^{0} \tag{3.11}
\end{align*}
$$

for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \pi(\Omega)$ such that $M\left(x^{\prime}\right)>0$
Using formulas (2.6), (2.7) and (3.1) we get

$$
\begin{align*}
& \int_{\left\{y: u^{s}\left(x^{\prime}, y\right)=t\right\}} \frac{1}{\left|\nabla_{y} u^{s}\right|} f\left(x^{\prime}, u^{s}(x), \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y) \nabla_{y} u^{s}\right) d \mathcal{H}_{y}^{0} \\
& =\int_{\left\{y: u^{s}\left(x^{\prime}, y\right)=t\right\}} \frac{1}{\left|\nabla_{y} u^{s}\right|} f\left(x^{\prime}, t, \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y)\left|\nabla_{y} u^{s}\right|\right) d \mathcal{H}_{y}^{0} \\
& =-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right) f\left(x^{\prime}, t, \frac{\nabla_{1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \ldots, \frac{\nabla_{n-1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \frac{\int_{\left\{u^{s}=t\right\}} g(y) d \mathcal{H}_{y}^{0}}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}\right) \\
& \leq-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right) f\left(x^{\prime}, t, \frac{\nabla_{1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \ldots, \frac{\nabla_{n-1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \frac{\int_{\{u=t\}} g(y) d \mathcal{H}_{y}^{0}}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}\right) \\
& =f\left(x^{\prime}, t, \frac{\int_{\{y: u=t\}} \frac{\nabla_{1} u}{\left|\nabla u_{y}\right|} d \mathcal{H}^{0}}{\int_{\{y: u=t\}} \frac{d \mathcal{H}_{y}^{0}}{\left|\nabla u_{y}\right|}}, \ldots, \frac{\int_{\{y: u=t\}} \frac{\nabla_{n-1} u}{\left|\nabla u_{y}\right|} d \mathcal{H}^{0}}{\int_{\{y: u=t\}} \frac{d \mathcal{H}_{y}^{0}}{\left|\nabla u_{y}\right|}}, \frac{\int_{\{y: u=t\}} g(y) d \mathcal{H}_{y}^{0}}{\int_{\{y: u=t\}} \frac{d \mathcal{H}^{0} \mid}{\left|\nabla u_{y}\right|}}\right) \\
& \leq \\
& \quad \int_{\left\{y: u\left(x^{\prime}, y\right)=t\right\}} \frac{d \mathcal{H}_{y}^{0}}{\left|\nabla_{y} u\right|} f\left(x^{\prime}, u(x), \nabla_{1} u, \ldots, \nabla_{n-1} u, g(y) \nabla_{y} u\right) d \mathcal{H}_{y}^{0} \tag{3.12}
\end{align*}
$$

where in the last line we have used the Jensen inequality.

Now let B any Borel subset of $\pi(\Omega)$ and let $\tilde{B}=B \cap\left\{M\left(x^{\prime}\right)>0\right\}$. Integrating the last estimate with respect to t and to x^{\prime} respectively over ($\left.0, M\left(x^{\prime}\right)\right)$ and over \tilde{B} we get

$$
\begin{aligned}
& \int_{B \times \mathbb{R}_{y}} f\left(x^{\prime}, u^{s}(x), \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y) \nabla_{y} u^{s}\right) d x \\
&= \int_{\tilde{B}} d x^{\prime} \int_{\left\{u^{s}\left(x^{\prime}, y\right)>0\right\}} f\left(x^{\prime}, u^{s}(x), \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y) \nabla_{y} u^{s}\right) \\
&= \int_{\tilde{B}} d x^{\prime} \int_{0}^{M\left(x^{\prime}\right)} d t \int_{\left\{u^{s}\left(x^{\prime}, y\right)=t\right\}} \frac{1}{\left|\nabla u_{y}^{s}\right|} \\
& \times f\left(x^{\prime}, u^{s}(x), \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y) \nabla_{y} u^{s}\right) \\
& \leq \int_{\tilde{B}} d x^{\prime} \int_{0}^{M\left(x^{\prime}\right)} d t \int_{\left\{u\left(x^{\prime}, y\right)=t\right\}} \frac{1}{\left|\nabla u_{y}\right|} f\left(x^{\prime}, u(x), \nabla_{1} u, \ldots, \nabla_{n-1} u, g(y) \nabla_{y} u\right) \\
&= \int_{B \times \mathbb{R}_{y}} f\left(x^{\prime}, u(x), \nabla_{1} u, \ldots, \nabla_{n-1} u, g(y) \nabla_{y} u\right) d x
\end{aligned}
$$

