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1 Introduction

We consider the parabolic equation

ut − div(a(t, x, u,∇u)) = µ in Q = ]0, T [ × Ω ,
u = 0 on ]0, T [ × ∂Ω ,
u(0) = u0 in Ω

(1.1)
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where T > 0, Ω is a bounded open subset of RN (N ≥ 1), −div(a(t, x, u,∇u)) is
a Leray-Lions operator, u0 ∈ L1(Ω) and µ is a bounded measure on Q which is
absolutely continuous with respect to the parabolic capacity associated with the
operator −div(a(t, x, u,∇u)) (see below the precise hypotheses).

Under the general assumption that µ and u0 are bounded measures, the
existence of a distributional solution can be proved (see [4, 3]). However, due
to the lack of regularity of the solutions, this formulation is not strong enough
to provide uniqueness. Hence new concepts of solution have been defined for
integrable right hand sides (see [2, 10, 6]). For a more complete presentation and
references, see [6].

In [6], the notion of renormalized solution has been developped in the case of
bounded measures absolutely continuous with respect to the capacity. We extend
here the notion of entropy solutions (defined in [10]) to these right-hand sides and
we prove that these solutions are the same as the renormalized solutions.

Notice that we also slightly extend the notion of renormalized solution to take
into account that, on the contrary to [6], our Leray-Lions operator also depends
on u. In particular, in the case we consider, uniqueness of the renormalized (or
entropy) solution is not certain, and we therefore prove that any entropy solution
is a renormalized solution (and vice-versa).

2 Hypotheses and definitions

We take T > 0 and Ω a bounded open subset of RN , and we denote Q = ]0, T [×Ω.
Let p ∈ ]1,∞[; we take p∗ ∈ ]p,∞] such that W 1,p

0 (Ω) is embedded in Lp∗
(Ω) (i.e.

p∗ = Np/(N − p) if p < N , p∗ < ∞ if p = N and p∗ = ∞ if p > N).
The hypotheses on the operator in (1.1) are the following:

a : ]0, T [ × Ω × R × RN → RN is a Caratheodory function, (2.1)

∃Λ ∈ L1(Q) , ∃α > 0 such that a(t, x, s, ξ) · ξ ≥ α|ξ|p − Λ(t, x)
for a.e. (t, x) ∈ Q and all (s, ξ) ∈ R × RN , (2.2)

∃β > 0 , ∃b ∈ Lp′
(Q) , ∃ν < (p− 1)

(
1 − 1

p∗

)
such that

|a(t, x, s, ξ)| ≤ β(b(t, x) + |s|ν + |ξ|p−1)
for a.e. (t, x) ∈ Q and all (s, ξ) ∈ R × RN , (2.3)

(a(t, x, s, ξ) − a(t, x, s, η)) · (ξ − η) > 0
for a.e. (t, x) ∈ Q and all (s, ξ, η) ∈ R × RN × RN such that ξ �= η. (2.4)

Remark 2.1 As examples of such functions, we can take a(t, x, s, ξ) = |ξ|p−2ξ
(the p-Laplacian), but also a(t, x, s, ξ) = |ξ|p−2ξ + φ(t, x, s) + ψ(t, x, s)|ξ|q−2ξ,
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where q ∈ ]1, p[, φ and ψ are Caratheodory functions, sups∈R |φ(·, ·, s)| ∈ Lp′
(Q),

ψ ≥ 0 and |ψ(t, x, s)| p−1
p−q ≤ C(h(t, x) + |s|ν) with h ∈ Lp′

(Q).

We denote by M0(Q) the set of bounded measures on Q which are absolutely
continuous with respect to the p-parabolic capacity. We will not detail the results
concerning this capacity and M0(Q) (see [6]), we only recall the following.

Let us define V = W 1,p
0 (Ω) ∩ L2(Ω), and W = {u ∈ Lp(0, T ;V ) |ut ∈

Lp′
(0, T ;V ′)}, endowed with the norm ‖u‖W = ‖u‖Lp(0,T ;V ) + ‖ut‖Lp′ (0,T ;V ′).

If U ⊂ Q is an open set, we define the parabolic capacity of U as capp(U) =
inf{‖u‖W : u ∈ W, u ≥ χU almost everywhere in Q} (we use the convention
inf ∅ = +∞); then for any borelian subset B ⊂ Q the definition is extended
by setting: capp(B) = inf

{
capp(U), U open subset of Q, B ⊂ U

}
. M0(Q) is

defined as the set of bounded measures µ satisfying µ(E) = 0 for every subset
E ⊂ Q such that capp(E) = 0. The next theorem states the main property of
M0(Q).

Theorem 2.2 If µ ∈ M0(Q), then there exist f ∈ L1(Q), G1 ∈ Lp′
(Q)N and

g2 ∈ Lp(0, T ;W 1,p
0 (Ω) ∩ L2(Ω)) such that∫

Q

ϕdµ =
∫

Q

fϕ dtdx+
∫

Q

G1 · ∇ϕdtdx−
∫

Q

ϕtg2 dtdx , ∀ϕ ∈ C∞
c ([0, T ] ×Q).

(f,−div(G1), g2) is called a decomposition of µ (it is not unique).

For k ≥ 0, we let Tk(s) = max(−k,min(k, s)) the truncature at levels k
and −k and we let Θk(s) =

∫ s

0 Tk(τ) dτ (remark that Θk(s) ≥ 0 for all s and
all k ≥ 0). Let us now state the definition of a renormalized solution for (1.1)
(a slight generalization of the one in [6]).

Definition 2.3 Under hypotheses (2.1)–(2.4), if u0 ∈ L1(Ω), µ ∈ M0(Q) and
(f,−div(G1), g2) is a decomposition of µ according to Theorem 2.2, then a renor-
malized solution to (1.1) is a measurable function u such that

u− g2 ∈ L∞(0, T ;L1(Ω)) , Tk(u− g2) ∈ Lp(0, T ;W 1,p
0 (Ω)) for all k ≥ 0, (2.5)

lim
n→∞

∫
{n≤|u−g2|≤n+1}

|∇u|p dtdx = 0 (2.6)

and, for all S ∈ W 2,∞(R) such that S′ has a compact support,

(S(u− g2))t − div(a(t, x, u,∇u)S′(u− g2))

+S′′(u− g2) a(t, x, u,∇u) · ∇(u− g2)

= S′(u− g2)f + S′′(u− g2)G1 · ∇(u− g2) (2.7)

−div(S′(u− g2)G1) in D′(Q),

S(u− g2)(0) = S(u0) in L1(Ω). (2.8)
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Remark 2.4 It is known that, if v = u − g2 satisfies Tk(v) ∈ Lp(0, T ;W 1,p
0 (Ω))

for all k ≥ 0, then there exists a unique measurable vector-valued function ∇v
such that ∇(Tk(v)) = 1{|v|≤k}∇v for all k ≥ 0 (see [1] for the elliptic case); hence,
if u satisfies (2.5), we can define the function ∇(u− g2) and, since the gradient of
g2 is a function, this also gives a gradient ∇u = ∇(u− g2)+∇g2 : Q → RN for u.

We will see in section 4 that (2.7), with this definition of ∇u, and (2.8) make
sense.

Remark 2.5 It is proved in [6] (in the case where a does not depend on u) that
this definition of renormalized solution does not depend on the decomposition of
µ: if a function is a renormalized solution for a particular decomposition of µ,
then it is a renormalized solution for any decomposition of µ. This is still true if
a depends on u: let u be a renormalized solution for a decomposition of µ and
consider, as in Section 6.2, ã(t, x, ξ) = a(t, x, u(t, x), ξ). Hence u is a renormalized
solution for ã and the same decomposition of µ. According to [6], the same u is
also a renormalized solution for the same ã and any other decomposition of µ.
Thus u is a renormalized solution for a and any other decomposition of µ.

Remark 2.6 A renormalized solution to (1.1) is also a solution in the distribu-
tional sense. Indeed, if u is a renormalized solution then, by Proposition 4.1,
|u|ν ∈ Lp′

(Q) and a(t, x, u,∇u) is integrable; hence, using S = Sn (defined at the
beginning of Section 5) in (2.7), we can let n → ∞ to see, thanks to (2.6), that u
satisfies the first equation of (1.1) in the distributional sense.

