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Abstract. We consider a system of the form −ε2∆u+u = g(v), −ε2∆v + v
= f(u) in Ω with Dirichlet boundary condition on ∂Ω, where Ω is a smooth
bounded domain in R

N , N�3 and f, g are power-type nonlinearities hav-
ing superlinear and subcritical growth at infinity. We prove that the least
energy solutions to such a system concentrate, as ε goes to zero, at a point
of Ω which maximizes the distance to the boundary of Ω.
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1 Introduction

The aim of this paper is to extend to the following system of elliptic equations
with Dirichlet boundary conditions:

−ε2∆u+ u = g(v), −ε2∆v + v = f(u) in Ω, u = v = 0 on ∂Ω, (1.1)

the results obtained in [15] for the corresponding problem with Neumann boundary
conditions. Here ε > 0 is a small parameter and Ω is a bounded open domain of
R

N (N�3) of class C2,α (0 < α < 1). Our framework is a typical “superlinear”,
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“subcritical” and “convex” one, namely we assume, as in [15], that the following
holds.

(H) f, g ∈ C1(R), f(0) = 0 = f ′(0), g(0) = 0 = g′(0) and there exist real
numbers �1, �2 > 0 and p, q > 2 such that 1

p + 1
q >

N−2
N and

lim
|s|→∞

f ′(s)
|s|p−2 = �1, lim

|s|→∞
g′(s)
|s|q−2 = �2. (1.2)

Moreover, for some δ > 0 and every s ∈ R, s �= 0,

f(s)s�(2 + δ)F (s) > 0 and f2(s)�2f ′(s)F (s), (1.3)

and

g(s)s�(2 + δ)G(s) > 0 and g2(s)�2g′(s)G(s), (1.4)

where F (s) :=
∫ s

0 f(σ)dσ and G(s) :=
∫ s

0 g(σ)dσ. We look for positive solutions
of (1.1), and therefore we let f(s) = g(s) = 0 for s�0.

Examples of nonlinearities satisfying (H) are given in [15]. Our motivation
for the study of such a problem goes back to the pioneering work of Ni and Takagi
(see e.g. [13]) concerning the single equation

−ε2∆u+ u = f(u) in Ω. (1.5)

These authors proved that the least energy solutions of equation (1.5) together
with Neumann boundary conditions concentrate, as ε → 0, at points of the bound-
ary of Ω where the mean curvature is maximized. Subsequently, Ni and Wey
([14]) considered equation (1.5) together with Dirichlet boundary conditions and
showed that in this case the least energy solutions concentrate at points of Ω which
maximize the distance to the boundary of Ω. Related results were proved e.g. in
[12], [18], [9] (where a “local” version of Ni-Wei’s result is proved) and in [2], [6],
[11] (where a linear term V (x)u is added to equation (1.5) while Ω = R

N ). The
subject was revisited by Del Pino and Felmer, for both Neumann and Dirichlet
boundary conditions, in [5], where shorter and more elementay arguments were
introduced, with respect to those in [13, 14]. We refer the reader to the nice Intro-
duction in [5] for further references and a developed discussion on the subject.

It is known that the extension of these results to systems such as (1.1)
presents some difficulties, both technical and structural. Roughly, they are due to
the strongly indefinite character of the energy functional associated to the system,
that is

I(u, v) =
∫

Ω

(
ε2〈∇u,∇v〉 + uv − F (u) −G(v)

)
dx.

Other difficulties have to do with our assumption that 1
p + 1

q > N−2
N (which is

quite more general than to assume that p, q < 2N/(N − 2)) and to the unclear
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picture of the “limit problem” associated to (1.1). We refer the reader to the
Introductions in [3, 15] for more details on this.

A first approach to the singularly perturbed system in (1.1) together with
Neumann boundary conditions appeared in [3] by means of a dual variational
formulation of the problem (restricted to the case where f(s) = sp−1, g(s) = sq−1,
2 < p, q < 2N/(N − 2)). A more direct approach was proposed in [16] and was
subsequently developed in [15]; in these papers the authors extend to system (1.1)
(with Neumann boundary conditions) the elementary point of view of the paper
[5] for the single equation (1.5).

In the present paper our goal is to prove the following.

Theorem 1.1 Under assumptions (H) and for any sufficiently small ε > 0, the
system admits a ground-state solution (uε, vε) ∈ C2(Ω) ∩ C1(Ω), uε, vε > 0 with
the following properties:

(i) both functions uε and vε attain their maximum value at some unique and
commom point xε ∈ Ω;

(ii) dε := dist(xε, ∂Ω) → maxx∈Ω dist(x, ∂Ω) as ε → 0;
(iii) the associated critical value cε(Ω) of the energy functional can be esti-

mated as

cε(Ω) = εN
(
c(RN ) + e−2(1+o(1)) dε

ε

)
, o(1) → 0 as ε → 0.

We have denoted by c(RN ) the ground-state critical level of the energy for the
limit problem associated to (1.1) (set ε = 1 and Ω = R

N in (1.1); see Section 2 for
details). By a ground-state solution we mean a solution of (1.1) which minimizes
the energy amongst all nonzero solutions of the system.

Comparing Theorem 1.1 with Theorem 0.2 in [5] we see that the former is the
natural extension of the latter to system (1.1) (except that in [5] the authors work
with somewhat more general conditions on the nonlinearity).

The rest of the paper is devoted to the proof of Theorem 1.1. Section 2
contains the heart and the main novelty of our paper. Indeed, contrarily to what
happens for the single equation case, it does not seem straighforward to realize that
cε(Ω) is monotonic with respect to the domain (i.e. that cε(Ω′)�cε(Ω) whenever
Ω ⊂ Ω′); this is due to the fact that the “natural” constraint minimization problem
associated to cε(Ω) (see Proposition 2.1) is not stable by zero extension of the
functions. However, by means of a continuation argument we are able to essentially
prove this monotonic dependence with respect to the domain (cf. Proposition 2.2).

In Section 4 we combine the arguments of Section 2 with some ideas intro-
duced in [5, 16] and we give a proof of Theorem 1.1. We mention that, due to the
presence of the strongly indefinite quadratic part of the energy functional, and
contrarily to [5, Theorem 0.2], we do not rely on Schwarz’s symmetrization argu-
ments. Some preliminary estimates are stated in Section 3; here we use classical
arguments on the maximum principle and elliptic estimates but we also rely on the
information of the Morse index of the ground-state solutions in order to bypass
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the delicate question of proving the a priori decay of uε and vε near the maximum
point xε. Some of the arguments (specially in the Appendix) are merely sketched
and the reader is refered to [15, 16] for details.