Hence the desired estimate

$$
\begin{aligned}
& \int_{B \times \mathbb{R}_{y}} f\left(x^{\prime}, u^{s}(x), \nabla_{1} u^{s}, \ldots, \nabla_{n-1} u^{s}, g(y) \nabla_{y} u^{s}\right) d x \\
& \leq \int_{B \times \mathbb{R}_{y}} f\left(x^{\prime}, u(x), \nabla_{1} u, \ldots, \nabla_{n-1} u, g(y) \nabla_{y} u\right) d x
\end{aligned}
$$

follows for every Borel set $B \subset \pi_{n-1}(\Omega)$.
Step 2. We now remove assumption (3.8). Let ω be an open set such that $\omega \subset \subset$ $\pi(\Omega)$. We preliminarly observe that there exists a sequence u_{h} of nonnegative Lipschitz functions satisfying (3.8) and strongly converging to u in $W^{1,1}\left(\omega \times \mathbb{R}_{y}\right)$.

Without loss of generality we can assume that u belongs to $W^{1,1}\left(\mathbb{R}^{n}\right)$. Hence, given $h \in \mathbb{N}$, there exists $v_{h} \in C_{0}^{1}\left(\mathbb{R}^{n}\right)$ such that $v_{h} \geq 0$ and $\| v_{h}-$ $u \|_{W^{1,1}\left(\mathbb{R}^{n}\right)}<1 / h$. By standard arguments one can find a polynomial p_{h} such that $\left\|v_{h}-p_{h}\right\|_{C^{1}\left(\bar{B}_{2 r(0)}\right)}<1 / h$ where r is such that the support of v_{h} is contained in $B_{r}(0)$. Replacing p_{h} by $p_{h}+1 / h+\delta y^{2}$, with $\delta>0$ sufficiently small, we can also assume that $p_{h}>0$ in $B_{2 r(0)}$ and that $\mathcal{L}^{1}\left(\left\{\nabla_{y} p_{h}\left(x^{\prime}, y\right)=0\right\}\right)=0$ for \mathcal{L}^{n-1} a.e x^{\prime} in \mathbb{R}^{n-1}. Let η_{r} be the cut-off function between $B_{2 r}$ and B_{r} defined as $\eta_{r}(x)=1$ if $|x| \leq r, \eta_{r}(x)=0$ if $|x| \geq 2 r$ and $\eta_{r}(x)=\frac{4 r^{2}-|x|^{2}}{3 r^{2}}$ if $r<|x|<2 r$. Setting $u_{h}=\eta_{r} p_{h}$ one can check that

$$
\left\|u-u_{h}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}<c / h
$$

for some positive constant c. Finally, (3.8) follows from the fact that $u_{h}(x)>0$ only if $x \in B_{2 r}$ and that u_{h} agrees with the polynomial p_{h} in B_{r} and with the polynomial $p_{h} \eta_{r}$ in $B_{2 r} \backslash \bar{B}_{r}$. Now if the function f verifies

$$
\begin{equation*}
0 \leq f(x, \xi) \leq C(1+|\xi|) \tag{3.13}
\end{equation*}
$$

then by Lebesgue dominated convergence Theorem we have that $f\left(x, \nabla u_{h}\right)$ converges strongly in $L^{1}\left(\omega \times \mathbb{R}_{y}\right)$ to $f(x, \nabla u)$. Recalling that Steiner symmetrization is continuous in L^{1}, by semicontinuity we have

$$
\begin{aligned}
& \int_{\omega \times \mathbb{R}_{y}} f\left(x, \nabla u^{s}\right) d x \leq \liminf _{h \rightarrow+\infty} \int_{\omega \times \mathbb{R}_{y}} f\left(x, \nabla u_{h}^{s}\right) d x \\
& \leq \liminf _{h \rightarrow+\infty} \int_{\omega \times \mathbb{R}_{y}} f\left(x, \nabla u_{h}\right) d x=\int_{\omega \times \mathbb{R}_{y}} f(x, \nabla u) d x
\end{aligned}
$$