We now introduce the notion of entropy solution, which is a generalization
of the definition given in [10] when µ ∈ L1(Q). To this end, we define

E = {ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q) | ϕt ∈ Lp′

(0, T ;W−1,p′
(Ω)) + L1(Q)} .

According to [9], one has E ⊂ C([0, T ];L1(Ω)).

Definition 2.7 Under hypotheses (2.1)–(2.4), if u0 ∈ L1(Ω), µ ∈ M0(Q) and
(f,−div(G1), g2) is a decomposition of µ according to Theorem 2.2, an entropy
solution to (1.1) is a measurable function u such that

Tk(u− g2) ∈ Lp(0, T ;W 1,p
0 (Ω)) for all k ≥ 0, (2.9)

t ∈ [0, T ] → ∫
Ω Θk(u− g2 − ϕ)(t, x) dx is (a.e. equal to) a continuous function,

for all k ≥ 0 and all ϕ ∈ E, (2.10)

∫
Ω

Θk(u− g2 − ϕ)(T, x) dx−
∫

Ω
Θk(u0(x) − ϕ(0, x)) dx

+
∫ T

0
〈ϕt, Tk(u− g2 − ϕ)〉 dt
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+
∫

Q

a(t, x, u,∇u) · ∇(Tk(u− g2 − ϕ)) dtdx

≤
∫

Q

fTk(u− g2 − ϕ) dtdx+
∫

Ω
G1 · ∇(Tk(u− g2 − ϕ)) dtdx ,

for all k ≥ 0 and all ϕ ∈ E. (2.11)

Remark 2.8 In (2.11), we denote by 〈·, ·〉 the duality product betweenW−1,p′
(Ω)

+ L1(Ω) and W 1,p
0 (Ω) ∩ L∞(Ω).

In section 4, we will prove that each term in (2.11) is well defined.

Remark 2.9 In fact, Definitions 2.3 and 2.7 of renormalized and entropy solu-
tions, and all the results we present here, are also valid for (1.1) with right-hand
sides of the kind “f − div(G1) + ∂tg2” (with f ∈ L1(Q), G1 ∈ Lp′

(Q)N and
g2 ∈ Lp(0, T ;W 1,p

0 (Ω) ∩ L2(Ω))), even if they do not come from a measure.

3 Main results

The main result of this paper is the following theorem.

Theorem 3.1 Under Hypotheses (2.1)–(2.4), a function is an entropy solution
of (1.1) if and only if it is a renormalized solution of (1.1).

The definition we have chosen of entropy solution uses an inequality in (2.11)
instead of an equality (such as for renormalized solutions); this is a standard choice
for entropy solutions because it is sufficient to obtain the uniqueness (in the case
where a does not depend on u and µ ∈ L1(Q) for example; see [10]) and makes the
proof of the existence quite easier (there is no need to prove the strong convergence
of the gradient of the approximate solutions). However, as an immediate corollary
of Theorem 3.1 (see Remark 5.2 for the first part and Remark 2.5 for the last one),
we also have:

Corollary 3.2 Under Hypotheses (2.1)–(2.4), an entropy solution to (1.1) also
satisfies (2.11) with an equality instead of an inequality. Moreover, the definition
of entropy solution does not depend on the decomposition of µ: if a function is an
entropy solution for a particular decomposition of µ, then it is an entropy solution
for any decomposition of µ.

Remark 3.3 The exponent of |s| in (2.3) may seem curious. It is chosen to
ensure that, if u is an entropy or a renormalized solution of (1.1), then |u|ν ∈
Lp′

(Q) — we need such a property to prove both implications of Theorem 3.1.
Since the regularity property of Proposition 4.1 below is the best we can get (see
Remark 4.4), this choice of ν is also optimal.
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But it is to be noticed that, if we try and use the methods of [6] to prove the
existence of a renormalized solution to (1.1) (with a depending on u, which was
not the case in [6]), then we also need an estimate on |u|ν in Lp′

(Q) (in particular
to prove (2.6)). Thus, this limit on ν does not seem to be a technical one and to
be restricted to the present work, but is also a natural hypothesis when dealing
with renormalized solutions to (1.1) in the case where a depends on u.

Remark 3.4 Another consequence of Theorem 3.1 is the fact that an entropy
solution to (1.1) is also a solution in the distributional sense (see Remark 2.6).

4 Coherence of the definitions and
regularity results

Let us see that, if (2.5) is satisfied, then (2.7) and (2.8) make sense.
Let S ∈ W 2,∞(R) such that S′ has a compact support. We have u − g2 ∈

L∞(0, T ;L1(Ω)) ⊂ L1(Q), so that, S being Lipschitz-continuous, S(u − g2) ∈
L1(Q) and its time-derivative exists in D′(Q). We clearly have

S′(u− g2)f ∈ L1(Q) and S′(u− g2)G1 ∈ Lp′
(Q)N . (4.1)

Taking M a real number such that supp(S′) ⊂ [−M,M ], we see that, when
S′(u−g2) �= 0 or S′′(u−g2) �= 0, we have |u−g2| ≤ M so that u−g2 = TM (u−g2)
and ∇u = ∇(TM (u − g2)) + ∇g2 (by definition of ∇u, see Remark 2.4). Hence,
when S′(u− g2) or S′′(u− g2) are not null, since ν ≤ p− 1,

|∇(u− g2)| = |∇(TM (u− g2)) + ∇g2| ∈ Lp(Q)

and

|a(t, x, u,∇u)| ≤ β(b(t, x) + |TM (u− g2) + g2|ν + |∇(TM (u− g2)) + ∇g2|p−1)
≤ Cβ(b(t, x) + 1 + |M + |g2‖p−1 + |∇(TM (u− g2)) + ∇g2|p−1)

∈ Lp′
(Q). (4.2)

This shows that

S′(u− g2)a(t, x, u,∇u) ∈ Lp′
(Q)N

S′′(u− g2)a(t, x, u,∇u) · ∇(u− g2) ∈ L1(Q)
and S′′(u− g2)G1 · ∇(u− g2) ∈ L1(Q).

(4.3)

Equations (4.1) and (4.3) prove that each term in (2.7) is defined in D′(Q)
and, moreover, that (S(u − g2))t ∈ Lp′

(0, T ;W−1,p′
(Ω)) + L1(Q). Since (2.5)

implies S(u − g2) ∈ Lp(0, T ;W 1,p
0 (Ω)) (because, S′ being null outside [−M,M ],

we have S(u−g2) = S(TM (u−g2))), [9] gives then S(u−g2) ∈ C([0, T ];L1(Ω)) and
(2.8) makes sense. Furthermore, since (S(u−g2))t ∈ Lp′

(0, T ;W−1,p′
(Ω))+L1(Q)
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we can use, as test functions in (2.7), not only functions in C∞
c (Q) but also

functions in Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q).

Let us now consider the case of entropy solutions: we want to prove that if
u satisfies (2.9) and (2.10), then each term in (2.11) is well defined.

Tanks to (2.10), the first term of (2.11) is well defined; notice that, to be
precise, in this term we take the value at t = T of the continuous representative
of t → ∫

Ω Θk(u − g2 − ϕ)(t, x) dx (this comes down to taking the essential limit
of this function as t → T ). We have |Θk(s)| ≤ k|s|; since u0 ∈ L1(Ω) and
ϕ ∈ C([0, T ];L1(Ω)), we deduce that Θk(u0 − ϕ(0, ·)) is integrable on Ω and that
the second term of (2.11) makes sense. The third term and the right-hand side
are well defined thanks to the regularity on ϕt, f and G1 and to (2.9).

It remains to study the fourth term. On the set {∇Tk(u− g2 − ϕ) �= 0}, we
have |u − g2 − ϕ| ≤ k, which implies |u − g2| ≤ M = k + ‖ϕ‖L∞(Q). Hence, on
this set, (4.2) holds. Since we have, on Q, Tk(u− g2 −ϕ) = Tk(TM (u− g2)−ϕ) ∈
Lp(0, T ;W 1,p

0 (Ω)), we deduce that

a(t, x, u,∇u) · ∇(Tk(u− g2 − ϕ)) ∈ L1(Q) (4.4)

(notice that this has been obtained under the sole property (2.9) of u), and all
the terms of (2.11) are well defined.

To conclude this subsection, we state and prove a regularity result on entropy
and renormalized solutions. This result is mainly useful to bound the term |u|ν
coming from (2.3).