2 Dependence of the ground-state critical level
with respect to the domain

Given f, g ∈ C1(R; R) and a C2,α bounded domain Ω ⊂ R
N (0 < α < 1), we

consider the system

−∆u+ u = g(v), −∆v + v = f(u), u, v > 0, u, v ∈ H1
0 (Ω). (2.1)

We assume that the conditions (H) stated at the Introduction hold for f and g. As
explained in [15, 16], we may assume without loss of generality that the numbers
p, q in (H) are such that 2 < p = q < 2N/(N − 2). This is due to the fact that
in the present paper we will always work with ground-states having a bounded
Morse index (see the proof of Proposition 2.1 below); these solutions are a priori
bounded for the L∞ norm and this bound is unchanged whenever we truncate f
and g in a neighborhood of infinity so that (H) is still satisfied for the modified
functions and moreover (1.2) holds with p = q (see Theorem 1.16 or Theorem 3.2
in [16] for details).

Taking the preceding remark into account, we can introduce the energy
functional associated to system (2.1), namely

I(u, v) = 〈u, v〉 −
∫

Ω
(F (u) +G(v)), (u, v) ∈ E := H1

0 (Ω) ×H1
0 (Ω),

where
〈u, v〉 :=

∫
Ω
(〈∇u,∇v〉 + uv).

It is clear that I ∈ C2(E; R) and that

I ′(u, v)(φ, ψ) = 〈u, ψ〉 + 〈v, φ〉 −
∫

Ω
(f(u)φ+ g(v)ψ), ∀(φ, ψ) ∈ E,

so that critical points of I correspond to solutions of problem (2.1). It can also
be proved that I admits a ground-state critical level c(Ω), that is

c(Ω) := min{I(u, v) : (u, v) ∈ E \ {(0, 0)}, I ′(u, v) = 0}.

Proposition 2.1 Under assumptions (H), we have that

c(Ω) = min{I(u, v) : (u, v) ∈ N, v �= −u},
where N consists of the functions (u, v) ∈ E \ {(0, 0)} satisfying

I ′(u, v)(u, v) = 0 and I ′(u, v)(φ,−φ) = 0, ∀φ ∈ H1
0 (Ω).
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Proof. This is essentially proved in [16]. For the reader’s convenience and for
further reference in the paper, we sketch the argument of the proof. First, it can
be proved that I satisfies the Palais-Smale condition in E. Then one splits the
space as

E = E− ⊕ E+, where E± := {(φ,±φ), φ ∈ H1
0 (Ω)},

and apply Benci-Rabinowitz’s linking theorem, according to which, given (u, v) ∈
E \ E−, I admits a critical point (u1, v1) such that

0 < I(u1, v1)� sup{I(s(u, v) + (φ,−φ)) : s ∈ R
+, φ ∈ H1

0 (Ω)}.

In particular,

c(Ω)� sup{I(s(u, v) + (φ,−φ)) : s ∈ R
+, φ ∈ H1

0 (Ω)}. (2.2)

On the other hand, if moreover (u, v) ∈ N then it is proved in Theorem 3.1 of
[16] that the expression in the right-hand side of (2.2) equals I(u, v), and the
proposition follows. We point out that in [16, Theorem 3.1] it is assumed that
I ′(u, v)(φ, ψ) = 0 for every φ, ψ ∈ H1

0 (Ω) but that an inspection of its proof
immediately shows that it is sufficient to take any (u, v) such that I ′(u, v)(u, v) = 0
and I ′(u, v)(φ,−φ) = 0 for every φ ∈ H1

0 (Ω). We also recall from [1] that c(Ω)
is attained at some (u, v) and (u, v) can be chosen as to have Morse index not
greater than 1. �

Given bounded open sets Ω ⊂ Ω′ ⊂ R
N , we would like to prove that

c(Ω′)�c(Ω). We will prove a weaker version of this property which is sufficient to
our purposes in Section 4. For any µ > 0 we denote Ωµ := {x : dist(x,Ω) < µ}.

Proposition 2.2 Under assumptions (H), the map µ �→ c(Ωµ) is continuous and
decreasing.

Proof. 1) Let Ω′ ⊃ Ω be a smooth neighborhood of Ω. We first observe that it is
possible to construct a superharmonic function h(x) satisfying, for some ν > 0,

h ∈ W 1,∞ ∩ C(Ω′), −∆h� 0 in Ω′, h = 0 and
∂h

∂n
� − ν < 0 on ∂Ω.

Here ∂h(x)/∂n stands for the unit outward normal of Ω at the point x ∈ ∂Ω. For
example, one can define h(x) as:

h(x) = h1(x) if x ∈ Ω, h(x) = h2(x) +Mh3(x) if x ∈ Ω′ \ Ω,

where h1, h2, h3 satisfy

−∆h3 = 0 in Ω′ \ Ω, h3 = 0 on ∂Ω, h3 = −1 on ∂Ω′
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(so that ∂h3/∂n� − δ < 0 on ∂Ω, by Hopf lemma),

−∆h2 = 1 in Ω′ \ Ω, h2 = 0 on ∂Ω, h2 = −1 on ∂Ω′,

and
−∆h1 = 1 in Ω, h1 = 0 on ∂Ω.

Then, if M is large enough, we have, for every ϕ ∈ D(Ω′), ϕ�0,∫
Ω′

〈∇h,∇ϕ〉 =
∫

Ω
〈∇h1,∇ϕ〉 +

∫
Ω′\Ω

〈∇h2,∇ϕ〉 +M

∫
Ω′\Ω

〈∇h3,∇ϕ〉

=
∫

Ω′
ϕ+

∫
∂Ω

(
∂h1

∂n
− ∂h2

∂n
−M

∂h3

∂n
)ϕ

�
∫

∂Ω
(
∂h1

∂n
− ∂h2

∂n
+Mδ)ϕ�0,

provided Mδ�||∇h1||∞ + ||∇h2||∞.

2) Now, let (u, v) ∈ H1
0 (Ω) × H1

0 (Ω) be a ground-state solution for the energy
functional, i.e. I ′(u, v) = 0 and I(u, v) = c(Ω). Then u, v ∈ C2,α(Ω) (0 < α < 1),
u, v > 0 in Ω and, by Hopf lemma, the map x �→ ∂v/∂n

∂u/∂n (x) > 0 is well-defined and
of class C1,α(∂Ω). Similarly as before, let z1 and z2 solve the problems

−∆z1 = 0 in Ω, z1 =
∂v/∂n

∂u/∂n
on ∂Ω (2.3)

and

−∆z2 = 0 in Ω′ \ Ω, z2 =
∂v/∂n

∂u/∂n
on ∂Ω, z2 = 1 on ∂Ω′. (2.4)

Then, if M > 0 is large enough (namely, Mν�||∇z1||∞ + ||∇z2||∞) then the map
λ ∈ W 1,∞ ∩ C(Ω′) given by

λ(x) = z1(x) if x ∈ Ω, λ(x) = z2(x) +Mh(x) if x ∈ Ω′ \ Ω (2.5)

is such that

λ(x) =
∂v/∂n

∂u/∂n
(x) ∀x ∈ ∂Ω (2.6)

and

−∆λ�0 in Ω′. (2.7)

We also have that infΩ λ� min∂Ω z1 > 0, and so we can restrict further the neigh-
borhood Ω′ in such a way that

inf
Ω′
λ > 0. (2.8)
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3) We extend u and v by zero to Ω′ and from now on we work in the Hilbert space
E′ = H1

0 (Ω′) × H1
0 (Ω′). We still denote by I the energy functional in the space

E′. We can split the space in a direct sum

E = E′
− ⊕E′

+ with E′
− = {(φ,−λφ) : φ ∈ H1

0 (Ω′)}, E′
+ = {(λφ, φ) : φ ∈ H1

0 (Ω′)}.