Then the claim follows. Assumption (3.13) can be easily removed observing that

$$
f(x, \xi)=\sup _{j \in \mathbb{N}}\left\{<a_{j}(x), \xi>+b_{j}(x)\right\}=\sup _{j \in \mathbb{N}}\left\{<a_{j}(x), \xi>+b_{j}(x)\right\}^{+}
$$

Moreover since f is even with respect to ξ_{n} it results that

$$
\sup _{j \in \mathbb{N}}\left\{\left\{<a_{j}(x), \xi>+b_{j}(x)\right\}^{+},\left\{<\bar{a}_{j}(x), \xi>+b_{j}(x)\right\}^{+}\right\}
$$

where $\bar{a}_{j}(x)=\left(\left(a_{j}\right)_{1}, \ldots,\left(a_{j}\right)_{n-1},-\left(a_{j}\right)_{n}\right)$. Finally setting for $N \in \mathbb{N}$

$$
f_{N}(x, \xi)=\sup _{1 \leq j \leq N}\left\{\left\{<a_{j}(x), \xi>+b_{j}(x)\right\}^{+},\left\{<\bar{a}_{j}(x), \xi>+b_{j}(x)\right\}^{+}\right\}
$$

Since $f_{N}(x, \xi)$ converges to $f(x, \xi)$ and is even with respect to ξ_{n} and satisfies (3.13) by monotone convergence the claim follows.

Now we are able to investigate what happens when equality holds in (3.7). We will prove that extremals functions u for which equality holds in (3.7) are Steiner symmetric. To do this we must assume that the set where $\left|\nabla_{y} u\right|=0$ has zero Lebesgue measure, otherwise the result could be false (see [5]). We will assume that, for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \pi_{n-1}(\Omega), M\left(x^{\prime}\right)>0$, and the derivative of the restriction $u\left(x^{\prime}, \cdot\right)$ is \mathcal{L}^{1}-a.e. different from 0 in the set where $u\left(x^{\prime}, \cdot\right)<M\left(x^{\prime}\right)$. The last condition is equivalent to the following one

$$
\begin{align*}
& \mathcal{L}^{n}\left(\left\{\left(x^{\prime}, y\right) \in \Omega: \nabla_{y} u\left(x^{\prime}, y\right)=0\right\}\right) \\
& \quad \cap\left\{\left(x^{\prime}, y\right) \in \Omega: M\left(x^{\prime}\right)=0 \text { or } u\left(x^{\prime}, y\right)<M\left(x^{\prime}\right)\right\}=0 . \tag{3.14}
\end{align*}
$$

Theorem 3.2 Assume that g is strictly convex, f satisfies (3.3)-(3.5), $f\left(x^{\prime}\right.$, $\left.u, \xi^{\prime}, \cdot\right)$ is strictly increasing and $u \in W_{0}^{1,1}(\Omega)$ satisfies (3.14). If

$$
\begin{align*}
& \int_{\Omega^{s}} f\left(x^{\prime}, u^{s}, \frac{\partial u^{s}}{\partial x_{1}}, \ldots, \frac{\partial u^{s}}{\partial x_{n-1}}, g(y) \frac{\partial u^{s}}{\partial y}\right) d x \\
& \quad=\int_{\Omega} f\left(x^{\prime}, u, \frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n-1}}, g(y) \frac{\partial u}{\partial y}\right) d x \tag{3.15}
\end{align*}
$$

then $u=u^{s}$ up to translations along the y axis.