Proposition 4.1 If u is an entropy or a renormalized solution of (1.1), then

i) u− g2 ∈ L∞(0, T ;L1(Ω)),

ii) for all 0 ≤ q < p(1 − 1
p∗ ), |u|q ∈ L1(Q)

iii) for all 0 ≤ q < p− (1 + 1
p − 1

p∗ )−1, |∇u|q ∈ L1(Q).

Remark 4.2 Notice that i) gives u ∈ L1(Q). If p ≤ 2N/(N + 1) (hence N ≥ 2
and p < N), ii) is weaker than i) since q < (N+1)p

N − 1 ≤ 1.
iii) will not be useful to us in the following, but since it is very easy (and

classical) to obtain, we state it. If p < N , the condition in iii) reduces to 0 ≤ q <

p− N
N+1 and, if p ≥ N , it reduces to 0 ≤ q < p2

p+1 .

Remark 4.3 These regularities are compatible with the results of [4]. But we
cannot directly use this reference since we have not supposed that all entropy or
renormalized solutions are obtained via approximation techniques.

Remark 4.4 These results are the best we can get, in the sense that, in general,
we cannot prove that |u|p(1−1/p∗) ∈ L1(Q) and |∇u|p−(1+1/p−1/p∗)−1 ∈ L1(Q).
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Indeed, letN > p > 2N/(N+1), q = (p−1+p/N)′, r = (1+1/(p−1)(N+1))′,
β = N/(q − 1), 0 < α < inf(1 − 1/q, 1 − 1/r) and x0 ∈ Ω; then ϕ(t, x) = | ln(|t−
T/2| + |x − x0|β)|α (truncated away from (T/2, x0)) does not belong to L∞(Q)
but satisfies ∂tϕ ∈ Lq(Q) and ∇xϕ ∈ Lr(Q)N . Let µ =

∑
n≥1

1
n2|En|1En where

En = {n ≤ ϕ < n + 1}: we have µ ∈ L1(Q). Since ϕ �∈ L∞(Q),
∫

Q
ϕµ = +∞.

Hence µ ∈ L1(Q)\[∂t(Lp−1+p/N (Q)) + div(L1+1/(p−1)(N+1)(Q)N ))].
Let u be the solution to (1.1) with this µ as data (and supposing that a does

not depend on u). If |u|p(1−1/p∗) ∈ L1(Q) and |∇u|p−(1+1/p−1/p∗)−1 ∈ L1(Q), this
would lead to u ∈ Lp−1+p/N (Q) and ∇u ∈ Lp−N/(N+1)(Q)N which, thanks to
(2.3), gives a(t, x,∇u) ∈ L1+1/(p−1)(N+1)(Q)N . Since an entropy or a renormal-
ized solution is also a solution of (1.1) in the sense of distributions (see Remarks
2.6 and 3.4), this would give µ ∈ ∂t(Lp−1+p/N (Q)) + div(L1+1/(p−1)(N+1)(Q)N ),
which is a contradiction.

Remark 4.5 We will prove in fact, as it is usual in elliptic and parabolic problems
with measure data, that u and its gradient respectively belong to the Marcinkiewicz
spaces of exponents p(1 − 1

p∗ ) and p− (1 + 1
p − 1

p∗ )−1.

Proof of Proposition 4.1
We let v = u−g2, and let C be a constant that may change from line to line

but that is not depending on k or λ.
Step 1: we prove i).
This regularity is in the definition of renormalized solutions.
For entropy solutions, this regularity comes from (2.10). Indeed, take ϕ = 0

and k = 1 in this property. The function t ∈ [0, T ] → ∫
Ω Θ1(v)(t, x) dx being

a.e. equal to a continuous function, it is essentially bounded, say by M . Since
Θ1(s) ≥ |s| − 1, we deduce that, for a.e. t ∈ [0, T ],∫

Ω
|v|(t, x) dx

≤
∫

Ω
(1 + Θ1(v)(t, x)) dx ≤ meas(Ω) +M

which proves that v ∈ L∞(0, T ;L1(Ω)).
To prove ii), we use classical techniques for elliptic or parabolic equations

with measure data.
Step 2: an estimate on ∇(Tk(v)).
We first handle the case of entropy solutions. Using ϕ = 0 in (2.11) for some

k ≥ 0, and since Θk ≥ 0, we see that∫
Q

a(t, x, u,∇u) · ∇(Tk(v)) dtdx

≤
∫

Ω
Θk(u0(x)) dx+ k‖f‖L1(Q) + ‖G1‖Lp′ (Q)‖∇(Tk(v))‖Lp(Q).
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But, since |Tk(s)| ≤ k, we have Θk(s) ≤ k|s|, so that∫
Q

a(t, x, u,∇u) · ∇(Tk(v)) dtdx ≤ k‖u0‖L1(Ω) + k‖f‖L1(Q)

+ ‖G1‖Lp′ (Q)‖∇(Tk(v))‖Lp(Q). (4.5)

Recall that v = u − g2. By (2.2) and (2.3) and since ν ≤ p − 1, we have, on
{|v| ≤ k},

a(t, x, u,∇u) · ∇(Tk(v))
≥ α|∇u|p − Λ(t, x) − β(b(t, x) + |u|ν + |∇u|p−1)|∇g2|
≥ α|∇u|p − Λ(t, x) − β(b̃(t, x) + |u|p−1 + |∇u|p−1)|∇g2|

where b̃ = 1 + b. Since ∇Tk(v) = 0 outside {|v| ≤ k}, we deduce

α

∫
{|v|≤k}

|∇u|p dtdx

≤
∫

Q

a(t, x, u,∇u) · ∇(Tk(v)) dtdx+
∫

Q

Λ dtdx

+ β‖∇g2‖Lp(Q)

(
‖b̃‖Lp′ (Q) + ‖u‖p−1

Lp({|v|≤k}) + ‖∇u‖p−1
Lp({|v|≤k})

)
.

On {|v| ≤ k}, we have u = Tk(v) + g2 and ∇u = ∇(Tk(v)) + ∇g2; therefore, we
can find C not depending on k such that

α

∫
{|v|≤k}

|∇u|p dtdx

≤
∫

Q

a(t, x, u,∇u) · ∇(Tk(v)) dtdx+
∫

Q

Λ dtdx

+ C
(
1 + ‖Tk(v)‖p−1

Lp(Q) + ‖g2‖p−1
Lp(Q) + ‖∇(Tk(v))‖p−1

Lp(Q) + ‖∇g2‖p−1
Lp(Q)

)
.

Using Poincaré’s inequality, we finally obtain

α

∫
{|v|≤k}

|∇u|p dtdx

≤
∫

Q

a(t, x, u,∇u) · ∇(Tk(v)) dtdx+ C
(
1 + ‖∇(Tk(v))‖p−1

Lp(Q)

)
(4.6)

(we have also put
∫

Q
Λ in C). Now, we write∫

Q

|∇(Tk(v))|p dtdx

=
∫

{|v|≤k}
|∇(u− g2)|p dtdx ≤ C

∫
{|v|≤k}

|∇u|p dtdx+ C

∫
Q

|∇g2|p dtdx
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so that (4.5) and (4.6) give∫
Q

|∇(Tk(v))|p dtdx ≤ C + C‖∇(Tk(v))‖p−1
Lp(Q) + Ck + C‖∇(Tk(v))‖Lp(Q).

But Young’s inequality allows to write

‖∇(Tk(v))‖p−1
Lp(Q) ≤ C +

1
4
‖∇(Tk(v))‖p

Lp(Q)

and
‖∇(Tk(v))‖Lp(Q) ≤ C +

1
4
‖∇(Tk(v))‖p

Lp(Q).

We thus get, for all k ≥ 1, ∫
Q

|∇(Tk(v))|p dtdx ≤ Ck. (4.7)

For renormalized solutions, this estimate is very easy to obtain. We have∫
Q

|∇(Tk(v))|p dtdx =
∫

{|v|<k}
|∇u− ∇g2|p dtdx (4.8)

≤ C

∫
{|v|<k}

|∇u|p dtdx+ C

∫
Q

|∇g2|p dtdx. (4.9)

But, by (2.5) and (2.6), (
∫

{n≤|v|<n+1} |∇u|p)n≥0 is bounded (say by M); therefore,
for k ≥ 1 and denoting by [k] the integer part of k,

∫
{|v|≤k}

|∇u|p dtdx ≤
[k]∑

n=0

∫
{n≤|v|<n+1}

|∇u|p dtdx ≤ M([k] + 1) ≤ M(k + 2).

