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Instituto Superior Técnico Departamento de Matemática
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1 Introduction

In classical (unconstrained) mechanics one looks for trajectories x(t) that are
minimizers (or critical points) of the action∫ t1

t0

L(x, ẋ)dt, (1)

in which L, the Lagrangian of the mechanical system, is the difference L = T −V
between the kinetic energy, T (x, ẋ), and potential energy V (x). These trajectories
are characterized by the Euler Lagrange equations

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0.

Constrained (non-holonomic) systems appear naturally in mechanical problems.
Non-holonomic systems satisfy the d’Alembert-Lagrange principle, and are described
by equations of the form:

d

dt

∂L

∂ẋ
− ∂L

∂x
= R(x, ẋ),
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in which R represents the reaction forces that impose the constraint. Unfortu-
nately, unless the constraint is integrable (holonomic case) these equations cannot
be derived from a variational principle. Vakonomic mechanics is an alternative
formulation to the non-holonomic mechanics [AKN97] based on a variational prin-
ciple. In these systems, for each point x in the configuration space there is a
distribution Dx of velocities which is a finite dimensional subspace of R

n. Then
one looks for trajectories that are minimizers (or critical points) of (1) with the
constraint that

ẋ(t) ∈ Dx(t),

for all t. We should point out that these two approaches are not equivalent.
As a model for mechanical systems, vakonomic systems correspond to realizing
constraints using large anisotropic inertia, whereas d’Alembert-Lagrange princi-
ple corresponds to the large anisotropic friction limit [AKN97]. Furthermore,
vakonomic mechanics has important connections with sub-Riemannian geometry
[Str86], [Str89], [LS95], and is also an important model for control theory [FS93],
[BCD97].

The integrability theory for classical unconstrained systems is well known, as
well its connections with viscosity solutions of Hamilton-Jacobi equations [JKM99],
[Fat97a], [Fat97b], [Fat98a], [Fat98b], [FS04], [FS05], [EG99a], [EG99b]. This
paper is a first approach to study this problem for vakonomic systems in the
framework of Aubry-Mather theory and viscosity solutions of Hamilton-Jacobi
equations. We extend techniques from previous works (see references below) to
use viscosity solution methods and construct generalizations of Aubry-Mather
measures. As applications, we discuss the asymptotic behavior of vakonomic tra-
jectories and the regularity theory for Hamilton-Jacobi (see also [EJ89], [EG99a],
[Gom00]).

Let T
n = R

n/Zn be the n-dimensional torus. A smooth distribution D is
a subset of the tangent space of TT

n that at each point x ∈ T
n is a constant

rank linear subspace Dx of TxTn, furthermore Dx depends smoothly on x. We
assume that the rank of Dx is constant m ≤ n and that there exist vector fields
f1, · · · , fm such that

Dx = span{f1, · · · , fm}.
Additionally, without loss of generality, we suppose that f1, · · · , fm are orthonor-
mal with respect to some metric in TT

n. In local coordinates the metric is given
by its components gij and we have

gijfki f
l
j = δkl.

We assume that the metric gij is definite positive in TT
n, that is, for some θ > 0

gijχiχj ≥ θ|χ|2, ∀χ ∈ R
n.
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A Lipschitz curve x(·) : [0, T ] → T
n is compatible with D, if for almost every

t ∈ [0, T ],
ẋ(t) ∈ Dx(t),

that is, there exists, for almost every t ∈ [0, T ], a vector v ∈ R
m such that

ẋk(t) = f ik(x)vi.

Given a Lagrangian
L : TT

n → R

we would like to study the trajectories x(·) : [a, b] → T
n that minimize the action∫ b

a

L(x, ẋ)ds,

and are compatible with the distribution D. Such trajectories are called vakonomic
trajectories.

A particularly important class of Lagrangians L has the form

L(x, ẋ) =
1
2
gij(x)ẋiẋj − V (x),

the first term is the kinetic energy and V (x) is the potential energy. We assume
through this paper that L is given by the above expression, or is a related
Lagrangian

LP (x, ẋ) = L(x, ẋ) + Pẋ,

for P ∈ R
n.

Since V is bounded we may add any constant to L without changing the
minimization problem. Therefore we may assume without loss of generality that
L ≥ 0.

Vakonomic trajectories for such Lagrangians were characterized completely
in [KO01]. Our objective in this paper is somewhat different - we consider gener-
alized vakonomic trajectories (measures supported on D) and develop an analog of
Aubry-Mather theory. Our methods will be a combination of dynamical systems
ideas with viscosity solutions of Hamilton-Jacobi equations.

Let the Hamiltonian H be defined by

H(p, x) = sup
v∈Rm

[
pifki vk − L

]
=

1
2
|pf |2 + V (x).

