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Abstract
We relate the Fukaya category of the symmetric power of a genus zero surface to
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1 Introduction

This article establishes a relationship between structures appearing in geometric rep-
resentation theory and in Heegaard Floer theory. We relate (deformed) category O
for a hypertoric variety and the Fukaya category of the symmetric power of a genus-
zero surface. The first main result of this paper establishes an isomorphism between
the endomorphism algebra of a projective generator for hypertoric category O and
the homology of the corresponding dg-endomorphism algebra of a generator of the
Fukaya category of the symmetric power of a genus-zero surface (see Theorem 1.1).

The proof of the isomorphism makes heavy use of the geometry of the m = 1
amplituhedron [2] appearing in theoretical physics to compute scattering amplitudes.
Karp and Williams gave a cell decomposition of the m = 1 amplituhedron using
images of a collection of distinguished cells of the totally nonnegative Grassmannian,
which provides an identification of the amplituhedron with the bounded faces of a
cyclic hyperplane arrangement [27]. The extension of this description to the hypertoric
setting in Sect. 3 plays a key role in establishing the proof of Theorem 1.1. This
places “cyclic” hypertoric varieties in natural juxtaposition to amplituhedra, somewhat
analogous to the more classical relationships in positive geometry, such as between
toric varieties and polytopes. From another perspective, the resulting description of
the Fukaya category of symmetric powers also gives rise to a conjectural description
of Fukaya categories for more general hyperplane arrangement complements (see
Conjecture 1.2).

Another consequence of the cyclic hypertoric varieties/symmetric products rela-
tionship is that it establishes the cyclic hypertoric varieties as a geometric framework
for the categorified representation theory of gl(1|1), analogous to Nakajima quiver
varieties in the representation theory of semisimple Lie algebras. Indeed, a categori-
fied gl(1|1) action for the relevant Heegaard Floer algebras was constructed in [29],
compatibly with the more general categorified actions of [37]. In Sect. 5, we define
this action indepdently in the language of hypertoric varieties and cyclic arrangements.
The operators which give rise to the gl(1|1) actions arise functorially from operations
of deletion and restrictions for the underlying hyperplane arrangements (see, in par-
ticular, Propositions 5.8 and 5.10 and Corollary 5.9). Unlike with semisimple Lie
algebras and their connections to quiver varieties, geometric objects admitting actions
by superalgebras have thus far been relatively elusive (see, for example, [17]), and
there is further work to do here.

In the remainder of this introduction we give a more detailed outline of the contents
of the paper.

1.1 Bordered Floer homology and the representation theory of gl(1|1)

Work of Auroux [5] connects the wrapped Fukaya categories of symmetric products of
surfaceswith borderedFloer homology [30], the extendedTQFTapproach toHeegaard
Floer homology. When the surface is a multiply-punctured disc, the results of [31, 36]
together with those of [5] imply that the Fukaya category for a certain sutured structure
on the surface (determining stops for the wrapping) is described by an algebra used
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recently by Ozsváth–Szabó for very fast knot Floer homology (HFK) computations
in their theory of bordered HFK [38, 41]. In [29], the first and third authors used
the algebras of Ozsváth–Szabó to construct categorical representations of gl(1|1) (see
also [33], [16], and [50, 51] for closely related work). Thus, in addition to being basic
ingredients to Heegaard Floer homology, the Ozsváth–Szabó algebras are also basic
objects in gl(1|1) representation theory.

The connection between Ozsváth–Szabó algebras and hypertoric geometry arises
because symmetric products of the punctured plane Symk(C − {z1, . . . , zn}) are iso-
morphic to complexified hyperplane complements XV of cyclic arrangements. This
observation connects Fukaya categories of complexified cyclic hyperplane comple-
ments to algebras appearing in Floer theory.

1.2 Hypertoric varieties

In the last decade, hypertoric varieties1 have appeared prominently in investigations
of symplectic duality, a mathematical incarnation of 3d mirror symmetry from physics
[24], in part because the mirror dual of a hypertoric variety is also hypertoric. This
makes hypertoric varieties useful as testing grounds for more general 3d mirror sym-
metry expectations. One such expectation, which comes from the work of the second
author with Braden, Proudfoot and Webster [8–10], is a relationship between sym-
plectic duality and Koszul duality. This expectation has been established in the case
of hypertoric varieties, as the hypertoric categories O associated to symplectic dual
hypertoric varieties are Koszul dual.

Let V be a “polarized” arrangement of real affine hyperplanes in real Euclidean
space. This combinatorial data defines a hypertoric variety MV with suitable extra
structure. The hypertoric category O associated to MV is described by a finite-
dimensional Koszul algebra B(V) conjecturally arising as the endomorphism algebra
of a canonical Lagrangian in a Fukaya category of the hypertoric variety MV . There
is a “universal deformation" ˜B(V) of the Koszul algebra B(V), which is related to
the algebra B(V) much the way torus-equivariant cohomology is related to ordinary
cohomology. It is tempting to speculate that the universal deformation ˜B(V) governs
a “torus-equivariant Fukaya category" of a hypertoric variety, but it seems challenging
to make this precise.

The hypertoric variety and the complexified complement XV are related via a
moment map for a torus action. Thus it seems reasonable to expect that a Fukaya
category of the complexified complement XV is also governed by an algebra related
to B(V). In the case of cyclic arrangements, we prove this by establishing the follow-
ing, which we prove in Sect. 4.

Theorem 1.1 (cf. Theorem 4.9, Corollary 4.10, Theorem 4.13) The universal defor-
mation ˜B(V) associated to a cyclic hyperplane arrangement is isomorphic to the
Ozsváth–Szabó algebra associated to a symmetric product of a multiply-punctured
disc.

1 These varieties are also commonly referred to elsewhere in the literature as toric hyperkähler manifolds
or toric hyperkähler varieties.
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This implies that the partially wrapped Fukaya category, where the partial wrapping
at infinity is specified as in Remark 4.4, is described by the algebras ˜B(V) associated
to cyclic arrangements via the isomorphism Symk(C − {z1, . . . , zn}) with XV . This
observation suggests a more general conjecture, relating the algebras ˜B(V) to Fukaya
categories of more general hyperplane arrangements.

Conjecture 1.2 The algebra ˜B(V) is quasi-isomorphic to the endomorphism algebra
of a canonical generating Lagrangian in a wrapped Fukaya category of XV , where
we take full wrapping around the hyperplanes of the arrangement and an appropriate
partial wrapping at infinity.

Theorem 1.1 proves Conjecture 1.2 for cyclic arrangements. Further evidence of
this conjecture is provided by the homological smoothness of the algebras ˜B(V) estab-
lished in a companion paper [28], as one expects that the wrapped Fukaya categories
of complexified hyperplane complements are equivalent to (dg or A∞-) module cate-
gories of homologically smooth algebras.

1.3 Deletion, restriction, and gl(1|1) actions

There are natural operations of deletion and restriction on hyperplane arrangements. In
Sect. 2.4,we show that certain correspondences connectedwith deletion and restriction
give rise to bimodules over the algebras ˜B(V), connecting hyperplane arrangements
for different k. In Sect. 3.8, we show that deletion and (sign-modified) restriction
operations respect the classes of left/right cyclic polarized arrangements; in Sect. 5
we show that in the left cyclic case they give rise to categorical actions of a variant of
Uq(gl(1|1)).

In [29], a related action ofUq(gl(1|1))was defined on the Ozsváth–Szabó algebras.
We show inSect. 5.3 that the isomorphism fromTheorem1.1 intertwines these categor-
ical actions. The factorization of the bimodule F as a tensor product of a deletion and a
restriction bimodule is visible on theHeegaard Floer side too, at least conjecturally; we
discuss this in Appendix A.We expect these deletion/restriction bimodules for general
polarized arrangements may be part of a larger functorial invariant of complexified
hyperplane complements, a subject we hope to revisit later.

1.4 The combinatorics of cyclic arrangements

The basic example of an arrangement for which Theorem 1.1 applies are those built
from Vandermonde matrices, which are related to symmetric powers of the multiply
punctured plane by the fundamental theorem of algebra. The more general class of
“cyclic" arrangements of interest in this paper are defined by using partial flags in the
positive Grassmannian. We show that this definition for generalized cyclic arrange-
ments agreeswith amore standard one based on affine orientedmatroids (see e.g. [53]),
a result which may be of independent interest; in particular, the cyclic arrangements
are also a natural class from the point of view of matroid theory.

For Theorem 1.1 we are especially interested in cyclicity for polarized arrange-
ments, which from the hypertoric perspective amounts to equipping the hypertoric
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varieties with the structure necessary for symplectic duality. In hyperplane terms, a
polarization turns an arrangement into a linear programming problem, and symplec-
tic duality corresponds to the usual duality for linear programs, referred to here as
Gale duality. This duality is not visible given just the hyperplane arrangement; the
polarization enables the duality to exist.

We define left cyclicity and right cyclicity for polarized arrangements based on
the positive Grassmannian and prove variants of Theorem 1.1 for both left cyclic
and right cyclic polarized arrangements. We also define a notion of equivalence for
polarized arrangements based on oriented matroid programs, such that hypertoric
varieties and algebras ˜B(V) are unchanged under equivalence. We show that the left
cyclic and the right cyclic polarized arrangements each form equivalence classes of
polarized arrangements. Furthermore, we formulate a “positive Gale duality" in linear
programming, by modifying the usual Gale duality in such a way that it preserves
positivity by exchanging left and right cyclic polarized arrangements (see Sect. 3).
The proof extends the sign-variation techniques of Karp–Williams and uses our more
matroid-based characterizations of left and right cyclicity.

1.5 Applications

The connection between Fukaya categories of symmetric products and convolution
algebras associated to cyclic arrangements is interesting in both directions. Theo-
rem 1.1 implies several interesting facts about these algebras. For example, it follows
from Theorem 1.1 that the center of Ozsváth–Szabó’s algebra is isomorphic to the
torus-equivariant cohomology of the associated hypertoric variety, and the endomor-
phism algebras of projective modules over Ozsváth–Szabó’s algebra are isomorphic
to the equivariant cohomologies of toric varieties; see Corollary 4.14.

In the companion paper [28] we prove that for general arrangements, the universal
deformations ˜B(V) are affine highest weight categories, a notion recently introduced
by Kleshchev [25] in order to extend ideas from finite-dimensional quasi-hereditary
theory to infinite-dimensional settings. This is used to establish the homological
smoothness of the algebras ˜B(V). In the cyclic case, Theorem 1.1, together with
[28], therefore gives the following.

Corollary 1.3 The wrapped Fukaya categories of Symk(C − {z1, . . . , zn}) are affine
highest weight categories.

As discussed in [28], this corollary gives insight into bordered Floer constructions
related to higher tensor products (see [37]). The affine quasi-hereditary structure of
˜B(V) includes as part of the structure a family of standard modules over Ozsváth–
Szabó’s algebras categorifying the standard tensor-product basis of V ⊗n . Another
categorification [34] of this standard basis comes from a bordered Floer “strands
algebra” that, unlike Ozsváth–Szabó’s algebras, arises as a higher tensor product in
the sense of [37]. We show in [28] that the homology of this tensor-product algebra
can be interpreted as the sum of Ext groups between standard modules, and we give
a reasonable Heegaard Floer framework for relating the A∞ multiplications on each
side.
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On the geometric representation theory front, the results in this article give a geo-
metric construction of canonical bases for V ⊗n , wherein each canonical basis element
corresponds to an irreducible component of the relative core of the hypertoric variety
MV .

1.6 Positive geometries, hypertoric varieties, and amplituhedra

Amplituhedron geometry, introduced by Arkani–Hamed and Trnka, arises in physics
as a tool to understand scattering amplitudes in gauge theories; these amplitudes exhibit
symmetries and recursion relations in both realistic situations (e.g. gluon scattering in
particle colliders) and in cases of theoretical interest (e.g. planar N = 4 super Yang
Mills).

The m = 1 amplituhedron is the one which appears directly in our work also; in
particular, we show that amplituhedron is a moment-map image of the core of the
cyclic hypertoric variety MV . The more general amplituhedra An,k,m are all exam-
ples of “positive geometry" [1]. The crucial object needed for deriving physics from
amplituhedra—needed to define the positive geometry coming from amplituhedra—is
a top-degree differential form, which one integrates to get scattering amplitudes. For
k = 1 amplituhedra, which are cyclic polytopes, the amplituhedron form is a moment-
map pushforward of a natural form on a toric variety having the cyclic polytope as
its moment polytope. It is an open problem to find analogous descriptions of other
amplituhedra, that is, to describe their natural form as a pushforward of a form coming
from some other positive geometry. Our results suggests the relevance of hypertoric
varieties to this problem.

1.7 Outline of paper

We briefly summarize the contents of this paper. In Sect. 2 we review the theory of
hypertoric varieties, including their connection with polarized arrangements V . We
review two algebras ˜A(V) and ˜B(V) naturally associated to a polarized arrangement.
Section 2.4 introduces bimodules for these algebras associated with the hyperplane
operations of deletion and restriction. Section 3 focuses on cyclic hyperplane arrange-
ments; we begin by extending the work of [27] by developing the theory of (left/right)
cyclic polarized arrangements in terms of subspaces in the positive Grassmannian. We
introduce left/right cyclic arrangements in Sect. 3.3 and formulate a positive variant of
Gale duality that exchanges left and right cyclic arrangements in Sect. 3.7. In Sect. 3.5
we review the connection between the complexified complement of a cyclic arrange-
ment and symmetric products of the punctured plane. Sect. 3.8 shows that the deletion
and sign-modified restriction operations for polarized arrangements preserve left/right
cyclic arrangements. In Sect. 4 we establish the connection between hypertoric con-
volution algebras associated to cyclic polarized arrangements and Ozsváth–Szabó
algebras appearing in the theory of bordered Heegaard Floer homology, proving The-
orem 1.1. As a consequence, we show in Sect. 4.4 that the center of the Ozsváth–Szabó
algebra is isomorphic to the torus equivariant cohomology of the hypertoric variety
MV of a (left/right) cyclic polarized arrangement. Finally, Sect. 5 connects the bimod-
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ules arising from deletion and restriction of cyclic polarized arrangements with an
action of a variant of quantum gl(1|1) as bimodules over Ozsváth–Szabó algebras. In
Appendix A we also discuss a Heegaard Floer interpretation of the factorization of
these bimodules as the composition of deletion and restriction bimodules.

2 Hypertoric varieties and algebras

2.1 Hyperplane arrangements and hypertoric varieties

2.1.1 Hyperplane arrangements

We use linear-algebraic data to specify real affine hyperplane arrangements, which we
refer to as arrangements, following the general framework used in [8].

Definition 2.1 An arrangement of n hyperplanes in k-space is a pair V = (V , η)

where V ⊂ R
n is a linear subspace of dimension k and η is an element of R

n/V ; we
require that an element of R

n representing η has at least n − k nonzero entries.2 We
say that V = (V , η) is rational if V arises (uniquely) from a subspace VQ ⊂ Q

n and
η arises (uniquely) from an element ηQ ∈ Q

n/VQ.

The intersections of V with the coordinate hyperplanes of R
n give an honest affine

hyperplane arrangement in the real vector space V whichwewill denoteHV (however,
some hyperplanes of the arrangement might be empty). If V is presented as the column
span of an n × k matrix A, we can use the columns of the matrix as a basis for V to
identify V (and thus its affine translate V + η) with R

k ; if w ∈ R
n represents η, then

under this identification, the hyperplanes of the arrangement take the form

Hi =
⎧

⎨

⎩

x ∈ R
n | wi +

k
∑

j=1

ai j x j = 0

⎫

⎬

⎭

, 1 ≤ i ≤ n

for x = (x1, . . . , xk) ∈ R
k . The positive half-spaces of R

n induce a co-orientation on
HV , using which we can associate a region of the arrangement (possibly empty) to
each length-n sequence α of signs in {+,−}: given α = (α1, . . . , αn) and a matrix A
presenting V as above, the corresponding region �α ⊂ V + η is the set of points x
such that

αi

⎛

⎝wi +
k
∑

j=1

ai j x j

⎞

⎠ ≥ 0

for 1 ≤ i ≤ n. In what follows we sometimes write α(i) = αi to denote the i th term
of the sequence α. If�α is nonempty, α is called a feasible sign sequence. We letF =
2 The condition on nonzero elements representing η is sometimes omitted, in which case (V , η) satisfying
this condition is called simple or regular.
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F(V) denote the set of feasible sign sequences for V , and we let K = K(V) ⊂ F(V)

denote the set of feasible sign sequences α such that �α is compact.
We define equivalence of arrangements by saying that V ∼ V ′ if they have the same

affine oriented matroid as discussed in [11, Chapter 4.5]; if V and V ′ are equivalent,
it follows that F(V) = F(V ′) and K(V) = K(V ′). Concretely, if we let φ be the
unique linear functional on V + 〈η〉 such that φ(V ) = 0 and φ(η) = 1, and define φ′
similarly for (V ′, η′), then (V , η) ∼ (V ′, η′) if and only if the Plücker coordinates of
the (k + 1)-dimensional subspaces (id, φ)(V + 〈η〉) and (id, φ′)(V ′ + 〈η′〉) of R

n+1

have the same (projective) signs. If (A, w) and (A′, w′) represent (V , η) and (V ′, η′)
as above, then (V , η) ∼ (V ′, η′) if and only if the column spans of the matrices

[

A w

0 1

]

,

[

A′ w′
0 1

]

have Plücker coordinates of the same (projective) signs.

2.1.2 Hypertoric varieties

Below we follow [44] with some minor expositional changes. Let (V , η) be rational.
Let tn = (Cn)∗ with coordinate basis {ε1, . . . , εn}. Let td = V ⊥ ⊂ tn , the complex
perpendicular to V (td has complex dimension d := n − k), and let tk = tn/td . We
have full integer lattices tn

Z
= (Zn)∗ ⊂ tn , td

Z
= td ∩ tn

Z
⊂ td , and tk

Z
= tn

Z
/td

Z
⊂ tk .

There is an exact sequence of abelian Lie algebras

0 → td
ι−→ tn → tk → 0

which exponentiates to an exact sequence of tori

1 → T d → T n → T k → 1.

