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Abstract
We establish new properties of inhomogeneous spin q-Whittaker polynomials, which
are symmetric polynomials generalizing t = 0 Macdonald polynomials. We show
that these polynomials are defined in terms of a vertex model, whose weights come
not from an R-matrix, as is often the case, but from other intertwining operators of
U ′

q(̂sl2)-modules. Using this construction, we are able to prove a Cauchy-type identity
for inhomogeneous spin q-Whittaker polynomials in full generality. Moreover, we are
able to characterize spin q-Whittaker polynomials in terms of vanishing at certain
points, and we find interpolation analogues of q-Whittaker and elementary symmetric
polynomials.
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1 Introduction

1.1 Overview

Inhomogeneous spin q-Whittaker polynomials are symmetric polynomials general-
izing the classical q-Whittaker functions (specialization of Macdonald symmetric
functions at t = 0) by adding two sequences of parameters A = (a0, a1, . . . ) and
B = (b0, b1, . . . ). In full generality they were recently constructed in [4] using inte-
grable lattice models, and some particular degenerations were described earlier in [10,
29].

One of the main features of the spin q-Whittaker polynomials can be summarized
as follows: while the new parametersA,B are added in a non-trivial way, the resulting
functions share several defining algebraic-combinatorial properties with the classical
q-Whittaker functions. Namely, there exist spin q-Whittaker analogues of the branch-
ing rule and the (skew) Cauchy identity. Moreover, there also exists an analogue of the
dual Cauchy identity, which involves spin q-Whittaker polynomials and spin Hall–
Littlewood functions: a generalization of Hall–Littlewood functions constructed from
integrable lattice models in [7, 8]. Other known properties of spin q-Whittaker poly-
nomials include formulae for explicit action of certain first order difference operators
[29], and applications to various stochastic models from integrable probability [24,
29].

The above properties were proved using an explicit construction of inhomogeneous
spin q-Whittaker polynomials in terms of an integrable vertex model, called the q-
Hahn vertex model. In particular, theCauchy and dualCauchy identities followdirectly
from appropriate modifications of the Yang–Baxter equation using zipper or train
argument. This idea is not new: vertexmodel constructions andYang–Baxter equations
were used to study numerous other special functions, examples can be found in [1,
3, 7–9, 11, 22, 44, 46]. However, there is an important difference distinguishing the
q-Hahn vertex model among the other integrable vertex models. Usually, integrable
vertex models originate from matrix coefficients of R-matrices acting on specific
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representations of quantum groups, and the Yang–Baxter equation for vertex models
is a reformulation of the corresponding equation for quantum groups. But the general
q-Hahn vertex model cannot be presented in such a fashion, and in [4] somewhat
different combinatorial methods were used to show integrability of this model and
deduce properties of inhomogeneous spin q-Whittaker polynomials.

In thisworkwe establish several newproperties of the spinq-Whittaker polynomials
that can be grouped in two clusters. The first group is focused around the integrability
of the q-Hahn model. It turns out that, while the q-Hahn vertex model does not come
froman R-matrix of a quantumgroup, it still has a quantumgroup interpretation,where
instead of the R-matrix we consider different intertwining operators between tensor
products of certain representations ofU ′

q(̂sl2). Unlike the R-matrix, these intertwining
operators change the tensor factors instead of just permuting them. The integrability
and the (modified) Yang–Baxter equations for the vertex model follow immediately
from this observation, and using this new point of view we can finish the proof of the
Cauchy identity for the spin q-Whittaker polynomials, which was partially done in [4]
but was not completed in full generality.

The second group of our new results reveals an unexpected connection of spin
q-Whittaker polynomials with another area of the theory of symmetric functions:
interpolation symmetric functions. These are inhomogeneous deformations of classi-
cal symmetric functions which can be characterized by vanishing at specific points.
The main known classes of interpolation symmetric functions are factorial Schur
functions and interpolation Macdonald functions.1 The former ones are well-studied
and their interpolation properties have appeared in the contexts of Capelli identities,
multiplicity free spaces and asymptotic representation theory, see [18, 36, 41]. The
interpolation Macdonald functions are more complicated and still somewhat mysteri-
ous, however a number of nice combinatorial properties is known about them and their
degenerations, see [15, 26, 31, 32, 35, 38, 42]. Moreover, there exist more general type
BCn interpolation Macdonald polynomials, which are Laurent symmetric polynomi-
als with connections to Koornwinder polynomials and applications to multivariate
analogues of q-hypergeometric transformations, see [23, 33, 39, 40].

In [34] it was shown that, under a certain constraint, all interpolation symmet-
ric polynomials of interest generally fall in one of three classes: factorial monomial
functions (which were considered trivial), factorial Schur functions and (type BCn)
interpolation Macdonald functions. However, we show that inhomogeneous spin q-
Whittaker polynomials also can be characterized by vanishing at specific points.
Moreover, by specializing inhomogeneous spin q-Whittaker polynomials, one can
obtain new symmetric functions which should fill the place of interpolation q-
Whittaker and interpolation elementary functions. These new interpolation symmetric
functions depend on a countable family of parameters (similarly to the factorial Schur
functions and unlike the interpolation Macdonald functions) and both do not naturally
arise via the interpolation Macdonald functions. Finally, we are able to find and prove
a parallel version of the classification from [34], which identifies our new interpolation
functions as unique functions satisfying a constraint similar to the one from [34].

1 It is worth noting that for the supersymmetric functions there is also the class of interpolation Q-Schur
functions [19].
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Overall, our new results give two descriptions of inhomogeneous spin q-Whittaker
polynomials: an improved constructions in terms of the vertex model from [4] and
a characterization in terms of vanishing at specific points. Combination of these two
properties is rare: so far and to the best of our knowledge the only other symmet-
ric functions simultaneously having both vertex model description and a vanishing
property were factorial Schur functions,23 We still don’t know if this situation is an
artifact specific, for some reason, to the Schur and q-Whittaker levels, or it might indi-
cate existence of yet uncovered even more general symmetric functions with similar
properties, but both possibilities look exciting for us.

Below we briefly state the main results of this work.

1.2 q-Hahn vertexmodel and intertwining operators

Inhomogeneous spin q-Whittaker polynomials Fλ(x1, . . . , xn | A,B) are defined as
partition functions of a vertex model consisting of a square grid of vertices with
weights

I L

J

K

= δI+J=K+L(xi/b j )
L (ai+ j/xi ; q)L(xi/b j ; q)J−L

(ai+ j/b j ; q)J

(q; q)J

(q; q)L(q; q)J−L
.