The Hamiltonian dynamics associated to H is given by the Hamilton’s equations:

ẋ = −DpH(p, x) ṗ = DxH(p, x). (2)

A classical procedure to integrate these equations [AKN97] is to build a a smooth
solution u(x, P ) of the Hamilton-Jacobi equation:

H(P +Dxu, x) = H(P ), (3)
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with H(P ) being the unique value for which the equation admits a periodic solu-
tion u. Then this solution is a generating function that yields a change of coordi-
nates X(p, x) and P (p, x) defined by the equations:

p = P +Dxu X = x+DPu. (4)

This change of coordinates simplifies (2) into:

Ṗ = 0 Ẋ = −DPH(P ).

In other words, this means that for each P there is an invariant torus in which the
dynamics is simply a rotation. However, (3) does not admit, in general, smooth
solutions and this procedure is not valid. Nevertheless, as we show in this paper,
one can recover weak analogs of the classical integrability using viscosity solutions
methods.

One of the most important cases is the one in which the distribution satisfies
an Hörmander-type condition, that is, f1, · · · , fm together with finitely many
brackets [f i, f j ], [[f i, f j ], fk], ... span TxT

n at each point. If this condition is
fulfilled, we say that D is bracket generating. Under this condition we will show
that one can construct a viscosity solution to (3) that enjoys a limited regularity
(Hölder continuity).

If D is bracket generating the vakonomic system is controllable, i.e., given
two points x, y ∈ T

n and any time T there exists a compatible trajectory γ :
[0, T ] → T

n with γ(0) = x and γ(T ) = y [Cho39] (see also Carathéodory [Car09],
and [Bac86]).

The outline of this paper is the following: in section 2 we prove the exis-
tence of viscosity solution of stationary Hamilton-Jacobi equations, and study
the Hölder regularity of such solutions. In section 3 we introduce generalized
Mather measures and use duality theory to connect the minimal measure problem
with viscosity solutions of Hamilton-Jacobi equations. Section 4 is dedicated to
the characterization of the support of the generalized Mather measure. Finally in
section 5 we consider some applications, the asymptotics of vakonomic trajectories
and the partial regularity for solutions of Hamilton-Jacobi equations.

2 Ergodic and stationary problems

In this section we study the existence and regularity properties of viscosity solu-
tions that arise from control problems related to vakonomic mechanics. Since
some of the readers may not be familiar with viscosity solutions, we first recall
the definition of viscosity solution, however for more details and related material,
one should consult, for instance, [FS93] or [BCD97].

Let F be a continuous function. A function u is a viscosity solution of the
Hamilton-Jacobi equation

F (Dxu, u, x) = 0
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provided that for any smooth function φ such u − φ has a local maximum (resp.
minimum) at a point x0 then F (Dxφ(x0), u(x0), x0) ≤ 0 (resp. ≥ 0).

The discounted cost infinite horizon problem consists in finding the value
function uα defined by

uα(x) = inf
x(0)=x

∫ +∞

0
e−αtL(x, ẋ) + Pẋ,

in which the infimum is take over all trajectories that satisfy x(t) ∈ Dx(t), that is,

ẋk = f ik(x)ui,

for some bounded control u(·) : [0,+∞) → R
m.

Proposition 1 uα is a periodic viscosity solution of

αuα +H(P +Dxu
α, x) = 0.

Furthermore

−C ≤ αuα ≤ C, (5)

uniformly in α.

Proof. uα is a periodic viscosity solution, using standard results in viscosity solu-
tions theory [FS93]. Since L(x, ẋ) + Pẋ ≥ −C (because L grows quadratically
in ẋ) we have αuα ≥ −C. Choosing the constant trajectory ẋ = 0, which is
admissible, we obtain (5). �

Before stating and proving the next result it is convenient to recall the
properties of the sup and inf convolutions ([JLS88], and [FS93]). Given a bounded
function u define the sup convolution uε by

uε(x) = sup
y

[
u(y) − |x− y|2

ε2

]
. (6)

Similarly the inf convolution is given by

uε(x) = inf
y

[
u(y) +

|x− y|2
ε2

]
. (7)

Proposition 2 (Properties of sup and inf convolutions)

1. uε and uε are, respectively, semiconvex and semiconcave.

2. |Dxu
ε|, |Dxuε| ≤ C

ε .
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3. If u is a viscosity solution of H(Dxu, x) = H then uε and uε satisfies,
respectively,

H(Dxu
ε, x) ≤ H +O(ε), H(Dxuε, x) ≥ H +O(ε)

almost everywhere and in the viscosity sense.

Proof. The proof of these statements can be found in [FS93], pages 241–243. �

Proposition 3 Assume D is bracketing generating, then uα is Hölder continuous
uniformly in α.