We observe that any (ψ1, ψ2) ∈ E′ can be written as

(ψ1, ψ2) = (λφ1, φ1) + (φ2,−λφ2),

with φ1 = (ψ2 + λψ1)/(1 + λ2) and φ2 = (ψ1 − λψ2)/(1 + λ2). Moreover, we have
that

〈λφ, φ〉 =
∫

Ω′
〈∇(λφ),∇φ〉 +

∫
Ω′
λφ2�

∫
Ω′
λ(|∇φ|2 + φ2)�c

∫
Ω′

(|∇φ|2 + φ2),

as follows from (2.7) and (2.8), and, of course, 〈λφ, φ〉�C ∫
Ω′(|∇φ|2 + φ2). As a

consequence, we can apply Benci-Rabinowitz’s linking theorem to deduce that

c(Ω′)� sup{I(s(u, v) + (φ,−λφ)) : s ∈ R
+, φ ∈ H1

0 (Ω′)}. (2.9)

On the other hand, since, by construction (cf. (2.6)),

I ′(u, v)(u, v) = 0 and I ′(u, v)(φ,−λφ) = 0 ∀φ ∈ H1
0 (Ω′),

it follows as in [16, Theorem 3.1] that the right-hand side of (2.9) equals I(u, v),
as explained in the proof of Proposition 2.1 above. This shows that

c(Ω′)�c(Ω).

4) Now, let µn → µ�0, µn > µ. Then Ωµ ⊂ Ωµn and it follows from the
preceding argument that c(Ωµn

)�c(Ωµ) if n is large enough. On the other hand,
by using the Palais-Smale condition and elliptic estimates we easily see that, up to
a subsequence, the ground-state solutions (un, vn) associated to Ωµn converge in
the C1-norm to a nonzero critical point of the energy (u0, v0) ∈ H1

0 (Ωµ)×H1
0 (Ωµ).

Thus
c(Ωµ)� lim inf

n→∞ c(Ωµn)� lim sup
n→∞

c(Ωµn)�c(Ωµ),

and this proves that the map µ �→ c(Ωµ) is right-continuous.

5) Suppose that µn → µ, µn < µ. As before, c(Ωµ)� lim infn→∞ c(Ωµn
). Now,

let (u, v) be a ground-state solution associated to Ωµ and, for any ε > 0, let uε,
vε ∈ D(Ωµ) be such that ||u − uε||H1(Ωµ)�ε and ||v − vε||H1(Ωµ)�ε. Since uε,
vε ∈ D(Ωµn) for large n, by Benci-Rabinowitz’s linking theorem we have that

c(Ωµn
)� sup{I(s(uε, vε) + (φ,−φ)), s ∈ R

+, φ ∈ H1
0 (Ωµn

)},
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so that, since Ωµn ⊂ Ωµ,

lim sup
n→∞

c(Ωµn)� sup{I(s(uε, vε) + (φ,−φ)), s ∈ R
+, φ ∈ H1

0 (Ωµ)}. (2.10)

On the hand, since I ′(uε, vε)(uε, vε) = o(1) as ε → 0 and also I ′(uε, vε)(φε,−φε) =
o(1) as ε → 0 for any φε ∈ H1

0 (Ωµn) such that ||φε||H1(Ωµn )�1, it is shown
in [16, Theorem 3.5] and [15, Lemma 3.3] that the right-hand side of (2.10) is
I(uε, vε)+o(1), thus also I(u, v)+o(1) as ε → 0. By passing to the limit in (2.10)
we conclude that

lim sup
n→∞

c(Ωµn)�I(u, v) = c(Ωµ)

This shows that the map µ �→ c(Ωµ) is left-continuous.

6) In steps 3, 4 and 5 we have proved that, as a function of µ, c(Ωµ) is a continuous
and locally decreasing function. This implies that µ �→ c(Ωµ) is a decreasing
function in R

+. �

Corollary 2.3 Under assumptions (H), for any smooth bounded set Ω ⊂ R
N ,

c(RN )�c(Ω).

Proof. We first observe that the system in (2.1) indeed admits a ground-state
solution in the case Ω = R

N ; the main point here is that the Palais-Smale condition
is satisfied, thanks to the invariance by translation of the domain, see e.g. [17] for
details. Now, if µn → ∞ it is easy to see that the ground-state solutions (un, vn) ∈
H1

0 (Ωµn) × H1
0 (Ωµn) of the system will converge in the H1-norm to a nonzero

solution (u, v) ∈ H1(RN ) ×H1(RN ) of the system (see e.g. [16, Proposition 1.6]).
Thus c(RN )� limn→∞ c(Ωµn) and the conclusion follows. (In fact, by using the
argument in step 5 of the preceding proof we see that c(RN ) = limµ→∞ c(Ωµ).) �

3 Preliminary estimates

In this section we assume that the conditions (H) displayed in the Introduction
hold (without loss of generality we may take p = q ∈]2, 2N/(N−2)[, as mentioned
in Section 2), and we prove some basic estimates that will be needed in the proof
of Theorem 1.1.

Let (uε, vε) ∈ H1
0 (Ω)×H1

0 (Ω) be any ground-state solutions for system (1.1)
chosen such that their with Morse index is not greater than 1. Then uε > 0, vε > 0
and we let xε ∈ Ω be such that

max
Ω

uε = u(xε).
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We fix a sequence εj → 0 in such a way that xj := xεj → x0 ∈ Ω and also
yj → y0 ∈ ∂Ω, where yj ∈ ∂Ω are such that

dj := dist(xj , ∂Ω) = |xj − yj |. (3.1)

Let us recall some basic facts proved in [15, 16]. We denote uj := uεj and vj := vεj .
We have that

0 < lim inf
j→∞

min{||uj ||∞, ||vj ||∞}, lim sup
j→∞

max({||uj ||∞, ||vj ||∞} < +∞

and the rescaled solutions

ũj(x) = uj(εjx+ xj), ṽj(x) = vj(εjx+ xj), x ∈ Ωj :=
1
εj

(Ω − xj), (3.2)

which satisfy

−∆ũj + ũj = g(ṽj), −∆ṽj + ṽj = f(ũj) in Ωj , (3.3)

converge in H1 and in C1
loc to a nonzero solution of the limit system

−∆u+ u = g(v), −∆v + v = f(u) (3.4)

defined in the open set ω = {x ∈ R
N : 〈x, n(y0)〉 < d0}, where

ρ0 := lim
j→∞

ρj , ρj := dj/εj

and n(y0) is the unit outward normal of Ω at y0. Our first lemma states that in
fact ω = R

N .

Lemma 3.1 We have that ρj → ∞ as j → ∞.