Here i, j are coordinates of the vertex, (x; q)k denote the q-Pochhammer symbol
recalled in Sect. 1.5 below, ai , bi are parameters from A,B, and I , J , K , L ∈ Z≥0
are integers, representing a configuration of edges around the vertex. Note that these
weights are orthogonality weights for q-Hahn polynomials, so they are traditionally
called the q-Hahn weights. The exact definition of the spin q-Whittaker polynomials
Fλ(x1, . . . , xn | A,B) via such weights is given in Sect. 5 of the text.

Our first main result states that q-Hahn vertex weights are in fact matrix coefficients
of an isomorphism between two generically irreducible representations of the affine
quantum algebra U ′

q(̂sl2). The representations in question are tensor products of the
evaluation modules V (s)z , which are induced from the irreducible Uq(sl2)-module
V (s) with highest weight s along the evaluation map evz : U ′

q(̂sl2) → Uq(sl2). As
in the classical sl2 case, representations V (s)z have a natural countable basis |vI 〉
consisting of weight vectors.

Theorem A (Theorem 3.1 in the text) For generic parameters a1, a2, b1, b2 the rep-
resentations V (a1/b1)a1b1 ⊗ V (a2/b2)a2b2 and V (a1/b2)a1b2 ⊗ V (a2/b1)a2b1 are

2 See [6] for a vertex model description of factorial Schur functions, leading to the vanishing property.
3 There is also a degeneration of interpolation Macdonald polynomials with a vertex model construction,
namely, interpolation Hall–Littlewood functions from [15, 38]. However, interpolation Hall–Littlewood
functions do not in fact have interpolation properties, so we do not include them.
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irreducible and isomorphic, with the isomorphism W b given explicitly by

W b : V (a1/b1)a1b1 ⊗ V (a2/b2)a2b2 → V (a1/b2)a1b2 ⊗ V (a2/b1)a2b1 ,

〈vK ⊗ vL |W b|vI ⊗ vJ 〉 = δI+J=K+L
(b2/a1)L

(b1/a1)J
(b1/b2)

2L

(a2
2/b21; q)L (b21/b22; q)J−L

(a2
2/b22; q)J

(q; q)J

(q; q)L (q; q)J−L
.

The isomorphism between the representations V (a1/b1)a1b1 ⊗ V (a2/b2)a2b2 and
V (a1/b2)a1b2 ⊗ V (a2/b1)a2b1 is not new: one can show that for generic parameters
both V (a1/b1)a1b1 ⊗ V (a2/b2)a2b2 and V (a1/b2)a1b2 ⊗ V (a2/b1)a2b1 are irreducible

and have the same highest l-weight
(a−1

1 −a1u)(a−1
2 −a2u)

(b−1
1 −b1u)(b−1

2 −b2u)
(l-weights are rational functions

in u, which extend the usual weights to U ′
q(sl2)-modules, cf. [45]). The nontriviality

of our result is the explicit form for matrix coefficients of this isomorphism, which
have a surprisingly simple form identical to the q-Hahn weights. Our result can also
be extended to the higher rank case, see Theorem 3.1 in the main text for the U ′

q(̂sln)

version.
We can use the expression for the isomorphism W b above to deduce two other

results. First, we can obtain an explicit expression for the fully fused R-matrix R :
V (a1/b1)a1b1 ⊗V (a2/b2)a2b2 → V (a2/b2)a2b2 ⊗V (a1/b1)a1b1 , reproducing in a new
way the results from [5, 28], see Proposition 3.2 in the text. Another consequence is the
following Cauchy identity for spin q-Whittaker polynomials Fλ(x1, . . . , xn | A,B):

Theorem B (Theorem 5.8 in the text) The following equality of formal power series
in x, y, q holds:

∑

λ

Fλ(x1, . . . , xn | A,B)F∗
λ(y1, . . . , ym | B,A) =

n
∏

i=1

m
∏

j=1

(ai y j ; q)∞(xi/b j ; q)∞
(xi y j ; q)∞(ai/b j ; q)∞

,

where the sum is over all partitions λ.

Here F
∗
λ(y1, . . . , xn | B,A) is an explicit renormalization of spin q-Whittaker poly-

nomials, with parameters ai , bi swapped and inverted. The proof of the Cauchy
identity is based on an algebraic identity, obtained by choosing specific parame-
ters si , s′

i , zi , z′
i and constructing an isomorphism V (s1)z1 ⊗ V (s2)z2 ⊗ V (s3)z3

∼=
V (s′

1)z′
1

⊗ V (s′
2)z′

2
⊗ V (s′

3)z′
3
of irreducible representations in two different ways,

using our explicit expressions for isomorphisms W b and R.

1.3 Vanishing properties and interpolation characterization

For this group of results the starting point is the following vanishing property of
inhomogeneous spin q-Whittaker polynomials Fλ(x1, . . . , xn | A,B):

Fλ(a1qμ1−μ2 , a2qμ2−μ3 , . . . , anqμn | A,B) = 0, unless λ ⊆ μ.
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This vanishing property is new, and it leads to an alternative characterization of the
inhomogeneous spin q-Whittaker polynomials. Let

xn
A(μ) = (a1qμ1−μ2 , a2qμ2−μ3 , . . . , anqμn ),

and let Gn
0 ⊂ Gn

1 ⊂ Gn
2 ⊂ . . . denote a certain deformation of the natural filtration

of the algebra of symmetric functions in n variables, which depends on parameters
b1, b2, . . . from B and is defined before Theorem 5.12 in the text.

Theorem C (Theorem 5.12 in the text) For each partition λ ∈ Y
n the spin q-Whittaker

polynomial Fλ(x1, . . . , xn | A,B) is uniquely characterized, up to a scalar, by the
following properties:

1. Fλ(x1, . . . , xn | A,B) ∈ Gn|λ|.
2. For any partition μ such that |μ| ≤ |λ| and μ �= λ we have Fλ(xn

A(μ) | A,B) = 0.
3. Fλ(xn

A(λ) | A,B) �= 0.