Proof. The proof of this result when f i and [f i, f j ] span TT
n can be found in

[EJ89]. Using similar techniques we sketch the proof in the general case. The
proposition is a corollary of the following lemma:

Lemma 1 Suppose that D is bracketing generating and |fkDxu| ≤ C in the vis-
cosity sense. Then u is Hölder continuous of exponent β = 1

k+1 in which k is the
number of brackets required to generate TT

n.

Proof. First step: give the viscosity solution define uε as in (6). Then, as in
[EJ89], we have

|Dxu
ε| ≤ C

ε
|fkDxu

ε| ≤ C,

with the constants not depending on ε.
Define Xk(t) : T

n → T
n to be the time-t flow map corresponding to the

differential equation
ẋ = fk(x) x(0) = x.

Note that
|uε(x) − uε(Xk(t)x)| ≤ C|t|,

for all sufficiently small t, uniformly in ε. Observe that

Xk(t)(x) = x+ fk(x)t+O(t2),

as t → 0. For each commutator [fi1 , fi2 ] define the vector field, for t small,

Xi1,i2(t) = Xi1(t1/2)Xi2(t1/2)Xi1(−t1/2)Xi2(−t1/2)
note that

Xi1,i2(t)(x) = x+ [fi1 , fi2 ](x)t+O(t3/2).

By induction define (for t < 0 we use the convention tα = −|t|α)

Xi1,i2,··· ,im(t) = Xi1,i2,··· ,im−1(t(m−1)/m)Xim(t1/m)

Xi1,i2,··· ,im−1(−t(m−1)/m)Xim(−t1/m).
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We claim that

Xi1,i2,··· ,im(t)(x) = x+ [· · · [[fi1 , fi2 ], · · · ], fim ]t+O(t(m+1)/m).

For the proof of this claim see [BCD97] (Lemma 1.19, p. 236) or [HH70].
As in [EJ89], we have, for t sufficiently small,

|uε(Xi1,i2,··· ,im(t)(x)) − uε(x)| ≤ Ct1/m

Define maps Yj(t) = X
ij1,··· ,ijmj (t), j = 1, · · · , n, in such a way that d

dtYj
spans TT

n. This is possible because of the hypothesis on the vector fields. Note
that

Y (s) = Y1(s1) · · ·Yn(sn) s ∈ R
n

defines, by the implicit function theorem, a (local) diffeomorphism from R
n to T

n

for s sufficiently small. Thus for y sufficiently close to x we have

|uε(y) − uε(x)| = |uε(Y (s)x) − uε(x)| ≤ C|y − x|1/(k+1)

in which k is the number of brackets necessary to span TT
n. �

As a corollary of this proof we also have: if v : [0, T ] → R
m is bounded and

x(t) is a trajectory of
ẋ = f(x)v(t)

then |u(x(t))−u(x(0))| ≤ C|t|, that is, u is Lipschitz along compatible trajectories.
Furthermore the proof also shows that for any x there exists an open set of

points y such that there is a compatible trajectory connecting x to y in finite time
(actually this is a particular case of Chow’s Theorem [Cho39] mentioned at the
introduction, see also [Bac86]). �

Related results for minimal time problems can be found in [Liv80], [Ran82],
[Gyu84], [Gyu87], and [Sor92].

Corollary 1 For almost every x there exists the directional derivative along a
curve whose tangent is f(x)v, for any v ∈ R

m

Proof. Observe that
|u(Xk(t)(x)) − u(x)| ≤ C|t|

thus u is Lipschitz along this curve and so has a directional derivative (along the
curve) for almost every t. Then applying Fubinni’s theorem yields that for a.e. x
such derivative exists. �

Theorem 1 There exists a viscosity solution u of the equation

H(P +Dxu, x) = H(P ). (8)

This solution is Hölder continuous.



240 Diogo Aguiar Gomes NoDEA

Proof. Since αuα is bounded and uα is periodic and uniformly Hölder continuous
we get that through some subsequence αuα → −H, for some number H. Also
uα−minuα is periodic, uniformly bounded and Hölder, through some subsequence
it converges to a periodic Hölder continuous function u. Standard stability results
for viscosity solutions imply that u is a viscosity solution of (8). �

Proposition 4 For almost every x we have

H(P +Dxu, x) = H(P ).

Remark. Note that the derivative may not exist for almost every x but the Hamil-
tonian only depends on the directional derivative.

Proof. See [BCD97], Theorem 2.40, p. 128. �

Finally we discuss the uniqueness of H(P ).

Theorem 2 H(P ) is unique.

Proof. Suppose u1 and u2 are viscosity solutions of

H(P +Dxui, x) = Hi(P ) (i = 1, 2).