Proof. Assume by contradiction that d0 is finite. We argue similarly to
[7, Proposition 1.2]. Since u = v = 0 on ∂ω, by conservation of energy, i.e. by
integrating in ω the identity

div(〈∇v, y〉∇u+ 〈∇u, y〉∇v − 〈∇u,∇v〉y + (G(v) + F (u) − uv)y)) = 0

with y ∈ R
N arbitrary, we see that∫

∂ω

∂u

∂n

∂v

∂n
= 0.

This contradicts the fact that, by Hopf lemma, ∂u/∂n < 0 and ∂v/∂n < 0 on
∂ω. �

The following result follows easily from the previous lemma.
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Proposition 3.2 There exists j0 such that, for every j�j0, xj is the unique max-
imum point of uj and also of vj.

Proof. This follows similarly as in [16, Theorem 2.1] and therefore we omit the
proof. We just mention that the conclusion relies on the fact that every positive
solutions u, v of the system (3.4) lying in H1(RN ) are radially symmetric with
respect to some point z0 ∈ R

N (see [4, Theorem 2]). The proof also uses an
argument based on the information on the Morse index of the solutions (uj , vj),
similar to the one in Lemma 3.3 below. �

We now concentrate on the (uniform in j) decay of the solutions.

Lemma 3.3 For some q = q(N), we have that

uj(x) + vj(x) + εq
j |∇uj(x)| + εq

j |∇vj(x)|�e−(1+o(1))
|x−xj |

εj ∀x ∈ Ω.

Proof. 1) By considering the rescaled solutions ũj , ṽj (cf. (3.2)), we must prove
that given a < 1 there exist C > 0 and j0 ∈ N such that

ũj(x) + ṽj(x) + εq
j |∇ũj(x)| + εq

j |∇ṽj(x)|�C e−a|x| ∀j�j0 ∀x ∈ Ωj . (3.5)

We first observe that for every δ > 0 there exists R > 0 such that, for every
large j, ∫

Ωj∩{|x|�R}
(ũ2

j + ṽ2
j )�δ. (3.6)

This is proved in [16, Proposition 1.6] or [Proposition 3.4]; the key point in the
proof consists in using the knowledge that (ũj , ṽj) converge in the H1-norm to
a nonzero function, followed by an argument envolving the information on the
Morse index of the solutions (uj , vj).

Now, in view of a contradiction let us assume that there exist zj ∈ Ωj , |zj | →
∞, such that ũj(zj)+|∇ũj(zj)|�ρ for some ρ > 0. Then we let x̄j := εjzj +xj ∈ Ω
and ūj(x) := uj(εjx+ x̄j), v̄j(x) := vj(εjx+ x̄j), that is, ūj(x) = ũj(x+ zj) and
v̄j(x) = ṽj(x+ zj). Since ūj(0) + |∇ũj(0)|�ρ, similarly as above we get that∫

Ω̄j∩{|x|�R̄}
(ū2

j + v̄2
j )�δ, (3.7)

for some R̄ > 0, where Ω̄j = Ωj − zj . Since |zj | → ∞, we deduce from (3.6)
and (3.7) that, for large j,

∫
Ωj

(ũ2
j + ṽ2

j )�2δ. Since δ is arbitrary, we conclude
that

∫
RN (u2 + v2) = 0, which is false. This contradiction shows that the rescaled

solutions decay at infinity, i.e. for very δ > 0 there exist R > 0 and j0 ∈ N such
that

|ũj(x)| + |ṽj(x)| + |∇ũj(x)| + |∇ṽj(x)|�δ, ∀|x|�R, j�j0. (3.8)
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2) Now, given 0 < a < 1, let Ψ(x) = ea|x|. Then |∇Ψ(x)| = aΨ(x) and
|∆Ψ(x)|�CΨ(x) for every |x|�1. Since f(s)/s → 0 and g(s)/s → 0 as s → 0,
it follows from (3.8) that, for some large R = R(a), both (Ψũj) and (Ψṽj) are
bounded inH1(Ωj\BR(0)); to prove this we simply multiply the equations in (3.3)
by ũjΨ2ϕ2 and ṽjΨ2ϕ2 respectively (ϕ is a fixed cut-off function such that ϕ = 0
in BR(0) and ϕ = 1 in R

N \B2R(0)), we integrate by parts and use straightforward
computations. Since R = R(a) is fixed, we conclude that

(Ψũj) and (Ψṽj) are bounded in H1(Ωj). (3.9)

3) Using (3.9) and a standard bootstrap argument, the interior elliptic estimates
imply that (Ψũj) and (Ψṽj) are bounded in C1, provided we stay away from the
boundary of Ωj , i.e.

ũj(x) + ṽj(x) + |∇ũj(x)| + |∇ṽj(x)|
�Ce−a|x|, ∀x ∈ Ωj : dist(x, ∂Ωj) > 1.

4) Since Ψũj and Ψṽj vanish on the boundary of Ωj , the local estimates in step
3 can be performed over a ball of fixed radius centered at any point lying in ∂Ωj .
This readily leads to

ũj(x) + ṽj(x) + |∇ũj(x)| + |∇ṽj(x)|�C

εq
j

e−a|x|, ∀x ∈ Ωj

for some q = q(N), in connexion with the bootstrap argument.

5) The above estimate can be improved as far as ũj and ṽj are concerned. Indeed,
we can apply the maximum principle to the equation

−∆w̃j + w̃j =
f(ũj) + g(ṽj)

ũj + ṽj
w̃j , w̃j := ũj + ṽj

to conclude that

w̃j�Ce−a|x| ∀x ∈ Ωj . (3.10)

This completes the proof of the lemma. �

Remark. Lemma 3.3 can be improved a posteriori, by deleting εq from the
estimate, since we will prove in Theorem 1.1 that lim inf dist(xε, ∂Ω) > 0 as ε → 0.

Our next lemma concerns the reversed inequality in Lemma 3.3.

Lemma 3.4 We have that

uj(x) + vj(x)�e−(1+o(1))ρj ∀x ∈ Ω : |x− xj |�|xj − yj | − εj .
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Proof. Let us concentrate on uj . By considering again the rescaled solutions ũj ,
we must prove that given a > 1 there exist C > 0 and j0 ∈ N such that

ũj(x)�C e−aρj ∀j�j0 ∀x : |x|�ρj − 1. (3.11)

To that purpose we let Ψ(x) = Ψ(|x|) = e−
√

1+a|x|2 and

wj(x) = α(Ψ(x) − Ψ(ρj)) − ũj(x), |x|�ρj ,

where α is a positive constant to be specified. Fix any 1 < a′ < a. A straight-
forward computation shows that −∆Ψ + a′Ψ�0 in R

N \ BR(0) for some large
R = R(a, a′). Since −∆ũj + a′ũj = g(ṽj) + (a′ − 1)ũj�0, we also have that

−∆wj + a′wj�0 ∀x ∈ Ωj : |x|�R.
We can choose α in such a way that, for large values of j, αΨ�ũj in BR(0), since
ũj converges uniformly in BR(0) to a positive function. In conclusion, we have
that

−∆wj + a′wj�0 ∀x : R�|x|�ρj and wj�0 if |x|�R or if |x| = ρj .