The torus T n = (C×)n acts by coordinate-wise multiplication on C
n , and we regard

T d as acting on C
n via the inclusion of T d into T n . This, in turn, gives rise to a

hamiltonian action of T d on the cotangent bundle T ∗(Cn) via t (̇x, y) = (t x, t−1y).
The action of the maximal compact subtorus T d

R
of T d is hyperhamiltonian with

hyperkähler moment map given by

μR(x, y) ⊕ μC(x, y)

=
(

ι∗R

(

1

2

∑

i

(|xi |2 − |yi |2)εi

)

, ι∗
(

∑

i

(xi yi )εi

))

∈ (tdR)∗ ⊕ (td)∗

= (Rn/V ) ⊕ (Cn/VC).

The hypertoric variety associated to V is defined to be

MV = MV ,η =
(

μ−1
R

(η) ∩ μ−1
C

(0)
)

/T d
R ;
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one can also define MV as an algebraic symplectic quotient. These varieties (also
called toric hyperkähler manifolds or toric hyperkähler varieties) were introduced in
the smooth case by Goto [21], unifying examples studied in [13, 15, 19], and in the
singular case by Bielawski and Dancer [6].

It follows fromour assumptions inDefinition 2.1 thatMV is an algebraic symplectic
orbifold of complex dimension 2k; it is smooth if and only if V ∩ Z

n is a unimodular
lattice. There is a residual hyperhamiltonian action of the compact torus T k

R
on MV

which can be extended to a hamiltonian action of the complex torus T k . We consider
a variant of the hyperkähler moment map for the T k

R
action defined by

μ̄R([x, y]) ⊕ μ̄C([x, y]) :=
(

1

2

∑

i

(|xi |2 − |yi |2)εi ,
∑

i

(xi yi )εi

)

∈ (V + η) ⊕ VC.

By taking appropriate linear combinations of μ̄R and the real and imaginary parts
of μ̄C, one can also construct variants of the moment map which take values in the
complexification (V + η)C of V + η.

Equivalent rational arrangements give rise to isomorphic hypertoric varieties,
respecting the additional structure described below.

2.1.3 Additional structure

The hypertoric variety M = MV ,η makes sense even when η does not satisfy the
simplicity condition of Definition 2.1; in particular, we can consider M0 = MV ,0,
and for general η there is a canonical morphism ν : M → M0 that is a resolution
of singularities when M is smooth. The action of S := C

× on T ∗(Cn) by s (̇x, y) =
(s−1x, s−1y)gives actions onM andM0 such that ν is equivariant;wehave s·ω = s2ω
where ω is the symplectic form onM. The S action on C[M0] givesM0 the structure
of an affine cone; it has nonnegative weights with zero weight space consisting of
constant functions. Thus, when M is smooth, M

ν−→ M0 is a conical symplectic
resolution in the sense of [12]. In general, the map M

ν−→ M0 with the S actions is
invariant under equivalences of rational arrangements V .

The subvariety

μ̄−1
C

(0) = {[x, y] ∈ M : xi yi = 0 for all i}

is called the extended core ofM. The irreducible components of the extended core of
M are Xα for α ∈ F , where

Xα = {[x, y] ∈ M : yi = 0 when α(i) = + and xi = 0 when α(i) = −}.

The varieties Xα can also be defined as toric varieties using the Cox construction; see
[8, Section 4.2]. The image of Xα under μ̄R is �α ⊂ V + η. If we add to μ̄R any
complex linear combination of the real and imaginary parts of μ̄C, the image of Xα

under this new map is still �α ⊂ V + η ⊂ (V + η)C.
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The core of MV ,η is the union of Xα for α ∈ K; it can also be defined as ν−1(0)
where 0 ∈ M0 is the cone point.

2.2 Polarizations

2.2.1 Definitions

We now consider polarized arrangements, in which an affine hyperplane arrangement
is equipped with an objective function as in linear programming. We recall the basic
definitions here and refer to [8] and [9, Section 5] for further details.

Definition 2.2 A polarized arrangement of n hyperplanes in k-space is a triple V =
(V , η, ξ) where (V , η) is an arrangement as in Definition 2.1 and ξ is an element of
V ∗ = (Rn)∗/V ⊥ such that each element of (Rn)∗ representing ξ has at least k nonzero
entries.We say that (V , η, ξ) is rational if (V , η) is rational and ξ ∈ V ∗

Q
= (Qn)∗/V ⊥

Q
.

If V is presented as the column span of an n × k matrix A as above, then in the
basis of columns, ξ is expressed as a 1× k matrix. Thus we can specify the polarized
arrangement (V , η, ξ) (non-uniquely) as a single matrix:

(V , η, ξ)
V =col(A)−−−−−→

[

A w

xT ∗
]

,

where A has size n × k, w has size n × 1, x has size k × 1 with xT its transpose, and
the bottom-right entry ∗ is left unspecified. From this data, (V , η) is defined as above,
and ξ is defined to have matrix x with respect to the columns of A. If we define a
strong polarized arrangement to be a polarized arrangement (V , η, ξ) equipped with
a lift of ξ to ξ̄ ∈ (V + 〈η〉)∗, then we can specify a strong polarized arrangement by
a matrix of the above form in which ∗ has been replaced by a real number c.

A strong polarized arrangement gives an affine hyperplane arrangement in the affine
space V + η with a well-defined objective function ξ̄ ; from this data we can extract
an oriented matroid program as in [11, Chapter 10]. For strong polarized arrange-
ments, we say that (V , η, ξ̄ ) ∼ (V ′, η′, ξ̄ ′) if they have the same oriented matroid
program. Concretely, if (V , η, ξ̄ ) and (V ′, η′, ξ̄ ′) are represented by (A, w, x, c) and
(A′, w′, x ′, c′) as above, then (V , η, ξ̄ ) ∼ (V ′, η′, ξ̄ ′) if and only if the column spans
of the matrices

⎡

⎣

A w

xT c
0 1

⎤

⎦ ,

⎡

⎣

A′ w′
(x ′)T c′
0 1

⎤

⎦

have Plücker coordinates of the same (projective) signs. For ordinary polarized
arrangements, we say that (V , η, ξ) ∼ (V ′, η′, ξ ′) if they have strong lifts that are
equivalent.

Given a polarized arrangement V = (V , η, ξ), we say α ∈ {+,−}n is bounded if
the affine-linear functional ξ̄ on V +η is bounded above on�α for some (equivalently,
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any) strong lift ξ̄ of ξ . We let B = B(V) be the set of α ∈ {+,−}n that are bounded;
we have K ⊂ B where F = F(V) and K = K(V) are defined from (V , η) as in
Sect. 2.1.1. We let P = F ∩B denote the set of bounded feasible regions. The subsets
(F ,K,B,P) of {+,−}n are preserved under equivalence of polarized arrangements.

2.2.2 Polarizations and hypertoric varieties

Assume that V = (V , η, ξ) is rational and that ξ ∈ tk
Z
. Exponentiating the map

C
·ξ−→ tk , we get a homomorphism T := C

× → T k and thus a hamiltonian action of
T onM = MV ,η. This action commutes with the action of S and has finite fixed point
set MT, and it is preserved under equivalences of polarized arrangements. We will
write MV = MV ,η,ξ when we want to consider MV ,η equipped with this additional
T action (together withM0, ν, and the actions of S).

For M = MV ,η,ξ , the relative core M+ of M is the set of p ∈ M such that
lim

T�t→0
t · p exists; it is the union of the toric varieties Xα for the bounded feasible

regions α ∈ P . The relative core contains the core and is contained in the extended
core (see [8, Section 4.2]).

2.2.3 Dualities

Acentral feature of linear programming is the existence of a duality on linear programs,
referred to as Gale duality in [8].

Definition 2.3 If V = (V , η, ξ) is a polarized arrangement, its Gale dual is the polar-
ized arrangement

V∨ := (V ⊥,−ξ,−η).

Gale duality squares to the identity and preserves rationality and equivalence of polar-
ized arrangements. A sequence α ∈ {+,−}n is feasible for V if and only if it is
bounded for V∨ (and vice-versa). That is, B = F∨, F = B∨ and P = P∨.

Remark 2.4 As discussed in [10], conical symplectic resolutions with T actions as
above admit a duality known as symplectic duality, a mathematical incarnation of
3d mirror symmetry. Gale dual (rational) polarized arrangements give symplectically
dual hypertoric varieties.

The Plücker coordinates of V and V ⊥ are indexed by the same set of
(n

k

) = ( n
n−k

)

elements, but they do not agree in general. However, for a subspace V , we can obtain
a related subspace alt(V ) by mapping V through the automorphism of R

n that flips
the sign of all even-index coordinates; note that alt(V ⊥) = (alt(V ))⊥. It is a standard
result that the Plücker coordinates of V and alt V ⊥ do agree; thus, when discussing
cyclic arrangements in Sect. 3 below, it will be useful to consider alt-variants of Gale
duality for polarized arrangements. Correspondingly, we define

alt(V , η, ξ) := (alt(V ), alt(η), alt(ξ))
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where alt(η) and alt(ξ) are obtained from any representatives of η and ξ by flipping
the signs of all even-index coordinates.

Finally, we define the polarization reversal of V = (V , η, ξ) to be p(V) :=
(V , η,−ξ); geometrically, polarization reversal precomposes the action of T with the
automorphism t �→ t−1 of T. The polarization reversal operation will be important in
Sect. 3.7.

2.2.4 Partial orders

Let V be a polarized arrangement. Let B denote the set of k-element subsets x of
I = {1, . . . , n} such that

Hx =
⋂

i∈x
Hi �= ∅.

Equivalently, B is the set of bases of the matroid associated to V . There is a bijection
μ : B → P sending x to the unique sign sequence αx such that ξ obtains its maximum
on �α at the point Hx. We write xβ = μ−1(β) for the subset associated to a sign
sequence β. The covector ξ induces a partial order3 ≤ on B ∼= P .

Write xc for the complement in I of the subset x. Let B
∨ denote the set of bases

of V∨, i.e. (n − k) element subsets of I . Then x �→ xc defines a bijection from
B → B

∨. The bijection μ∨ : B
∨ → P∨ is compatible with the equality P = P∨, so

that μ(x) = μ∨(xc) [8, Lemma 2.9].

2.3 Convolution algebras

This section introduces finite-dimensional Koszul algebras A(V) and B(V) associated
to arrangements, and universal flat graded deformations ˜A(V) and ˜B(V) of them.With
the exception of the deletion and restriction bimodules of Sect. 2.4.2, which have not
been explicitly discussed elsewhere, almost all of the material in this section is taken
directly from the original sources [7–9].

2.3.1 Definitions and basic properties

We now recall the algebras associated to a polarized arrangement V = (V , η, ξ).
Related algebras can be defined for unpolarized arrangements (V , η), although these
do not play an explicit role in [7, 8]. We will start with the polarized case, where
the algebras satisfy interesting duality relationships, and then discuss the necessary
modifications in the unpolarized case. Recall the notation F , B, P , K for feasible,
bounded, bounded feasible, and compact feasible sign sequences ofV fromSect. 2.2.1.

3 This partial order is the transitive closure of the relation �, where x � x′ if |x ∩ x′| = |x| − 1 = k − 1
and ξ(Hx) < ξ(Hx′ ). The first condition ensures that Hx and Hx′ lie on the same one dimensional flat,
so that ξ cannot take the same value at these two points.
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2.3.2 The A algebras

For sign sequences α, β ∈ {±}n , we write

α ↔ β ⇐⇒ α and β differ in exactly one entry.

If α, β ∈ F this means that �α and �β are related by crossing a single hyperplane
Hi , in which case we write β = αi .

Define a quiver Q = Q(V) whose vertex set is F and arrows p(α, β) from α to β

and p(β, α) from β to α if and only if α ↔ β. Let P(Q) be the path algebra of this
quiver over Z; P(Q) has a distinguished idempotent eα for all α ∈ F .

Definition 2.5 (Definition 3.1 and Remark 3.1 of [8]) The Z-algebra ˜A(V) is defined
to be P(Q) ⊗Z Z[t1, . . . , tn] modulo the two-sided ideal generated by the following
relations:

A1 : eα for all α ∈ F \ B, that is those feasible α that are not bounded,
A2 : p(α, β)p(β, γ ) − p(α, δ)p(δ, γ ) for all distinct α, β, γ, δ ∈ F with α ↔ β ↔

γ ↔ δ ↔ α,
A3 : p(α, β, α) − ti eα for all α, β ∈ F with α ↔ β via a sign change in coordinate i .

We give ˜A(V) a grading by setting deg(p(α, β)) = 1 and deg(ti ) = 2. We can refine
this grading to a multi-grading by Z〈e1, . . . , en〉 by letting

• deg(p(α, β)) = ei if α → β changes a sign in position i ,
• deg(ti ) = 2ei ;

we recover the single grading by sending ei to 1 for all i . While ˜A(V) is a Z-algebra
a priori, we can view it as a Z[t1, . . . , tn]-algebra.

Over R (or Q given a rational arrangement), the infinite-dimensional algebra ˜A(V)

can be viewed as the universal graded flat deformation in the sense of [7] of a finite-
dimensional quasi-hereditary Koszul algebra A(V); see [8, Remark 4.5]. We briefly
recall the definition of A(V) below.

We haveR[t1, . . . , tn] ∼= Sym((Rn)∗), with the isomorphism identifying ti with the
i-th coordinate function on R

n . We can then identify V ∗ with (Rn)∗/V ⊥. It follows
that Sym(V ∗) is the quotient of R[t1, . . . , tn] by the ideal generated by all linear
combinations of t1, . . . , tn whose coefficient vectors annihilate V ; equivalently, we
have Sym(V ∗) ∼= R[t1,...,tn ]

Sym(V ⊥)
. The algebra A(V) is defined similarly to ˜A(V), except

that we take a quotient of P(Q)⊗R Sym(V ∗) instead of P(Q)⊗Z Z[t1, . . . , tn]. Only
the single Z grading descends to a grading on A(V). It follows from [7, Theorem 8.7]
that

Sym(V ⊥)
j−→ ˜A(V)

π−→ A(V)

is a graded flat deformation that is universal in the sense of [7, Remark 4.2], where j
includes an element of Sym(V ⊥) into R[t1, . . . , tn] and then multiplies by 1 ∈ ˜A(V),
while π is the natural quotient map from ˜A(V) to A(V).
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2.3.3 The B algebras

For S = {i1, . . . , im} ⊂ {1, . . . n}, let uS := ui1 · · · uim ∈ Z[u1, . . . , un], and let
HS ⊂ V + η denote the intersection of the hyperplanes corresponding to elements of
S. For α, β ∈ P , set

˜Rαβ := Z[u1, . . . , un]
(uS : S ⊂ {1, . . . , n} with �α ∩ �β ∩ HS = ∅)

.

Let fα,β ∈ ˜Rαβ be the element corresponding to 1 ∈ Z[u1, . . . , un]. For α, β, γ ∈ P ,
let S(αβγ ) = {i ∈ {1, . . . , n} : α(i) = γ (i) �= β(i)}, where α(i), β(i), γ (i) denote
the i th sign of α, β, γ respectively.

Definition 2.6 The Z-algebra ˜B(V) is defined to be ˜B(V) := ⊕

α,β∈P ˜Rα,β with
multiplication given by

fα,β · fβ,γ := uS(αβγ ) fα,γ

and extended bilinearly overZ[u1, . . . , un]. The algebra ˜B(V) admits a single grading
by setting deg( fα,β) = dα,β , where dα,β is the number of sign changes required to turn
α into β, and deg(ui ) = 2.We can refine to amulti-grading byZ〈e1, . . . , en〉 by letting
deg( fα,β) := ei1 +· · ·+ eim if β is obtained from α by changing the signs in positions
i1, . . . , im . We define the multi-degree of ui to be 2ei ; we recover the single grading
by sending ei to 1 for all i . We can view ˜B(V) as an algebra over Z[u1, . . . , un].

To define the finite-dimensional version B(V) over R (or Q if V is rational), write
R[u1, . . . , un] = Sym(Rn) by identifying ui with the i th coordinate function on
(Rn)∗. The inclusion of V into R

n gives us a ring homomorphism from Sym(V ) into
R[u1, . . . , un] and thus into the quotient ˜RR

αβ . For α, β ∈ P we set

Rαβ := ˜RR
αβ ⊗Sym(V ) R,

where the action of Sym(V ) on R has all elements of V acting as zero, so that Rαβ can
be viewed as a further quotient of ˜RR

αβ by (c1u1 + · · ·+ cnun : (c1, . . . , cn) ∈ V ). We

define B(V) using Rαβ in place of ˜Rαβ in the definition of ˜B(V); the multi-grading
does not make sense on B(V) but the single grading does. By [7, Theorem 8.7],

Sym(V )
j−→ ˜B(V)

π−→ B(V) (2.1)

is a universal graded flat deformation.

Remark 2.7 We could alternatively define ˜B(V) using rings ˜Rαβ for all bounded (but
possibly infeasible) sign sequences α; let B denote the set of such sequences, so that
P = F ∩ B. The rest of the definition would be unchanged, since ˜Rαβ would be zero
if α or β is infeasible (the ideal in the quotient defining ˜Rαβ would contain 1 = u∅).
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The product still makes sense without modification and agrees with the product on
˜B(V); note that if α, γ are feasible but β is infeasible, then

�α ∩ �γ ∩ HS(αβγ ) ⊂ �α ∩ �β ∩ �γ = ∅.

Theorem 2.8 (Theorem 4.14 and Corollary 4.15 [8]) For a polarized arrangement V ,
we have graded algebra isomorphisms ˜B(V) ∼= ˜A(V∨) and B(V) ∼= A(V∨).

As a consequence, we have the following description of ˜B(V).