Proof. Since (3.15) holds, one deduces that in (3.12) the inequalities become equalities. Hence for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in M(\Omega)$ and \mathcal{L}^{1}-a.e $0<t<M\left(x^{\prime}\right)$,

$$
\begin{aligned}
& -\nabla_{t} \mu_{u}\left(x^{\prime}, t\right) f\left(x^{\prime}, u, \frac{\nabla_{1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \ldots, \frac{\nabla_{n-1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \frac{\int_{\partial^{*}\left\{u^{s}>t\right\}} g(y) d \mathcal{H}^{0}}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}\right) \\
& =-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right) f\left(x^{\prime}, u, \frac{\nabla_{1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \ldots, \frac{\nabla_{n-1} \mu_{u}\left(x^{\prime}, t\right)}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}, \frac{\int_{\partial^{*}\{u>t\}} g(y) d \mathcal{H}^{0}}{-\nabla_{t} \mu_{u}\left(x^{\prime}, t\right)}\right)
\end{aligned}
$$

Being $f\left(x^{\prime}, \cdot\right)$ strictly increasing one deduces that

$$
\int_{\partial^{*}\left\{y: u^{s}\left(x^{\prime}, y\right)>t\right\}} g(y) d \mathcal{H}^{0}=\int_{\partial^{*}\left\{y: u\left(x^{\prime}, y\right)>t\right\}} g(y) d \mathcal{H}^{0}
$$

By Proposition 3.1 the claim follows.

4 Functionals nondecreasing under Steiner symmetrization

In this section we exhibit a functional of the type (3.6) that may increase under Steiner symmetrization. This counterexample shows that the convexity of the weight $g(y)$ is necessary to prove the desired Pólya - Szëgo inequality. We also observe that the same counterexample proves that for some weight $g(y)$ which is just convex, non constant, but not strictly convex, equality can hold true in (3.7) also for non symmetric function in the y direction.

Let us consider the following integral functional defined on $W_{0}^{1,1}(\mathbb{R})$

$$
\begin{equation*}
\mathcal{G}_{\alpha}(u)=\int_{\mathbb{R}}\left(|y|^{\alpha / 2}\left|u^{\prime}(y)\right|\right)^{2} d y, \quad \alpha>1 \tag{4.1}
\end{equation*}
$$

and let us define the following Lipschitz function

$$
u_{\lambda}(y)= \begin{cases}(y+\lambda) /(2 \lambda) & \text { for }|y| \leq \lambda \\ (y+\lambda-2) /(2 \lambda-2) & \text { for } \lambda \leq y \leq 2-\lambda \\ 0 & \text { otherwise }\end{cases}
$$

for some $0<\lambda<1$. The Steiner symmetrand of u_{λ} is

$$
u_{\lambda}^{s}(y)= \begin{cases}1-|y| & \text { for }|y| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

For $\alpha<2$ the weight $|y|^{\alpha / 2}$ is not convex and so the assumptions of Theorem 3.1 are violated for the functional \mathcal{G}_{α}. In fact it is easy to check that for $\alpha<2$
and $0<\lambda<1$

$$
\mathcal{G}_{\alpha}\left(u_{\lambda}^{s}\right)=\frac{2}{\alpha+1}>\frac{1}{\alpha+1}\left(\frac{\lambda^{\alpha-1}}{2}+\frac{(2-\lambda)^{\alpha+1}-\lambda^{\alpha+1}}{4(\lambda-1)^{2}}\right)=\mathcal{G}_{\alpha}\left(u_{\lambda}\right)
$$

The critical exponent for the functional \mathcal{G} is $\alpha=2$, in this case the weight $g(y)=|y|$ is just convex but not strictly convex then we consider the translated of u_{λ}

$$
v_{\lambda}(y)= \begin{cases}(y+\lambda) /(\lambda) & \text { for }-\lambda<y<0 \\ (y+\lambda-2) /(\lambda-2) & \text { for } 0 \leq y \leq 2-\lambda \\ 0 & \text { otherwise }\end{cases}
$$

and $v_{\lambda}^{s}=u_{\lambda}^{s}$. We have

$$
\mathcal{G}_{2}\left(v_{\lambda}\right)=\mathcal{G}_{2}\left(v_{\lambda}^{s}\right)=2 / 3 \quad \forall \lambda<2
$$

but v_{λ} is not symmetric.
Nevertheless we will remark in the next section that the symmetry of extremals in (3.7) can be obtained also for a special class of non strictly convex weights.