For the normalization we use the values Fλ(xn
A(λ) | A,B) from (3) can be found

explicitly using the vertex model description and they are products of q-Pochhammer
symbols, see Proposition 5.10 in the text. Note that in the characterization above the
parameters ai fromA determine the interpolation points, while the dependence on the
second family B is hidden in the subspaces Gn

k .
These vanishing and characterization properties closely resemble the defining

properties of interpolation symmetric polynomials, which are families of symmet-
ric polynomials Fλ(x1, . . . , xn) satisfying

(i) deg Fλ(x1, . . . , xn) ≤ |λ|;
(ii) Fλ(�(μ)) = 0 unless λ ⊂ μ;
(iii) Fλ(�(λ)) �= 0

for some family �(μ) of n-dimensional points enumerated by partitions μ. Property
(ii), called the vanishing property, is the non-trivial one: it overdefines the functions
fλ and makes the existence of these functions for a given family � exceptional. The
factorial Schur functions and the interpolation Macdonald functions are examples of
such functions Fλ for certain choices of �, in both these examples � is of the form

�(μ) = ( f1(μ1), . . . , fn(μn))

for some functions f1, . . . , fn .
The spin q-Whittaker functions Fλ(x1, . . . , xn | A,B) almost satisfy the proper-

ties of interpolation symmetric functions Fλ, but in the first property we have the
function spaces Gn

k instead of the natural degree filtration of the algebra of symmetric
polynomials. However, when the parameters bi from B tend to ∞, the subspaces Gn

k
degenerate to this natural filtration, and in this way we can find two degenerations of
the spin q-Whittaker functions, which satisfy properties (i)–(iii) for certain choices of
�. Namely, when bi → ∞ we get functions ˜Fλ(x1, . . . , xn | A,∞), which satisfy
the interpolation properties (i)–(iii) with

�(μ) = (a1qμ1−μ2 , a2qμ2−μ3 , . . . , anqμn ).
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We call these functions interpolation q-Whittaker polynomials, as their top homoge-
neous components coincide with the usual q-Whittaker polynomials.

The other degeneration is obtained by setting bi = ∞ and considering the following
limit regime:

xi = eεri , ai = eεci , bi → ∞, q = eε, ε → 0.

As a result we obtain symmetric polynomials F
el(r1, . . . , rn | C,∞) in r1, . . . , rn ,

depending on a family of parameters C = (c1, c2, . . . ) and satisfying an interpolation
property with

�(μ) = (c1 + μ1 − μ2, c2 + μ2 − μ3, . . . , cn + μn).

Moreover, the top homogeneous component of F
el(r1, . . . , rn | C,∞) coincides with

the elementary symmetric polynomial eλ′(r1, . . . , rn) for the conjugated partition λ′,
so we call this second degeneration elementary interpolation polynomials.

As a final result of our work we show that these two degenerations, interpola-
tion q-Whittaker polynomials and elementary interpolation polynomials, exhaust all
interpolation symmetric polynomials for �(μ) of the form

�(μ) = ( f1(μ1 − μ2), f2(μ2 − μ3), . . . , fn(μn)).

Note that each part depends on the difference μi − μi+1, unlike all previously known
interpolation symmetric functions where coordinates depend on single parts μi . A
precise result is stated in Theorem6.2 of the text, belowwe give its brief reformulation:

Theorem D (Theorem 6.2 in the text) Assume that n ≥ 3 and �(μ) is a collection of
interpolation points of the form

�(μ) = ( f1(μ1 − μ2), . . . , fn(μn)).

Then the interpolation polynomials Fλ satisfying the properties (i)–(iii) exist only if
either

�(μ) = (c + a1qμ1−μ2 , c + a2qμ2−μ3 , . . . , c + anqμn )

for some c, q, a1, a2, . . . , an, or if

�(μ) = (c1 + d(μ1 − μ2), c2 + d(μ2 − μ3), . . . , cn + dμn)

for some d, c1, c2, . . . , cn. In these cases they coincide with the interpolation q-
Whittaker polynomials and the elementary interpolation polynomials, respectively.
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1.4 Layout of the paper

In Sect. 2 we recall definitions and necessary properties of the affine quantum algebra
U ′

q(̂sln+1) and its representations V (s)z . In Sect. 3 we introduce explicit expressions
for intertwining operators between tensor products V (s1)z1 ⊗ V (s2)z2 , and use them
to deduce equations needed for the later parts. Section4 is devoted to row operators
and exchange relations, which are a convenient technical tool for working with the
vertex model description of the spin q-Whittaker polynomials. In Sect. 5 we collect
all results about spin q-Whittaker polynomials, proving the Cauchy identity and the
vanishing property. In the same section we also describe degenerations of spin q-
Whittaker functions: interpolation q-Whittaker and elementary functions. In Sect. 6
we discuss the general classification for interpolation symmetric polynomials, and
prove the version covering interpolation q-Whittaker and elementary functions.

1.5 Notation

Throughout the work we treat q
1
2 either as a fixed transcendental complex number

such that |q 1
2 | < 1, or as a formal variable. In both cases we set q = (q

1
2 )2 and

[n]q := q
n
2 − q− n

2

q
1
2 − q− 1

2

, [n]q ! :=
n
∏

i=1

[i]q ,

[

n + m

m

]

q
:= [n + m]q !

[n]q ![m]q ! ,

where m, n ∈ Z≥0. We define the q-Pochhammer symbol by

(x; q)n :=
{

∏n
i=1(1 − xqi−1), n ≥ 0,

∏−n
i=1(1 − xq−i )−1, n < 0.

Let (x; q)∞ := limn→∞(x; q)n , which is well-defined both when q is a number such
that |q| < 1 and when q is a formal variable. Note that we can express the q-binomial
coefficients in the following ways

[

n + m

m

]

q
= q− nm

2
(q; q)n+m

(q; q)n(q; q)m
= q− nm

2
(qn+1; q)m

(q; q)m
= q− nm

2
(qm+1; q)n

(q; q)n
,

allowing us to extend the definition to the case when either n or m are negative, but
not both simultaneously.

A partition λ is an infinite sequence (λ1, λ2, λ3, . . . ) of nonnegative integers such
that

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ 0

and all but finitely many of λi are equal to 0. Sometimes we omit a tail consisting of
zeroes, writing (λ1, . . . , λn) instead of (λ1, . . . , λn, 0, 0, . . . ). The coordinates λi are
called the parts of the partition λ, the number of nonzero parts λi is the length l(λ) of
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λ and the weight is defined by |λ| := λ1 + λ2 + · · · . We use Y
n to denote the set of

partitions of length at most n. For a pair of partitions λ,μ, we write μ ⊂ λ if and only
if for any i ≥ 1 we have μi ≤ λi . Furthermore, we say the partition λ interlaces the
partition μ, and write λ � μ, if λi ≥ μi ≥ λi+1 for all i ≥ 1. Note that in this case
we also have 0 ≤ l(λ) − l(μ) ≤ 1.

Whenever we claim that a statement holds for generic complex parameters
a1, . . . , an , we mean that there exists a countable collection of non-constant poly-
nomials Fi ∈ C[x1, . . . , xn] such that the statement holds for all (a1, . . . , an) ∈ C

n

satisfying Fi (a1, . . . , an) �= 0 for all i . In particular, the set of such (a1, . . . , an) is
dense in C

n .

2 Quantum affine algebra U′
q(

̂sln+1) and representations V(s)z

In this section we describe the necessary background on the quantum affine algebra
U ′

q(̂sln+1) and define the representations V (s)z , which play the main role in Sect. 3.

Throughout this section q
1
2 is assumed to be a transcendental complex number, though

all results are still valid when q
1
2 is a formal variable. References for the material in

this section are [13, Chapter 12], [14, 45].