Proposition 2.9 For a polarized arrangement V = (V , η, ξ), let Q be the quiver with
vertices eα given by α ∈ B and arrows p(α, β) from α to β when α ↔ β. The
algebra ˜B(V) is P(Q)⊗Z Z[u1, . . . , un] modulo the two-sided ideal generated by the
following relations:

B1 : eα if α ∈ B \ F , that is α bounded and infeasible,
B2 : p(α, β)p(β, γ ) − p(α, δ)p(δ, γ ) for all distinct bounded α, β, γ, δ with α ↔

β ↔ γ ↔ δ ↔ α,
B3 : p(α, β, α)−ui eα for all bounded α, β with α ↔ β via a sign change in coordinate

i .

The gradings on ˜B(V) defined above match the ones defined as for ˜A(V).

The natural operations on (V , η, ξ) on arrangements interact with the finite-
dimensional algebras A and B (see [8]).

• Gale duality of arrangements becomes Koszul duality of algebras A(V) ∼= A(V∨),
B(V) ∼= B(V∨).

• Polarization reversal of (V , η, ξ) gives Ringel duality of algebras.
• Applying alt to (V , η, ξ) induces isomorphisms of algebras (this also holds for ˜A
and ˜B).

2.3.4 Geometric aspects

As discussed in [7, Section 8], in the rational case B(V) has an interpretation as a
convolution algebra whose underlying vector space is the direct sum of cohomology
spaces of Xαβ := Xα ∩ Xβ , where α and β are bounded feasible sign vectors, equipped
with a convolution product:

B(V) ∼=
⊕

α,β∈I
H∗(Xαβ)[−dαβ ].

The algebra ˜B(V) has a similar interpretation as a convolution algebra built from
equivariant cohomology spaces: we have

˜B(V) ∼=
⊕

α,β∈I
H∗

T k (Xαβ)[−dαβ ].
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As an upshot of the geometric definitions of ˜B(V) (resp. B(V)), one can identify the
center of these convolution algebras with the equivariant (resp. ordinary) cohomology
of the associated hypertoric variety (see [7, Theorem 8.3 & Proposition 8.5]):

Z(B(V)) ∼= H∗(MV ) and Z(˜B(V)) ∼= H∗
T k (MV ).

The graded flat deformation (2.1) comes from forgetting the equivariant structure and
Sym(V ) = H∗

T (pt).
It is expected that the convolution algebra B(V) is an endomorphism algebra of the

relative core in an appropriately defined Fukaya category ofMV , see e.g. [8, Remark
4.12]. The results of this paper suggest the following Fukaya interpretation for the
universal deformations ˜B(V) directly in terms of hyperplane data.

Conjecture 2.10 For a polarized arrangement V (not necessarily rational), the algebra
˜B(V) is the homology of the endomorphism algebra of the interiors of regions �α

for α ∈ P in a suitably defined wrapped Fukaya category of the complement of
HV ⊂ (V + η)C.

Theorems 4.9 and 4.13 establish this conjecture when V is left or right cyclic as
defined in Sect. 3; in this case we describe the stops for the wrapping in more detail
in Sect. 4.4 below.

When V is rational, �α is the image under μ̄R (plus any linear combination of
Re(μ̄C), Im(μ̄C)) of the relative-core toric Lagrangian Xα ⊂ MV . This observation,
together with the geometric interpretations of the centers of B(V) and ˜B(V), makes it
tempting to speculate further that ˜B(V) admits an alternative interpretation in terms
of some sort of algebraically-equivariant Fukaya category ofMV . Thus we speculate
that the algebra ˜B(V) arises as an endomorphism algebra in two ways—in the Fukaya
category of the complexified hyperplane complement XV , and in some equivariant
Fukaya category of a hypertoric variety MV .

We will not go further into Fukaya categories here; however, we can consider
Grothendieck groups associated to B(V) and ˜B(V), which given the Fukaya inter-
pretations should be related to the middle cohomology of MV . In fact, by [9] we
have

K0(B(V)−mod)C ∼= H2k
T (MV ; C)

when MV is smooth, where classes [Pα] of indecomposable projectives over B(V)

correspond to classes [Xα] in cohomology.

2.3.5 Unpolarized case

Absent a polarization and given only (V , η), one can define variants B ′, ˜B ′ of the
algebras B, ˜B whose idempotents correspond to feasible α such that �α is compact
(rather than just bounded above with respect to ξ , which has not been chosen here).
Defining analogues of the A algebras in this setting is more complicated, and will not
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be discussed here. It will be convenient for us to define

˜B ′(V , η) :=
(

∑

α∈K
eα

)

˜B(V , η, ξ)

(

∑

α∈K
eα

)

for any choice of polarization ξ on (V , η), and similarly for B ′(V , η). Using the
definition of B and ˜B from Definition 2.6, it is clear that ˜B ′(V , η) and B ′(V , η) admit
definitions requiring no choice of ξ , and are thus independent of the choice of ξ .
The idempotents eα such that �α �= ∅ is compact are precisely those for which the
indecomposable projective module ˜B(V)eα is also injective.

2.4 Deletion and restriction

2.4.1 Operations on (V,�) and (V,�, �)

Two of the most natural operations one can perform on hyperplane arrangements are
deletion of a hyperplane and restriction to a hyperplane; we briefly discuss how to
view these operations as acting on (V , η). Below, suppose (V , η) is an arrangement.

For restriction, let 1 ≤ i ≤ n and consider the inclusion ιi : R
n−1 → R

n of the i th
coordinate hyperplane. Assume that V + ι(Rn−1) = R

n (i.e. that V is not contained
in the i th coordinate hyperplane of R

n). Define the restriction of (V , η) to the i th
hyperplane to be

(V i , ηi ) := (ι−1
i (V ), ι−1

i (η))

(note that ιi induces an isomorphism from R
n−1/V i to R

n/V ). The restriction is an
arrangement of n−1 hyperplanes in k−1-space, naturally identifiedwith the restriction
of HV to its i th hyperplane.

Now, let 1 ≤ i ≤ n and consider the coordinate projection πi : R
n → R

n−1 that
omits the i th coordinate. Assume that V does not contain the i th coordinate axis of
R

n . The deletion of the i th hyperplane is defined by

(Vi , ηi ) := (πi (V ), πi (η))

(note that πi induces a map from R
n/V to R

n−1/Vi ). The deletion is an arrangement
of n − 1 hyperplanes in k-space, naturally identified with the deletion of the i th
hyperplane fromHV . One can check that restriction and deletion preserve rationality
of arrangements.

We now discuss the polarized case.

• (Restriction) The restriction of V = (V , η, ξ) to the i th hyperplane is defined
by V i := (V i , ηi , ξ i ), where (V i , ηi ) is the restriction of (V , η) as before, and
ξ i = ξ |V i .

• (Deletion) The deletion of the i th hyperplane from V = (V , η, ξ) is defined as
Vi := (Vi , ηi , ξi ), where (Vi , ηi ) is the deletion as before, and ξi = ξ ◦π−1

i , where
π is the isomorphism V ∼= Vi .
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Deletion and restriction are exchanged by Gale duality; if V = (V , η, ξ) is a
polarized arrangement, then the restriction of V to its i th hyperplane Hi is defined if
and only if the deletion of the i th hyperplane H∨

i of V∨ is defined, and in this case we
have (V i )∨ = (V∨)i (see [8, Lemma 2.6]).

2.4.2 Homomorphisms and bimodules for deletion and restriction

The deformed algebras ˜A(V) and ˜B(V) interact well with deletion and restriction.
Namely, to a pair of arrangements related by deletion or restriction, there is an asso-
ciated (non-unital) algebra homomorphism that maps distinguished idempotents to
distinguished idempotents. Interestingly, these homomorphisms are only defined for
the infinite-dimensional algebras ˜A(V) and ˜B(V), not for their finite-dimensional
Koszul quotients A(V) and B(V).

Definition 2.11 Let V = (V , η, ξ) be a polarized arrangement of n hyperplanes in
k-space such that the restriction V i of V to the i th hyperplane is well-defined, and
choose a sign s ∈ {+,−}. Define an algebra homomorphism

resti
˜A
(V, s) : ˜A(V i ) → ˜A(V)

by sending

• eα �→ eιi,s (α) where ιi,s(α) is α with sign s inserted in position i ,
• p(α, β) �→ p(ιi,s(α), ιi,s(β)),
• t j �→ t j for j < i and t j �→ t j+1 for j ≥ i .

Note that if α is feasible, then ιi,s(α) is feasible for s ∈ {+,−} (although it may be
unbounded even if α is bounded; in this case, eιi,s (α) = 0). One can check that the
relations defining ˜A(V) are sent to zero under this homomorphism. The homomor-
phism is compatible with the map between multi-grading groups Z〈e1, . . . , en−1〉 →
Z〈e1, . . . , en〉 sending e j to e j for j < i and sending e j to e j+1 for j ≥ i . It preserves
the single grading.

We can obtain a ˜B version of the homomorphism resti
˜A
(V, s) using Gale duality

˜B(Vi ) = ˜A((Vi )
∨) = ˜A((V∨)i ).

We define

del
˜B
i (V, s) : ˜B(Vi ) → ˜B(V)

to be the homomorphism resti
˜A
(V∨, s) under the above identifications.

For deletion and ˜A(V) (equivalently by duality, restriction and ˜B(V)), we will
consider two closely related homomorphisms del˜Ai (V, s) and del′˜Ai (V, s); the sec-
ond of these was particularly motivated by the Heegaard diagram considerations of
Appendix A.
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Definition 2.12 Let V = (V , η, ξ) be as above such that the deletion Vi of the i th
hyperplane of V is well-defined, and choose a sign s ∈ {+,−}. Define an algebra
homomorphism

del
˜A
i (V, s) : ˜A(V) → ˜A(Vi )

by sending

• eα �→ eρi,s (α) where ρi,s(α) is α with sign s removed from position i , if the i th
sign of α is s, and eρi,s (α) := 0 otherwise,

• p(α, β) �→ p(ρi,s(α), ρi,s(β)),
• t j �→ t j for j < i , ti �→ 0, and t j �→ t j−1 for j > i .

One can check that this homomorphism is well-defined. It is compatible with the map
between multi-grading groups Z〈e1, . . . , en〉 → Z〈e1, . . . , en−1〉 sending e j to e j for
j < i , sending ei to zero, and sending e j to e j−1 for j > i . It preserves the single
grading.

As above, define

resti
˜B
(V, s) : ˜B(V) → ˜B(V i )

using the identifications of ˜B(V) with ˜A(V∨) and of ˜B(V i ) with ˜A((V∨)i ).
For the homomorphism (del′)˜Ai (V, s), it is convenient to define (rest′)i

˜B
(V, s) first.

Definition 2.13 Let V = (V , η, ξ) be as above such that the restriction V i to the i th
hyperplane of V is well-defined, and choose a sign s ∈ {+,−}. Let

˜Bs(V) =
⎛

⎝

∑

α:α(i)=s

eα

⎞

⎠ · ˜B(V) ·
⎛

⎝

∑

α:α(i)=s

eα

⎞

⎠ .

Define an algebra homomorphism

(rest′)i
˜B
(V, s) : ˜Bs(V) → ˜B(V i )

by sending

• eα �→ eρi,s (α),
• fα,β �→ fρi,s (α),ρi,s(β),
• u j �→ u j for j < i , ui �→ 1, and u j �→ u j−1 for j > i .

One can check that this map sends the ideals defining ˜Rαβ on the left to the ideals
defining ˜Rρi,s(α)ρi,s(β) on the right (this would not be true if we tried to define the
homomorphism on the full algebra ˜B(V)) and that it respects the products on each
side, so it defines an algebra homomorphism. It is compatible with the map between
multi-grading groups Z〈e1, . . . , en〉 → Z〈e1, . . . , en−1〉 sending e j to e j for j < i ,
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sending ei to zero, and sending e j to e j−1 for j > i . However, it does not preserve
the single grading (note that deg(ui ) = 2 while deg(1) = 0). Define

(del′)˜Ai (V, s) : ˜As(V) → ˜A(Vi )

using the identifications of ˜As(V) with ˜Bs(V∨) and of ˜A(Vi ) with ˜B((V∨)i ), where

˜As(V) =
⎛

⎝

∑

α:α(i)=s

eα

⎞

⎠ · ˜A(V) ·
⎛

⎝

∑

α:α(i)=s

eα

⎞

⎠ .

We have:

• eα �→ eρi,s (α),
• p(α, β) �→ p(ρi,s(α), ρi,s(β)),
• t j �→ t j for j < i , ti �→ 1, and t j �→ t j−1 for j > i .

From the above homomorphisms, one can define bimodules over the algebras in
question by starting with the identity bimodule over the domain and inducing the left
action via the homomorphism. Tensor products with these bimodules on the left send
projectives to projectives.

2.4.3 Compositions

Suppose we are given (V , η, ξ) arising as the i th deletion of another polarized
arrangement (V ′, η′, ξ ′). Define a third polarized arrangement (V ′′, η′′, ξ ′′) as the
i th restriction of (V ′, η′, ξ ′), assuming this makes sense. For any s′, s′′ ∈ {+,−}, we
can consider the composite homomorphism

˜A(V ′′)
resti

˜A
(V ′′,s′′)−−−−−−−→ ˜A(V ′)

del˜Ai (V ′,s′)−−−−−−→ ˜A(V).

If s′ �= s′′ this is zero; if s′ = s′′, then the resulting homomorphism is independent of
s′ = s′′. For the ˜B algebras, if s′, s′′ ∈ {+,−} we have the composite

˜B(V)
del˜Bi (V,s′)−−−−−−→ ˜B(V ′)

resti
˜B
(V ′,s′′)−−−−−−−→ ˜B(V ′′),

with the same properties. In terms of hyperplanes in V + η, one can think of the ˜B
homomorphism as being determined by adding an additional hyperplane, then restrict-
ing to it. If one composes two such addition-restriction homomorphisms, the result is
the same as adding both hyperplanes first, then restricting to their intersection; if the
intersection is empty, the composite of the two addition-restriction homomorphisms
is zero.

One canobtain the samecomposite homomorphismusing thevariants (del′)˜Ai (V ′, s′)
and (rest′)i

˜B
(V ′, s′′). Note that in the above compositions, resti

˜A
(V ′′, s′′) has image

contained in the non-unital subalgebra ˜As(V ′) on which (del′)˜Ai (V ′, s′) is defined.
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Similarly, del˜Bi (V, s′) has image contained in the non-unital subalgebra ˜Bs(V ′) on
which (rest′)i

˜B
(V ′, s′′) is defined. Composing using these variant homomorphisms,

one can check that we get the same composite homomorphism as above. This com-
posite preserves both the single grading and the multi-grading by Z〈e1, . . . , en〉.

3 Cyclic arrangements

3.1 Definitions

3.1.1 Cyclic arrangements

We let Gr>0
k,n denote the positive Grassmannian consisting of positive (i.e. totally

positive) k-dimensional subspaces of R
n , i.e. the set of subspaces whose Plücker

coordinates are all nonzero and have the same sign. An element in Gr>0
k,n can be

represented as the column span of an n × k matrix with strictly positive maximal
minors.

Definition 3.1 (cf. [18, 27, 45, 48, 53]) An arrangement (V , η) is called cyclic if:

• V ∈ Gr>0
k,n ,

• V + 〈η〉 ∈ Gr>0
k+1,n , and• η is positively oriented with respect to V , which means that the first coordinate of

the orthogonal projection of some, or equivalently every, representative w ∈ R
n

of η onto V ⊥ is positive.

Theorem 3.2 (Theorem 6.16 of [27]) Let (V , η) be a cyclic arrangement. The map
from the affine k-dimensional space V + η to the projectivization of the linear k + 1-
dimensional space W := V +〈η〉 sending v+η to [v+η] restricts to a homeomorphism
from the union of the compact regions of H(V ,η), a subset of V + η, to the m = 1
“B-amplituhedron” Bn,k,1(W ) ⊂ P(W ).

Karp–Williams also show that given an explicit n × (k +1)matrix Z T representing
(V , η) as above, the map from P(W ) to Grk,k+1 sending X to Z(X⊥) restricts to a
homeomorphism from Bn,k,1(W ) to the m = 1 amplituhedron An,k,1(Z) as defined
by Arkani–Hamed and Trnka [2] (in fact, they show an analogous result for general
m).

3.1.2 Left and right cyclic polarized arrangements

We propose that there are two natural analogues of the definition of cyclicity in the
world of polarized arrangements; below, we define “left cyclic” and “right cyclic”
polarized arrangements.

Definition 3.3 Let V = (V , η, ξ) be a polarized arrangement. We say that V is left
cyclic if:

• V + 〈η〉 ∈ Gr>0
k+1,n ,
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• (ξ, id)(V ) ∈ Gr>0
k,n+1, and• η is positively oriented with respect to V .

where (ξ, id) is the linear map from V to R
n+1 whose first coordinate is given by the

linear functional ξ on V . Similarly, we say that V is right cyclic if:

• V + 〈η〉 ∈ Gr>0
k+1,n ,

• (id, (−1)kξ)(V ) ∈ Gr>0
k,n+1, and• η is positively oriented with respect to V .

The conditions (ξ, id)(V ) ∈ Gr>0
k,n+1 and (id, (−1)kξ)(V ) ∈ Gr>0

k,n+1 both imply that

V ∈ Gr>0
k,n , so if (V , η, ξ) is left or right cyclic then (V , η) is cyclic. In Sect. 3.7 we

will show that left and right cyclicity are related by the combination of Gale duality,
alt, and polarization reversal.

3.2 Background results

3.2.1 Sign variation

The results of Karp–Williams make extensive use of an explicit identification of the
compact nonempty regions �α for a cyclic arrangement (V , η) as those for which α

has “sign variation” k, i.e. the signs in α change from + to − or − to + exactly k
times when reading from left to right (or from right to left). We review some proper-
ties of sign variation and cyclic arrangements here; we note that sign variation also
plays a crucial role in Arkani-Hamed–Thomas–Trnka’s “binary code” reformulation
of higher-m amplituhedra in terms of the m = 1 amplituhedron [3].

Definition 3.4 For α ∈ {+,−, 0}n , let var(α) denote the number of sign changes in α

as above, ignoring any zeroes. Let var(α) denote the maximum value of var(α′) over
all α′ ∈ {+,−}n obtained from α by replacing each zero with either plus or minus
(different zeroes may be replaced with different signs).