Assume H1(P ) > H2(P ) and by adding constants, if necessary, we may also
suppose that 0 ≤ u2 < u1. For ε small enough

H(P +Dxu1, x) + εu1 > H(P +Dxu2, x) + εu2

The comparison principle (see [BCD97], Theorem 2.12, p. 107) implies u1 ≤ u2,
which is a contradiction. �

3 Duality and generalized Mather measures

In this section, using the duality techniques from [Gom02] we develop a general-
ization of Mather measures to vakonomic systems.

We say that a positive probability measure µ on D is a vakonomic measure
if for any φ ∈ C1(Tn) we have∫

D
Dxφf(x)vdµ(x, v) = 0. (9)

The motivation for this definition is as follows: suppose v : T
n → R

m is a
given function. Let x(·) be a solution of

ẋ = f(x)v(x).
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Define a probability measure µ on D by

lim
T→∞

1
T

∫ T

0
ψ(x(t), ẋ(t))dt →

∫
D
ψ(x, fv)dµ,

through some subsequence, for all bounded continuous functions ψ : TT
n → R.

Furthermore note that

1
T

∫ T

0
Dxφ(x)ẋ = O

(
1
T

)
,

for any φ ∈ C1(Tn). Thus
∫

Tn×Rm Dxφf(x)vdµ(x, v). Thus vakonomic measures
should be though of as generalized compatible curves.

Let M be the set of signed Radon measures such that∫
γd|µ| ≤ ∞,

in which γ : R
m → [1,+∞) is a weight function that satisfies

L(x, fv)
γ(v)

→ +∞ |v|
γ(v)

→ 0,

as |v| → +∞. Note that M is the dual of C0
γ(D), that is the set of continuous

functions ψ ∈ D that satisfy

lim
|v|→∞

ψ(x, v)
γ(|v|) → 0.

The advantage of using the weight function γ is that then vDxφ(x) ∈ C0
γ , and so

the constraint (9) is continuous, that is, if µn → µ and
∫

D vDxφ(x)dµn = 0 then∫
D vDxφ(x)dµ = 0.

Consider also the following subsets of M:

M0 = {µ ∈ M : µ is a vakonomic measure}

and

M1 =
{
µ ∈ M : µ ≥ 0,

∫
dµ = 1

}
.

The minimization problem that we wish to consider is

inf
M0∩M1

∫
D
Ldµ.

If D = TT
n then this is Mather’s minimal measure problem, as formulated by

Mañe [Mn96]. The next lemma is taken from [Mn96]:
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Lemma 2 (Mañe) For any constant C the set of measures µ ∈ M0 ∩ M1 that
satisfy ∫

Ldµ ≤ C

is compact with respect to the weak-∗ topology in (C0
γ)

′.

Using this lemma we prove the existence of a minimal measure:

Theorem 3 There exists a minimal measure µ ∈ M0 ∩ M1 such that

inf
M0∩M1

∫
D
Ldµ =

∫
Ldµ.

Furthermore this measure is supported on a graph (x, v(x)).

Proof. Suppose µn is a minimizing sequence in M0 ∩ M1 such that∫
D
Ldµn → inf

M0∩M1

∫
D
Ldµ.

Since the infimum is finite
∫
Ldµn ≤ C for some constant C independent of n. The

previous lemma implies µn
∗
⇀µ for some measure µ, through some subsequence.

Then for any fixed k ∫
D

min{L, k}dµn →
∫

D
min{L, k}dµ.

Thus ∫
D

min{L, k}dµ ≤ inf
M0∩M1

∫
D
Ldµ.

The monotone convergence theorem implies∫
D
Ldµ ≤ inf

M0∩M1

∫
D
Ldµ.

By contradiction assume that µ is not supported on a graph (x, v(x)). Construct
a measure µ̃ supported in the graph (x, v(x)) with v(x) being the unique function
(defined µ almost everywhere) for which∫

D
v(x)φ(x)dµ =

∫
D
vφ(x)dµ,

and ∫
D
ψ(x, v)dµ̃ =

∫
D
ψ(x, v(x))dµ̃.

Then µ̃ is a probability measure that satisfies (9). Since L is strictly convex in v
the average action of µ̃ is smaller than the one of µ, which is a contradiction. �
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This minimization problem is a convex linear programming problem over a
space of Radon measures. Related control problems have been studied by duality
methods [VL78a], [VL78b], [LV80], [FV89], [FV88] and [Fle89], in which Fenchel-
Rockafellar duality Theorem [Roc66] is used to analyze optimal control problems.
Using Legendre-Fenchel duality theory we obtain:

Theorem 4 We have

− inf
µ∈M

∫
D
Ldµ = inf

φ
sup
x
H(Dxφ, x). (10)

Remark. In the case in which D = TT
n (or more generally the tangent space

of a Riemannian manifold) this identity is proved in [CIPP98].
Before proving this theorem we need some preliminary results and definitions.
Suppose that E is a Banach space with dual E′ with the dual pairing between

E and E′ denoted by (·, ·). Let h1 : E → (−∞,+∞] be a convex, lower semicon-
tinuous function. The Legendre-Fenchel transform h∗

1 : E′ → [−∞,+∞] of h1 is
defined by

h∗
1(y) = sup

x∈E
(−(x, y) − h1(x)) ,

for y ∈ E′. For concave, upper semicontinuous functions h2 : E → (−∞,+∞] the
Legendre-Fenchel transform h∗

2 is defined similarly by

h∗
2(y) = inf

x∈E
(−(x, y) − h2(x)) .