2.1 Quantum affine algebra U′
q(

̂sln+1)

Let h denote the Cartan subalgebra of sln+1, which we identify with its dual h∨ via
the Killing form (·, ·). Let αi denote the simple roots of sln+1, and Ci, j denote the
corresponding Cartan matrix. We enumerate the nodes I = {1, . . . , n} of the Dynkin
diagram in a way such that Ci,i = 2 and Ci,i−1 = Ci−1,i = −1, while Ci, j = 0 for
|i − j | > 1. We also assume that (αi , αi ) = 2, so the simple coroots α∨

i coincide with
the roots αi . We use Q (Q+ and Q−) to denote the Z-span (Z≥0-span and Z≤0-span
correspondingly) of the simple roots αi , while P := {μ ∈ h | (μ, αi ) ∈ Z} denotes
the lattice of integral weights.

Let θ = α1 + α2 + · · · + αn be the maximal positive root, ̂I := {0, 1, . . . , n} and
̂Ci, j be the extended Cartan matrix

̂C0,0 = (−θ,−θ) = 2, ̂C0,i = ̂Ci,0 = −(αi , θ), ̂Ci, j = Ci, j = (αi , α j ), i, j ∈ I .

The quantum affine algebra U ′
q(̂sln+1)

4 is the unital associative algebra over C with

generators {k±1
i }i∈̂I , {x±

i }i∈̂I and relations

ki k
−1
i = k−1

i ki = 1, ki k j = k j ki ,

ki x±
j = q± 1

2
̂Ci, j x±

j ki , [x+
i , x−

j ] = δi, j
ki − k−1

i

q
1
2 − q− 1

2

,

4 The prime in U ′
q (̂sln+1) reflects that our definition does not include the additional generator d, which is

sometimes used in the context of affine algebras.
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1−̂Ci j
∑

r=0

(−1)r
[

1 − ̂Ci j

r

]

q
(x±

i )r x±
j (x±

i )1−̂Ci, j −r = 0 for i �= j . (2.1)

The last relation is called the (quantum) Serre relation. The algebra U ′
q(̂sln+1) has a

Hopf algebra structure which is given by

�ki = ki ⊗ ki , �x+
i = x+

i ⊗ ki + 1 ⊗ x+
i , �x−

i = x−
i ⊗ 1 + k−1

i ⊗ x−
i ,

S(x+
i ) = −x+

i k−1
i , S(x−

i ) = −ki x−
i , S(k±1

i ) = k∓1
i ,

ε(ki ) = 1, ε(x+
i ) = ε(x−

i ) = 0.

There is another presentation ofU ′
q(̂sln+1), introduced by Drinfeld [17]. In this pre-

sentation the algebra is generated by c±1, {k±1
i }i∈I , {hi,m}i∈I ,m∈Z\{0}, {x±

i,m}i∈I ,m∈Z,
with the relations

[c±1, U ′
q(̂sln+1)] = 0, ki k

−1
i = k−1

i ki = 1,

ki h j,m = h j,mki , ki x±
j,m = q± 1

2Ci, j x±
j,mki ,

[hi,m, h j,l ] = δm,−l
1

m
[mCi, j ]q

cm − c−m

q
1
2 − q− 1

2

,

[hi,m, x±
j,l ] = ± 1

m
[mCi, j ]q c−(m∓|m|)/2 x±

j,m+l ,

x±
i,m+1x±

j,l − q± 1
2Ci, j x±

i,l x
±
j,m+1 = q± 1

2Ci, j x±
i,m x±

j,l+1 − x±
i,l+1x±

j,m,

[x+
i,m, x−

j,l ] = δi, j
cmφ+

i,m+l − clφ−
i,m+l

q
1
2 − q− 1

2

,

∑

π∈S1−Ci, j

1−Ci j
∑

r=0

(−1)r
[

1 − Ci j

r

]

q
x±

i,mπ(1)
. . . x±

i,mπ(r)
x±

j,l x
±
i,mπ(r+1)

. . . x±
i,mπ(1−Ci, j )

= 0.

(2.2)

Here φ±
i,m are defined as coefficients in the formal power series

φ±
i (u) =

∑

m≥0

φ±
i,±mu±m = k±1

i exp

(

±(q
1
2 − q− 1

2 )
∑

m>0

hi,±mu±m

)

and we set φ±
i,±m = 0 if m < 0. The last relation in (2.2) is taken for every pair of

distinct integers (i, j) ∈ I 2 and for every integer sequence m1, . . . , m1−Ci, j , while
the first summation is over all permutations π of 1 − Ci, j elements.

The two presentations of U ′
q(̂sln+1) above are related as follows: {k±1

i }i∈I denote

the same elements in both presentations, x±
i,0 = x±

i for i ∈ I and c = k0k1k2 . . . kn .
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The generators x±
0 are given in terms of the generators from Drinfeld’s presentation

using the following expressions, cf. [17, 21]:

x+
0 =

[

x−
n ,

[

x−
n−1, . . .

[

x−
2 , x−

1,1

]

q− 1
2

. . .

]

q− 1
2

]

q− 1
2

ck−1
1 k−1

2 . . . k−1
n , (2.3)

x−
0 = c−1k1 . . . kn

[

. . .

[

[

x+
1,−1, x+

2

]

q
1
2

, x+
3

]

q
1
2

, . . . x+
n

]

q
1
2

, (2.4)

where we use the notation [A, B]u = AB − u B A.
The subalgebra of U ′

q(̂sln+1) generated by {k±1
i }i∈I , {x±

i }i∈I is a Hopf subalgebra

isomorphic to the quantized enveloping algebra Uq(sln+1), so any U ′
q(̂sln+1)-module

has also a structure of a Uq(sln+1)-module. We can define a Q-grading on U ′
q(̂sln+1)

and Uq(sln+1) by setting

deg(x±
i,m) = ±αi , deg(x±

0 ) = ∓θ, deg(k±1
i ) = deg(hi,n) = deg(c) = 0.

Let U+ (resp. U− and U 0) be the subalgebra of Uq(sln+1) generated by {x+
i }i∈I

(resp. {x−
i }i∈I for U− and {k±1

i }i∈I for U 0). Similarly, let ̂U+ (resp. ̂U− and ̂U 0)
be the subalgebra of U ′

q(̂sln+1) generated by {x+
i,m}i∈I ,m∈Z (resp. {x−

i,m}i∈I ,m∈Z and

{k±1
i , hi,m}i∈I ,m∈Z\{0}). The following factorizations are known [13]:

Uq(sln+1) = U−.U 0.U+, U ′
q(̂sln+1) = ̂U−.̂U 0.̂U+,

where we use U1.U2 := {u1u2 | u1 ∈ U1, u2 ∈ U2}.
There exists an involution of U ′

q(̂sln+1), which is denoted by ω̂ and is defined by

ω̂(x±
i,m) = −x∓

i,−m, ω̂(hi,m) = −hi,−m, ω̂(k±1
i ) = k∓1

i , ω̂(c±1) = c∓1.