Proposition 3.5 (Proposition 6.14, Definition 5.1 of [27]) If (V , η) is cyclic, a sign
sequence α represents a (nonempty) compact region of (V , η) if and only if var(α) = k
and α starts with a plus (equivalently, var(α) = k and α ends with (−1)k). It represents
a noncompact region of (V , η) if and only if var(α) < k.

If z is a vector in R
n , we can define var(z) and var(z) by taking α to be the signs

of the coordinates of z.

Lemma 3.6 For z ∈ R
n \ {0}, we have var(alt(z)) = n − 1 − var(z), or equivalently

var(alt(z)) = n − 1 − var(z). Also, V is positive if and only if alt(V ⊥) is positive.

Proof This is [27, Lemma 3.3], following [4, 20, 22, 23]. ��
Lemma 3.7 For (V , η) with V ∈ Gr>0

k,n and V + 〈η〉 ∈ Gr>0
k+1,n, if u := projV ⊥(η),

then var(u) = var(u) = k.

Proof This is a consequence of [27, Theorem 3.4], which follows [20] (see also [27,
Definition 6.6]). ��
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Lemma 3.8 Let A be a totally positive m×n matrix and let v ∈ R
n. We have var(Av) ≤

var(v); if equality holds, then the signs of the first (and thus last) nonzero entries of
Av and v are equal.

Proof This is stated in the proof of [27, Proposition 6.8], following [20, 47]4. ��

3.2.2 Sign variation for polarized arrangements

If (V , η) is a cyclic arrangement, then all deletions and restrictions from Sect. 2.4 are
defined for (V , η). We can thus obtain new arrangements by deleting the first and last
hyperplanes of (V , η); remembering the deleted hyperplanes as polarizations gives us
two polarized arrangements (V ′, η′, ξ ′) and (V ′′, η′′, ξ ′′).

Definition 3.9 Given cyclic (V , η), set (V ′, η′, ξ ′) to be the deleted arrangement
(V1, η1), with ξ ′ the unique linear functional on V ∼= V ′ whose level sets on the
affine space V + η ∼= V ′ + η′ are parallel to the deleted hyperplane H1 and which
is increasing in the positive normal direction to H1. We define (V ′′, η′′, ξ ′′) simi-
larly, with (V ′′, η′′) = (Vn, ηn) and ξ ′′ increasing in (−1)k times the positive normal
direction to Hn .

Remark 3.10 In contrast to Sect. 2.4, herewe startwith an unpolarized arrangement and
obtain a polarized arrangement after deletion. The unpolarized part of this polarized
arrangement, though, comes from Sect. 2.4.

Let V ′ = (V ′, η′, ξ ′) and V ′′ = (V ′′, η′′, ξ ′′). One can check that these polar-
ized arrangements are left and right cyclic respectively, and that all left and right
cyclic arrangements arise in this manner. Reversing the perspective, given (V , η, ξ)

left cyclic, we will write (V l , ηl) for an (arbitrary) choice of cyclic arrangement
(V l , ηl) producing (V , η, ξ) as its polarized arrangement (V ′, η′, ξ ′). Similarly, we
write (V r , ηr ) for a choice of cyclic arrangement producing a given right cyclic polar-
ized arrangement (V , η, ξ).

In fact, the bounded feasible regions of a left cyclic polarized arrangement (V , η, ξ)

naturally correspond to the (nonempty) compact regions of (V l , ηl) (an analogous
statement holds in the right cyclic case). To see this, first note that by Proposition 3.5,
the sign sequence of any nonempty compact region of (V l , ηl) starts with a plus,
so it suffices to determine when +α is nonempty and compact for sign sequences
α ∈ {+,−}n .

Lemma 3.11 The following statements hold for a sign sequence α ∈ {+,−}n.

• �+α is empty if and only if �α is empty (i.e. α is infeasible), in which case α is
bounded.

4 In the literature this result appears with the restriction m ≥ n. In general, we can add rows to A so
it has more rows than columns and remains totally positive; let A′ denote the resulting matrix. We have
Footnote 4 continued
var(Av) ≤ var(A′v) ≤ var(v). If var(Av) = var(v), then the first nonzero entries of A′v and v have the
same sign. If Av = 0, then var(v) = 0, so v = 0; it follows that the first nonzero entries of v and Av have
the same sign.
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• �+α is nonempty and compact if and only if �α is nonempty and bounded (i.e. α

is bounded feasible).
• �+α is noncompact if and only if �α is nonempty and unbounded (i.e. α is feasible

but unbounded).

Proof We have �+α ⊂ �α , so if �α is empty then so is �+α . Conversely, if �α is
nonempty, then either var(α) ≤ k − 1, or var(α) = k and α starts with a plus by
Proposition 3.5. In either case, we have var(+α) ≤ k and +α starts with a plus, so
�+α is nonempty by Proposition 3.5.

If �+α is nonempty and compact then �α is nonempty by above. The affine func-
tional ξ on�α is bounded above on�+α ⊂ �α by compactness. Since the hyperplane
H1 ⊂ V l + ηl is a level set of ξ and ξ is larger on the positive side of H1 than on the
negative side, we see that ξ is also bounded above on �−α ⊂ �α , so ξ is bounded
above on �α = �+α ∪ �−α .

Conversely, suppose �α is nonempty and ξ is bounded above on �α . By above,
�+α is nonempty; if �+α is noncompact, then it contains some semi-infinite ray ρ.
Without loss of generality we may take ρ to be in the interior of �α , which must then
contain an open cone C(ρ) of semi-infinite rays centered around ρ. By construction,
�+α is contained between level sets of ξ acting on V + η, so ρ must be parallel to
H1. Since ξ is constant on ρ, ξ must be unbounded above on some rays in the cone
C(ρ) ⊂ �α , a contradiction. The final item of the lemma follows from the first two
items. ��

For α ∈ {+,−}n , let varl(α) := var(+α).

Corollary 3.12 A sign sequence α ∈ {+,−}n is feasible for the left cyclic arrangement
(V , η, ξ) if and only if varl(α) ≤ k and is bounded if and only if varl(α) ≥ k.

Proof By Lemma 3.11, α is feasible if and only if �+α is nonempty, which by Propo-
sition 3.5 happens if and only if var(+α) ≤ k. Similarly, α is bounded if and only if
�+α is compact, which happens if and only if var(+α) ≥ k. ��

We give the corresponding statements in the right cyclic case without proof; let
(V , η, ξ) be a right cyclic polarized arrangement.

Lemma 3.13 The following statements hold for a sign sequence α ∈ {+,−}n:

• �α(−1)k is empty if and only if �α is empty (i.e. α is infeasible), in which case α

is bounded.
• �α(−1)k is nonempty and compact if and only if �α is nonempty and bounded (i.e.

α is bounded feasible).
• �α(−1)k is noncompact if and only if �α is nonempty and unbounded (i.e. α is

feasible but unbounded).

For α ∈ {+,−}n , let varr (α) := var(α(−1)k).

Corollary 3.14 A sign sequence α ∈ {+,−}n is feasible for the right cyclic arrange-
ment (V , η, ξ) if and only if varr (α) ≤ k and is bounded if and only if varr (α) ≥ k.
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3.2.3 Consequences for hypertoric varieties and algebras

For cyclic arrangements and left or right cyclic polarized arrangements, the above
results give us a nice parametrization of the Lagrangians Xα ⊂ MV and int(�α) ⊂
(V + η)C \ HV appearing in Sect. 2.3.4, for α ∈ P as well as α ∈ K. When V is left
cyclic, relative core components ofMV are those Xα with varl(α) = k, and similarly
for right cyclic V . The core components of MV are those Xα with α(1) = + and
var(α) = k.

Correspondingly, we can use the above results to describe the algebra ˜B(V) more
explicitly in the case of interest; we first discuss the case where V is left cyclic. Let Q
be the quiver whose vertices are sign sequences α ∈ {+,−}n with varl(α) ≥ k, with
arrows p(α, β) from α to β and p(β, α) from β to α whenever α ↔ β.

Corollary 3.15 If V is left cyclic, the Z-algebra ˜B(V) can be naturally identified with
P(Q) ⊗Z Z[u1, . . . , un] modulo the two-sided ideal generated by the following rela-
tions:

A1 : eα for all α with varl(α) > k,
A2 : p(α, β)p(β, γ ) − p(α, δ)p(δ, γ ) for all distinct α, β, γ, δ with varl ≥ k and

α ↔ β ↔ γ ↔ δ ↔ α,
A3 : p(α, β, α) − ui eα for all α, β with varl ≥ k and α ↔ β.

The right cyclic case has a similar descriptionwith varl replacedbyvarr everywhere.

3.3 Cyclic arrangements as an equivalence class

The following alternative characterization of cyclic arrangements will be useful.

Proposition 3.16 Given (V , η), let φ ∈ (V + 〈η〉)∗ be the unique functional with
φ(V ) = 0 and φ(η) = 1. The arrangement (V , η) is cyclic if and only if (φ, id)(V +
〈η〉) ∈ Gr>0

k+1,n+1.

Proof We first claim that given either of the conditions in the statement, we have
V ∈ Gr>0

k,n and V +〈η〉 ∈ Gr>0
k+1,n . This is immediate if (V , η) is left cyclic. Assuming

that (φ, id)(V + 〈η〉) ∈ Gr>0
k+1,n+1, represent V as the column span of a matrix A′,

and represent η by a vector w′ ∈ R
n . Then (φ, id)(V + 〈η〉) is the column span of

[

1 0
w′ A′

]

, so the maximal minors of this matrix all have the same sign. It follows

that the maximal minors of A′ and of
[

w′ A′ ] all have the same sign, so V ∈ Gr>0
k,n

and V + 〈η〉 ∈ Gr>0
k+1,n . It thus suffices to show that η is positively oriented with

respect to V if and only if (φ, id)(V + 〈η〉) ∈ Gr>0
k+1,n+1, assuming that V ∈ Gr>0

k,n

and V + 〈η〉 ∈ Gr>0
k+1,n , and we will make these assumptions below.

If A is a matrix with p columns, we will write ˜A for A with its columns permuted
by the longest permutation in the symmetric group Sp. We let i label the rows and j
label the columns of a given matrix, so that an expression like (−1) j

˜A means “˜A with
its j th column multiplied by (−1) j for 1 ≤ j ≤ k,” and similarly for expressions like
(−1)i

˜A.
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Since V ∈ Gr>0
k,n , there exists a unique totally positive matrix A of size (n − k) × k

such that V is the column span of the matrix

[

Ik

(−1) j+k
˜A

]

(see [43, Lemma 3.9]),

where Ik is the identity matrix of size k (note that all maximal minors of the above

block matrix are positive). There exists a unique vector w′ ∈ R
n−k such that

[

0
w′
]

represents η ∈ R
n/V ; then

V + 〈η〉 = colspan

[

0 Ik

w′ (−1) j+k
˜A

]

,

and (φ, id)(V + 〈η〉) = colspan

⎡

⎣

1 0
0 Ik

w′ (−1) j+k
˜A

⎤

⎦

Since V + 〈η〉 ∈ Gr>0
k+1,n , there exists a unique vector w ∈ {w′,−w′} such that the

minors of thematrix

[

0 Ik

(−1)kw (−1) j+k
˜A

]

are all positive. It follows that themaximal

minors of

⎡

⎣

1 0
0 Ik

(−1)kw (−1) j+k
˜A

⎤

⎦ are all positive, so that
[

A w
]

is a totally positive

matrix. Writing w′ = (−1)�w for some � defined modulo 2, we want to show that η

is positively oriented with respect to V if and only if � = k modulo 2.
To do so, let u be the orthogonal projection of η onto V ⊥. Since u is equivalent to

[

0
(−1)�w

]

modulo V , we can write

u =
[

0 Ik

(−1)�w (−1) j+k
˜A

] [

1
z

]

for some z ∈ R
k . Expanding out this product of block matrices, we get

[

z
v

]

where

v = [

(−1)�w (−1) j+k
˜A
]

[

1
z

]

= [

A w
]

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zk

−zk−1
...

(−1)k−1z1
(−1)k(−1)�−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,

writing

z =
⎡

⎢

⎣

z1
...

zk

⎤

⎥

⎦
.
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By Lemma 3.8, we have

var(v) ≤ var

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zk

−zk−1
...

(−1)k−1z1
(−1)k(−1)�−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

Now, we have var(u) = var(u) = k by Lemma 3.7. The first coordinate u1 of u
is equal to z1. If this coordinate were zero, we would not have var(u) = var(u), so
either u1 = z1 > 0 (if η is positively oriented with respect to V ) or u1 = z1 < 0 (if η

is negatively oriented with respect to V ). We want to show that

u1 = z1 > 0 if and only if � = k mod 2.

Assume one of the above two statements holds without the other; we will derive a
contradiction. It follows that (−1)k−1z1 and (−1)k(−1)�−k have the same sign, so

var

⎛

⎜

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎢

⎣

zk

−zk−1
...

(−1)k−1z1
(−1)k(−1)�−k

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎟

⎟

⎠

= var

⎛

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎣

zk

−zk−1
...

(−1)k−1z1

⎤

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎟

⎠

=: var (z′)

and we get

var(v) ≤ var
(

z′) ≤ var
(

z′) = k − 1 − var(z). (3.1)

Since u =
[

z
v

]

, we have k = var(u) ≤ var(z) + var(v) + 1 ≤ var(z) + (k −
1 − var(z)) + 1 = k. The inequalities in (3.1) must therefore be equalities, so that
var(v) = var(z′).

By Lemma 3.8, the first nonzero entries of v and z′ must have the same sign, and
since the vectors have the same value of var, their last nonzero entries must also have
the same sign. The last entry vn−k of u is nonzero (otherwise var(u) �= var(u) as
before), so the sign of vn−k is the sign of (−1)k−1z1 = (−1)k−1u1. This contradicts
var(u) = k, proving the proposition. ��
Corollary 3.17 Given (V , η), let φ be defined as in Proposition 3.16. The arrangement
(V , η) is cyclic if and only if (id, (−1)kφ)(V + 〈η〉) ∈ Gr>0

k+1,n+1.

Proof By Proposition 3.16, it suffices to show that (φ, id)(V + 〈η〉) ∈ Gr>0
k+1,n+1 if

and only if (id, (−1)kφ)(V + 〈η〉) ∈ Gr>0
k+1,n+1. Picking a matrix A′ and a vector w′

representing V and η respectively, (φ, id)(V + 〈η〉) is the column span of

[

1 0
w′ A′

]

.
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Comparing this matrix with

[

(−1)kw′ A′
1 0

]

, the maximal minors not involving the

top row of the first matrix are (−1)k(k+1) = 1 times the maximal minors not involving
the bottom row of the second matrix. The maximal minors involving the top row of
the first matrix are (−1)k2+k = 1 times the maximal minors involving the bottom row
of the second matrix. Since the column span of the second matrix is (id, (−1)kφ)(V +
〈η〉) ∈ Gr>0

k+1,n+1, the corollary follows. ��
Corollary 3.18 For a given (n, k), the cyclic arrangements (V , η) form an equivalence
class of arrangements.

Proof It follows from Proposition 3.16 that an arrangement (V , η), with V the column
span of A′ and η represented by w′, is cyclic if and only if the maximal minors of
[

1 0
w′ A′

]

, or equivalently of

[

0 1
A′ w′

]

, all have the same sign. This holds if and only

if the maximal minors of

[

A′ w′
0 1

]

not involving the bottom row all have one sign

and the maximal minors involving the bottom row all have (−1)k times this sign. Such
arrangements (V , η) constitute an equivalence class. ��
Corollary 3.19 Given a polarized arrangement (V , η, ξ), let φ be defined as in
Proposition 3.16. Then (V , η, ξ) is left cyclic if and only (id, (−1)kφ)(V + 〈η〉) ∈
Gr>0

k+1,n+1 and (ξ, id)(V ) ∈ Gr>0
k,n+1. Similarly, (V , η, ξ) is right cyclic if and only

(φ, id)(V + 〈η〉) ∈ Gr>0
k+1,n+1 and (id, (−1)kξ)(V ) ∈ Gr>0

k,n+1.

Proof By definition, (V , η, ξ) is left cyclic if and only if (V , η) is cyclic and
(ξ, id)(V ) ∈ Gr>0

k,n+1; by Corollary 3.17, this holds if and only if (id, (−1)kφ)(V +
〈η〉) ∈ Gr>0

k+1,n+1 and (ξ, id)(V ) ∈ Gr>0
k,n+1. The argument in the right cyclic case is

similar, using Proposition 3.16. ��
Corollary 3.20 Given a polarized arrangement (V , η, ξ), let φ be defined as in Propo-
sition 3.16. Then (V , η, ξ) is left cyclic if and only if there exists a strong lift ξ̄ of ξ such
that (ξ̄ , id, (−1)kφ)(V + 〈η〉) ∈ Gr>0

k+1,n+2. Similarly, (V , η, ξ) is right cyclic if and

only if there exists a strong lift ξ̄ of ξ such that (φ, id, (−1)k ξ̄ )(V +〈η〉) ∈ Gr>0
k+1,n+2.

Proof We will give a proof in the left cyclic case; the right cyclic case is similar.
If a strong lift ξ̄ exists as described, let A′, w′ be representatives for V , η, and let
[

(x ′)T c
]

be the matrix for ξ̄ in the columns of
[

A′ (−1)kw′ ]. The maximal

minors of

⎡

⎣

(x ′)T c
A′ (−1)kw′
0 1

⎤

⎦ all have the same sign; it follows from Corollary 3.19

that (V , η, ξ) is left cyclic.
Conversely, assume (V , η, ξ) is left cyclic (with A′, w′, x ′ chosen as above), and

consider the above matrix with c left unspecified. By assumption, maximal minors
involving the bottom row all have the same sign, and maximal minors not involving
the top row all have the same sign (the signs must thus agree in these two cases). Each
of the finitely many maximal minors involving the top row, but not the bottom, can
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be written as (−1)kc times a maximal minor of A′ (all of which have the same sign),
plus terms that are independent of c. Thus, for c >> 0 or c << 0, we can ensure that
these minors have the same sign as the rest of the minors of this matrix, so a strong
lift ξ̄ exists as specified in the statement. ��
Corollary 3.21 For a given (n, k), the left cyclic and the right cyclic polarized arrange-
ments (V , η, ξ) form equivalence classes of polarized arrangements.