By the maximum principle we conclude that wj(x)� 0 for any |x|�ρj . In partic-
ular, if |x|�ρj − 1,

ũj(x)�α (Ψ(ρj − 1) − Ψ(ρj))�Ce−ρj
√

a

for some positive constant C. Since a > 1 is arbitrary, (3.11) follows. �

Remark. Of course, the same conclusion holds if we replace the assumption
|x− xj |�|xj − yj | − εj by |x− xj |�|xj − yj | − c εj for some constant c > 0.

The following is a direct consequence of Lemma 3.4.

Lemma 3.5 We have that∫
∂Ω

(|∂uj

∂n
| + |∂vj

∂n
|)�εN−2

j e−(1+o(1))ρj .

Proof. 1) We restrict ourselves to a fixed small neighborhood of y0 and estimate
−∂uj

∂n (yj) = |∂uj

∂n (yj)| (cf. (3.1)). Let

zj := yj − εjn(yj) ∈ Ω

with εj so small (i.e. j so large) that Bεj (zj) ∩ ∂Ω = {yj}. Since −ε2j∆uj + uj�0
it follows from Hopf lemma that

|∂uj

∂n
(yj)|�C

εj
inf{uj(x) : x ∈ Σj},
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where
Σj = {x ∈ R

N : |x− zj |�εj and |x− yj | = εj/2}.
Now, since xj − yj = ξj(zj − yj) with ξj → +∞ we see that there exists some
small c > 0 such that

x ∈ Σj ⇒ |x− xj |�|xj − yj | − cεj . (3.12)

2) We can proceed similarly for any given point yj ∈ ∂Ω such that |yj − yj |�νεj ;
now we replace Σj by a corresponding set Σj with yj in the place of yj and
zj := yj − εjn(yj) in the place of zj . Since the normal derivative is assumed to be
locally Lipschitz continuous, if ν is sufficiently small we have that |x− zj |�c1 εj

and |x−yj |� c2 εj for some c1 > c2 > 0 and every x ∈ Σj , and so (3.12) still holds
for every such x (by taking a smaller constant c).

3) In conclusion, there exist positive constants ν, c, C such that, for every y ∈
∂Ω ∩Bνεj (yj),

|∂uj

∂n
(y)|�C

εj
inf{uj(x) : |x− xj |�|xj − yj | − cεj} (3.13)

and similarly for |∂vj

∂n |. By taking Lemma 3.4 into account, this implies that

|∂uj

∂n
(y)| + |∂vj

∂n
(y)|�C

εj
e−(1+o(1))ρj , ∀y ∈ ∂Ω ∩Bνεj

(yj). (3.14)

The conclusion follows immediately. �

Our next goal is to extend the arguments in Proposition 2.2 to the present
situation. For each j we let

λj(y) =
∂vj/∂n

∂uj/∂n
(y) if y ∈ ∂Ω and |y − yj |�νεj (3.15)

(cf. (3.13)) and we take, say, λj(y) = 1 if |y − yj |�2νεj ; then λj(y) can be
extended to the whole boundary of Ω in a smooth way.

Lemma 3.6 There exists q ∈ N such that, for any δ > 0, we can find j0 ∈ N

such that

εq
je

−δρj �λj(x)�
eδρj

εq
j

and |Dλj(x)|�eδρj

εq
j

∀j�j0, x ∈ ∂Ω.

Proof. It follows from (3.14) and Lemma 3.3 that

uj(x) + vj(x) + εq|∇uj(x)| + εq|∇vj(x)|�e−(1−δ)ρj ∀x ∈ Bj := Bνεj (yj) ∩ Ω,
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and that εj |∂uj

∂n (x)| + εj |∂vj

∂n (x)|�C e−(1+δ)ρj for every x ∈ Bj ∩ ∂Ω. This implies
that both λj(x) and 1/λj(x) are bounded by e2δρj/εq

j and that, for every x ∈
Bj ∩ ∂Ω,

|Dλj(x)|�(|D2uj(x)| + |D2vj(x)|) e
(1+3δ)ρj

εq−1
j

·

On the other hand, since −∆uj = 1
ε2

j
(g(vj) − uj), it follows from Schauder’s

estimates (see e.g. [8, Lemma 6.5]) that, for a fixed 0 < α < 1,

ε2|D2uj(x)|�C(||uj ||L∞(Bj) +
1
ε2j

(||uj ||C0,α(Bj) + ||g(vj)||C0,α(Bj))).

This implies that ε4+q
j |D2uj(x)|�Ce−(1−δ)ρj , and similarly for vj . In conclusion,

|Dλj(x)|� C

ε2q+3
j

e4δρj .

By changing notations, this completes the proof. �

We are now in position to define a superharmonic extension of λj to a suitable
neighborhood of Ω.

Proposition 3.7 Let δ be any small positive constant. Then, for any large j and
for some fixed constants q ∈ N, c > 0, we can find a smooth bounded open set
Ω′ ⊂ R

N and a function λj ∈ C(Ω′) ∩W 1,∞(Ω′) with the following properties:

(a) Ω ∪B�2j
(yj) ⊂ Ω′, �j := cεq

je
−δρj ;

(b) λj(x) =
∂vj/∂n

∂uj/∂n
(x) for every x ∈ ∂Ω \ ∂Ω′;

(c) −∆λj�0 in Ω′;

(d) �j�λj(x)��−1
j and |∇λj(x)|��−1

j for every x ∈ Ω′.

Proof. Let z1 and z2 be as in (2.3) and (2.4), except that we replace the value
∂v/∂n
∂u/∂n at the boundary of Ω by the above function λj . Then z1 ∈ C2(Ω) ∩ C1(Ω)
and z2 ∈ C2(Ω′ \ Ω) ∩ C1(Ω′ \ Ω). Moreover, by classical estimates for harmonic
functions (cf. e.g. [10, Proposition 2.18]) together with Lemma 3.6 yield that
|Dz1(x)| and |Dz2(x)| are bounded by eδρj/εq

j .
Next, let λj(x) be defined similarly to (2.5), that is,

λj(x) = z1(x) if x ∈ Ω, λj(x) = z2(x) +Mh(x) if x ∈ Ω′ \ Ω, (3.16)

where M > 0 is large and h(x) is a fixed suitable superharmonic function in Ω′.
As observed in the proof of Proposition 2.2, if M = ceδρjεq

j then λj(x) as given
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by (3.16) is superharmonic in Ω′. Moreover, by taking Lemma 3.6 into account,
we have that

λj(x) + |∇λj(x)|�eδρjε−q
j ∀x ∈ Ω′.