One can check, using (2.3) and (2.4) that ω̂(x±
0 ) = −q∓ n+1

2 x∓
0 . Moreover, ω̂ is a

coalgebra anti-automorphism:

� ◦ ω̂ = (ω̂ ⊗ ω̂) ◦ �′.

For a U ′
q(̂sln+1)-module V we use V ω to denote the pullback of V through ω.

Note that we have not listed the expressions for the coproduct of the Drinfeld
generators. In fact, explicit formulae for �x±

i,m and �hi,m are not known, but partial
expressions are available in the case of the quantum loop algebra Uq(Lsln+1) =
U ′

q(̂sln+1)/(c − 1), see [12, Proposition 1.2] and references therein.

Remark 2.1 In the definitions of the quantum algebras we choose to use q
1
2 instead of

q. Our reasoning behind this choice will be clear in Sect. 5, where our q will match
the parameter q of the q-Whittaker and Macdonald symmetric functions.
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2.2 Highest l-weight modules

To study representations ofUq(sln+1) andU ′
q(̂sln+1) it is convenient to reintroduce the

notions of weights, weight spaces and highest weight representations in the quantum
affine setting. For a Uq(sln+1)-module V we say that v ∈ V is a weight vector if

ki .v = ρiv, i ∈ I

for an n-tuple ρ = (ρ1, ρ2, . . . , ρn) ∈ (C×)n called the weight of v. Treating C
× =

C\{0} as an abelian group, we get an abelian group structure on the set of suchweights:
ρτ = (ρ1τ1, . . . , ρnτn). We define an abelian group map q

•
2 : P → (C×)n by setting

q
μ
2 := (q

1
2 (μ,α1), . . . , q

1
2 (μ,αn)). Since we have assumed that q

1
2 is transcendental this

map is injective.
We call a Uq(sln+1)-module V a weight module if

V =
⊕

ρ∈(C×)n

Vρ, Vρ := {v ∈ V | ki .v = ρiv}.

The spaces Vρ are called the weight spaces of V , and ρ is called a weight of V if
Vρ �= 0. We say that an Uq(sln+1)-module V is in the category O if

• V is a weight module and all its weight spaces are finite-dimensional;
• All weights of V are contained in

⋃m
i=1{ρi q− μ

2 | μ ∈ Q+} for some weights
ρ1, . . . , ρm ∈ (C×)n .

Similarly to the classical situation, for each weight ρ there exists a unique irreducible
Uq(sln+1)-module V (ρ) ∈ O with the highest weight ρ.

To extend the formalism above to U ′
q(̂sln+1) we assume for convenience that c

always acts by 1; one can check that this assumption is not restrictive as long as we
work with simple U ′

q(̂sln+1)-modules inO, cf. [45, Proposition 3.2]. For a U ′
q(̂sln+1)-

module V we call v ∈ V an l-weight vector if

φ±
i,m .v = γ ±

i,mv, i ∈ I , m ∈ Z,

where γ = (γ ±
i,m)i∈I ,m∈±Z≥0 is a collection of complex numbers satisfying γ +

i,0γ
−
i,0 =

1 for every i ∈ I . Such collections of numbers γ are called l-weights.5 We say that an
l-weight γ is rational if for some rational functions ( f1(u), . . . , fn(u)) the expansions
of fi (u) around 0 and ∞ are

fi (u) =
∑

m≥0

γ +
i,mum, fi (u) =

∑

m≥0

γ −
i,−mu−m .

In this situation we denote this l-weight by f = ( f1(u), . . . , fn(u)). Note
that rational functions fi (u) define a rational l-weight as long as fi (u) are reg-

5 As a warning, l-weights are not as nicely behaved as the usual weights. For example, if v is an l-weight
vector x±

i .v might fail to be an l-weight vector.
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ular at 0,∞ and fi (0) fi (∞) = 1. For rational l-weights f , g set f g :=
( f1(u)g1(u), . . . , fn(u)gn(u)).

We call an l-weight vector v singular if x+
i,m .v = 0 for any i, m. An U ′

q(̂sln+1)-

module V is called a highest l-weight module when V = U ′
q(̂sln+1).v = ̂U−.v for a

singular l-weight vector v; the l-weight of v is called the highest l-weight of V . The
following statement summarizes the information about irreducible highest l-weight
modules with rational highest l-weights:

Proposition 2.2 ([45]) Let f , g be rational l-weights.

1. There exists a unique up to isomorphism irreducible representation L( f ) of
U ′

q(̂sln+1)/(c − 1) with the highest l-weight f .
2. L( f ) ∈ O as a Uq(sln+1)-module.
3. If L( f ) ⊗ L(g) is an irreducible U ′

q(̂sln+1)-module then

L( f ) ⊗ L(g) ∼= L( f g) ∼= L(g) ⊗ L( f ).

2.3 The representations V(s)z

For a pair of complex numbers s, z ∈ C
× let V (s)z denote the U ′

q(̂sln+1)-module

L( f ) with f1(u) = s−1 1−szu
1−s−1zu

and fr (u) = 1 for r > 1. For a, b ∈ C
× we also set

V a
b := V (a/b)ab. These representations can be explicitly described, and to do it we use

the following notation. By a composition I wemean an n-tuple of nonnegative integers
(I1, . . . , In) ∈ Z

n≥0 and for any composition I we set |I | = I1 + I2 +· · ·+ In . Define
ei = (ei

1, ei
2, . . . , ei

n) as the composition with ei
j = δi, j , and set 0 := (0, . . . , 0).

Proposition 2.3 The representation V (s)z is infinite-dimensional and has basis
{vI }I∈Z

n≥0
if s �= ±q− m

2 for any m ∈ Z≥0, and is finite-dimensional with basis

{vI }I∈Z
n≥0:|I |≤m if s = ±q− m

2 for m ∈ Z≥0. The action of U ′
q(̂sln+1) is given explicitly

by

k1.vI = s−1q
1
2 (−|I |−I1) vI , k0.vI = sq

1
2 (|I |+In) vI ,

x+
1 .vI = s−1q

1
2 (−|I |+1)[I1]q vI−e1 , x+

0 .vI = z
1 − s2q |I |

q
1
2 − q− 1

2

vI+en ,

x−
1 .vI = 1 − s2q |I |

q
1
2 − q− 1

2

vI+e1 , x−
0 .vI = (zs)−1q

1
2 (−|I |+1)[In]q vI−en ,

kr .vI = q
1
2 (Ir−1−Ir ) vI ,

x+
r .vI = [Ir ]q vI−er +er−1 ,

x−
r .vI = [Ir−1]q vI+er −er−1 , (2.5)

where r = 2, . . . , n. Moreover, viewed as a Uq(sln+1)-module, V (s)z is irreducible
with the highest weight (s−1, 1, . . . , 1).
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For the finite-dimensional case the claim can be deduced from [30, Proposition 5.1],
and the infinite-dimensional situation can be reached using analytic continuation.
Below we provide another way to verify Proposition 2.3.