By (4.9), we deduce that (4.7) holds for all k ≥ 1.
Step 3: conclusion (1).
Let θ and r satisfy 1

r = 1−θ
∞ + θ

p = 1−θ
1 + θ

p∗ ; this means that θ(1+ 1
p − 1

p∗ ) = 1,
which defines θ ∈ [0, 1] (because 1

p ≥ 1
p∗ ), and that r = p

θ = 1+p(1− 1
p∗ ) ∈ [1,∞[.

Hence, some easy interpolations in Lebesgue spaces give

‖Tk(v)‖Lr(Q) = ‖Tk(v)‖Lr(0,T ;Lr(Ω)) ≤ ‖Tk(v)‖1−θ
L∞(0,T ;L1(Ω))‖Tk(v)‖θ

Lp(0,T ;Lp∗ (Ω)).

Using the fact that v ∈ L∞(0, T ;L1(Ω)) and |Tk(v)| ≤ |v|, we see that
‖Tk(v)‖1−θ

L∞(0,T ;L1(Ω)) is bounded by C (not depending on k ≥ 1). By Sobolev’s
injection, (4.7) shows that, if k ≥ 1,

‖Tk(v)‖θ
Lp(0,T ;Lp∗ (Ω)) ≤ C‖Tk(v)‖θ

Lp(0,T ;W 1,p
0 (Ω)) ≤ Ckθ/p.

1The deduction of ii) and iii) from i) and (4.7) is adapted from e.g. [4] or [1].
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Hence, we get
‖Tk(v)‖Lr(Q) ≤ Ckθ/p = Ck1/r.

This shows, by Tchebycheff’s inequality, that meas({|v| ≥ k}) = meas({|Tk(v)| ≥
k}) ≤ Ck−(r−1), i.e. that v belongs to Mr−1, the Marcinkiewicz space of exponent
r − 1.

For λ ≥ 0 and k ≥ 1, we can write

{|∇v| ≥ k} ⊂ {|v| ≥ λ} ∪ {|∇(Tλ(v))| ≥ k} ∪A
where meas(A) = 0 (this comes from the fact that ∇v = ∇(Tλ(v)) a.e. on
{|v| ≤ λ}). Thus, applying Tchebycheff’s inequality to (4.7) (with λ instead of k)
and using the fact that v ∈ Mr−1, there exists C (not depending on λ nor k) such
that

meas({|∇v| ≥ k}) ≤ Cλ1−r + Cλk−p.

Minimizing this inequality on λ we see that an optimal choice is, up to a multi-
plicative constant, λ = kp/r = kθ, which leads to meas({|∇v| ≥ k}) ≤ Ck−(p−θ).
Hence, ∇v ∈ Mp−θ.

Since v ∈ Mr−1 and ∇v ∈ Mp−θ, classical integration properties of functions
in Marcinkiewicz spaces imply that, for all 0 ≤ q < r − 1, |v|q ∈ L1(Q) and that,
for all 0 ≤ q < p− θ, |∇v|q ∈ L1(Q).

We have θ = (1+ 1
p − 1

p∗ )−1 and r−1 = p(1− 1
p∗ ). Moreover, for all 0 ≤ q <

p(1 − 1
p∗ ) ≤ p, we have |g2|q ∈ L1(Q) and for all 0 ≤ q < p− (1 + 1

p − 1
p∗ )−1 ≤ p,

|∇g2|q ∈ L1(Q) (because g2 ∈ Lp(0, T ;W 1,p
0 (Ω))).

Since u = v + g2 and ∇u = ∇v + ∇g2, we deduce therefore that, for all
0 ≤ q < p(1 − 1

p∗ ), |u|q ≤ C(|v|q + |g2|q) ∈ L1(Q) and that, for all 0 ≤ q <

p− (1 + 1
p − 1

p∗ )−1, |∇u|q ≤ C(|∇v|q + |∇g2|q) ∈ L1(Q). This concludes the proof
of ii) and iii). �

5 A renormalized solution is an entropy solution

In the following, we make a constant use of the function Sn : R → R defined by:

hn(s) = 1 − |T1(s− Tn(s))| , Sn(s) =
∫ s

0
hn(r) dr.

It satisfies S′′
n = 1[−n−1,−n] − 1[n,n+1].

We prove in this section that if u is a renormalized solution to (1.1), then it
is also an entropy solution.

Property (2.9) of the entropy solution is contained in (2.5). Thus, it remains
to prove that u satisfies (2.10) and (2.11); this is done simultaneously.

Let t1 ∈ ]0, T ] and θε(t) = 1 − ((t− t1)+/ε), i.e. θε is continuous on [0,∞[,
θε = 1 on [0, t1], θε = 0 on [t1 + ε,∞[ and θε is linear on [t1, t1 + ε]. We denote
v = u− g2.
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Let ϕ ∈ E and M = k + ‖ϕ‖L∞(Q); we have ϕ ∈ C([0, T ];L1(Ω)). The
function Tk(v − ϕ)θε = Tk(TM (v) − ϕ)θε is in Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q) (using
(2.5)) and we can thus use it as a test function in (2.7):

∫ T

0
θε〈(Sn(v))t, Tk(v − ϕ)〉 dt+

∫
Q

θεS
′
n(v)a(t, x, u,∇u) · ∇(Tk(v − ϕ)) dtdx

=
∫

Q

θεS
′
n(v)fTk(v − ϕ) dtdx+

∫
Q

θεS
′
n(v)G1 · ∇(Tk(v − ϕ)) dtdx

−
∫

Q

θεS
′′
n(v)a(t, x, u,∇u) · ∇v Tk(v − ϕ) dtdx

+
∫

Q

θεS
′′
n(v)G1 · ∇v Tk(v − ϕ) dtdx. (5.1)

We have (Sn(v))t ∈ Lp′
(0, T ;W−1,p′

(Ω)) + L1(Q) (see Section 4) and
Tk(v − ϕ) ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q); hence, 〈(Sn(v))t, Tk(v − ϕ)〉 ∈ L1(0, T ).
We also have a(t, x, u,∇u) · ∇(Tk(v − ϕ)) ∈ L1(Q) (see the proof of (4.4)),
fTk(v − ϕ) ∈ L1(Q) and G1 · ∇(Tk(v − ϕ)) = G1 · ∇(Tk(TM (v) − ϕ)) ∈ L1(Q).
Moreover, since S′′

n(s) = 0 for |s| �∈ [n, n+ 1], we can write

S′′
n(v)a(t, x, u,∇u) · ∇v Tk(v − ϕ)
= S′′

n(v)a(t, x, u,∇u) · ∇(Tn+1(v))Tk(v − ϕ) ∈ L1(Q)

(we also use (4.4) here, but with ϕ = 0 and n+ 1 instead of k) and

S′′
n(v)G1 · ∇v Tk(v − ϕ) = S′′

n(v)G1 · ∇(Tn+1(v))Tk(v − ϕ) ∈ L1(Q).

Since θε → 1[0,t1] and is bounded by 1 as ε → 0, the dominated convergence
theorem therefore gives, with Qt1 = [0, t1] × Ω,

∫ t1

0
〈(Sn(v))t, Tk(v − ϕ)〉 dt+

∫
Qt1

S′
n(v)a(t, x, u,∇u) · ∇(Tk(v − ϕ)) dtdx

=
∫

Qt1

S′
n(v)fTk(v − ϕ) dtdx+

∫
Qt1

S′
n(v)G1 · ∇(Tk(v − ϕ)) dtdx

−
∫

Qt1

S′′
n(v)a(t, x, u,∇u) · ∇v Tk(v − ϕ) dtdx

+
∫

Qt1

S′′
n(v)G1 · ∇v Tk(v − ϕ) dtdx. (5.2)

Let n ≥ M . We have Tk(v − ϕ) = Tk(Sn(v) − ϕ) (since Sn(s) = s on
[−M,M ], and |Sn(s)| ≥ M and sgn(Sn(s)) = sgn(s) outside [−M,M ]). We
know that Sn(v) : [0, T ] → L1(Ω) is continuous or, more precisely, that Sn(v)
is a.e. equal on [0, T ] to a continuous function Sn(v) : [0, T ] → L1(Ω). Since
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Sn(v) − ϕ ∈ Lp(0, T ;W 1,p
0 (Ω)) with a time derivative in Lp′