As a final step, we restrict further the neighborhood Ω′; namely, we use a
smooth change of coordinates around yj in order to construct a smooth bounded
open set (still denoted by Ω′) in such a way that

Ω ∪B
νε2q

j e
−2δρ2

j
(yj) ⊂ Ω′ ⊂ Ω ∪B

2νε2q
j e

−2δρ2
j
(yj)

with a small ν > 0. In this way, property (b) follows from (3.15), while |h(x)| =
|h(x) − h(yj)|�Cνε2q

j e
−2δρ2

j over Ω′ \ Ω, yielding that

z2(x)�(1 − νcC) εq
je

−δρj �1
2
εq

je
−δρj ∀x ∈ Ω′ \ Ω.

4 Proof of the main result

In this section we prove Theorem 1.1. As in the preceding section, we assume that
(H) holds (with q = p ∈]2, 2N/N − 2[). We will work with the rescaled solutions
(3.2). For any small δ > 0 we apply Proposition 3.7 except that now we work
with the rescaled functions and sets:

λ̃j(x) = λj(εjx+ xj), x ∈ Ω′
j :=

1
εj

(Ω′ − xj).

Of course, for λ̃j we have similar properties (a)–(d) as in Proposition 3.7. In fact,
we should replace q by q + 1 but in order to avoid cumbersome notations we
introduce the notation ε±O(1)

j to denote ε±q
j where q ∈ N may change from place

to place but lies inside a fixed range 1�q�q0 for some q0 ∈ N. Similarly, in this
secton the notation e±o(1)ρj stands for e±δρj where δ may change from place to
place but lies inside a fixed small interval ]0, δ0[.

Keeping these notations in mind and by taking Proposition 3.7 (a) into
account, let us fix a smooth cut-off function χj , 0�χj�1, such that

χj = 1 in B 1
2 e−o(1)ρj ε

O(1)
j

(
yj − xj

εj
), χj = 0 in R

N \Bj , Bj := B
e−o(1)ρj ε

O(1)
j

,

so that |∇χj(x)|�ceo(1)ρjε
−O(1)
j . We also let

wj(x) = µj χj(x), (4.1)

where µj is a small constant to be defined later (see (4.5)). We anticipate that

0�λ̃j(x)wj(x)�1 ∀x ∈ Bj and ||wj ||�1. (4.2)
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Here ||u||2 :=
∫
Ω′

j
(|∇u|2 + u2) for any u ∈ H1

0 (Ω′
j). We define

uj(x) = ũj(x) + wj(x), vj(x) = ṽj(x) + λ̃j(x)wj(x), x ∈ Ω′
j .

We denote by Ij the energy functional associated to the system (3.3) over the
space H1

0 (Ω′
j) ×H1

0 (Ω′
j), that is,

Ij(u, v) = 〈u, v〉 −
∫

Ω′
j

(F (u) +G(v)),

where 〈u, v〉 :=
∫
Ω′

j
(〈∇u,∇v〉 + uv). Our next lemma summarizes the content of

Section 3.

Lemma 4.1 The positive constant µj in (4.1) can be chosen in such a way that

Ij(uj , vj)�Ij(ũj , ṽj) − e−2(1+o(1))ρjε
O(1)
j .

Proof. Since uj(x) = ũj(x) and vj(x) = ṽj(x) if |x|�ρj − 1, we have that

Ij(uj , vj) − Ij(ũj , ṽj) = langlej , λ̃jwj〉 +
∫

∂Ω∩Bj

(
∂ũj

∂n
λ̃j +

∂ṽj

∂n

)
wj

+
∫

{|x|�ρj−1}
(F (ũj) − F (ũj + wj))

+
∫

{|x|�ρj−1}
(G(ṽj) −G(ṽj + λ̃jwj))

+
∫

Ω′
j

f(ũj)wj +
∫

Ω′
j

g(ṽj)λ̃jwj .

According to Lemma 3.5 (cf. (3.14)) and to Proposition 3.7 (b), at the boundary
∂Ω ∩Bj we have that

∂ũj

∂n
λ̃j +

∂ṽj

∂n
= −2 |∂ṽj

∂n
|� − 2e(1+o(1))ρj . (4.3)

The other terms in the expression of Ij(uj , vj)−Ij(ũj , ṽj) are of higher order with
respect to (4.3). Indeed, we know that ||ũj ||∞�C and moreover (cf. (3.10))

|ũj(x)| = ũj(x)�e−(1−o(1))ρj ∀x ∈ Bj .

Since f is superlinear near zero (cf. (H), namely (1.3)) we see that, for some ν > 1,

|f(ũj)wj | = f(ũj)wj�Ce−(1−o(1))νρjwj .

Also λ̃j(x)wj(x) is uniformly bounded (cf. (4.2)) and so the other integral terms
can be handled similarly, while 〈wj , λ̃jwj〉�||wj ||2eo(1)ρjε

−O(1)
j .
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Summing up, we conclude that

Ij(uj , vj) − Ij(ũj , ṽj)�C
eo(1)ρj

ε
O(1)
j

||wj ||2 − 2µje
−(1+o(1))ρj

∫
∂Ω∩Bj

χj

+ Cµje
−(1−o(1))νρj

eo(1)ρj

ε
O(1)
j

∫
Bj

χj .

Since ν > 1, the quantity e−(1−o(1))νρj is dominated by e−(1+o(1))ρj . On the other
hand, by construction

ε
−O(1)
j |Bj |N�|∂Ω ∩Bj |N−1

(here | · | denotes N -dimensional Lebesgue measure), and so

Ij(uj , vj) − Ij(ũj , ṽj)�c1µ2
j − c2µj , (4.4)

where
c1 = eo(1)ρj ε

−O(1)
j and c2 = e−(1+o(1))ρj ε

O(1)
j .

Then we let

µj =
c2
2c1

=
1
2
e−(1+o(1))ρjε

O(1)
j , (4.5)

so that

Ij(uj , vj) − Ij(ũj , ṽj)� − c22
4c1

= −1
4
e−2(1+o(1))ρjε

O(1)
j , (4.6)

and this proves the lemma. �

A further estimate is required. As explained in Section 2, according to Benci-
Rabinowitz’s linking theorem, we know that the ground-state critical level of the
energy over H1

0 (Ω′
j) ×H1

0 (Ω′
j), call it cj(Ω′

j), is bounded above by

cj(Ω′
j)� sup{Ij(s(uj , vj) + (φ,−λ̃jφ)) : s�0, φ ∈ H1

0 (Ω′
j)}. (4.7)

Let the right-hand member of (4.7) be assumed at

Ij(sj(uj , vj) + tj(φj ,−λ̃jφj)), sj�0, tj�0,
∫

Ω′
j

λ̃2
j (φ

2
j + |∇φj |2) = 1.

Lemma 4.2 We have that

Ij(sj(uj , vj) + tj(φj ,−λ̃jφj))�Ij(uj , vj) + eo(1)ρjε
−O(1)
j ||wj ||2. (4.8)



18 A. Pistoia and M. Ramos NoDEA

The proof of Lemma 4.2 is somewhat technical and therefore we give it in
the Appendix.