5 When the weight is not strictly convex

In this last section we remark that Theorem 3.2 can be proved for a special class of non strictly convex weights. Here we allow, as a particular case, that $g(y)$ is constant, so we must assume as in [5] some kind of geometric property for the open set Ω. We will assume that

$$
\begin{equation*}
\pi(\Omega) \text { is connected, } \tag{5.1}
\end{equation*}
$$

and that the reduced boundary $\partial^{*} \Omega$ of Ω is almost nowhere parallel to the y-axis inside the cylinder $\pi(\Omega) \times \mathbb{R}_{y}$, that is

$$
\begin{align*}
& \Omega \text { has locally finite perimeter in } \pi(\Omega) \times \mathbb{R}_{y} \text { and } \tag{5.2}\\
& \mathcal{H}^{n-1}\left(\left\{\left(x^{\prime}, y\right) \in \partial^{*} \Omega: \nu_{y}^{\Omega}\left(x^{\prime}, y\right)=0\right\} \cap\left(\pi(\Omega) \times \mathbb{R}_{y}\right)\right)=0
\end{align*}
$$

where \mathcal{H}^{k} stands for k - dimensional Hausdorff measure, and ν_{y}^{Ω} denotes the component along the y - axis of the generalized inner normal ν^{Ω} to Ω. Moreover in this section we assume that (3.14) holds. We remark that assumption (3.14) can be relaxed by replacing u with u^{s}, by means of the following proposition

Proposition 5.1 Let Ω be an open bounded subset of \mathbb{R}^{n} and let u be a nonnegative function from $W_{0}^{1,1}(\Omega)$. Then, for \mathcal{L}^{n-1}-a.e. $x^{\prime} \in \pi(\Omega)$,

$$
\begin{aligned}
& \mathcal{L}^{1}\left(\left\{y: \nabla_{y} u\left(x^{\prime}, y\right)=0, t<u\left(x^{\prime}, y\right)<M\left(x^{\prime}\right)\right\}\right) \\
& \quad=\mathcal{L}^{1}\left(\left\{y: \nabla_{y} u^{s}\left(x^{\prime}, y\right)=0, t<u^{s}\left(x^{\prime}, y\right)<M\left(x^{\prime}\right)\right\}\right)
\end{aligned}
$$

for every $t \in\left(0, M\left(x^{\prime}\right)\right)$.

Proof. See [5] Proposition 2.3.
Actually Theorem 3.2 still holds true when the weight is $g(y) \equiv 1$ as proved in [5]. The counterexample of section 4 is built using the fact that the weight g looses his strict convexity and is not constant. Nevertheless the weight $g(y)$ can be not strictly convex where it is constant and Theorem 3.2 still holds true. In fact let us consider an even convex real function $g: \mathbb{R}^{+} \rightarrow \mathbb{R}$ such that, $g(t) \equiv c>0$ $\forall t \in[-\rho, \rho]$ and g is strictly convex in $\mathbb{R} \backslash[-\rho, \rho]$, for some constant $\rho, c>0$. The following theorem holds

Theorem 5.1 Assume that f satisfies (3.3)-(3.5), $f\left(x^{\prime}, u, \cdot\right)$ is strictly convex, and $f\left(x^{\prime}, u, \xi^{\prime}, \cdot\right)$ is strictly increasing. If g is defined as above and if (3.15) holds then $u=u^{s}$ up to translation along the y axis.