Proof It follows from Corollary 3.20 that (V , η, ξ) is left cyclic if and only if it has a
strong lift (V , η, ξ̄ ), with V the column span of A′, η represented by w′, and ξ̄ having
matrix

[

(x ′)T c
]

in the columns of
[

A′ (−1)kw′ ], such that the maximal minors

of

⎡

⎣

(x ′)T c
A′ (−1)kw′
0 1

⎤

⎦ all have the same sign. This condition on the signs of maximal

minors is equivalent to a condition on the signs of maximal minors of the matrix
⎡

⎣

A′ w′
(x ′)T c
0 1

⎤

⎦ that specifies an equivalence class of strong polarized arrangements,

and thus an equivalence class of polarized arrangements. ��

3.4 Vandermonde arrangements

Let z1 < · · · < zn ∈ R ⊂ C and let V be the column span of the Vandermonde matrix

⎡

⎢

⎢

⎢

⎣

1 z1 · · · zk−1
1

1 z2 · · · zk−1
2

...

1 zn · · · zk−1
n

⎤

⎥

⎥

⎥

⎦

. (3.2)

Let η be the element of R
n/V represented by w := (−1)k(zk

1, . . . , zk
n); then (V , η)

is an arrangement. If all the zi are rational then (V , η) is rational; one can check
that (V , η) is cyclic using Sect. 3.3 or the proof of [27, Proposition 6.8]. If we write
v1, . . . , vk for the columns of the above matrix and identify V +η with R

k by sending
(a1, . . . , ak) ∈ R

k to a1v1 + · · · + akvk + w ∈ V + η, then the i th hyperplane of the
arrangement has equation

a1 + a2zi + · · · + ak zk−1
i + (−zi )

k = 0.

It follows from Sect. 3.3 that all cyclic arrangements are equivalent to ones arising
from this Vandermonde construction in the sense defined above, and that given n and
k they are all equivalent to each other (i.e. the choice of zi does not matter up to
equivalence).

We now give a polarized analogue of this construction. Given points z0 < z1 <

· · · < zn inR ⊂ C, we define a left cyclic polarized arrangement (V , η, ξ)with (V , η)

obtained from z1, . . . , zn as above.We let ξ be the linear functional on V whosematrix
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in the columns of the above Vandermonde matrix is
[

1 z0 · · · zk−1
0

]

. One can
check that (V , η, ξ) is left cyclic. Similarly, given z1 < · · · < zn < zn+1 in R ⊂ C,
we define a right cyclic polarized arrangement (V , η, ξ) where (V , η) are defined as
above and ξ has matrix (−1)k

[

1 zn+1 · · · zk−1
n+1

]

. Again, all left and right cyclic
polarized arrangements are equivalent to Vandermonde ones, which (given n, k, and
a choice of left versus right) are all equivalent to each other.

3.5 Symmetric powers

3.5.1 Cyclic arrangements and Symk(C)

Besides their relationship to amplituhedra, cyclic arrangements are also special in that
their complexified complements XV are symmetric products of the punctured plane,
as we explain below. While much of the material in this section is standard, we give
a detailed exposition due to its conceptual importance in understanding our results.

Proposition 3.22 When (V , η) is the Vandermonde arrangement of n points z1 <

· · · < zn in R ⊂ C from Sect. 3.4, the map from C
k toSymk(C) sending (a1, . . . , an) to

the multi-set of roots of the polynomial f (z) = (−z)k +ak zk−1+· · ·+a2z+a1 restricts
to a bijection from the complexified complement of (V , η) (a subset of (V + η)C ∼=
(Rk)C = C

k) to Symk(C \ {z1, . . . , zn}).
Proof We can identify Symk(C) with the space of degree k complex polynomials in a
single variable z, with leading term (−z)k for reasons we will see below, by sending a
polynomial to its (unordered) multi-set of roots. The subset Symk(C\{z1, . . . , zn}) of
Symk(C) gets identified with those polynomials that do not vanish at z1, . . . , zn . On
the other hand, the same set of degree k complex polynomials can be identified with
C

k by sending a polynomial f (z) = (−z)k + ak zk−1 + · · · + a2z + a1 to its vector of
coefficients. Under this identification, the polynomials f vanishing at zi correspond
to the coefficient vectors (a1, . . . , ak) satisfying the equation

(−zi )
k + ak zk−1

i + · · · + a2zi + a1 = 0,

the complexified equation for the i th hyperplane of the Vandermonde arrangement
(V , η). Thus, the complexified complement of (V , η) is identified with polynomials
not vanishing at any zi , and thus with Symk(C \ {z1, . . . , zn}). ��

For any cyclic arrangement (V , η), an equivalence of (V , η)with the Vandermonde
arrangement for z1 < · · · < zn gives an identification of the complement of the
complexification of (V , η) with Symk(C \ {z1, . . . , zn}).

3.5.2 Distinguished Lagrangians

Recall from Sect. 2.3.4 that for an arrangement (V , η), the complexified complement
of (V , η) has a distinguished family of noncompact Lagrangians given by the interiors
of the compact regions of (V , η), and that given a polarization (V , η, ξ), we get a larger
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family consisting of interiors of bounded feasible regions.When (V , η) is cyclic (resp.
(V , η, ξ) is left or right cyclic), we can view the interiors of compact (resp. bounded
feasible) regions as Lagrangians in Symk(C \ {z1, . . . , zn}).
Proposition 3.23 For cyclic (V , η), the Lagrangians in Symk(C \ {z1, . . . , zn}) given
by interiors of compact regions of (V , η) are the symmetric products of unordered
k-tuples of the straight-line Lagrangians connecting zi to zi+1 for 1 ≤ i ≤ n − 1. For
left cyclic (V , η, ξ), the Lagrangians in Symk(C \ {z1, . . . , zn}) given by interiors of
bounded feasible regions are the same as above, except that one includes the straight-
line Lagrangian between −∞ and z1 in R ⊂ C. For right cyclic (V , η, ξ), one includes
the straight-line Lagrangian between zn and +∞ instead.

Proof Let (V , η) be cyclic and let α ∈ K; by Proposition 3.5, we have var(α) = k
and α starts with a plus. We can view points in the interior of �α as polynomials
f (z) = (−z)k +ak zk−1+· · ·+a2z+a1, with real coefficients, such thatα(i) f (zi ) > 0
for all i . Such polynomials f have k sign changes on the real axis because var(α) = k,
so they have k real roots. More precisely, if α changes sign after index i j for 1 ≤ i1 <

· · · < ik < n, then f has a root between zi j and zi j +1 for 1 ≤ j ≤ k. It follows that
the multi-set of roots of f lies in the symmetric product of straight lines from zi j to
zi j +1 inside Symk(C \ {z1, . . . , zn}) for 1 ≤ j ≤ k.

Conversely, assume f (z) = (−z)k +ak zk−1+· · ·+a2z +a1 for arbitrary complex
coefficients ai , with f (zi ) �= 0 for all i , and that the multi-set of roots of f lies in the
symmetric product of straight lines from zi j to zi j +1 for some 1 ≤ i1 < · · · < ik < n.
For 1 ≤ i ≤ n, let α(i) denote the sign of f (zi ); then (a1, . . . , ak) ∈ �α and we have
var(α) = k. Furthermore, f (z1) = (r1 − z1) · · · (rk − z1) > 0 since each root r j is
greater than z1, so the first sign of α is a plus. Thus, α ∈ K.

Now let (V , η, ξ) be left cyclic and let α ∈ P; by Corollary 3.12, we have varl(α) =
k. For a point in the interior of �α viewed as a polynomial f as above, if α starts with
a plus then the above argument goes through and f is in a symmetric product of
finite-length straight lines. If α starts with a minus, then varl(α) = k − 1, so there
exist 1 ≤ i1 < · · · < ik−1 < n such that f has a root between zi j and zi j +1
for 1 ≤ j ≤ k − 1. Furthermore, since limz→−∞∈R f (z) = +∞ but f (z1) < 0,
f must have a root on the real axis to the left of z1. Thus, the multi-set of roots
of f lies in a member of the extended family of symmetric-product Lagrangians in
Symk(C \ {z1, . . . , zn}) from the statement. Conversely, if the multi-set of roots of
f lies in one of these Lagrangians, then f has real coefficients and the region �α

containing (a1, . . . , ak) satisfies varl(α) = k; we thereby have α ∈ P .
Finally, let (V , η, ξ) be right cyclic and let α ∈ P; we have varr (α) = k. We

consider two cases depending on whether the last sign of α is ±(−1)k ; if it is (−1)k ,
then var(α) = varr (α) = k and the argument proceeds as usual. If the last sign of α

is −(−1)k , note that limz→∞∈R f (z) = (−1)k ; the argument proceeds as before. ��
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Fig. 1 Left: n lines and n+1 regions between them.Right: a set of 3 dots in the regions {0, 1, 4} ⊂ {0, . . . , 6}

3.6 Dots in regions and partial orders

3.6.1 Sign sequences and dots in regions

We introduce an alternate combinatorial description of bounded feasible sign
sequences α in the left and right cyclic cases, closely mirroring the structure of
the straight-line Lagrangians in Proposition 3.23. Let Vl(n, k) denote the set of k-
element subsets of {0, . . . , n − 1} and let Vr (n, k) denote the set of k-element subsets
of {1, . . . , n}. Following Ozsváth–Szabó (see Sect. 4 below), we draw elements of
Vl(n, k) as sets of k dots in the regions {0, . . . , n − 1} on the left of Fig. 1; see the
right of Fig. 1 for an example. Elements of Vr (n, k) are drawn similarly as sets of k
dots in the regions {1, . . . , n} on the left of Fig. 1.

Definition 3.24

(i.) Let V be a left cyclic polarized arrangement so that P is the set of α ∈ {+,−}n

with varl(α) = k. There is a bijection κl : P → Vl(n, k) given by sending α ∈ P
to xα ⊂ {0, . . . , n − 1} with i ∈ xα if there is a change after sign i + 1 in the
sequence+α; the inverse sends x ∈ Vl(n, k) to αx, defined from+αx by starting
with a+ (“step zero”) and writing n signs to the right, introducing a sign change
at step i if and only if i − 1 ∈ x.

(ii.) Let V be a right cyclic polarized arrangement so thatP is the set of α ∈ {+,−}n

with varr (α) = k. There is a bijection κr : P → Vr (n, k) sending α to xα ⊂
{1, . . . , n} defined by i ∈ xα if there is a change after sign i in the sequence
α(−1)k ; the inverse sends x ∈ Vr (n, k) to αx, defined from αx(−1)k by starting
with (−1)k as the rightmost entry (“step zero”) and writing n signs from right
to left, introducing a sign change at step i if and only if n − i + 1 ∈ x.

Let V ′(n, k) denote the set of k-element subsets of {1, . . . , n − 1}; we have
V ′(n, k) ⊂ Vl(n, k), Vr (n, k). The above constructions give a bijection between
V ′(n, k) and the set of α ∈ K for a cyclic arrangement. In all cases (cyclic, left
cyclic, and right cyclic), Proposition 3.23 identifies the interior-of-region Lagrangian
for a given α with the symmetric-product Lagrangian for xα .

3.6.2 The partial order for cyclic arrangements

Let z0 < z1 < · · · < zn ∈ R ⊂ C, and let (V , η, ξ) be the associated left cyclic
Vandermonde arrangement from Sect. 3.1.2. We have a partial order on the set P of
bounded feasible sign sequences for (V , η, ξ) from Sect. 2.2.4. IdentifyingP with the
set Vl(n, k) of k-element subsets of {0, . . . , n − 1} from Sect. 3.6.1, viewed as sets of
dots in regions, we also have the lexicographic partial order on Vl(n, k) generated by
the relations x < y when y is obtained from x by moving a dot one step to the right.
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Proposition 3.25 For a left cyclic Vandermonde arrangement, the partial order on P
induced by ξ agrees with the order induced from the lexicographic order on Vl(n, k)

from the bijection κl : P → Vl(n, k).

Proof Let α ∈ P , and identify V with R
k using the columns of the Vandermonde

matrix from (3.2). The points (a1, . . . , ak) ∈ R
k lying in the region �α are those

satisfying the inequalities

α(i)
(

(−zi )
k + ak zk−1

i + · · · + a2zi + a1
)

≥ 0.

On the other hand, we can view (a1, . . . , ak) as a degree-k polynomial fa1,...,ak (z) =
(−z)k +ak zk−1 +· · ·+a2z +a1 of one variable z, and this identification is a bijection
between R

k and the set of real-coefficient degree-k polynomials in z with leading
term (−z)k . Under this identification, �α is the set of such polynomials f such that
α(i) f (zi ) ≥ 0 for all i , i.e. that either f (zi ) = 0 or the sign of f (zi ) is αi for all i .
The interior of �α is the set of f such that f (zi ) is nonzero and has the same sign as
αi for all i . Note that if f is in the interior of �α , then since var(α) = k, all roots of
f are real and lie in the regions between the zi coming from the element x of Vl(n, k)

corresponding to α (see Fig. 1). Thus, if x = {i1 < · · · < ik}, then we can write
f (z) = (r1 − z) · · · (rk − z) where

• if i1 = 0, then r1 < z1;
• if i j �= 0, then zi j < r j < zi j +1.

Now, up to an additive constant that does not depend on f , the value of ξ at f is
the evaluation f (z0). Taking the constant to be zero, the maximum value attained by
ξ on �α is the supremum of f (z0) over all f in the interior of �α . By the above, we
have f (z0) = (r1 − z0) · · · (rk − z0). This quantity approaches its supremum (over
the interior of �α) as r j → zi j for all j , so the supremum is (zi1 − z0) · · · (zik − z0).
Thus, for α ↔ β (corresponding to x, y such that y is obtained from x by moving a
dot one step), we have α < β if and only if y is obtained from x by increasing the
value of i j by one for some j (i.e. moving a dot of x one step to the right), and the
proposition follows. ��

An analogous result holds in the right cyclic case with the following modifications.
We start with z1 < · · · < zn < zn+1. For f in the interior of �α we have f (z) =
(r1 − z) · · · (rk − z) where

• if ik = n, then rk > zn ;
• if i j �= n, then zi j < r j < zi j +1

(analogously to above, we let α correspond to x = {i1 < · · · < ik} ⊂ {1, . . . , n}).
The value of ξ at f is (−1)k f (zn+1) up to an additive constant; the supremum of this
value over f in the interior of �α is (zn+1 − zi1) · · · (zn+1 − zik ). We conclude that
for α ↔ β corresponding to x, y ⊂ {1, . . . , n}, we have α < β if and only if y is
obtained from x by moving a dot one step to the left.

The proof of Proposition 3.25 also lets us conclude that our bijectionsP ↔ Vl(n, k)

from Sect. 3.6.1 and P ↔ B from Sect. 2.2.4 are related straightforwardly.
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Corollary 3.26 If (V , η, ξ) is the left cyclic Vandermonde arrangement associated to
z0 < z1 < · · · < zn ∈ R ⊂ C and we have α ∈ P , then the element x ∈ B associated
to α in Definition 3.24 is obtained from the element x ∈ Vl(n, k) associated to α in
Sect. 2.2.4 by adding one to each i ∈ x.

Proof By definition, x is the set of indices of the k hyperplanes at whose (unique)
intersection point the functional ξ takes its maximum value on �α . By the proof
of Proposition 3.25, the point of �α maximizing the value of ξ corresponds to a
polynomial f whose roots lie at the right endpoints of the regions containing the dots
of x. The hyperplane Hi consists of those polynomials vanishing at zi , and the right
endpoint of a region labeled i ∈ {0, . . . , n − 1} is i + 1. ��

If (V , η, ξ) is a right cyclic Vandermonde arrangement, one can show similarly that
the elements x ∈ B and x ∈ Vr (n, k) associated to α agree as subsets of {1, . . . , n}.

Proposition 3.25 and Corollary 3.26 (resp. their right cyclic analogues) hold for
general left cyclic (resp. right cyclic) polarized arrangements, since their claims are
preserved under equivalence and all left and right cyclic polarized arrangements are
equivalent to Vandermonde ones.

3.7 Cyclicity and Gale duality

For a polarized arrangement (V , η, ξ), its Gale dual is (V ⊥,−ξ,−η), so its alt Gale
dual is (alt(V ⊥),− alt(ξ),− alt(η)). Thus, the polarization reversal of its alt Gale dual
is (alt(V ⊥),− alt(ξ), alt(η)). Similarly, the alt Gale dual of its polarization reverse is
(alt(V ⊥), alt(ξ),− alt(η)). Note that alt commutes with Gale duality and polarization
reversal; the relevant question is the ordering of Gale duality and polarization reversal.

Theorem 3.27 A polarized arrangement (V , η, ξ) is right cyclic if and only if the
polarization reversal of its alt Gale dual (alt(V ⊥),− alt(ξ), alt(η)) is left cyclic.

Proof Given either condition we have V ∈ Gr>0
k,n , so there exists a unique totally

positive matrix A of size (n − k) × k such that V is the column span of the matrix
[

Ik

(−1) j+k
˜A

]

. Let w ∈ R
n−k be the unique vector such that

[

0
(−1)kw

]

represents

η ∈ R
n/V . Let [(−1) j xT ] be the matrix of ξ in the columns of the matrix representing

V . Then

(φ, id)(V + 〈η〉) = colspan

⎡

⎣

1 0
0 Ik

(−1)kw (−1) j+k
˜A

⎤

⎦ ,

(id, (−1)kξ)(V ) = colspan

⎡

⎣

Ik

(−1) j+k
˜A

(−1) j+k xT

⎤

⎦

Note that V ⊥ can be viewed as the column span of

[

(−1)i+k(˜A)T

−In−k

]

where ()T

denotes the transpose (we are viewing elements of both R
n and (Rn)∗ as column
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vectors). We can multiply column j by (−1)k+ j to view V ⊥ as the column span of
[

(−1)i+ j (˜A)T

(−1)k+ j−1 In−k

]

. Thus, alt(V ⊥) is the column span of

[

(−1) j−1(˜A)T

In−k

]

.