Proof Wefirst check that (2.5) gives a well-definedU ′
q(̂sln+1)-module, and then verify

that the resulting module is indeed V (s)z .
Let V ′ be a vector space with a basis {vI }I∈Z

n≥0
, and consider V ′ as a U ′

q(̂sln+1)-
module with the action defined by (2.5). To check that this action is well-defined we
need to verify the defining relations (2.1), which can be done by a direct computation.
For instance,

[x+
1 , x−

1 ].vI

= s−1q− 1
2 |I |
(

1 − s2q |I |

q
1
2 − q− 1

2

q
I1+1
2 − q− I1+1

2

q
1
2 − q− 1

2

− q
1
2

q
I1
2 − q− I1

2

q
1
2 − q− 1

2

1 − s2q |I |−1

q
1
2 − q− 1

2

)

vI

= s−1q− |I |
2 − I1

2 − sq
|I |
2 + I1

2

q
1
2 − q− 1

2

vI = k1 − k−1
1

q
1
2 − q− 1

2

.vI ,

((x+
1 )2x+

2 − [2]q x+
1 x+

2 x+
1 + x+

2 (x+
1 )2).vI

= s−2q−|I |+ 3
2 [I2]q [I1]q

([I1 + 1]q − [2]q [I1]q + [I1 − 1]q
)

vI = 0.

Other relations (including the Serre relations for U ′
q(̂sl2), when ̂C0,1 = −2) are either

trivial or similar to the two above, so we omit their verification.
Note that when s = ±q− m

2 for m ∈ Z≥0 the module V ′ defined above has a
submodule spanned by {vI }I∈Z

n≥0:|I |≤m . Indeed, the only generators x±
i which send

vI to vJ with |J | > |I | are x+
0 and x−

1 , and we have x+
0 vI = 0, x−

1 vI = 0 when
s = ±q− m

2 and |I | = m. In this situation, let V ′′ ⊂ V ′ denote this submodule spanned
by {vI }I∈Z

n≥0:|I |≤m , otherwise, when s �= ±q− m
2 for any m ∈ Z≥0, set V ′′ = V ′.

Looking at the action of x±
i for i = 1, . . . , n, one can see that V ′′ = Uq(sln+1).v0 and

v0 is the only Uq(sln+1)-singular vector of V ′′, hence V ′′ is an irreducible Uq(sln+1)-
module with the highest weight (s−1, 1, . . . , 1).

To finish the proof we only need to show that V ′′ ∼= V (s)z . To do it we refer to
[45, Proposition 5.5], which claims that a U ′

q(̂sln+1)-module which is irreducible as a
Uq(sln+1)-module and has the highestUq(sln+1)-weight (s−1, 1, . . . , 1) is isomorphic

to L(g) with g1(u) = s−1 1−sz′u
1−s−1z′u , g2(u) = g3(u) = · · · = 1 for some z′ ∈ C\{0}.6

So V ′′ ∼= L(g), and we just need to show that z = z′. To do it we can compute
the action of x−

1,1 on v0: Note that for any A ∈ U ′
q(̂sln+1) such that [A, x+

i ] = 0,

ki Ak−1
i = q

1
2 A we have [x+

i , [x−
i , A]

q− 1
2

k−1
i k−1

i−1]q
1
2

= Ak−1
i−1. Using this relation

as an inductive step, we see from (2.3) that

6 Such aU ′
q (̂sln+1)-module is called a Kirillov–Reshetikhinmodule corresponding to the first fundamental

weight.
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[

x+
i ,

[

x+
i+1, . . .

[

x+
n , x+

0

]

q
1
2

. . .

]

q
1
2

]

q
1
2

=
[

x−
i−1, . . .

[

x−
2 , x−

1,1

]

q− 1
2

. . .

]

q− 1
2

ck−1
1 . . . k−1

i−1.

In particular,

x−
1,1.v0 =

[

x+
2 ,

[

x+
3 , . . .

[

x+
n , x+

0

]

q
1
2

. . .

]

q
1
2

]

q
1
2

k1.v0

= s−1x+
2 . . . x+

n x+
0 .v0 = z

s−1 − s

q
1
2 − q− 1

2

ve1 ,

so φ+
1,1.v0 = (q

1
2 − q− 1

2 )[x+
1 , x−

1,1].v0 = z(s−2 − 1).v0. On the other hand, since

g1(u) = s−1 + z′(s−2 − 1)u + o(u), we have φ+
1,1.v0 = z′(s−2 − 1).v0. Hence z = z′

and V ′′ ∼= V (s)z . ��
Remark 2.4 The representation V (s)z can also be viewed as an evaluation module
induced from an analytically-continued symmetric tensor power of the standard repre-
sentationofUq(sln+1).More rigorously, to obtainV (s)z one can consider the extension
Uq(sln+1) ⊂ Uq(gln+1), define a Uq(gln+1)-module V (s) and then pull it along the
evaluation map evz : U ′

q(̂sln+1) → Uq(gln+1) introduced in [20].

The following fact will be crucial in the following section.

Proposition 2.5 The U ′
q(̂sln+1)-module V (s1)z1 ⊗ V (s2)z2 ⊗ · · · ⊗ V (sL)zL is irre-

ducible for a fixed L ∈ Z≥1 and generic complex parameters z1, . . . , zL , s1, . . . , sL .

Proof We refer to a much stronger result [12, Theorem 4] for the case when all V (si )zi

are finite-dimensional, that is, when si ∈ q− 1
2Z≥0 for each i . ��

Theorem 2.6 ([12, Theorem 4]) Let m1, . . . , mL ∈ Z≥0, z1, . . . , zL ∈ C\{0}. If for

any pair i, j such that i �= j we have zi/z j /∈ q
1
2Z, then V (q− m1

2 )z1 ⊗ V (q− m2
2 )z2 ⊗

· · · ⊗ V (q− mL
2 )zL is a highest l-weight module.

Below we explain how [12, Theorem 4] implies Proposition 2.5 by first explaining the

notation from [12], then showing irreducibility of V (q− m1
2 )z1 ⊗· · ·⊗ V (q− mL

2 )zL for

generic z1, . . . , zL and then lifting the restriction si ∈ q− 1
2Z≥0 .