A classical duality result is the Legendre-Fenchel-Rockafellar duality theorem that
we quote next:

Theorem 5 (Rockafellar [Roc66]) Let E be a locally convex Hausdorff topo-
logical vector space over R with dual E∗. Suppose h1 : E → (−∞,+∞] is convex
and lower semicontinuous, h2 : E → [−∞,+∞) is concave and upper semicontin-
uous. Then

sup
x
h2(x) − h1(x) = inf

y
h∗

1(y) − h∗
2(y), (11)

provided that either h1 or h2 is continuous at some point where both functions are
finite.

To use this theorem to prove identity (10) we define two functions h1 and h2 on
C0
γ(D) ∼ C0

γ(T
n × R

m) and compute the dual problem of

sup
φ∈C0

γ(D)
h2(φ) − h1(φ).

The first function h1 is defined by

h1(φ) = sup
(x,v)∈D

[−φ(x, v) − L(x, v)] .
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Let
C = cl

{
φ : φ(x, v) = Dxϕ(x)f(x)v, ϕ ∈ C1(Tn)

}
,

and set

h2(φ) =

{
0 if φ ∈ C
−∞ otherwise.

Proposition 5 We have

h∗
1(µ) =

{∫
Ldµ if µ ∈ M1

+∞ otherwise,

and

h∗
2(µ) =

{
0 if µ ∈ M0

−∞ otherwise.

Remark. This proof is is very similar to the one in [Gom02], the only main
difference being the functions h1 and h2. This shows how general these duality
methods are to handle generalizations of the Aubry-Mather theory and relate
them to Hamilton-Jacobi equations.

Proof. The Legendre-Fenchel transform h∗
1 of h1 is

h∗
1(µ) = sup

φ∈C0
γ(D)

(
−

∫
φdµ− h1(φ)

)
.

We claim that for all non-positive measures µ, h∗
1(µ) = ∞.

Lemma 3 If µ 
≥ 0 then h∗
1(µ) = +∞.

Proof. If µ 
≥ 0 there is a sequence of non-negative functions φn ∈ C0
γ(D) such

that ∫
−φndµ → +∞.

Thus, since L ≥ 0,
sup
D

−φn − L ≤ 0.

If µ 
≥ 0, we have h∗
1(µ) = +∞. �

Lemma 4 If µ ≥ 0 then

h∗
1(µ) ≥

∫
Ldµ+ sup

ψ∈C0
γ(D)

(∫
ψdµ− supψ

)
.
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Proof. Let Ln be a sequence of functions in C0
γ(D) increasing pointwise to L. Any

function φ in C0
γ(D) can be written as φ = −Ln − ψ, for some ψ also in C0

γ(D).
Therefore

sup
φ∈C0

γ(D)

(
−

∫
φdµ− h1(φ)

)

= sup
ψ∈C0

γ(D)

(∫
Lndµ+

∫
ψdµ− sup(Ln + ψ − L)

)
.

Note that Ln − L ≤ 0 implies

sup
D
Ln − L ≤ 0,

thus
sup
D

(Ln + ψ − L) ≤ sup
D
ψ.

Therefore

sup
φ∈C0

γ(D)

(
−

∫
φdµ− h1(φ)

)
≥ sup
ψ∈C0

γ(D)

(∫
Lndµ+

∫
ψdµ− sup(ψ)

)
.

By the monotone convergence theorem
∫
Lndµ → ∫

Ldµ, and so

sup
φ∈C0

γ(D)

(
−

∫
φdµ− h1(φ)

)
≥

∫
Ldµ+ sup

ψ∈C0
γ(D)

(∫
ψdµ− sup(ψ)

)
,

as required. �

If
∫
Ldµ = +∞ then h∗

1(µ) = +∞. Also if
∫
dµ 
= 1 then

sup
ψ∈C0

γ(D)

(∫
ψdµ− supψ

)
≥ sup
α∈R

α

(∫
dµ− 1

)
= +∞,

by taking ψ ≡ α, constant. So, h∗
1(µ) = +∞, and therefore a finite value of h∗

1 is
only possible if

∫
dµ = 1.