Since

[

0
(−1)kw

]

represents η ∈ R
n/V , we can take

[

0
(−1)i−1w

]

to repre-

sent alt(η). The matrix of alt(η) as a linear functional on alt(V ⊥), in the basis for
alt(V ⊥) given by columns of the above matrix, is thus

[

(−1) j−1wT
]

. We see that

(alt(η), id)(alt(V ⊥)) is the column span of

⎡

⎣

(−1) j−1wT

(−1) j−1(˜A)T

In−k

⎤

⎦.

The vector

[

(−1)i x
0

]

in (Rn)∗ represents ξ ∈ (Rn)∗/V ⊥; indeed, dot products of

this vector with the columns of

[

Ik

(−1) j+k
˜A

]

give the matrix
[

(−1) j xT
]

for ξ in this

basis for V . It follows that the vector

[

x
0

]

represents − alt(ξ) ∈ (Rn)∗/V ⊥, so

(id, (−1)n−kφ)(alt(V ⊥) + 〈− alt(ξ)〉) = colspan

⎡

⎣

(−1) j−1
˜AT (−1)n−k x

In−k 0
0 1

⎤

⎦ .

By Corollary 3.19 and the above setup, (V , η, ξ) is right cyclic if and only if the

maximal minors of

⎡

⎣

1 0
0 Ik

(−1)kw (−1) j+k
˜A

⎤

⎦ and of

⎡

⎣

Ik

(−1) j+k
˜A

(−1) j+k xT

⎤

⎦ are all positive,

while (alt(V ⊥),− alt(ξ), alt(η)) is left cyclic if and only if the maximal minors of
⎡

⎣

(−1) j−1wT

(−1) j−1(˜A)T

In−k

⎤

⎦ and

⎡

⎣

(−1) j−1
˜AT (−1)n−k x

In−k 0
0 1

⎤

⎦ are all positive.

It suffices to show that the column spans of the matrices for (V , η, ξ) are the alt per-
pendiculars of the column spans of thematrices for (alt(V ⊥),− alt(ξ), alt(η)). Indeed,

the perpendicular of (alt(η), id)(alt(V ⊥) is the columnspanof

⎡

⎣

−1 0
0 −Ik

(−1)i−1w (−1)i−1
˜A

⎤

⎦,

or equivalently of

⎡

⎣

1 0
0 (−1) j Ik

(−1)iw (−1)i+ j
˜A

⎤

⎦, so its alt-perpendicular is the column span

of

⎡

⎣

1 0
0 Ik

(−1)kw (−1) j+k
˜A

⎤

⎦. Similarly, the perpendicular of (id, (−1)kξ)(V ) is the

column span of

⎡

⎣

(−1)i+k
˜AT (−1)i+k x

−In−k 0
0 −1

⎤

⎦ or equivalently of
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⎡

⎣

(−1)i+ j
˜AT (−1)i+n−k+1x

(−1)k+ j−1 In−k 0
0 (−1)n

⎤

⎦, so the alt perpendicular of (id, (−1)kξ)(V ) is

the column span of
⎡

⎣

(−1) j−1
˜AT (−1)n−k x

In−k 0
0 1

⎤

⎦.

��
Corollary 3.28 The algebras A(V) and B(V) for right cyclic polarized arrangements
V are Koszul dual to the Ringel duals of the algebras A(V ′) and B(V ′) respectively
for left cyclic polarized arrangements V ′. Equivalently, A(V) is Ringel dual to B(V ′)
and B(V) is Ringel dual to A(V ′).

Note that the combination of Koszul and Ringel duality is a familiar type of duality
in the literature; see e.g. [49].

3.8 Deletions and restrictions of cyclic arrangements

Definition 3.29 Let V i = (V i , ηi , ξ i ) be obtained from V = (V , η, ξ) by restricting
to the i th hyperplane. The signed restriction V i

sign = (V i
sign, η

i
sign, ξ

i
sign) of V is the

polarized arrangement obtained from V i by applying the automorphisms of R
n−1 and

(Rn−1)∗ represented by the diagonal matrix with j th entry 1 if j < i and −1 if j ≥ i .
We say that V i

sign is obtained by signed-restricting V to the i th hyperplane. We use

the same terminology in the unpolarized case, and refer to (V i
sign, η

i
sign) as the signed

restriction of (V , η).

Lemma 3.30 Let V = (V , η, ξ) be a left cyclic (resp. right cyclic) arrangement.

(i) Let Vi = (Vi , ηi , ξi ) be obtained from V by deleting the i th hyperplane as in
Sect. 2.4. Then Vi is left cyclic (resp. right cyclic).

(ii) LetV i
sign be the arrangement obtained by signed-restrictingV to the i th hyperplane

(see Definition 3.29). Then V i
sign is left cyclic (resp. right cyclic).

Proof The proof of part (i) is straightforward; we will prove part (ii). First assume
V = (V , η, ξ) is left cyclic; then the alt Gale dual of the polarization reversal of V
(namely alt(p(V)∨) = (V ⊥, alt(ξ),− alt(η))) is right cyclic. The i th restriction of
the polarization reversal of V is the polarization reversal of the i th restriction of V ,
i.e p(V)i = p(V i ). The Gale dual of this is the i th deletion of the Gale dual of the
polarization reversal of V , so that (p(V)i )∨ = p(V i )∨ = (p(V)∨)i . Thus, the alt Gale
dual of the polarization reversal of the i th restriction of V is alt of the i th deletion of
the Gale dual of the polarization reversal of V , i.e. alt(p(V i )∨) = alt((p(V)∨)i ). Alt
of a deletion and deletion of an alt are related by a sign-change automorphism as in
the definition of the signed restriction, so

alt(p(V i
sign)

∨) = (alt(p(V)∨))i .
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Fig. 2 A cyclic arrangement with left cyclic and right cyclic polarizations for n = 4, k = 1

By part (i) and the above, the alt Gale dual alt(p(V i
sign)

∨) of the polarization reversal

of the i th signed restriction of V is right cyclic, so the signed restriction V i
sign of V in

the statement of the lemma is left cyclic. The case when V is right cyclic, rather than
left cyclic, is similar. ��

Note that the algebras associated to V i
sign are naturally isomorphic to those associ-

ated to V i . Pick an ordered basis for V i and a representative in R
n−1 for η′, so that we

can view V i as a polarized arrangement of n −1 affine hyperplanes inR
k−1. Define an

ordered basis for V i
sign and representative for ηi

sign by sign-changing the basis vectors

for V i and the representative of ηi as in Definition 3.29, so that we can also view
V i
sign as a polarized arrangement of n −1 affine hyperplanes in R

k−1. The above auto-

morphism of R
n−1 and (Rn−1)∗, sending V i to V i

sign, has the effect of reversing the

co-orientation on the hyperplanes Hj of V i for j ≥ i (coming from hyperplanes Hj of
the original arrangement V with j > i) while keeping the direction of ξ i unchanged.

The analogous statements in the unpolarized case are also true.

Lemma 3.31 Let (V , η) be a cyclic arrangement.

(i) Let (Vi , ηi ) be obtained from (V , η) by deleting the i th hyperplane. Then (Vi , ηi )

is cyclic.
(ii) Let (V i

sign, η
i
sign) be obtained by signed-restricting to the i th hyperplane. Then

(V i
sign, η

i
sign) is cyclic.

3.9 Examples

3.9.1 k = 1

Choosing real numbers z1 < · · · < zn , the k = 1 Vandermonde arrangement (V , η)

associated to these numbers has V given by the column span of

⎡

⎢

⎣

1
...

1

⎤

⎥

⎦
and η represented

by

⎡

⎢

⎣

−z1
...

−zn

⎤

⎥

⎦
. Identifying V + η with R

1 using this data, the hyperplane Hi of the

arrangement HV has equation x = zi with positive region x > zi . Define ξl by
choosing z0 < z1, so that ξl has matrix

[

1
]

. Define ξr by choosing zn+1 > zn , so that
ξr has matrix

[−1
]

.
The arrangement HV ⊂ R

1 is shown in Fig. 2 (left) for n = 4 and zi = i for all i .
The figure also shows the regions�α forα ∈ F , labeled by their sign sequencesα. The
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middle picture of Fig. 2 indicates the left cyclic polarization arising from the choice
of z0 = 0 < z1; the regions �α for α ∈ P are colored and labeled by sets of dots
in regions. The right picture of Fig. 2 does the same for the right cyclic polarization
arising from the choice of z5 = 5 > z4.

WhenV is a cyclic arrangementwith k = 1, the hypertoric varietyMV is isomorphic
to the Milnor fiber of the type An−1 Kleinian singularity C

2/Zn ; this is the family of
varieties studied by Gibbons–Hawking [19] in the context of gravitational instantons.
These are also the varieties appearing in [26]. Moreover, if we choose a left cyclic
polarization of V , then Khovanov–Seidel’s Lagrangians in MV are the relative core
Lagrangians Xα for α ∈ P . The algebra B(V) in this case is isomorphic to the
Khovanov–Seidel quiver algebra An−1 (this is also true for right cyclic polarizations);
the algebra A(V) is isomorphic to its Koszul dual A!

n−1. In [32], the algebra B(V)was
presented as a quotient of Ozsváth–Szabó’s algebra Bl(n, 1) (see Sect. 4 below); we
will see that Bl(n, 1) ∼= ˜B(V).

3.9.2 k = n− 1

Let V be the column span of the matrix

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
1 1

1
. . .

. . . 1
1 1

1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

of size n × (n − 1),

and choose any η, ξ such that (V , η, ξ) is left or right cyclic. The form of this matrix
implies that the algebra B(V) is isomorphic toA!

n−1, theKoszul dual Khovanov–Seidel
algebra (thus this is true for all left and right cyclic arrangements for k = n − 1). In
the rational case, MV is isomorphic to T ∗

CPn−1, which is studied by Calabi [13] in
precursor work to the theory of hypertoric varieties.

The isomorphism Bl(n, n − 1) ∼= ˜B(V) below presents A!
n−1 as a quotient of

Bl(n, n − 1), in close analogy to the k = 1 case studied in [32]. It is interesting to
compare with [29], which considers certain finite-dimensional quotients of Bl(n, k)

that are related to categoryO. While the k = 1 quotient in [29] is An−1, the k = n −1
quotient is not A!

n−1 but instead a significantly more complicated algebra. Here, unlike
in [29], the cases k = 1 and k = n − 1 are equally simple.

Unlike for the finite-dimensional algebras, it is not true thatBl (n, 1) andBl(n, n−1)
are Koszul dual to each other. Rather, as shown by Ozsváth–Szabó in [38], Bl(n, k)

is Koszul dual to an algebra formed from Bl(n, n − k) (or the isomorphic algebra
Br (n, n −k)) by adding additional algebra generators Ci , together with a homological
grading and a differential.
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3.9.3 n = 4, k = 2

Consider the (n = 4, k = 2)Vandermonde arrangement associated to 1 < 2 < 3 < 4,

where V is the column span of

⎡

⎢

⎢

⎣

1 1
1 2
1 3
1 4

⎤

⎥

⎥

⎦

and η is represented by
[

1 4 9 16
]

.

Define ξl by letting z0 = 0, so that ξl has matrix
[

1 0
]

in the columns of V . Define ξr

by letting z5 = 5, so that ξr has matrix
[

1 5
]

in the columns of V .
The arrangement HV ⊂ (V + η) ∼= R

2 is shown in Fig. 3 (left), with the regions
�α for α ∈ F . The middle picture of Fig. 3 indicates the left cyclic polarization ξl ,
and the right picture of Fig. 3 does the same for ξr . In both cases, the regions �α for
α ∈ P are colored and labeled by sets of dots in regions.

4 Ozsváth–Szabó algebras as hypertoric convolution algebras

4.1 Definitions

We define the graded algebra B(n, k) from [38] using the generators-and-relations
description from [35]. First we introduce some terminology. Let V (n, k) be the set of
k-element subsets x ⊂ {0, . . . , n}.
Definition 4.1 Let B(n, k) be the path algebra of the quiver with vertex set V (n, k)

and arrows

• for 1 ≤ i ≤ n, Ri from x to y and Li from y to x if x ∩ {i − 1, i} = {i − 1} and
y = (x \ {i − 1}) ∪ {i},

• for 1 ≤ i ≤ n, Ui from x to x for all x ∈ V (n, k)

modulo the relations

(1) RiU j = U j Ri , LiU j = U j Li , UiU j = U jUi ,
(2) Ri Li = Ui , Li Ri = Ui ,
(3) Ri R j = R j Ri , Li L j = L j Li , Li R j = R j Li (|i − j | > 1),
(4) Ri−1Ri = 0, Li Li−1 = 0,
(5) Ui Ix = 0 if x ∩ {i − 1, i} = ∅.
The relations are assumed to hold for any linear combination of quiver paths with the
same starting and ending vertices and labels Ri , Li , Ui as described; Ix denotes the
trivial path at x ∈ V (n, k). The elements Ix ∈ B(n, k) give a complete set of orthogonal
idempotents. We define a grading on B(n, k) by setting deg(Ri ) = deg(Li ) = 1 and
deg(Ui ) = 2; we can refine to a multi-grading by Z〈e1, . . . , en〉 by setting deg(Ri ) =
deg(Li ) = ei and deg(Ui ) = 2ei . Our single and multiple gradings are two times the
single and multiple gradings defined in [38].

Recall from Sect. 3.6.1 that we let Vl(n, k) denote the subset of V (n, k) consisting
of k-element subsets of {0, . . . , n−1}. Similarly, Vr (n, k) denotes the set of k-element
subsets of {1, . . . , n}, and V ′(n, k) denotes the set of k-element subsets of {1, . . . , n −
1}.
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Fig. 3 A cyclic arrangement with left cyclic and right cyclic polarizations for n = 4, k = 2
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Fig. 4 The decorated surface
(F, Z , α)

Definition 4.2 Let Bl(n, k) = ⊕x,x′∈Vl (n,k)Ix ·B(n, k)Ix′ , Br (n, k) = ⊕x,x′∈Vr (n,k)Ix ·
B(n, k)Ix′ , and B′(n, k) = ⊕x,x′∈V ′(n,k)Ix · B(n, k)Ix′ .

To build the idempotents Ix into the structure, we can view all of the above alge-
bras as categories (enriched in graded abelian groups) whose objects are x ∈ V (n, k),
Vl(n, k), Vr (n, k), or V ′(n, k) as appropriate. We refer to this definition of Ozsváth–
Szabó’s algebras as the small-step quiver description; there is also a “big-step” quiver
description that is more transparently equivalent to Ozsváth–Szabó’s original defini-
tions.

In [38, Section 3.6], Ozsváth–Szabó define an anti-automorphism of B(n, k) that
restricts to an anti-automorphism of Bl(n, k), Br (n, k) and B′(n, k) given as follows.

Definition 4.3 The anti-automorphismψO Sz : B(n, k) → B(n, k)opp sends Ri �→ Li ,
Li �→ Ri , and Ui �→ Ui in the small-step quiver description of B(n, k).

Remark 4.4 Ozsváth–Szabó introduced B(n, k) and its relatives in [38] as part of
an algebraic theory that can be used for very efficient computations of knot Floer
homology (see also [39, 40, 42]). Their theory is based on the ideas of bordered Floer
homology; given a link (say in R

3), it can be viewed as computing a Heegaard Floer
invariant of the link complement by writing the complement as a composition of 3d
cobordisms between planes C with various numbers of punctures z1, . . . , zn . By [31,
Theorem 3.25] or [36, Corollary 9.10] plus the relationship between strands algebras
and Fukaya categories from [5, Proposition 11], Ozsváth–Szabó’s algebras are the
homology of formal dg algebras built frommorphism spaces between the distinguished
Lagrangians in Symk(C \ {z1, . . . , zn}) of Sect. 3.5.2 in an appropriately-defined
partially wrapped Fukaya category of this symmetric product. Specifically, Bl(n, k) is
the homology of the algebra of morphisms between the “left cyclic” Lagrangians from
that section; similar statements hold for Br (n, k) and the “right cyclic” Lagrangians,
B′(n, k) and the “core” Lagrangians, and B(n, k) and the union of the left cyclic and
right cyclic Lagrangians. In the left cyclic case, the stops for the partial wrapping are
the ones specified in [5] given (in the language of that paper) the decorated surface
(F, Z , α) shown in Fig. 4with F a diskminus open neighborhoods of n interior points,
Z a single point in the outer boundary of F , and α the system of red arcs shown in
Fig. 4. The other cases are analogous.
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4.2 Isomorphisms of algebras: left cyclic case

Let V = (V , η, ξ) be left cyclic. Note that in the quiver defining Bl(n, k), Ri and
Li arrows exist between vertices x and y if and only if αx ↔ αy, where αx, αy are
the elements of P corresponding to x, y under the bijection κl : P → Vl(n, k) of
Definition 3.24 (i). By the quiver description of ˜B(V), we mean its description as
˜A(V∨), i.e. we are using the small-step quiver descriptions everywhere.

Definition 4.5 The homomorphism� from Bl(n, k) to ˜B(V) is defined in terms of the
quiver descriptions of the algebras by sending

• vertices x to vertices κ−1
l (x) := αx,

• arrows x
Ri−→ y, y

Li−→ x to arrows p(αx, αy), p(αy, αx),

• arrows x
Ui−→ x to ui eαx .

One can check that � preserves multi-degrees.

Proposition 4.6 The map � is well-defined.

Proof Wemust check that the relations inDefinition 4.1 are preserved under�; wewill
use the relations for ˜B(V) fromCorollary 3.15. The relations (1) hold after applying�

because the ui variables commute with elements of P(Q) in the tensor product algebra
P(Q) ⊗Z Z[u1, . . . , un], even before imposing relations on ˜B(V). The relations (2)
hold after applying� by Corollary 3.15, itemA3. The relations (3) hold after applying
� by Corollary 3.15, item A2.