(0, T ;W−1,p′
(Ω)) +

L1(Q) (see Section 4), we can integrate by parts (using Lemma 7.1 in the appendix)
to find, by (2.8),∫ t1

0
〈(Sn(v))t, Tk(v − ϕ)〉 dt

=
∫ t1

0
〈(Sn(v) − ϕ)t, Tk(Sn(v) − ϕ)〉 dt+

∫ t1

0
〈ϕt, Tk(v − ϕ)〉 dt

=
∫

Ω
Θk

(
Sn(v)(t1) − ϕ(t1)

)
dx−

∫
Ω

Θk(Sn(u0) − ϕ(0)) dx

+
∫ t1

0
〈ϕt, Tk(v − ϕ)〉 dt

and we deduce from (5.2) that∫
Ω

Θk

(
Sn(v)(t1) − ϕ(t1)

)
dx−

∫
Ω

Θk(Sn(u0) − ϕ(0)) dx

+
∫ t1

0
〈ϕt, Tk(v − ϕ)〉 dt+

∫
Qt1

S′
n(v)a(t, x, u,∇u) · ∇(Tk(v − ϕ)) dtdx

=
∫

Qt1

S′
n(v)fTk(v − ϕ) dtdx+

∫
Qt1

S′
n(v)G1 · ∇(Tk(v − ϕ)) dtdx

−
∫

Qt1

S′′
n(v)a(t, x, u,∇u) · ∇v Tk(v − ϕ) dtdx

+
∫

Qt1

S′′
n(v)G1 · ∇v Tk(v − ϕ) dtdx. (5.3)

We now want to let n → ∞, with a good choice of t1. Let (A)—(H) be the
terms in this equality.

For all n ≥ 1, we have Sn(v) = Sn(v) a.e. on Q; since these are a count-
able number of a.e. equalities, we can suppose that they are all satisfied outside
a common subset of Q of null measure. Thus, for a.e. t1 ∈ [0, T ], we have,
a.e. on Ω, Sn(v)(t1, ·) − ϕ(t1, ·) = Sn(v(t1, ·)) − ϕ(t1, ·) → v(t1, ·) − ϕ(t1, ·) as
n → ∞ and |Sn(v)(t1, ·) − ϕ(t1, ·)| ≤ |v(t1, ·)| + |ϕ(t1, ·)| ∈ L1(Ω) (recall that
ϕ ∈ C([0, T ];L1(Ω)) and that v ∈ L∞(0, T ;L1(Ω)) by (2.5)). The dominated con-
vergence theorem therefore shows that, for a.e. t1 ∈ [0, T ], Sn(v)(t1, ·)−ϕ(t1, ·) →
v(t1, ·) − ϕ(t1, ·) in L1(Ω) as n → ∞; Θk being Lipschitz-continuous, we deduce
that, for a.e. t1 ∈ [0, T ], (A) tends to

∫
Ω Θk(v − ϕ)(t1) dx.

By dominated convergence we have Sn(u0) → u0 in L1(Ω) and since Θk is
Lipschitz-continuous, we see that (B) tends to − ∫

Ω Θk(u0 − ϕ(0)) dx as n → ∞.
(C) does not depend on n. As we have seen before, a(t, x, u,∇u) · ∇(Tk(v − ϕ)),
fTk(v − ϕ) and G1 · ∇(Tk(v − ϕ)) all belong to L1(Q); since S′

n(v) → 1 and
|S′

n| ≤ 1, we deduce from the dominated convergence theorem that (D) →
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∫
Qt1

a(t, x, u,∇u) · ∇(Tk(v − ϕ)) dtdx, that (E) → ∫
Qt1

fTk(v − ϕ) dtdx and that
(F ) → ∫

Qt1
G1 · ∇(Tk(v − ϕ)) dtdx as n → ∞.

Since |S′′
n| ≤ 1 and S′′

n(s) �= 0 only if |s| ∈ [n, n + 1], we can write, with C
not depending on n (and that may change from line to line),

|(G)| + |(H)| ≤ C

∫
{n≤|v|≤n+1}

(b+ |u|ν + |∇u|p−1)|∇v| + |G1| |∇v| dtdx

≤ C

∫
{n≤|v|≤n+1}

(bp
′
+ |u|νp′

+ |∇u|p + |∇v|p + |G1|p′
) dtdx

≤ C

∫
{n≤|v|≤n+1}

(bp
′
+ |u|νp′

+ |∇u|p + |∇g2|p + |G1|p′
) dtdx,

(we have used |∇v|p ≤ C(|∇u|p + |∇g2|p)); by Proposition 4.1, we have |u|νp′ ∈
L1(Q) (because νp′ < p(1 − 1

p∗ )). Using (2.6) and the fact that meas({n ≤ |v| ≤
n+ 1}) → 0 (v is a.e. finite), we deduce that |(G)| + |(H)| → 0 as n → ∞.

Passing to the limit in (5.3), we obtain, for a.e. t1 ∈ [0, T ],∫
Ω

Θk (v − ϕ) (t1) dx−
∫

Ω
Θk(u0 − ϕ(0)) dx

+
∫ t1

0
〈ϕt, Tk(v − ϕ)〉 dt+

∫
Qt1

a(t, x, u,∇u) · ∇(Tk(v − ϕ)) dtdx

=
∫

Qt1

fTk(v − ϕ) dtdx+
∫

Qt1

G1 · ∇(Tk(v − ϕ)) dtdx.

The last five terms of this equality are continuous with respect to t1 (the
second term does not depend on t1 and the other ones are integrals signs on ]0, t1[
of functions which are integrable on [0, T ]). This shows that the first term is a.e.
equal to a continuous function on [0, T ], hence establishing (2.10), and, either
taking the essential limit as t1 → T or replacing the first term by its continuous
representative (and then letting t1 → T ), that (2.11) holds.

Remark 5.1 The distinction between Sn(v) and Sn(v) in the preceding proof
may appear exaggerated: we know that Sn(v) is (a.e. equal to) a continuous
function [0, T ] → L1(Ω) so we could directly use this property without dealing
with the “a.e.”. However, this would lead to a lack of rigor: if we change Sn(v) on
a set of null measure to ensure that it is continuous, then it is not obvious that we
can still write this function as Sn(v) (for some v a.e. equal to v and independant
of n); and such a writing (the composite of Sn with some function) is vital in
order to let n → ∞ in (A). This is why, though it is quite exceptional, we have
to make a distinction between Sn(v) and its continuous representative.

Remark 5.2 Notice that we have proved that a renormalized solution satisfies
(2.11) not only with an inequality but in fact with an equality. This is something
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that we could have expected: in order to prove the existence of a renormalized
solution, on the contrary to the entropy solution, we have to prove a strong conver-
gence of the gradients of the approximate solutions; it is this strong convergence
of the gradients that transforms the inequality in (2.11) into an equality (if, in
the construction of entropy solutions, we prove the strong convergence of the
gradients, then equality in (2.11) naturally appears).

6 An entropy solution is a renormalized solution

We now take an entropy solution u and we prove that it is a renormalized solution.
We first prove (in Subsection 6.1) that u satisfies (2.6) and then, comparing u to
the renormalized solution ũ of a modified version of (1.1), that u satisfies all other
properties of renormalized solutions (in Subsection 6.2).

6.1 The integrability property (2.6)

Let u be an entropy solution and v = u− g2. We prove here that, for all k ≥ 0,

lim
h→∞

∫
{h≤|v|≤h+k}

|∇u|p dtdx = 0. (6.1)

Let h > 0 and (Th(v))ζ be the Landes regularization of Th(v) (see [7]), that
is to say

((Th(v))ζ)t = ζ(Th(v) − (Th(v))ζ) , (Th(v))ζ(0) = zζ ,

with zζ ∈ W 1,p
0 (Ω) , ‖zζ‖L∞(Ω) ≤ h , zζ → Th(u0) in L1(Ω) as ζ → ∞

and
1
ζ
‖zζ‖W 1,p

0 (Ω) → 0 as ζ → ∞.