Proof. Let us preliminarly observe that as in Theorem 3.1 we can obtain (3.12) via Jensen inequality. Since equality holds, and since f is strictly convex then

$$
\begin{equation*}
\nabla_{i} u_{\mid \partial^{*}\left\{y: u\left(x^{\prime}, y\right)>t\right\}}=c_{i} \quad i=1, \ldots, n-1 \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g(y)\left|\nabla_{y} u\right|_{\mid \partial^{*}\left\{y: u\left(x^{\prime}, y\right)>t\right\}}=c_{n} \tag{5.4}
\end{equation*}
$$

for some constant $c_{1}, \ldots, c_{n-1}, c_{n}$. Arguing as in Theorem 3.2 we obtain also

$$
\int_{\partial^{*}\left\{y: u^{s}\left(x^{\prime}, y\right)>t\right\}} g(y) d \mathcal{H}^{0}=\int_{\partial^{*}\left\{y: u\left(x^{\prime}, y\right)>t\right\}} g(y) d \mathcal{H}^{0}
$$

and this implies, using Proposition 3.1, that $\left\{y: u\left(x^{\prime}, y\right)>t\right\}$ is equivalent to some interval $\left(y_{1}\left(x^{\prime}, t\right), y_{2}\left(x^{\prime}, t\right)\right)$. In the case that $\left\{y: u\left(x^{\prime}, y\right)>t\right\}$ is not included in [$-\rho, \rho$], by Remark $3.1\left\{y: u\left(x^{\prime}, y\right)>t\right\}$ is centered at the origin and being g even, using (5.4) we obtain

$$
\begin{equation*}
\nabla_{y} u\left(x^{\prime}, y_{1}\left(x^{\prime}, t\right)\right)=-\nabla_{y} u\left(x^{\prime}, y_{2}\left(x^{\prime}, t\right)\right) \tag{5.5}
\end{equation*}
$$

In the case that $\left\{y: u\left(x^{\prime}, y\right)>t\right\} \subset[-\rho, \rho], g$ is constant in $\left\{y: u\left(x^{\prime}, y\right)>t\right\}$, then (5.5) follows as in Lemma 4.7 of [5]. In any case we obtain (5.3) and (5.5); from these symmetry properties of the gradient the proof follows exactly as in [5] (see Lemmas 4.7-4.10).

References

[1] L. AMBROSIO, N. FUSCO and D. PALLARA, Functions of bounded variations and free discontinuity problems, Oxford Univ. Press, 2000.
[2] M. F. BETTA, F. BROCK, A. MERCALDO and M. R. POStERARO, A weighted isoperimetric inequality and applications to symmetrization, J. Inequal. and Appl. 4 (1999), 215-240.
[3] F. BROCK, Weighted Dirichlet-type inequalities for Steiner Symmetrization, Calc. Var. 8 (1999), 15-25.
[4] A. CIANCHI and N. FUSCO, Functions of bounded variation and rearrangements, Arch. Ration. Mech. Anal. 165, 1-40.
[5] A. CIANCHI and N. FUSCO, Steiner symmetric extremals in Pólya-Szegö inequality, ADV. MATH. 203 (2006), 673-728.
[6] E. DE GIORGI, Sulla proprietà isoperimetrica dell'ipersfera nella classe degli insiemi aventi frontiera orientata di misura finita, Atti Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Nat. Sez. I. 5 (1958), 33-44.
[7] L. C. EVANS and R. F. GARIEPY, Lecture notes on measure theory and fine properties of functions, CRC Press, 1992.
[8] H. FEDERER, Geometric measure theory, Springer, 1969.
[9] V. FERONE and A. MERCALDO, A second order derivation formula for functions defined by integrals, CRAS 306 (1998), 549-554.
[10] B. KAWOHL, On the isoperimetric nature of a rearrangement inequality and its consequences for some variational problems, Arch. Rat. Mech. Anal. 94 (1986), 227-243.
[11] G. POLYA and G. SZEGÖ, Isoperimetric inequalities in mathematical phisics, Ann. Math. Studies No. 27., Princeton University Press, Princeton, 1951.
[12] W. P. ZIEMER, Weakly differentiable functions, Springer - Verlag, New York, 1989.

Received and accepted 23 May 2005

To access this journal online:
http://www.birkhauser.ch