Proof of Theorem 1.1 completed. The point in the inequality (4.8) is that
the error term is of order ||wj ||2. Thus we can argue as in (4.4)-(4.6 ) in order to
conclude that

Ij(sj(uj , vj) + tj(φj ,−λ̃jφj))�Ij(ũj , ṽj) − e−2(1+o(1))ρjε
O(1)
j . (4.9)

Combining Corollary 2.3 with (4.7) and (4.9) yields that

c(RN )�Ij(ũj , ṽj) − e−2(1+o(1))ρjε
O(1)
j . (4.10)

Next, concerning (4.10), we observe that the reversed inequality is much
simpler to prove. Namely, fix any point P ∈ Ω and let u, v be as in (3.4) except that
now we translate them in such a way that u(P ) = maxRN u and v(P ) = maxRN v.
Fix any cut-off function χ such that χ = 1 in a neighborhood of P . Then we let

u∗
j (x) = u(εjx)χ(εjx), v∗

j (x) = v(εjx)χ(εjx), x ∈ Ω∗
j :=

1
εj

(Ω − P ).

We conclude as before that the ground-state critical level cj(Ω∗
j ) of the energy

over H1
0 (Ω∗

j ) ×H1
0 (Ω∗

j ) is bounded above by

cj(Ω∗
j ) � sup{Ij(s(u∗

j , v
∗
j ) + (φ,−φ)) : s�0, φ ∈ H1

0 (Ω∗
j )}

� Ij(u∗
j , v

∗
j ) + e−2(1+(1−o(1))dist(P,∂Ω)/εj .

Using a change of variables we see that cj(Ω∗
j ) = cj(Ωj) = Ij(ũj , ṽj), and also

that
Ij(u∗

j , v
∗
j )�I∞(u, v) + e−2(1+(1−o(1))dist(P,∂Ω)/εj .

(Here, I∞ stands for the energy functioal defined over H1(RN ) ×H1(RN ).) Thus
we conclude that

Ij(ũj , ṽj)�I∞(u, v) + e−2(1+(1−o(1))dist(P,∂Ω)/εj . (4.11)

Actually, we can replace u, v by any solutions of the system (3.4) lying in H1(RN ),
and so (4.11) shows in particular that I∞(u, v) = c(RN ). Combining (4.10) and
(4.11) yields that

ε
O(1)
j e−2(1+o(1))ρj �e−2(1−o(1)) dist(P,∂Ω)/εj ∀P ∈ Ω.

This implies that lim inf dist(xj , ∂Ω)�dist(P, ∂Ω) for any P ∈ Ω. Taking also
Proposition 3.2 into account, this concludes the proof of Theorem 1.1. �
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Appendix

Here we prove Lemma 4.2. For the sake of clarity we divide the proof into five
steps.

Step 1. We show that

νj := |I ′
j(uj , vj)(uj , vj)| + |I ′

j(uj , vj)(φj ,−λ̃jφj)|�eo(1)ρjε
−O(1)
j ||wj ||. (4.12)

Indeed, since I ′
j(ũj , ṽj)(ũj , ṽj) = 0, we have that

I ′
j(uj , vj)(uj , vj) = 2 〈wj , λ̃jwj〉

+ 2
∫

{|x|�ρj−1}
(〈∇ũj ,∇(λ̃jwj)〉 + 〈∇ṽj ,∇wj〉 + λ̃j ũjwj + ṽjwj)

+
∫

{|x|�ρj−1}
(f(ũj)ũj − f(ũj + wj)(ũj + wj))

+
∫

{|x|�ρj−1}
(g(ṽj)ṽj − g(ṽj + λ̃jwj)(ṽj + λ̃jwj))

Recalling that, for every j, x, |ṽj(x)| + |λ̃j(x)wj(x)|�C, that ||wj ||�1 (cf. (4.2))
and that |g(s)|�C|s| for bounded s ∈ R, we see that the last integral term is
bounded by C||λ̃j ||∞||wj ||. Arguing similarly with the remaining terms and by
taking Proposition 3.7 (d) into account yields the first estimate in (4.12). The
second estimate in (4.12) is handled similarly. The main point now is to observe
that, according to Proposition 3.7 (b),∫

∂Ωj

(
∂ṽj

∂n
− λ̃j

∂ũj

∂n
)φj =

∫
∂Ωj\∂Ω′

j

(
∂ṽj

∂n
− λ̃j

∂ũj

∂n
)φj = 0;

this shows that

I ′
j(uj , vj)(φj ,−λ̃jφj) =

∫
Ω′

j

(wj〈∇λ̃j ,∇φj〉 − φj〈∇wj ,∇λ̃j〉)

+
∫

{|x|�ρj−1}
(f(ũj) − f(ũj + wj))φj

+
∫

{|x|�ρj−1}
(g(ṽj + λ̃jwj) − g(ṽj))λ̃jφj

with ||φj ||�(min λ̃j)−1/2, and this proves (4.12). We also observe that (4.1), (4.5)
and (4.12) imply that

νj�e−(1−o(1))ρj ε
O(1)
j . (4.13)
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Step 2. Since

Ij(sj(uj , vj) + tj(φj ,−λ̃jφj)) = I(uj , vj) + (sj − 1)I ′
j(uj , vj)(uj , vj)

+ tjI
′
j(uj , vj)(φj ,−λ̃jφj) + O((sj − 1)2 + t2j ),

using (4.12) we see that the proof of Lemma 4.2 will be complete once we show
that sj → 1, tj → 0 and

tj + |sj − 1|�νj e
o(1)ρj ε

−O(1)
j . (4.14)

Step 3. Let us prove first that sj → 1 whenever, for some subsequence j → ∞,

tj�|sj − 1| eo(1)ρj ε
−O(1)
j . (4.15)

In this case, we have that

||ψj ||�eo(1)ρj ε
−O(1)
j , with ψj :=

tj
sj − 1

φj ,

and so we introduce the real function of one variable

αj(s) := Ij(s(uj , vj) + (1 − s)(ψj ,− ˜lambda jψj)).

A straightforward computation shows that

α′′
j (s) = I ′

j(uj , vj)(uj , vj) − 2I ′
j(uj , vj)(ψj ,−λ̃jψj) − 2〈ψj , λ̃jψj〉

+
∫

Ω′
j

f(uj)uj + 2f(uj)ψj − f ′(suj + (1 − s)ψj)(uj − ψj)2

+
∫

Ω′
j

g(vj)vj − 2g(vj)λ̃jψj − g′(svj − (1 − s)λ̃jψj)(vj + λ̃jψj)2.

We have from Proposition 3.7 (c) that 〈ψj , λ̃jψj〉�0. Then, similarly to [16, Eqn.
(3.3)], our assumption (H) (namely (1.3) and (1.4)) implies that

α′′
j (1)�Aνje

o(1)ρjε
−O(1)
j −B

∫
Ω′

j

(f(uj)uj + g(vj)vj)

for some A,B > 0. Thus, according to (4.13),

α′′
j (1)�e−(1−o(1))ρjε

O(1)
j −B

∫
Ω′

j

(f(uj)uj + g(vj)vj).