We start with matching the notation used in [12] with our notation:

• Our q
1
2 corresponds to q in [12], to avoid confusion we keep using our q

1
2 even

when describing notation from [12].
• In [12] the irreducible highest l-weightU ′

q(̂sln+1)-modules of finite dimension are
parametrized by n-tuples π = (π1(u), . . . , πn(u)) of polynomials πi (u), instead
of rational l-weights f like in our work. More precisely, the functions πi (u)

corresponding to the representation V ( f ) are given by

πi (u) =
⎧

⎨

⎩

∏

j≥1
fi (q j u)

fi (0)
, |q| < 1,

∏

j≥0
fi (0)

fi (q− j u)
, |q| > 1,
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and it turns out that for the finite-dimensional representation V (q− m
2 )z these func-

tions πi are polynomials (regardless of conditions |q| > 1 or |q| < 1):

π1(u) =
m
∏

i=1

(1 − q
m
2 −i+1zu), πr (u) = 1, r ≥ 2.

The n-tuple of polynomials (π1(u), . . . , πn(u)) above is denoted by π1
m,zq1/2 in

[12], and our representations V (q− m
2 )z correspond to V (π1

m,zq1/2) in [12].

• In [12] the results are proved over C(q
1
2 ), while here we fix q

1
2 as a transcendental

complex number. Since we work generically and the action of U ′
q(̂sln+1) can be

expressed in terms of matrices over Q(q
1
2 , z1, . . . , zm) this difference is irrelevant

in view of Lemma 2.8 below, we will return to this later when discussing the

transition from si = q− mi
2 to arbitrary si .

So, from [12, Theorem 4] we know that for any fixed m1, . . . , mL ∈ Z≥1 and

generic z1, . . . , zL the U ′
q(̂sln+1)-module V := V (q− m1

2 )z1 ⊗ · · · ⊗ V (q− mL
2 )zL is

highest l-weight. Since the vector v := v0 ⊗ . . . v0 is the unique up to a scalar vector

with the maximal Uq(sln+1)-weight ρ = (q
1
2

∑

i mi , 1 . . . , 1), we have x+
i,m .v = 0 and

v is the highest l-weight vector. In other words, [12, Theorem 4] can be rephrased as
U ′

q(̂sln+1).v = V .
To show irreducibility of V we consider (V ∗)ω̂, that is, we consider the dual rep-

resentation pulled back along the involution ω̂. For convenience, we identify the
underlying vector space of (V ∗)ω̂ with V ∗. We use the following fact from [14].

Lemma 2.7 ([14, Proposition 5.1]) There exists a fixed constant c such that for any
m, z we have ((V (q− m

2 )z)
∗)ω̂ ∼= V (q− m

2 )cz−1 .

Hence we have

(V ∗)ω̂ = V (q− m1
2 )cz−1

1
⊗ · · · ⊗ V (q− mL

2 )cz−1
L

and so (V ∗)ω̂ is also a highest l-weight representation for generic z1, . . . , zL . By
comparing Uq(sln+1)-weights note that the highest l-vector v∗ of (V ∗)ω̂ is dual to v

in the sense that v∗ vanishes on all weight spaces of V other than Cv. Now assume
that W ⊂ V is a U ′

q(̂sln+1)-submodule. Then W should also have a decomposition
into Uq(sln+1)-weight spaces, and hence either v ∈ W or v∗ ∈ W ⊥, where W ⊥ is the
annihilator of W in V ∗. In the first case we have U ′

q(̂sln+1).v = V ⊂ W , while in the
second case we get

U ′
q(̂sln+1).v

∗ = ω̂
(

U ′
q(̂sln+1)

)

.v∗ = V ∗ ⊂ W ⊥,

implying W = 0. So V (q− m1
2 )z1 ⊗ · · · ⊗ V (q− mL

2 )zL is irreducible for generic
z1, . . . , zL .
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To establish Proposition 2.5 we now need to go back from si = q− mi
2 to generic

si , which can be done using the following elementary linear algebra fact:

Lemma 2.8 Fix d1, d2 ∈ Z≥1 and let X (r)
i, j be formal variables enumerated by i, j, r ∈

Z≥1 such that i ≤ d1, j ≤ d2. There exist countable families of polynomials Fp and

Gt over Z in variables X (r)
i, j with the following property:

Assume we are given finite-dimensional vector spaces V , W overFwith dimensions
dim(W ) = d1, dim(V ) = d2, and a countable family of linear operators A(r) : W →
V . Fix bases of V , W and let A(r)

i, j be the matrix coefficients of A(r) with respect to

those bases. Then
⋃

r Im A(r) = V if and only if Fp(A(r)
i, j ) �= 0 for some p, and

⋂

r Ker A(r) = 0 if and only if Gt (A(r)
i, j ) �= 0 for some t. Here Fp(A(r)

i, j ), Gt (A(r)
i, j )

denote the results of substitution X (r)
i, j = A(r)

i, j into Fp and Gt . ��
We apply Lemma 2.8 in the following way. Let, as before, V = V (s1)z1 ⊗ · · · ⊗

V (sL)zL , v = v0 ⊗ · · · ⊗ v0 and ρ = (
∏

i s−1
i , 1 . . . , 1). Note that, when viewed

as Uq(sln+1)-module, all weights of V are of the form ρq− 1
2μ for μ ∈ Q+ and the

weight spaces can be explicitly described: ifμ = K1α1+· · ·+Knαn for a composition
K ∈ Z

n≥0 then V
ρq− 1

2 μ
is spanned by vI1 ⊗· · ·⊗vI L such that I1+· · ·+ I L = K and

vI i ∈ V (si )zi . The last condition is only relevant when si = ±q− m
2 , m ∈ Z, when we

require |I i | ≤ m. In particular, as long as si /∈ {±1,±q− 1
2 , . . . ,±q− |K |−1

2 } for each i ,
we can identify the vector space V

ρq− 1
2 μ

for arbitrary s1, . . . , sL , z1, . . . , zL with the

vector space over C generated by basis vectors {|I1, . . . , I L〉}I1+···+I L=K , we denote
the latter by V gen

ρq− 1
2μ
.

Note that V is irreducible if and only if for any μ ∈ Q+ we have V
ρq− 1

2μ
⊂

U ′
q(̂sln+1).v and v ∈ U ′

q(̂sln+1).v
′ for any v′ ∈ V

ρq− 1
2μ

\{0}. It is enough to show that

for a fixed μ ∈ Q+ both these conditions hold for generic s1, . . . , sL , z1, . . . , zL . We
start with V

ρq− 1
2μ

⊂ U ′
q(̂sln+1).v. Recall that we have a Q-grading on U ′

q(̂sln+1), let

Gμ be the set of words in k±1
i , x±

i , i ∈ ̂I whose total Q-degree is μ. Using U ′
q(̂sln+1)-

action fromProposition 2.3, consider eachwordw ∈ G−μ as an operator A(w) : Cv →
V

ρq− 1
2μ
. Recall that, for a fixed K ∈ Z≥0 depending only on μ, the vector spaces

V
ρq− 1

2μ
for arbitrary s1, . . . , sL , z1, . . . , zL can be identified with V gen

ρq− 1
2 μ
, as long as

si /∈ {±1,±q− 1
2 , . . . ,±q− K−1

2 }.Moreover, allmatrix coefficients of A(w) with respect

to vI1⊗· · ·⊗vI l are polynomials in s1, . . . , sL , z1, . . . , zL , with coefficients inQ(q
1
2 ).