If
∫
dµ = 1 we have, from the previous lemma,

h∗
1(µ) ≥

∫
Ldµ,

by taking ψ ≡ 0.
Also, for any function φ∫

(−φ− L)dµ ≤ sup
D

(−φ− L),
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if
∫
dµ = 1. Hence

sup
φ∈C0

γ(D)

(
−

∫
φdµ− h1(φ)

)
≤

∫
Ldµ.

Thus

h∗
1(µ) =

{∫
Ldµ if µ ∈ M1

+∞ otherwise.

Now we will compute h∗
2. First observe that if µ 
∈ M0 then there exists

φ̂ ∈ C such that ∫
φ̂dµ 
= 0.

and so
inf
φ∈C

−
∫
φdµ ≤ inf

α∈R

α

∫
φ̂dµ = −∞.

If µ ∈ M0 then
∫
φdµ = 0, for all φ ∈ C. Therefore

h∗
2(µ) = inf

φ∈C
−

∫
φdµ =

{
0 if µ ∈ M0

−∞ otherwise.

�
Theorem 5 yields then

sup
φ∈C0

γ(D)
h2(φ) − h1(φ) = inf

µ∈M
h∗

1(µ) − h∗
2(µ),

provided we prove that h1 is continuous on the set h2 > −∞. This is the content
of the next lemma.

Lemma 5 h1 is continuous.

Proof. Suppose φn → φ in C0
γ . Then ‖φn‖γ and ‖φ‖γ are bounded uniformly by

some constant C. The growth condition on L implies that there exists R > 0 such
that

sup
D

−φ̂− L = sup
Tn×BR

−φ̂− L,

for all φ̂ in C0
γ(D) with ‖φ̂‖γ < C. On BR, φn → φ uniformly and so

sup
D

−φn − L → sup
D

−φ− L.

�

This result completes the proof of Theorem 10.
Applying this results we have the main result of this section
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Theorem 6
H = − inf

µ∈M0∩M1

∫
Ldµ.

Proof. We have by Theorem 10

− inf
µ∈M0∩M1

∫
Ldµ ≤ sup

x
H(Dxu

ε, x) ≤ H +O(ε)

in which uε = u ∗ ηε, with ηε a standard mollifier, that is a positive smooth
function, supported in a ball of radius ε, with

∫
ηε = 1.

Take a viscosity solution u of

H(Dxu, x) = H

Let xε be an admissible trajectory for which

u(xε(0)) − u(xε(Tε)) −
∫ Tε

0
L(xε, ẋε) ≥ HTε +O(ε),

with Tε = 1
ε . Dividing the previous identity by Tε and letting ε → 0 we get

−
∫
Ldµ ≥ H

in which µ is the measure defined by

∫
ψ(x, v)dµ = lim

ε→0

1
Tε

∫ Tε

0
ψ(xε, ẋε),

by taking an appropriate subsequence. This measure is, by the remark in the
beginning of section 3, a vakonomic measure. �

4 Support of generalized Mather measures

As was proved in the previous section, the generalized Mather measure is sup-
ported on a graph. The next proposition we develop some formal calculations
that relate the support of the generalized Mather measure with the solution of
Hamilton-Jacobi equations. Then in Theorem 7 we prove a rigorous version of
this proposition.

Proposition 6 Let µ be a generalized Mather measure and u a (smooth) viscosity
solution of

H(Dxu, x) = H.

Then µ is supported on the set (x, v) in which v is a minimizer of Dxufv+L(x, fv).
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Proof. If the proposition were false then there would be a set of positive µ measure
for which

H(Dxu, x) < −Dxufv − L(x, fv).

Thus
H =

∫
H(Dxu, x)dµ < −

∫
Dxufvdµ−

∫
Ldµ.

But
∫
Dxufvdµ = 0, and − ∫

Ldµ = H, which yields a contradiction. Note that
L(x, fv) is strictly convex in v, therefore for each x there exists a unique minimizer
v(x). �

Before proving a rigorous version of the previous proposition we discuss some
properties of H and its Legendre transform L.

Proposition 7 H(P ) is convex in P and superlinear.

Proof. Since

H(P ) = sup
µ∈M0∩M1

−
∫
L+ Pvdµ

H(P ) is the supremum of a family of convex functions - thus it is convex.
To show that H(P ) is superlinear it suffices to observe that

H(P +Dxu, x) =
|fP |2

2
+ fPfDxu+

|fDxu|2
2

+ V (x) ≥ γ|P |2 + C

in a set of positive measure, since f is bracketing generating, and is non-negative
elsewhere. �

Let L(Q) denote the Legendre transform of H(P ):

L(Q) = sup
P

−H(P ) − PQ,

which is finite because H is superlinear.