It is known that |(Th(v))ζ | ≤ h and that, up to a subsequence, (Th(v))ζ → Th(v)
in Lp(0, T ;W 1,p

0 (Ω)) and a.e. on Q as ζ → ∞.
(Th(v))ζ belongs to Lp(0, T ;W 1,p

0 (Ω))∩L∞(Q) and ((Th(v))ζ)t = ζ(Th(v)−
(Th(v))ζ) is in L∞(Q) ⊂ Lp′

(0, T ;W−1,p′
(Ω)) + L1(Q). Hence, we can use it as a

test function in (2.11) to find∫
Ω

Θk(v − (Th(v))ζ)(T ) dx−
∫

Ω
Θk(u0 − zζ) dx

+
∫ T

0
〈((Th(v))ζ)t, Tk(v − (Th(v))ζ)〉 dt

+
∫

Q

a(t, x, u,∇u) · ∇(Tk(v − (Th(v))ζ)) dtdx

≤
∫

Q

fTk(v − (Th(v))ζ) dtdx+
∫

Q

G1 · ∇(Tk(v − (Th(v))ζ)) dtdx.
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Since Θk is nonnegative, we have
∫
Ω Θk(v− (Th(v))ζ)(T ) dx ≥ 0. Moreover,

v − (Th(v))ζ has the same sign as Th(v) − (Th(v))ζ : indeed, if |v| ≤ h, then v −
(Th(v))ζ = Th(v)−(Th(v))ζ and, if |v| > h, since |(Th(v))ζ | ≤ h on Q, v−(Th(v))ζ

has the sign of v, which is also the sign of Th(v) − (Th(v))ζ = sgn(v)h− (Th(v))ζ .
Therefore, since ((Th(v))ζ)t ∈ L1(Q) has the same sign as v − (Th(v))ζ ,∫ T

0
〈((Th(v))ζ)t, Tk(v − (Th(v))ζ)〉 dt =

∫
Q

((Th(v))ζ)t Tk(v − (Th(v))ζ) dtdx ≥ 0.

We deduce from this that∫
Q

a(t, x, u,∇u) · ∇(Tk(v − (Th(v))ζ)) dtdx

≤
∫

Ω
Θk(u0 − zζ) dx+

∫
Q

f Tk(v − (Th(v))ζ) dtdx

+
∫

Q

G1 · ∇(Tk(v − (Th(v))ζ)) dtdx. (6.2)

As ζ → ∞, by the convergences (up to a subsequence) of (Th(v))ζ to Th(v),
we have Tk(v − (Th(v))ζ) = Tk(Tk+h(v) − (Th(v))ζ) → Tk(Tk+h(v) − Th(v)) =
Tk(v − Th(v)) in Lp(0, T ;W 1,p

0 (Ω)) and a.e. on Q. Moreover, for all ζ > 0, we
have {∇(Tk(v − (Th(v))ζ)) �= 0} ⊂ {|v − (Th(v))ζ | ≤ k} ⊂ {|v| ≤ k + h}; thus,
the integral sign in the left-hand side of (6.2) can be taken on {|v| ≤ k + h} only
(which does not depend on ζ), and we have, on this set,

|a(t, x, u,∇u)| ≤ β(b+ |u|ν + |∇u|p−1)1{|v|≤k+h}

≤ β(b+ |k + h+ |g2| |ν + |∇(Tk+h(v)) + ∇g2|p−1) ∈ Lp′
(Q).

Hence, we can pass to the limit ζ → ∞ in (6.2) to find∫
Q

a(t, x, u,∇u) · ∇(Tk(v − Th(v))) dtdx

≤
∫

Ω
Θk(u0 − Th(u0)) dx+

∫
Q

fTk(v − Th(v)) dtdx

+
∫

Q

G1 · ∇(Tk(v − Th(v))) dtdx

(we use the fact that {∇(Tk(v − Th(v))) �= 0} is also contained in {|v| ≤ k + h}).
But ∇(Tk(v − Th(v))) = 1{h≤|v|≤h+k}∇v = 1{h≤|v|≤h+k}∇u − 1{h≤|v|≤h+k}∇g2,
|Θk(s)| ≤ k|s| and Tk(v − Th(v)) = 0 outside {|v| ≥ h}, so that∫

{h≤|v|≤h+k}
(α|∇u|p − Λ) dtdx

≤
∫

Q

a(t, x, u,∇u) · ∇(Tk(v − Th(v))) dtdx
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+
∫

{h≤|v|≤h+k}
a(t, x, u,∇u) · ∇g2 dtdx

≤ k

∫
Ω

|u0 − Th(u0)| dx+ k

∫
{|v|≥h}

|f | dtdx+
∫

{h≤|v|≤h+k}
|G1| |∇v| dtdx

+β
∫

{h≤|v|≤h+k}
(b+ |u|ν + |∇u|p−1)|∇g2| dtdx.

Then, using Young’s inequality and the fact that |∇v| ≤ |∇u| + |∇g2|, we find C
not depending on h such that

α

∫
{h≤|v|≤h+k}

|∇u|p dtdx

≤ k

∫
{|u0|≥h}

|u0| dx+ k

∫
{|v|≥h}

|f | dtdx

+ C

∫
{h≤|v|≤h+k}

(|G1|p′
+ |∇g2|p + bp

′
+ |u|νp′

) dtdx

+
α

2

∫
{h≤|v|≤h+k}

|∇u|p dtdx+
∫

{h≤|v|≤h+k}
Λ dtdx.

Thanks to Proposition 4.1, we see that the function H = C(|G1|p′
+ |∇g2|p +bp

′
+

|u|νp′
)+Λ is in L1(Q), and, since meas({|v| ≥ h}) → 0 as h → ∞ (v is a.e. finite),

the inequality

α

2

∫
{h≤|v|≤h+k}

|∇u|p dtdx

≤ k

∫
{|u0|≥h}

|u0| dx+ k

∫
{|v|≥h}

|f | dtdx+
∫

{h≤|v|≤h+k}
H dtdx

implies (6.1).

6.2 Conclusion

We prove now that the entropy solution u satisfies all the other properties of the
renormalized solution.

To this end, let ã(t, x, ξ) = a(t, x, u(t, x), ξ). By Proposition (4.1), |u|ν is in
Lp′

(Q), so that b̃ = b+ |u|ν ∈ Lp′
(Q). The function ã satisfies

|ã(t, x, ξ)| ≤ β(̃b+ |ξ|p−1) for a.e. (t, x) ∈ Q and all ξ ∈ RN (6.3)

and (2.1), (2.2), (2.4) (without the dependence in s). Hence, [6] gives (2) the

2In fact, in [6], there is no Λ in (2.2), but it is quite easy to see that the results of [6] still
hold with Λ.
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existence of a renormalized solution ũ to

ũt − div(ã(t, x,∇ũ)) = µ in Q = ]0, T [ × Ω ,
ũ = 0 on ]0, T [ × ∂Ω ,
ũ(0) = u0 in Ω.

(6.4)

We will now prove, using the same kind of tools as in the proof of uniqueness in
[6], that u = ũ. This will show that u is a renormalized solution of (6.4), i.e. that
it satisfies (2.5), (2.6) (we have already proved these two properties in Proposition
4.1 and (6.1)), (2.7) (since ã(t, x,∇u) = a(t, x, u,∇u)) and (2.8).

Let ṽ = ũ− g2. Since ũ is a renormalized solution, we have Sn(ṽ) ∈ E (see
section 4). Using this test function in (2.11), we find∫

Ω
Θk(v − Sn(ṽ))(T ) dx−

∫
Ω

Θk(u0 − Sn(u0)) dx

+
∫ T

0
〈(Sn(ṽ))t, Tk(v − Sn(ṽ))〉 dt

+
∫

Q

ã(t, x,∇u) · ∇(Tk(v − Sn(ṽ))) dtdx

≤
∫

Q

f Tk(v − Sn(ṽ)) dtdx+
∫

Ω
G1 · ∇(Tk(v − Sn(ṽ))) dtdx (6.5)

(recall that ã(t, x,∇u) = a(t, x, u,∇u)).
Since Sn is bounded by n + 1, we have Tk(v − Sn(ṽ)) = Tk(Tk+n+1(v) −

Sn(ṽ)) ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(Q); hence we can use this test function in the

equation satisfied by ũ (renormalized solution to (6.4)) to obtain∫ T

0
〈(Sn(ṽ))t, Tk(v − Sn(ṽ))〉 dt

=
∫

Q

f S′
n(ṽ)Tk(v − Sn(ṽ)) dtdx+

∫
Q

S′
n(ṽ)G1 · ∇(Tk(v − Sn(ṽ))) dtdx

+
∫

Q

S′′
n(ṽ)G1 · ∇ṽ Tk(v − Sn(ṽ)) dtdx

−
∫

Q

S′′
n(ṽ) ã(t, x,∇ũ) · ∇ṽ Tk(v − Sn(ṽ)) dtdx

−
∫

Q

S′
n(ṽ) ã(t, x,∇ũ) · ∇(Tk(v − Sn(ṽ))) dtdx.