For the relations (4), suppose we have a composable pair of arrows x
Ri−1−−→ y

Ri−→ z
in the quiver description of Bl(n, k). We have 2 ≤ i ≤ n −1 and x∩{i −2, i −1, i} =
{i − 2}. Thus, the signs of αx in positions (i − 1, i, i + 1) are either (+,+,+) or
(−,−,−); without loss of generality assume they are (+,+,+). The signs of αy and
αz in these positions are (−,+,+) and (−,−,+) respectively. Let β agree with α

except that β = (+,−,+) in these positions. We have varl(β) = k + 2, so eβ = 0 by
Corollary 3.15, item A1. Since αx ↔ β and αz ↔ β, by Corollary 3.15, item A2 we
have

�(Ri−1)�(Ri ) = p(αx, αy)p(αy, αz) = p(αx, β)p(β, αz) = 0.

The relations Li Li−1 are similar.
For the relations (5), suppose that x ∩ {i − 1, i} = ∅. We have 1 ≤ i ≤ n; first

assume 2 ≤ i ≤ n −1. The signs of α in positions (i −1, i, i +1) are either (+,+,+)

or (−,−,−); without loss of generality assume they are (+,+,+). Defining β to
agree with α except in these positions where β = (+,−,+), we have varl(β) = k +2
and thus eβ = 0 by Corollary 3.15, item A1. Since αx ↔ β, by Corollary 3.15, item
A3 we have

�(Ui Ix) = ui eαx = p(αx, β)p(β, αx) = 0.

Now let i = 1, so that x∩ {0, 1} = ∅. The signs of α in positions (1, 2) are (+,+).
If we take β to have signs (−,+) in positions (1, 2), then varl(β) = k + 2 and we
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get �(U1Ix) = 0 as before. Similarly, if i = n, then x ∩ {n − 1, n} = ∅. The sign
of α in positions (n − 1, n) are either (+,+) or (−,−); without loss of generality
assume they are (+,+). If we take β to have signs (+,−) in positions (n −1, n), then
varl(β) = k + 1) and we get �(UnIx) = 0. ��
Definition 4.7 The homomorphism� from ˜B(V) to Bl(n, k) is defined in terms of the
quiver descriptions by sending

• vertices α to vertices κl(α) = xα if varl(α) = k and to zero if varl(α) > k,

• arrows p(α, β), p(β, α) to arrows xα
Ri−→ xβ , xβ

Li−→ xα respectively if β = αi

and β delays a sign change compared to α, and the reverse if β advances a sign
change compared to α,

• generators ui of Z[u1, . . . , un] to elements
∑

x∈Vl (n,k) Ui Ix of Bl(n, k).

One can check that � preserves multi-degrees.

Proposition 4.8 The map � is well-defined.

Proof The map � is well-defined as a map from P(Q) ⊗Z Z[u1, . . . , un] to Bl(n, k)

by item (1) of Definition 4.1. We will check that � preserves the relations from
Corollary 3.15. The relations A1 hold by construction.

For the relations A2, if α, β, γ, δ all have varl = k then the relations follow from
item (3) of Definition 4.1 (note that α, β, γ , δ are required to be distinct). Without loss
of generality, the only other case we need to check is when α, β, γ have varl = k while
varl(δ) > k. In this case, moving from α to β and then to γ either delays a sign change
and then delays it one step further, or advances a sign change and then advances it one
step further. The required relation �(p(α), p(β))�(P(β), P(γ )) = 0 then follows
from item (4) of Definition 4.1.

For the relations A3, if varl(α) = varl(β) = k then �(p(α, β))�(p(β, α)) =
�(ui eα) follows from item (2) of Definition 4.1. On the other hand, if varl(α) = k
and varl(β) > k, then changing α to β must change initial signs (+,+), terminal
signs (+,+) or (−,−), or length-three sign intervals (+,+,+) or (−,−,−) to initial
signs (−,+), terminal signs (+,−) or (−,+), or length-three intervals (+,−,+) or
(−,+,−) respectively. In any of these cases, � preserves the relation of item A3 by
item (5) of Definition 4.1. ��
Theorem 4.9 The maps � and � are inverse isomorphisms of (multi-graded) Z-
algebras that intertwine the anti-involution ψO Sz from Definition 4.3 with ψV on
˜B(V) coming from ˜Rαβ �→ ˜Rβα .

Proof One can check that these are isomorphisms when applied to quiver vertices or
arrows on both sides. ��
Corollary 4.10 If (V , η) is cyclic, the isomorphisms �,� of Theorem 4.9 for any
left cyclic polarization ξ of (V , η) restrict to isomorphisms between B′(n, k) and the
algebra ˜B ′(V , η) from Sect. 2.3.5. These isomorphisms are independent of the choice
of ξ .
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Proof Note that the isomorphisms�,� interchange Ixα and eα . The value of� on any
idempotent Ixα with α ∈ K, and on the elements Ri , Li , ui between vertices xα, xβ

with α, β ∈ K, are independent of ξ ; by choosing minimal-length paths between
idempotents, any element of ˜B ′(V , η) is a linear combination of products of such
elements. ��

4.3 Isomorphisms of algebras: right cyclic case

Now let V = (V , η, ξ) be right cyclic. As before, in the quiver defining Br (n, k), Ri

and Li arrows exist between vertices x and y if and only if αx ↔ αy.

Definition 4.11 The homomorphism � from Br (n, k) to ˜B(V) is defined in terms of
the quiver descriptions of the algebras by sending

• vertices x to vertices κ−1
r (x) = αx,

• arrows x
Ri−→ y, y

Li−→ x to arrows p(αx, αy), p(αy, αx),

• arrows x
Ui−→ x to ui eαx .

One can check that � preserves multi-degrees.

Definition 4.12 The homomorphism � from ˜A(V∨) to Br (n, k) is defined in terms of
the quiver descriptions by sending

• vertices α to vertices κr (α) = xα if varr (α) = k and to zero if varr (α) > k,

• arrows p(α, β), p(β, α) to arrows xα
Ri−→ xβ , xβ

Li−→ xβ respectively if β = αi

and β delays a sign change compared to α, and the reverse if β advances a sign
change compared to α,

• generators ui of Z[u1, . . . , un] to elements
∑

x∈Vr (n,k) Ui Ix of Br (n, k).

One can check that � preserves multi-degrees.

Theorem 4.13 The maps � and � are well defined and inverse isomorphisms of (multi-
graded) Z-algebras that intertwine the anti-involution ψO Sz from Definition 4.3 with
ψV on ˜B(V) coming from ˜Rαβ �→ ˜Rβα .

The proof is similar to above.

4.4 The center of Ozsváth–Szabó’s algebras

Recall fromSect. 2.3.4 that for a rational polarized arrangementV wehave Z(˜B(V)) ∼=
H∗

T k (MV ; C). Explicitly,

Z(˜B(V)) = Sym(Rn)/(us | S ⊂ I such that Hs ∩ Vη = ∅).

FromTheorems 4.9 and 4.13, we get similar statements for Ozsváth–Szabó’s algebras.
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Corollary 4.14 The centers of both Bl(n, k) and Br (n, k) are

Z(Bl(n, k)) = Z(Br (n, k)) ∼= Z[U1, . . . , Un]
(Ui1 · · · Uik+1 : 1 ≤ i1 < · · · < ik+1 ≤ n)

,

where the element Ui in this polynomial ring corresponds to the sum of Ui generators
at all idempotents of Bl(n, k) or Br (n, k).

One consequence is that the centers of Bl(n, k) and Br (n, k) have the structure of
localization algebras as discussed in [7].

Remark 4.15 It follows from the results in this paper and [9, Theorem 1.2(5)] that for
a rational polarized arrangement V withMV smooth, we have an isomorphism

K0(˜B(V)) ⊗Z[q,q−1] C ∼= H2k
T (MV ; C),

where q acts by 1 on C. A priori, we cannot apply this result to left and right cyclic V
if 1 < k < n − 1, since MV is not smooth in these cases. Note that we can interpret
K0(Bl(n, k)) in terms of the cohomology of symmetric products: let F be D2 with
open neighborhoods of n interior points removed, and let S+ be the union of the
internal boundary components of F with a closed interval on the outer boundary of
F . The cohomology group Hk(Symk(F),Symk(S+); C) ∼= ∧k H1(F, S+; C) has a
basis given by k-fold wedge products of our n distinguished straight-line Lagrangians
in F , so we can identify it with K0(Bl(n, k)) ⊗Z[q,q−1] C.

5 Quantum group bimodules

Here we recall a categorified action of a variant of gl(1|1) as bimodules over Bl(n, k),
introduced in [29] in the style of [46] and equivalent to a particular case of the bimod-
ules defined in [37]. We will explain a bordered Floer perspective on the bimodules
over Bl(n, k), based on Heegaard diagrams, and connect them to deletion and restric-
tion bimodules. In particular, we will see that our factorization of the bimodule Fk

into deletion and restriction bimodules has a natural interpretation from the bordered
Floer perspective.

5.1 Basic definitions

We first recall the bimodule [AM: Fk =] FO Sz
k over (Bl(n, k),Bl(n, k + 1)) defined

in [29, Section 9]. Let e∨
k denote the sum of all idempotents Ix for x ∈ Vl(n, k) such

that 0 /∈ x, and let e∧
k denote the sum of all idempotents Ix for x ∈ Vl(n, k) such that

0 ∈ x. For x ∈ Vl(n, k) with 0 ∈ x, let x(∨) denote x \ {0}.
Let P∨

k = Bl(n, k)e∨
k , a left module over Bl(n, k). We will define a right action of

Bl(n, k + 1) on P∨
k ; first, define a surjective ring homomorphism

� ′ : e∧
k+1Bl(n, k + 1)e∧

k+1 → e∨
k Bl(n, k)e∨

k
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as follows. For x, y ∈ Vl(n, k + 1) with 0 ∈ x ∩ y, we have

IxBl(n, k + 1)Iy ∼= Z[U1, . . . , Un]
(pG : G generating interval between x and y)

,

and similarly for Ix(∨)Bl(n, k)Iy(∨) , where generating intervals are defined as in
[29, Definition 2.11] (following Ozsváth–Szabó [38]). The generating intervals pG

between x and y are contained in the ideal generated by the generating intervals
between x∨ and y∨, so we get a homomorphism of Z[U1, . . . , Un]-modules

IxBl(n, k + 1)Iy → Ix∨Bl(n, k)Iy∨

by sending 1 �→ 1. Summing over x, y ∈ Vl(n, k) with 0 ∈ x ∩ y, we get a surjective
homomorphism of Z[U1, . . . , Un]-modules

� ′ : e∧
k+1Bl(n, k + 1)e∧

k+1 → e∨
k Bl(n, k)e∨

k .

Using Ozsváth–Szabó’s original definition of Bl(n, k) in terms of these quotients of
Z[U1, . . . , Un] as reviewed e.g. in [29, Section 2.1], one can check that � ′ is actually
a ring homomorphism, i.e. it respects multiplication. Given x, y, z ∈ Vl(n, k +1)with
0 ∈ x ∩ z but 0 /∈ y, and b, b′ ∈ Bl(n, k + 1), one can check that

� ′(IxbIyb′Iz) = 0.

We can now define a surjective ring homomorphism

Bl(n, k + 1)

Bl(n, k + 1)e∨
k+1Bl(n, k + 1)

→ e∨
k Bl(n, k)e∨

k

by sending

[b] �→ � ′(e∧
k+1be∧

k+1).

By the above remarks, this map is well-defined; note that

e∧
k+1bb′e∧

k+1 = e∧
k+1be∧

k+1b′e∧
k+1 + e∧

k+1be∨
k+1b′e∧

k+1

and e∧
k+1be∨

k+1b′e∧
k+1 maps to zero under � ′. Precomposing with the quotient map,

we get a surjective ring homomorphism

Bl(n, k + 1) → e∨
k Bl(n, k)e∨

k ,

which we can view as a non-unital homomorphism from Bl(n, k + 1) to Bl(n, k). On
the multiplicative generators of Bl(n, k + 1), this homomorphism sends

• Ix �→ Ix(∨) if 0 ∈ x,
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• Ix �→ 0 if 0 /∈ x,

• x
Ri−→ y and x

Li−→ y map to x(∨) Ri−→ y(∨) and x(∨) Li−→ y(∨) if 0 ∈ x ∩ y, and map
to zero otherwise,

• x
Ui−→ x maps to x∨ Ui−→ x∨ if 0 ∈ x and zero otherwise.

Given b ∈ P∨
k ⊂ Bl(n, k) and b′ ∈ Bl(n, k + 1), right multiplying b by the image of

b′ under this homomorphism results in another element of P∨
k .

Definition 5.1 The bimodule FO Sz
k over (Bl(n, k),Bl(n, k + 1)) is the left Bl(n, k)-

module P∨
k , with an action ofBl(n, k+1) given by the above homomorphism followed

by right multiplication.

One can alternatively define FO Sz
k by inducing the left action of the identity bimod-

ule over Bl(n, k + 1) by the above non-unital homomorphism. The multi-grading by
Z〈e1, . . . , en〉 on P∨

k ⊂ Bl(n, k) is additive with respect to right multiplication by
Bl(n, k + 1) as well as with respect to left multiplication by Bl(n, k), so we can view
Fk as a multi-graded bimodule over (Bl(n, k),Bl(n, k + 1)). As with the algebras, we
can collapse this Z

n to a grading by Z.
For 0 ≤ k ≤ n, the Grothendieck groups (regarded as modules over C(q)) of the

compact derived categories of singly-graded left Bl(n, k)-modules are identified with
the nonzero weight spaces of the Uq(gl(1|1)) representation V ⊗n , where V is the
vector representation, see [29, Section 8.11]). Under this identification, the action of
F ∈ Uq(gl(1|1)) on V ⊗n is induced by tensoring with the bimodule Fk above. In
particular, we have FkFk+1 = 0, categorifying the gl(1|1) relation F2 = 0.

Following [29], let E′′
k = (E′′)OSzk be HomBl (n,k)(Fk,Bl(n, k)), the left dual of Fk ,

which is a multi-graded bimodule over (Bl(n, k + 1),Bl(n, k)). We can view E′′
k as

the identity bimodule over Bl(n, k + 1) with its right action induced by the above
homomorphism from Bl(n, k + 1) to Bl(n, k).

Remark 5.2 We denote the dual bimodule E′′
k rather than Ek because its singly graded

version does not categorify the action of the standard E ∈ Uq(gl(1|1)) on V ⊗n . Rather,
E′′

k categorifies the action of

E ′′ := (q−1 − q)E K ,

whose action on V ⊗n is dual to that of F with respect to the bilinear form (−,−)V .

It was convenient in [29] to focus on Bl(n, k), but one can define analogous bimod-
ules over Br (n, k) by replacing 0 with n everywhere above. For the larger algebra
B(n, k) with

(n+1
k

)

idempotents, one can define two pairs of bimodules (one using 0
and the other using n). There are no such bimodules over the smaller algebras B′(n, k)

(see the next subsection).

5.2 Strands interpretation

Recall that the algebras Bl(n, k), Br (n, k), B(n, k), and B′(n, k) have interpretations
as the homology of (formal) dg strands algebras A(Z, k) of the form appearing in
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Fig. 5 From left to right: arc
diagrams Zl , Zr , Zfull, and Z ′
for n = 3

Fig. 6 An element of the strands
algebraA(Zl )

bordered Floer homology [31, 36]. Here Z is an arc diagram as considered by Zarev
[52], except that instead of matchings on a collection of oriented intervals, we allow
matchings on a collection of oriented intervals and circles. The arc diagrams Zl , Zr ,
Zfull, and Z ′ whose strands algebras have homology Bl(n, k), Br (n, k), B(n, k), and
B′(n, k) respectively are shown in Fig. 5. A representative element of the strands
algebraA(Zl) = ⊕n

k=0A(Zl , k) is shown in Fig. 6; the combinatorics of these strands
elements is explained in [36] in the case at hand, adapting the general prescriptions of
[30, 52].

The constructions of Rouquier and the third author in [37] equip A(Z) with dif-
ferential bimodules E and E∨. In our specific setting, the differentials vanish, and the
differential bimodules E and E∨ are closely related the bimodulesE′′ andF introduced
in the previous subsection.

Representative elements of the bimodules E and E∨ over A(Zl) are shown in
Fig. 7a. The left and right actions of elements of A(Zl) on such elements are defined
by concatenation as usual. The j th tensor powers of E and E∨ in general admit similar
descriptions using strands pictures in which j strands exit to the top or bottom; in this
case, there are no such valid pictures for j ≥ 2 (see Fig. 7b), so E and E∨ each square
to zero.

Remark 5.3 For more general Z the bimodules over A(Z) from [37] do not square
to zero, but mth powers of the bimodules admit actions of the dg nilCoxeter algebra
Nm appearing in [14], causing the homology of the second and all higher powers to
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Fig. 7 Strands interpretation of bimodules forA(Z)

vanish. The bimodules we consider in this page are an especially simple case of this
construction.

For the four arc diagrams in question, one can work with gradings that are simpler
than in the general case (see [36, Section 6]), and view E and E∨ as graded by
Z〈e1, . . . , en〉 in the unique way such that the following proposition holds with respect
to Z

n multi-gradings.

Proposition 5.4 There is a natural identification of A(Zl , k) ⊗Bl (n,k) Fk with E∨ as
dg (A(Zl , k),Bl(n, k + 1))-bimodules, where the right action of Bl(n, k + 1) on
E∨ is restricted from the right action of A(Zl , k + 1) via the quasi-isomorphism
Bl(n, k + 1)

∼−→ A(Zl , k + 1) from [31, 36], and similarly for the right action of
Bl(n, k) on A(Zl , k).

Similarly, there is a natural identification of E′′
k ⊗Bl (n,k) A(Zl , k) with E as dg

(Bl(n, k + 1),A(Zl , k))-bimodules. Similar statements hold for the bimodules over
Br (n, k) and A(Zr , k), as well as for the bimodules over B(n, k) and A(Zfull, k).