Proposition 8 Suppose µ∗ is a minimizing measure corresponding to

inf
µ∈M0∩M1

∫
L(x, fv) + Pf(x)vdµ.

Define

Q∗ =
∫
f(x)vdµ∗.

Then

L(Q∗) =
∫
L(x, fv)dµ∗ = −H(P ) − PQ∗.
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Proof. Define

L̃(Q) = inf
µ∈M0∩M1

∫
f(x)vdµ=Q

∫
L(x, fv)dµ.

Then we can write

H(P ) = sup
Q

−PQ− L̃(Q),

that is H(P ) is the Legendre transform of L̃(Q). Thus L̃(Q) = L(Q). Also

H(P ) = −L(Q∗) − PQ∗,

and so it follows

L(Q∗) + PQ∗ = −H(P ) =
∫
L+ Pfvdµ∗.

�

Let D−
PH(P ) denote the subdifferential of H(P ) at the point P . Since H is

convex D−
PH(P ) is always non-empty. Then a standard convex analysis argument

yields:

Corollary 2

Q(P ) =
∫
vdµ∗ ∈ D−

PH(P ).

The next theorem is a generalization of Fathi’s results [Fat97a, Fat97b,
Fat98a, Fat98b] (see also [E99], and [EG99a]) that asserts that the support of
the Mather measure is a subset of the graph of the derivative of a viscosity solu-
tion of the Hamilton-Jacobi equation. Here we use the techniques from [EG99a].

Theorem 7 Let µ be a generalized Mather measure. Then v = f(P + Dxu)
µ-almost everywhere.

Proof. Write

H̃(v, x) =
1
2
|v|2 + V (x),

for v ∈ R
m. Note that

H̃(fp, x) = H(p, x),

and H̃ is strictly convex in v. Thus for any v and w

H̃(w, x) ≥ H̃(v, x) +DvH̃(v, x)(v − w) +
γ

2
|v − w|2.



250 Diogo Aguiar Gomes NoDEA

Let u be a viscosity solution. Let

w = w(y) = f(y) (P +Dxu(y)) ,

which, by Corollary 1, is defined for almost every y, and let

v = v(x) = [ηε ∗ (f(·)(P +Dxu(·))] (x).
Note that ∫

Rn

DvH̃(v(x), x)(v(x) − w(y))ηε(x− y)dy = 0,

and so
H̃(v(x), x) + βε(x) ≤

∫
Rn

ηε(x− y)H̃(w(y), x)dy,

with
βε(x) =

γ

2

∫
Rn

ηε(x− y)|v(x) − w(y)|2dy.
Observe that for almost every y

H̃(w(y), x)ηε(x− y) =
[
H(P ) +O(ε)

]
ηε(x− y),

since for almost every y

H̃(w(y), y) = H(P ),

and |x− y| ≤ ε whenever ηε(x− y) is non-zero. So we have

H̃(v(x), x) + βε(x) ≤ H(P ) +O(ε),

pointwise.
Also we have

γ

2

∫
D

|v(x) − z|2dµ(x, z) ≤

≤
∫

D
H̃(v(x), x) − H̃(z, x) −DvH̃(z, x)(v(x) − z)dµ(x, z),

by strict convexity of H̃. Thus

γ

2

∫
D

|v(x) − z|2dµ(x, z) +
∫

D
βεdµ(x, z) ≤

≤ H(P ) +
∫

D
−H̃(z, x) −DvH̃(z, x)(v(x) − z)dµ(x, z) +O(ε)

Note that ∫
D
DvH̃(z, x)ηε ∗ (fDxu)(x)dµ(x, z) =

=
∫

D
DvH̃(z, x)f(x)Dx(ηε ∗ u)(x)dµ(x, z) +O(ε) = O(ε),
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since ∫
D
DvH̃(z, x)fDxφdµ(x, z) = 0,

for all periodic and smooth φ(x). Also∫
D
DvH̃(z, x)(ηε ∗ fP )dµ(x, z) = QP +O(ε).

Note that
−H̃(z, x) −DvH̃(z, x)z = L(fz, x),

which implies ∫
D

−H̃(z, x) −DvH̃(z, x)zdµ(x, z) = L(Q).

Therefore

γ

2

∫
D

|v − z|2dµ+
∫

D
βεdµ ≤ H(P ) + L(Q) + PQ+O(ε) = O(ε).

From this we conclude that βε → 0, through some subsequence, µ-almost every-
where. So µ-almost every point is a point of approximate continuity of fDxu,
thus

ηε ∗ (fDxu) → fDxu,

µ-almost everywhere. From this we conclude v = fDxu µ-almost everywhere. �

Corollary 3 For any φ(x) smooth and periodic we have∫
f(fDxu)Dxφdµ = 0.