We have S′′
n(s) = 0 if |s| �∈ [n, n+ 1] and |S′′

n| ≤ 1, so that, using (6.3),∣∣∣∣
∫

Q

S′′
n(ṽ)G1 · ∇ṽ Tk(v − Sn(ṽ)) dtdx

−
∫

Q

S′′
n(ṽ) ã(t, x,∇ũ) · ∇ṽ Tk(v − Sn(ṽ)) dtdx

∣∣∣∣
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≤ Ck

∫
{n≤|ṽ|≤n+1}

(
|G1|p′

+ |∇g2|p + |∇ũ|p
)

+ Ck

∫
{n≤|ṽ|≤n+1}

(
b̃p

′
+ |∇g2|p + |∇ũ|p

)
dtdx

≤ ω1(n)

where C does not depend on n and ω1(n) → 0 as n → ∞ (property (2.6) of ũ).
Thus, ∫ T

0
〈(Sn(ṽ))t, Tk(v − Sn(ṽ))〉 dt

≥ −ω1(n) +
∫

Q

fS′
n(ṽ)Tk(v − Sn(ṽ)) dtdx

+
∫

Q

S′
n(ṽ)G1 · ∇(Tk(v − Sn(ṽ))) dtdx

−
∫

Q

S′
n(ṽ) ã(t, x,∇ũ) · ∇(Tk(v − Sn(ṽ))) dtdx.

Used in (6.5), this inequality gives, since Θk is nonnegative,∫
Q

(ã(t, x,∇u) − S′
n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ))) dtdx

≤
∫

Q

(1 − S′
n(ṽ))fTk(v − Sn(ṽ)) dtdx

+
∫

Ω
(1 − S′

n(ṽ))G1 · ∇(Tk(v − Sn(ṽ))) dtdx

+
∫

Ω
Θk(u0 − Sn(u0)) dx+ ω1(n). (6.6)

Let us split the left-hand side of (6.6):∫
Q

(ã(t, x,∇u) − S′
n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ))) dtdx

=
∫

{|ṽ|≤n}
(ã(t, x,∇u) − S′

n(ṽ)ã(t, x,∇ũ))) · ∇(Tk(v − Sn(ṽ))) dtdx

+
∫

{|ṽ|>n}
ã(t, x,∇u) · ∇(Tk(v − Sn(ṽ))) dtdx

−
∫

{|ṽ|>n}
S′

n(ṽ)ã(t, x,∇ũ) · ∇(Tk(v − Sn(ṽ))) dtdx. (6.7)

On the set {|ṽ| ≤ n}, we have Sn(ṽ) = ṽ, S′
n(ṽ) = 1 and ∇(Tk(v − Sn(ṽ))) =

1{|v−Sn(ṽ)|≤k}(∇v − S′
n(ṽ)∇ṽ) = 1{|v−ṽ|≤k}(∇v − ∇ṽ) = 1{|u−ũ|≤k}(∇u − ∇ũ);
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hence, ∫
{|ṽ|≤n}

(ã(t, x,∇u) − S′
n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ))) dtdx

=
∫

{|ṽ|≤n}
1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u− ∇ũ) dtdx. (6.8)

If |ṽ| ≥ n, we have n ≤ |Sn(ṽ)| ≤ n + 1 (the second inequality is always true).
Therefore, if |ṽ| ≥ n and |v − Sn(ṽ)| ≤ k, then |v| ≤ k + |Sn(ṽ)| ≤ k + n+ 1 and
|v| ≥ |Sn(ṽ)| − k ≥ n− k. Since S′

n = 0 outside [−n− 1, n+ 1] and |S′
n| ≤ 1, we

deduce that∣∣∣∣∣
∫

{|ṽ|>n}
ã(t, x,∇u) · ∇(Tk(v − Sn(ṽ))) dtdx

∣∣∣∣∣
=

∣∣∣∣∣
∫

{|ṽ|>n , |v−Sn(ṽ)|≤k}
ã(t, x,∇u) · (∇v − S′

n(ṽ)∇ṽ) dtdx
∣∣∣∣∣

≤
∣∣∣∣∣
∫

{|ṽ|>n , |v−Sn(ṽ)|≤k}
ã(t, x,∇u) · ∇v dtdx

∣∣∣∣∣
+

∣∣∣∣∣
∫

{|ṽ|>n , |v−Sn(ṽ)|≤k}
S′

n(ṽ)ã(t, x,∇u) · ∇ṽ dtdx
∣∣∣∣∣

≤ β

∫
{n−k≤|v|≤n+k+1}

(̃b+ |∇u|p−1)|∇v|

+ β

∫
{n<|ṽ|≤n+1 , n−k≤|v|≤n+k+1}

(̃b+ |∇u|p−1)|∇ṽ| dtdx

≤ C

∫
{n−k≤|v|≤n+k+1}

(̃bp
′
+ |∇u|p + |∇g2|p) dtdx+ C

∫
{n<|ṽ|≤n+1}

|∇ũ|p dtdx

= ω2(n) (6.9)

with C not depending on n and ω2(n) → 0 as n → ∞ (we use (6.1) and the
property of renormalized solution of ũ). We can also bound, using the same
properties of Sn and S′

n, the last term of (6.7):∣∣∣∣∣
∫

{|ṽ|>n}
S′

n(ṽ)ã(t, x,∇ũ) · ∇(Tk(v − Sn(ṽ))) dtdx

∣∣∣∣∣
≤ β

∫
{n<|ṽ|≤n+1 , |v−Sn(ṽ)|≤k}

(̃b+ |∇ũ|p−1)(|∇v| + |∇ṽ|) dtdx

≤ C

∫
{n<|ṽ|≤n+1 , n−k≤|v|≤n+k+1}

(̃bp
′
+ |∇ũ|p + |∇g2|p + |∇u|p) dtdx

= ω3(n) (6.10)
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where, as before, C does not depend on n and ω3(n) → 0 as n → ∞. Injecting
(6.8), (6.9) and (6.10) in (6.7), we find∫

Q

(ã(t, x,∇u) − S′
n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ)) dtdx

≥
∫

{|ṽ|≤n}
1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u− ∇ũ) dtdx− ω4(n)

where ω4(n) → 0 as n → ∞. Using this inequality in (6.6), we deduce∫
{|ṽ|≤n}

1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u− ∇ũ) dtdx

≤ ω5(n) + k

∫
Q

|f | |1 − S′
n(ṽ)| dtdx

+
∫

Q

|G1| |1 − S′
n(ṽ)||∇(Tk(v − Sn(ṽ)))| dtdx

+ k

∫
Ω

|u0 − Sn(u0)| dx (6.11)

with ω5(n) → 0 as n → ∞.
We have Sn(s) → s as n → ∞, |Sn(s)| ≤ |s|, S′

n → 1 and |S′
n| ≤ 1, so that

the dominated convergence theorem gives∫
Ω

|u0 − Sn(u0)| dx+
∫

Q

|f | |1 − S′
n(ṽ)| dtdx → 0 as n → ∞.

Moreover, S′
n = 1 on [−n, n], S′

n = 0 outside [−n − 1, n + 1], and 0 ≤ S′
n ≤ 1 so

that ∫
Q

|G1| |1 − S′
n(ṽ)||∇(Tk(v − Sn(ṽ)))| dtdx

≤
∫

{|ṽ|>n}
|G1| |∇(Tk(v − Sn(ṽ)))| dtdx

≤
∫

{|ṽ|>n , |v−Sn(ṽ)|≤k}
(|G1| |∇v| + |G1| |S′

n(ṽ)| |∇ṽ|) dtdx

≤ C

∫
{n−k≤|v|≤n+k+1}

(|G1|p′
+ |∇u|p + |∇g2|p)

+ C

∫
{n<|ṽ|≤n+1}

(|G1|p′
+ |∇ũ|p + |∇g2|p) dtdx

where C does not depend on n (we once again used {|ṽ| > n , |v − Sn(ṽ)| ≤ k} ⊂
{n− k ≤ |v| ≤ n+ k+ 1}). This last quantity going to 0 as n → ∞, we can come
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back in (6.11) to see that∫
Q

1{|ṽ|≤n}1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u− ∇ũ) dtdx

≤ ω7(n) → 0 as n → ∞.