Since
∫
Ω′

j
(f(uj)uj + g(vj)vj) → ∫

RN (f(u)u+ g(v)v) > 0 we conclude that

α′′
j (1) < 0 for large j.
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More generally, we can assert that, for some c > 0,

α′′
j (s)� − c < 0 ∀s : |s− 1|�cj := e−o(1)ρjε

O(1)
j . (4.16)

The main point here is to observe that, say,

|f(suj +(1−s)ψj)(suj +(1−s)ψj)−f(uj)uj |�C|s−1|(|uj |2+ |φj |2+ |uj |p+ |φj |p),
since |f ′(s)|�C(1 + |s|p−2) for every s ∈ R (and some p > 2).

Next we observe that |α′
j(1)|�νje

o(1)ρjε
−O(1)
j and so, thanks to (4.13),

|α′
j(1)|� c

4
cj for large j. (4.17)

Then (4.16) and (4.17) imply that

αj(1 ± cj)�αj(1) − c

4
c2j . (4.18)

At this point we can apply the argument in [16], namely Theorems 3.1 and 3.5;
there, a further careful analysis of the graph of the functions αj and α′

j (by means
of an auxiliary function introduced in Eqns. (3.4) and (3.13) of [16]) leads to the
conclusion that (4.18) implies that |sj − 1|�cj .

Summarizing, we have shown that whenever tj + |sj −1|�νje
δρjε−q

j for some
δ > 0, q ∈ N then

|sj − 1|�e−δ′ρjεq′
j → 0

for some δ′ > 0, q′ ∈ N. Moreover, since α′′
j (s)� − c < 0 for every s between sj

and 1 and since α′
j(sj) = 0 and |α′

j(1)|�νje
o(1)ρjε

−O(1)
j , then

|sj − 1|�νje
o(1)ρjε

−O(1)
j . (4.19)

Step 4. Our aim now is to show that the sequence (sj) is bounded. Our starting
point is the observation that, by definition,

0 � Ij(sj(uj , vj) + tj(φj ,−λ̃jφj))

� t2j 〈φj ,−λ̃jφj〉 + s2j 〈uj , vj〉 + sjtj(〈φj , vj〉 + 〈λ̃jφj , uj〉)
� t2j (−1 + C(

sj

tj
)2 +

sj

tj
eo(1)ρjε

−O(1)
j ). (4.20)

So, suppose at first that

|sj − 1|�1
4
tj e

−o(1)ρjε
O(1)
j . (4.21)

In case tj e−o(1)ρjε
O(1)
j → ∞ then also tj → ∞ and, by (4.21) and for large

j, |sj |� 1
2 tj e

−o(1)ρjε
O(1)
j , contradicting (4.20). We conclude that the right-hand

member of (4.21) must be bounded and thus so is (sj).
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Now suppose that (4.21) holds with the reversed inequality. Then we are in
the situation of step 3 and we have proved that, in that case, sj → 1. Summarizing,
in any case (sj) is a bounded sequence.

Step 5. Once we know that (sj) is bounded, the rest of the proof follows
much as in [15, Lemma 3.3, steps 2 and 3] and so we only sketch the argument.
By denoting

θj(t) = Ij(sj(uj , vj) + t(φj ,−λ̃jφj)),

we see that θ′
j(tj) = 0, θ′′

j (t)� − 2 for every t and

|θ′
j(tj)|�sjνj + |sj − 1| ||φj ||�sjνj + |sj − 1|eo(1)ρjε

−O(1)
j .

As a consequence,

tj�sjνj + |sj − 1|eo(1)ρjε
−O(1)
j . (4.22)

From (4.22) our final conclusion (4.14) follows easily. Indeed, (4.14) fol-
lows immediately from (4.22) in case |sj − 1|�νje

o(1)ρjε
−O(1)
j . While in case

|sj − 1|�νje
o(1)ρjε

−O(1)
j then (4.22) implies that we are in the situation of step

3 (namely, that (4.15) holds); in this case (4.19) holds and again we obtain the
estimate (4.14). As was observed in step 2, this concludes the proof of Lemma 4.2.
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[3] A. I. ÁVILA and J. YANG, On the existence and shape of least energy
solutions for some elliptic systems, J. Differential Equations 191 (2003),
348–376.

[4] J. BUSCA and B. SIRAKOV, Symmetry results for semilinear elliptic systems
in the whole space, J. Differential Equations 163 (2000), 41–56.

[5] M. DEL PINO and P. FELMER, Spike-layered solutions of singularly per-
turbed elliptic problems in a degenerate setting, Indiana Univ. Math. J. 48
(1999), 883–898. MR1471107 (98i:35183)

[6] M. DEL PINO and P. FELMER, Semi-classical states for nonlinear
Schrödinger equations, J. Funct. Anal. 149 (1997), 245–265.



Vol. 15, 2008 Locating the peaks of the least energy solutions 23

[7] M. ESTEBAN and P. L. LIONS, Existence and non-existence results
for semilinear elliptic problems in unbounded domains, Proc. Roy. Soc.
Edinburgh 93A (1982), 1–14.

[8] D. GILBARG and N. S. TRUDINGER, “Elliptic partial differential equa-
tions of second order”, Second edition. Grundlehren der Mathematischen
Wissenschaften Vol. 224, Springer, New York, 1983.

[9] M. GROSSI and A. PISTOIA, On the effect of critical points of distance
function in superlinear elliptic problems, Advances in Differential Equations
5 (2000), 1397–1420.

[10] Q. HAN and F. LIN, “Elliptic Partial Differential Equations”, Courant Lec-
ture Notes in Mathematics, vol. 1, Courant Institute of Mathematical Sci-
ences & American Mathematical Society, 2000.

[11] Y. Y. LI, On a singularly perturbed elliptic equation. Adv. Differential Equa-
tions 2 (1997), 955–980.

[12] Y. Y. LI and L. NIRENBERG, The Dirichlet problem for singularly perturbed
elliptic equations, Comm. Pure Appl. Math. 51 (1998), 1445–1490.

[13] W. M. Ni and I. Takagi, On the shape of least-energy solutions to a semilinear
Neumann problem, Comm. Pure Appl. Math. 44 (1991), 819–851.

[14] W. M. NI and J. WEI, On the location and profile of spike-layer solutions to
singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math.
48 (1995), 731–768.

[15] A. PISTOIA and M. RAMOS, Locating the peaks of the least energy solu-
tions to an elliptic system with Neumann boundary conditions, J. Differential
Equations 201 (2004), 160–176.

[16] M. RAMOS and J. YANG, Spike-layered solutions for an elliptic system with
Neumann boundary conditions, to appear in Trans. Amer. Math. Soc. 357
(2005), 3265–3284.

[17] B. SIRAKOV, On the existence of solutions of Hamiltonian elliptic systems
in R

N , Advances in Differential Equations 5 (2000), 1445–1464.

[18] J. WEI, On the construction of single-peaked solutions to a singularly per-
turbed semilinear Dirichlet problem, J. Differential Equations 129 (1996),
315–333.

Received and accepted 15 January 2005