5 Applications

In this section we discuss some applications of the generalized Mather measures.
The firstly we prove asymptotic properties of certain vakonomic trajectories, then
we study regularity for Hamilton-Jacobi equations and, finally we apply some of
our results to the homogenization of Hamilton-Jacobi equations.

5.1 Asymptotics

The first applications is to prove that minimizing vakonomic trajectories have their
asymptotic behavior controlled by the derivative of the effective Hamiltonian H.
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Proposition 9 Suppose γ(·) is an optimal trajectory for the Hamilton-Jacobi
equation, i.e.,

u(x, P ) =
∫ T

0
L(γ, γ̇) + P γ̇ +H(P )ds+ u(γ(T ), P )

Then

lim
T→∞

γ(T ) − γ(0)
T

= −DPH(P ),

provided such a derivative exists.

Proof. For any other P ′

u(x, P ′) ≤
∫ T

0
L(γ, γ̇) + P ′γ̇ +H(P ′)ds+ u(γ(T ), P ′)

Thus

(P − P ′)
γ(T ) − γ(0)

T
+H(P ) −H(P ′) ≤ O(

1
T

).

Let P ′ → P and then T → ∞. �

5.2 Regularity

The last result on this paper uses a bootstrapping technique to show that whenever
the viscosity solution u is Lipschitz then the difference quotients of fDxu are
L2-Hölder continuous on the support of the Mather set.

Theorem 8 Let µ be a Mather measure and u a Lipschitz periodic viscosity
solution to

H(Dxu, x) = H.

Then there exists a constant C depending only on H and on the Lipschitz constant
of u such that for all w ∈ R

n

lim
ε→0

∫
Tn

|f(x+ hw)Dxû
ε − f(x)Dxu(x)|2dµ ≤ C|h|,

in which û = u(x+ hw) and ûε = ηε ∗ û.
Proof. Fix w ∈ R

m and define û(x) = u(x+ hw). Then, almost everywhere,

H(Dxû, x+ hw) = H,

and by setting ûε = ηε ∗ û, we have

H(Dxû
ε, x+ hw) ≤ H + Cε.
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Therefore
1
2
|f(x+ hw)Dxû

ε−f(x)Dxu|2 +

+ f(x)Dxu [f(x+ hw)Dxû
ε − f(x)Dxu)] ≤

≤ H(Dxû
ε, x+ hw) −H(Dxu, x) + Ch ≤

≤ C(ε+ h)

Integrating with respect to µ we obtain

γ

2

∫
Tn

|f(x+ hw)Dxû
ε − f(x)Dxu

ε|2dµ ≤

≤ −h
∫

Tn

f(x)Dxu(f(x+ hw) − f(x))Dxû
εdµ+ C(ε+ h) =

= C(ε+ h).

The result follows from sending ε → 0. �

Finally we we would like to point out that this result may not be optimal
since formal computations seem to indicate that on the Mather set we should have∫

|fDx(fDxu)|2dµ ≤ C.

However, we were unable to improve the previous proof to obtain a result like the
previous one.

Proposition 10 Suppose u is a smooth solution of

H(Dxu, x) = H.

Let µ be a corresponding Mather measure. Then∫
|fDx(fDxu)|2dµ ≤ C.

Proof. Apply fDx twice to the equation

|fDxu|2
2

+ V (x) = H

to obtain

|fDx(fDxu)|2 + fDxufDx(fDx(fDxu)) + (fDx)2V = 0.

Since
∫
fDxufDxφdµ = 0 for all φ periodic, we have∫

fDxufDx(fDx(fDxu))dµ = 0,

and since V is smooth the result follows. �
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[Sor92] P. SORAVIA, Hölder continuity of the minimum-time function for C1-
manifold targets. J. Optim. Theory Appl., 75(2) (1992), 401–421.

[Str86] ROBERT S. STRICHARTZ, Sub-Riemannian geometry. J. Differential
Geom., 24(2) (1986), 221–263.

[Str89] ROBERT S. STRICHARTZ, Corrections to: “Sub-Riemannian geom-
etry” [J. Differential Geom. 24(2) (1986), 221–263; MR 88b:53055]. J.
Differential Geom., 30(2) (1989), 595–596.



Vol. 14, 2007 Hamilton-Jacobi methods for Vakonomic Mechanics 257

[VL78a] RICHARD B. VINTER and RICHARD M. LEWIS, The equivalence of
strong and weak formulations for certain problems in optimal control.
SIAM J. Control Optim., 16(4) (1978), 546–570.

[VL78b] RICHARD B. VINTER and RICHARD M. LEWIS, A necessary and
sufficient condition for optimality of dynamic programming type, mak-
ing no a priori assumptions on the controls. SIAM J. Control Optim.,
16(4) (1978), 571–583.

Received 16 March 2005; accepted 16 June 2005