Since 1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u − ∇ũ) is nonnegative, Fatou’s
lemma imply∫

Q

1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u− ∇ũ) dtdx ≤ 0

that is to say 1{|u−ũ|≤k}(ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u − ∇ũ) = 0 a.e. on Q
(thanks to (2.4)). This equality being valid for all k ≥ 0, and u − ũ being a.e.
finite, we deduce that (ã(t, x,∇u) − ã(t, x,∇ũ)) · (∇u − ∇ũ) = 0 a.e. on Q, and
thus that ∇u = ∇ũ a.e. on Q (still using (2.4)). In particular, ∇v = ∇ṽ a.e. on Q.

As in [6], we now conclude that u = ũ. Considering wn = T1(Tn(v)−Tn(ṽ)) ∈
Lp(0, T ;W 1,p

0 (Ω)), we have ∇wn = 1{|Tn(v)−Tn(ṽ)|≤1}(1{|v|≤n}∇v − 1{|ṽ|≤n}∇ṽ)
so that

∇wn =




0 on {|v| ≤ n , |ṽ| ≤ n} ∪ {|v| > n , |ṽ| > n},
1{|v−Tn(ṽ)|≤1}∇v on {|v| ≤ n , |ṽ| > n},
−1{|ṽ−Tn(v)|≤1}∇ṽ on {|v| > n , |ṽ| ≤ n}.

But, if |s| > n, |t| ≤ n and |t− Tn(s)| ≤ 1, then n− 1 ≤ |t| ≤ n, which implies∫
Q

|∇wn|p dtdx ≤
∫

{n−1≤|v|≤n}
|∇v|p dtdx

+
∫

{n−1≤|ṽ|≤n}
|∇ṽ|p dtdx

≤ C

∫
{n−1≤|v|≤n}

(|∇u|p + |∇g2|p) dtdx

+ C

∫
{n−1≤|ṽ|≤n}

(|∇ũ|p + |∇g2|p) dtdx.

By (6.1) and Property (2.6) of renormalized solutions, we see that wn → 0 in
Lp(0, T ;W 1,p

0 (Ω)), and thus in D′(Q). Since wn → T1(v − ṽ) a.e. and remains
bounded by 1, we also have wn → T1(v − ṽ) in D′(Q). Hence, T1(v − ṽ) = 0, i.e.
v = ṽ on Q. This concludes the proof that u = ũ and that u is a renormalized
solution of (1.1).

7 Appendix

We prove here an integration by parts formula. A similar result exists in [8], but
in the case where the derivative is not expressed as the sum of two functions in
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different spaces; the proof in this latter case is not completely straightforward (it
demands an unusual regularization theorem of [5]), so we include it for the sake
of completeness.

Lemma 7.1 Let f : R → R be a continuous piecewise C1 function such that
f(0) = 0 and f ′ is zero away from a compact set of R; let us denote F (s) =∫ s

0 f(r) dr. If u ∈ Lp(0, T ;W 1,p
0 (Ω)) is such that ut ∈ Lp′

(0, T ;W−1,p′
(Ω))+L1(Q)

and if ψ ∈ C∞(Q), then we have∫ T

0
〈ut, f(u)ψ〉 dt =

∫
Ω
F (u(T ))ψ(T ) dx−

∫
Ω
F (u(0))ψ(0) dx−

∫
Q

ψtF (u) dtdx

(we have chosen the continuous representative of u).

Proof. One has F (u) ∈ C([0, T ];L1(Ω)), since F ′ is bounded and u ∈ C([0, T ];
L1(Ω)). Moreover ψf(u) ∈ Lp(0, T ;W 1,p

0 (Ω)) ∩ L∞(Q) since f is bounded and
piecewise C1. Hence each term makes sense.

We denote ′ the derivative with respect to t for sequences of functions
(in order to avoid double indexing). Let v1 ∈ Lp′

(0, T ;W−1,p′
(Ω)) and v2 ∈ L1(Q)

such as ut = v1 + v2. Thanks to Corollary 2.3.2 of [5, p. 50], there exists un ∈
C∞([0, T ];W 1,p

0 (Ω)) , v1
n ∈ C∞([0, T ];W−1,p′

(Ω)) and v2
n ∈ C∞([0, T ];L1(Ω))

such that u′
n = v1

n + v2
n and un → u in Lp(0, T ;W 1,p

0 (Ω)), v1
n → v1 in Lp′

(0, T ;
W−1,p′

(Ω)) and v2
n → v2 in L1(0, T ;L1(Ω)).

Since F is C1, F ′ = f is bounded and un ∈ W 1,1(0, T ;Lp(Ω)), one has
ψF (un) ∈ W 1,1(0, T ;Lp(Ω)); hence, in Lp(Ω),

ψ(T )F (un(T )) − ψ(0)F (un(0)) =
∫ T

0
(ψF (un))′ dt

=
∫ T

0
ψtF (un) dt+

∫ T

0
ψf(un)u′

n dt

and ∫
Ω
ψ(T )F (un(T )) dx−

∫
Ω
ψ(0)F (un(0)) dx

=
∫

Q

ψtF (un) dtdx+
∫

Q

ψf(un)u′
n dtdx.

We have u′
n(t) = v1

n(t)+v2
n(t) and, since ψ(t)f(un(t)) ∈ W 1,p

0 (Ω)∩L∞(Ω) (because
f(0) = 0 and f ′ is bounded), we deduce that∫

Ω
ψ(t)f(un(t))u′

n(t) dx = 〈v1
n(t), ψ(t)f(un(t))〉W −1,p′ (Ω),W 1,p

0 (Ω)

+
∫

Ω
v2

n(t)ψ(t)f(un(t)) dx.
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Therefore,
∫

Ω
ψ(T )F (un(T )) dx−

∫
Ω
ψ(0)F (un(0)) dx

=
∫

Q

ψtF (un) dtdx+
∫ T

0
〈v1

n, ψf(un)〉W −1,p′ (Ω),W 1,p
0 (Ω) dt

+
∫

Q

v2
nψf(un) dtdx. (7.1)

According to the choice of un, we have un → u in Lp(0, T ;W 1,p
0 (Ω)) and u′

n → ut

in Lp′
(0, T ;W−1,p′

(Ω)) + L1(Q); thus, un → u in C([0, T ];L1(Ω)) (see [9]). We
also have un → u in Lp(Q) and therefore, up to a subsequence, un → u almost
everywhere in Q.

Since f = F ′ is bounded, F (un) → F (u) in C([0, T ];L1(Ω)) ↪→ L1(Q), and
F (un(T )) → F (u(T )) and F (un(0)) → F (u(0)) in L1(Ω); hence

lim
n→∞

∫
Ω
ψ(T )F (un(T )) dx−

∫
Ω
ψ(0)F (un(0)) dx

=
∫

Ω
ψ(T )F (u(T )) dx−

∫
Ω
ψ(0)F (u(0)) dx

and

lim
n→∞

∫
Q

ψtF (un) dtdx =
∫

Q

ψtF (u) dtdx.

Since f is continuous piecewise C1 with a bounded derivative and un → u in
Lp(0, T ;W 1,p

0 (Ω)), one has ψf(un) → ψf(u) in Lp(0, T ;W 1,p
0 (Ω)). Using the fact

that v1
n → v1 in Lp′

(0, T ;W−1,p′
(Ω)), we obtain

lim
n→∞

∫ T

0
〈v1

n, ψf(un)〉W −1,p′ (Ω),W 1,p
0 (Ω) dt

=
∫ T

0
〈v1, ψf(u)〉W −1,p′ (Ω),W 1,p

0 (Ω) dt.

Since f is bounded, ψf(un) tends to ψf(u) almost everywhere on Q and
remains bounded; hence, the convergence holds in L∞(Q) weak-∗. Since v2

n → v2

in L1(Q), we get

lim
n→∞

∫
Q

v2
nψf(un) dtdx =

∫
Q

v2ψf(u) dtdx.

We can now pass to the limit in (7.1), and the proof is concluded. �
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