Proof As a left Bl(n, k)-module, Fk is a direct sum of the indecomposable projec-
tive Bl(n, k) modules corresponding to elements x ∈ Vl(n, k) with 0 /∈ x. Thus,
A(Zl , k) ⊗Bl (n,k) Fk is a direct sum of the indecomposable projective A(Zl , k)-
modules corresponding to the same elements x. We identify elements of the summand
for a given x with elements of E∨ as in Fig. 8; this identification is an isomorphism of
dg leftA(Zl , k)-modules. To see that the right actions of Bl(n, k +1) agree, it suffices
to check that the actions of the idempotents and of themultiplicative generators Ri , Li ,
andUi of Bl(n, k +1) agree, which is immediate. The other statements are analogous.

��
It follows that the induction equivalences from Dc(Bl(n, k)) to Dc(A(Zl , k)) and

from Dc(Bl(n, k+1)) to Dc(A(Zl , k+1)) intertwine the functorsFk ⊗− and E∨⊗−.

5.3 Relationship with deletion and restriction

We now discuss the relationship between Fk and the deletion and signed restriction
bimodules of Sect. 2.4. Under the identification of Bl(n, k) with ˜B(V) for left cyclic
V from Theorem 4.9, we will identify Fk with a tensor product of a deletion bimodule
with a signed-restriction bimodule.
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Fig. 8 Elements ofA(Zl , k) ⊗Bl (n,k) Fk on the left and the corresponding elements of E∨ on the right

We first factorizeFk abstractly and then identify the factors with deletion and signed
restriction bimodules. To define the abstract factors, note that by [35, Section 4.4], the
Ozsváth–Szabó algebra B′(n, k) from Definition 4.2 admits a quiver description with
the same generators Ri , Li , and Ui as for B(n, k) and Bl(n, k), and the same relations
except that when k = n − 1 where one additional relation U1 · · · Un = 0 is required
for B′(n, n − 1).

Fix n and k; write R2, . . . , Rn , L2, . . . , Ln , and U1, . . . , Un+1 for the generators
of B′(n + 1, k + 1). For a set x of integers, write x+1 := {i ± 1 : i ∈ x}; define x−1
similarly.

Definition 5.5 Let ι be the algebra homomorphism fromBl (n, k+1) toB′(n+1, k+1)
defined by sending, for x ⊂ [0, n − 1], the idempotent Ix to Ix+1 , and sending Ri ,
Li , and Ui to Ri+1, Li+1, and Ui+1 respectively. Let π be the (non-unital) algebra
homomorphism from B′(n + 1, k + 1) to Bl(n, k) sending Ix to Ix−1\{0} when 1 is
in x (Ix �→ 0 otherwise), sending Ri and Li (3 ≤ i ≤ n) and Ui (2 ≤ i ≤ n) to
Ri−1, Li−1, and Ui−1 respectively, sending R2 and L2 to zero, and sending U1 at a
vertex x to Ix−1\{0}.

Remark 5.6 To see that π is well-defined, note that while the relations L2U1 = 0 and
U1R2 = 0 for B′(n + 1, k + 1) do not correspond to relations in the list for Bl(n, k),
π respects these relations anyway since it sends R2 and L2 to zero. As with the rest′
and del′ homomorphisms in Sect. 2.4.2, π does not preserve the single grading on the
algebras. However, π ◦ ι does preserve the single grading.

Definition 5.7 LetD be the induction on the left of the identity bimodule overBl (n, k+
1) by the homomorphism ι fromBl(n, k+1) toB′(n+1, k+1). LetR be the induction
on the left of the identity bimodule over B′(n + 1, k + 1) by the homomorphism π

from B′(n + 1, k + 1) to Bl(n, k).

Since π ◦ ι is the algebra homomorphism used to define Fk above, we have an
identification Fk ∼= R ⊗B′(n+1,k+1) D.

Now letV = (V , η, ξ)be a left cyclic arrangement ofn hyperplanes in (k+1)-space.
Choose a left cyclic arrangement̂V = (̂V , η̂,̂ξ) of n +1 hyperplanes in (k +1)-space
whose first deletion is V , and let V ′ = (V ′, η′, ξ ′) be the first restriction of ̂V . Since
we are looking at the restriction to the first hyperplane, the sign change arising from
replacing the restriction by the signed restriction is a global multiplication by −1.
Thus, by Lemma 3.30, item (ii), the signed restriction V ′′ := (V ′,−η′,−ξ ′) is a left
cyclic arrangement of n hyperplanes in k-space.
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From Sect. 2.4, we have bimodules Del1 := del˜B1 (V,+) and Rest′1 :=
(rest′)1

˜B
(V,+) over (˜B(̂V), ˜B(V)) and (˜B(V ′), ˜B+(̂V)) respectively. Since Del1 is

defined using a homomorphism from ˜B(V) to ˜B(̂V) whose image is contained in the
idempotent-truncated subalgebra ˜B+(̂V) of ˜B(̂V), we can view Del1 as an induction
on the left of a bimodule Del+1 over (˜B+(̂V), ˜B(V)). Twisting Rest′1 by the algebra
isomorphism arising from the sign-change relationship between V ′ and V ′′, we get a
bimodule Rest′′1 over (˜B(V ′′), ˜B+(̂V)).

Now, since V , ̂V , and V ′′ are left cyclic, we have identifications
• ˜B(V) ∼= Bl(n, k + 1),
• ˜B+(̂V ) ∼= B′(n + 1, k + 1),
• ˜B(V ′′) ∼= Bl(n, k).

We can thus view Del+1 as a bimodule over (B′
l(n + 1, k + 1),Bl(n, k + 1)) and Rest′′1

as a bimodule over (Bl(n, k),B′
l(n + 1, k + 1)).

Proposition 5.8 Under the above identifications, Del+1 and Rest′′1 agree with D and R
respectively.

Proof The claim for Del+1 follows from comparing the definition of Del+1 (via the
three items defining rest1

˜A
(V, s) in Definition 2.11) with the definition of the map ι

used to construct D. For Rest′′1, we check that the three items of Definition 2.13 do
give a homomorphism that, under the identifications, annihilates Ix whenever 1 /∈ x.
Indeed, for such x, the sign sequence α corresponding to x starts with ++. Thus, α̃

starts with −−, so

varl (̃α) = 1 + var(̃α) = 1 + var(α) = k + 2 > k,

and eα̃ is thereby zero in ˜B(V ′′) (compare with Remark 2.7). The claim forRest′′1 now
follows by comparing definitions as with the claim for Del+1 . ��
Corollary 5.9 Under the above identifications, there is an isomorphism of (Bl(n, k),

Bl(n, k + 1)) bimodules

Fk ∼= Rest′′1 ⊗B′(n+1,k+1) Del
+
1 .

The same arguments can be used to deduce the following similar-looking factor-
ization of Fk into restriction and deletion bimodules; while the bimodules involved
in Proposition 5.10 may seem to be simpler than those in Corollary 5.9, the informal
considerations of Appendix A suggest that Corollary 5.9 may be more natural from
the Heegaard Floer perspective.

Proposition 5.10 Under the above identifications, there is an isomorphism of
(Bl(n, k),Bl(n, k + 1)) bimodules

Fk ∼= Rest1 ⊗Bl (n+1,k+1) Del1,

where we implicitly postcompose Rest1 with a sign-change automorphism similar to
those used above.
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Appendix A. Conjectural Heegaard diagram interpretation

On general principles, the bimodules E and E∨ from [37] (related to E′′ and F as
in Proposition 5.4) should admit an alternate description as bimodules associated
to (generalized) bordered sutured Heegaard diagrams, reminiscent of the Heegaard
diagrams for quantum-group bimodules in [16, Figure 32]. Thus, one might hope that
these diagrams could help us better understand E′′ and F.

Wecannot yet formulate precise theoremsabout relationships between {E, E∨,E′′,F}
and borderedHeegaard Floer invariants of the relevantHeegaard diagrams yet, because
bordered invariants for these Heegaard diagrams have not yet been constructed in the
literature. Ideas from [39] should extend to the situation at hand, but we explain in
Sect. A.2why our diagrams do not exactly fit in their framework of “middle diagrams”.
Thus, this section will be informal and will not contain rigorous statements or proofs.

We first review the type of bordered sutured Heegaard diagram we have in mind,
generalizing Zarev’s definitions from [52], before discussing the examples of interest.

A.1. Bordered sutured Heegaard diagrams

Recall from Sect. 5.2 that by a generalized arc diagram, we mean an arc diagram as
defined in [52,Definition 2.1.1] except that some or all of the Zi maybe oriented circles
rather than oriented intervals (the ordering on the Zi is also typically irrelevant except
for bookkeeping). We do not impose any degeneracy conditions a priori, although
developing bordered sutured Floer homology in the full generality of these diagrams
is expected to be quite difficult.

In the introduction to [52], Zarev writes about the D A bimodules B̂SD A(Y , �)

as if they are associated directly to morphisms in his decorated sutured category SD,
which are 3d cobordisms (unparametrized by Heegaard diagrams) between 2d sutured
surfaces (parametrized by arc diagrams). This is a common white lie in Heegaard
Floer homology; like the sutured Floer complexes they generalize, the bimodules
B̂SD A(Y , �) are chain-level objects and depend on a parametrization of (Y , �) in

http://creativecommons.org/licenses/by/4.0/
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terms of an appropriate Heegaard diagram, along with additional analytic choices
(only the homotopy type of the bimodule is an invariant of (Y , �)).

In [52, Chapter 4], Zarev explains the Heegaard diagram choices necessary to
define the one-sided bordered sutured modules B̂SD(Y , �) and B̂S A(Y , �) for bor-
dered sutured manifolds (Y , �) (these (Y , �) can be viewed as morphisms to or from
the empty set in SD). He encodes these choices in what he calls a bordered sutured
Heegaard diagram. In [52, Chapter 8], where bimodules are discussed, Heegaard dia-
grams are treated less formally, and it appears that no name is chosen for the type
of Heegaard diagram used to represent decorated sutured cobordisms in [52, Chapter
8.4]. Examining the paragraphs below [52, Definition 8.4.2], the relevant type of dia-
gram for a decorated sutured cobordism (Y , �) from a sutured surface parametrized
by Z1 to a sutured surface parametrized by Z2 is a bordered sutured Heegaard dia-
gram for (Y , �) viewed as a bordered sutured manifold with boundary parametrized
by Z1 ∪ Z2. Thus, we will also refer to these diagrams for cobordisms as bordered
sutured Heegaard diagrams.

We generalize Zarev’s definition of bordered sutured Heegaard diagrams in [52,
Definition 4.1.1] by allowing Z to be a generalized arc diagram (i.e. to have closed
circles as well as closed intervals). We also do not impose homological linear inde-
pendence in Zarev’s terms (his formulation does not correctly extend to generalized
diagrams). We treat cobordisms from the sutured surface of Z1 to the sutured surface
of Z2 as described in the above paragraph.

A.2. Ozsváth–Szabó’s middle diagrams

In [39, Sections 10 and 11], Ozsváth–Szabó assign D A bimodules to a type of Hee-
gaard diagram that they call a middle diagram, which are defined in turn using the
upper diagrams of [39, Section 2.1]. One can think of their middle diagrams as certain
bordered sutured Heegaard diagrams in which Z1 and Z2 are instances of the gener-
alized arc diagram Z ′ of Fig. 5 (compare with [39, Figures 7–10], which we would
rotate 90 degrees clockwise in the plane to match our conventions).

Less obviously, it is appropriate to think of the extendedmiddle diagrams appearing
in [39, Section 11.1] as bordered sutured Heegaard diagrams in which Z1 and Z2 are
instances of the generalized arc diagram Zfull of Fig. 5. Compare [39, Figure 44]
with Fig. 9, which shows how we would interpret extended middle diagrams (since
Ozsváth–Szabó require holomorphic curves to have zero multiplicity at the boundary
circles Z ||

0 and Z ||
1 , the difference between the versions of the diagramwith andwithout

corners is not visible by the holomorphic geometry input to these bimodules). One
can also consider half-extended middle diagrams having either Z ||

0 or Z ||
1 but not both,

with a similar translation to the bordered sutured language.
Below we will consider the D A bimodule of a Heegaard diagram related to the one

shown on the right of Fig. 10 by a disk decomposition along the horizontal boundary
(this type of decomposition is invisible when defining D A bimodules from the dia-
grams). We can almost view the diagram on the right of Fig. 10 as being associated
to a half-extended middle diagram in the sense of Ozsváth–Szabó, as on the left of
Fig. 10. However, this left diagram is not a valid half-extended middle diagram since it
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does not arise from a middle diagram in the correct way. Thus, while the diagrams are
very simple and we can count all the disks that should contribute to their bimodules
following the same heuristics that apply in [39], we cannot directly cite [39] to turn
these disk counts into a rigorous theorem.

A.3 The case of interest

When discussing bimodules from Heegaard diagrams in this section, we note that
based on the most literal extensions of the bordered sutured theory to this case, the
Heegaard diagrams would actually produce bimodules over the dg strands versions
of the algebras A(Zl) [31, 36], which are formal with homology Bl(n, k). Ozsváth–
Szabó’s methods skip the dg step and interpret holomorphic disk counts directly in
terms of algebras like Bl(n, k); we follow their approach here.

Figure 11 shows the relevant bordered sutured Heegaard diagram for the bimod-
ule E∨ over A(Zl) (here we prefer Fig. 11 for the factorization we consider below,
although the diagram of Fig. 10 has other advantages). We expect E∨ should agree
with the type D A bimodule that would be associated to this Heegaard diagram in bor-
dered sutured Floer homology. In part because bordered sutured Floer homology has

Fig. 9 Left: Extendedmiddle diagram followingOzsváth–Szabó.Right: the corresponding bordered sutured
Heegaard diagram

Fig. 10 Variant of the Heegaard diagram considered below, from Ozsváth–Szabó’s perspective (left) and
the bordered sutured perspective (right)
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Fig. 11 Heegaard diagram
whose D A bimodule recovers
the bimodule E∨ overA(Zl )

Fig. 12 Decomposing the Heegaard diagram of Fig. 11

Fig. 13 Identity Heegaard diagrams for the arc diagrams Zl (left) and Z ′ (right)

not been defined when arc diagrams have circles instead of just intervals, we do not
prove this here (as discussed above). However, in the special case of the bimodules E
and E∨ from Proposition 5.4, it is straightforward enough to verify that the disk counts
that would typically be used to associate a type D A bimodule to this type of Heegaard
diagram make sense, giving a Heegaard-diagram interpretation of these bimodules.

The Heegaard diagram of Fig. 11 can be factored (up to stabilizations) into two
pieces as in Fig. 12. Algebraically, this should mean that E∨ is homotopy equiva-
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Fig. 14 Domain for the right
action of U1

lent to a box tensor product (as in bordered Floer homology) of two D A bimodules
corresponding to the two pieces.

In the diagram on the right of Fig. 12, there is a Heegaard Floer generator (set of
intersection points) for each such generator of the identity Heegaard diagram for the
incoming arc diagram. See Fig. 13 for the relevant identity diagrams,which correspond
to identity middle diagrams and half-extended middle diagrams in Ozsváth–Szabó’s
language and thus have well-defined D A bimodules which are identity bimodules (at
least as DD bimodules) by [39, Proposition 13.2].

As with the identity diagram, for the diagram in question there should be no δ1i
actions for i > 2 (i.e. there should be no higher A∞ terms in the right action), and
there should be no δ11 actions (i.e. no differential). Thus, the D A bimodule of this
diagram should be an ordinary bimodule, projective on the left. If the algebra acting
on the right is Bl(n, k + 1), then the algebra acting on the left is B′(n + 1, k + 1),
which naturally contains Bl(n, k + 1) as a subalgebra. For each basic idempotent
of Bl(n, k + 1), the D A bimodule of the diagram (as a left module) would have an
indecomposable projective summand corresponding to the image of the idempotent
in B′(n + 1, k + 1). Thus, as a left module, the D A bimodule of the diagram would
agree with the induction on the left of the identity bimodule over Bl(n, k + 1) by the
inclusion map from Bl(n, k + 1) to B′(n + 1, k + 1). The right action of Bl(n, k + 1)
on the D A bimodule of the diagram should involve the same curve counts as in the
identity Heegaard diagram over the input arc diagram, so we should be able to identify
the D A bimodule of the diagram with the induced identity bimodule (i.e. withD from
Definition 5.7) as bimodules over (B′(n + 1, k + 1),Bl(n, k + 1)).

Now, in the diagram on the left of Fig. 12, there is a Heegaard Floer generator for
each such generator of the identity Heegaard diagram for the incoming arc diagram
such that the top arc is unoccupied on the input side of the generator. As before,
there should be no δ11 actions or δ1≥3 actions. The input algebra is B′(n + 1, k + 1)
and the output algebra is Bl(n, k). For a Heegaard Floer generator of the diagram
corresponding to x ∈ V ′(n + 1, k + 1) with 1 ∈ x, let x′ := {i − 1 : i > 1 ∈ x}; the
summand of the D A bimodule coming from xwould be the indecomposable projective
Bl(n, k)-module corresponding to x′. For the right action, elements of the form Ri or
Li for 2 ≤ i ≤ n −1, as well asUi for 2 ≤ i ≤ n, should act on the right by outputting
generators of the same form on the left (assuming the left and right idempotents of



From hypertoric geometry to bordered… Page 57 of 59    43 

these elements contain 1; otherwise the elements act as zero, and in particular this
implies that R2 and L2 act as zero). Interestingly, elements U1 at x ∈ V ′(n +1, k +1)
such that 1 ∈ x act on the right by outputting 1 on the left; see Fig. 14 for the domain of
the relevant holomorphic disk. This domain is basically identical to ones appearing in
Ozsváth–Szabó’s theory, whose holomorphic geometry and resulting algebra is known
from [39]. Briefly, this type of domain implies that a U variable acts on the right with
output determined by which parts of the output boundary are covered by the domain.
In our case, the domain stays away from the output boundary, so the algebraic output is
1. These considerations suggest that the D A bimodule of the diagram, when defined,
should agree with R from Definition 5.7. Thus, we see a reflection of Corollary 5.9,
but not of Proposition 5.10, on the Heegaard diagram side, motivating our choice to
focus on Corollary 5.9 rather than Proposition 5.10.
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