Since V
ρq− 1

2μ
⊂ U ′

q(̂sln+1).v is equivalent to
⋃

w Im A(w) = V
ρq− 1

2 μ
, Lemma 2.8

gives a family of polynomials Fp(s1, . . . , sL , z1, . . . , zL) with coefficients from

Q(q
1
2 ), such that V

ρq− 1
2 μ

⊂ U ′
q(̂sln+1).v if and only if Fp(s1, . . . , sL , z1, . . . , zL) �= 0

for some p, still assuming si /∈ {±1,±q− 1
2 , . . . ,±q− K−1

2 }. Since we work generi-
cally over si , zi , it is enough to show that Fp �= 0 as a polynomial in si , zi for at least
one p. But from the finite-dimensional case we know that V

ρq− 1
2μ

⊂ U ′
q(̂sln+1).v
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for generic z1, . . . , zL and si ∈ q− 1
2Z≥0 . Hence, for any mi ≥ K and generic zi ,

we have Fp(q− m1
2 , . . . , q− mL

2 , z1, . . . , zL) �= 0 for some p, implying that Fp �= 0
as a polynomial in si , zi for some p. Hence V

ρq− 1
2 μ

⊂ U ′
q(̂sln+1).v for generic

si , zi . Note in particular, that we have used Lemma 2.8 to rewrite the condition
V

ρq− 1
2μ

⊂ U ′
q(̂sln+1).v in terms of vanishing of certain polynomials with coeffi-

cients being rational functions in q
1
2 , this readily implies that we can equivalently

consider q
1
2 as a transcendental complex number or as a formal variable, making this

difference with [12] irrelevant.
To show that generically v ∈ U ′

q(̂sln+1).v
′ for fixed μ and any v′ ∈ V

ρq− 1
2 μ

\{0}
we use the other half of Lemma 2.8. Namely, considering now the words w ∈
Gμ as operators A(w) : V

ρq− 1
2 μ

→ Cv, we have v ∈ U ′
q(̂sln+1).v

′ for any

v′ ∈ V
ρq− 1

2 μ
\{0} if and only if

⋂

w KerA(w) = 0. By Lemma 2.8, there exist

polynomials Gt (s1, . . . , sL , z1, . . . , zL) such that the last condition is equivalent to
existence of t such that Gt (s1, . . . , sL , z1, . . . , zL) �= 0. Irreducibility of V in finite-
dimensional situation implies that at least one polynomial Gt is nonzero, hence we
have v ∈ U ′

q(̂sln+1).v
′ for any v′ ∈ V

ρq− 1
2μ

\{0} generically. ��

3 Explicit expressions for isomorphisms between tensor products

In this section we present explicit expressions for isomorphisms between representa-
tions of the form V (s1)z1 ⊗ V (s2)z2 . The importance of these expressions is two-fold:
on one hand we get explicit expressions for the R-matrix V (s1)z1 ⊗ V (s2)z2 →
V (s2)z2 ⊗ V (s1)z1 , reproducing a result of [5]. On the other hand, using the generic
irreducibility of arbitrary tensor products of the form V (s1)z1 ⊗· · ·⊗V (zL)zL , we can
use our explicit expressions to explain and generalize the inhomogeneousYang–Baxter
equations found in [4] and used to study the q-Hahn vertex model.

To simplify expressions in this section we use the following notation. Recall that
for a pair of parameters a, b ∈ C\{0}we set V a

b := V (a/b)ab. For compositions X,Y
and complex parameters a, b define

�(X,Y ; a, b) := b|X|q
∑

i< j Xi Y j
(a; q)|X |(b; q)|Y |

(ab; q)|X+Y |

n
∏

i=1

(q; q)Xi +Yi

(q; q)Xi (q; q)Yi

.

Note that, while we usually assume that the compositions are positive, the expression
�(X,Y ; a, b)makes sense as long as for each i at least one of Xi , Yi is positive, while
the other might be negative, see Sect. 1.5. Alternative expressions there imply that, if
Xi + Yi ≥ 0 for every i , then �(X,Y ; a, b) = 0 unless Xi ≥ 0 and Yi ≥ 0 for every
i . For parameters a1, a2, a3, b1, b2, b3 and compositions I, J we set

Ca1,b1;a2,b2(I, J) := (b1/a1)
|J |q− 1

2

∑

i< j Ji I j .
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In view of Proposition 2.3 we have a basis of V (s1)z1 ⊗ · · · ⊗ V (sL)zL given by
|vI1 ⊗ vI2 ⊗ · · · ⊗ vI L 〉, let 〈vI1 ⊗ vI2 ⊗ · · · ⊗ vI L | denote the dual vectors in
(V (s1)z1 ⊗ · · · ⊗ V (sL)zL )∗.

3.1 Explicit expressions

We start by describing isomorphisms between V a1
b1

⊗ V a2
b2
, V a2

b1
⊗ V a1

b2
, V a1

b2
⊗ V a2

b1
and V a2

b2
⊗ V a1

b1
for generic a1, a2, b1, b2. Note that all four representations are irre-

ducible by Propositions 2.5 and 2.2 all of them are isomorphic to L( f ) where

f1(u) = (a−1
1 −a1u)(a−1

2 −a2u)

(b−1
1 −b1u)(b−1

2 −b2u)
and fr (u) = 1 for r ≥ 2.

Theorem 3.1 For generic parameters a1, b1, a2, b2 the representations V a1
b1

⊗V a2
b2

and
V a2

b1
⊗ V a1

b2
are irreducible and isomorphic, with an isomorphism W a given explicitly

by

W a : V a1
b1

⊗ V a2
b2

→ V a2
b1

⊗ V a1
b2

,

〈vK ⊗ vL |W a |vI ⊗ vJ 〉 = δI+J=K+L
Ca2,b1;a1,b2 (K , L)

Ca1,b1;a2,b2 (I, J)
�(I − K , K ; a2

1/a2
2 , a2

2/b21).

In particular, 〈vK ⊗ vL |W a |vI ⊗ vJ 〉 = 0 unless I ≥ K coordinate-wise.
Similarly, for generic parameters a1, b1, a2, b2 the representations V a1

b1
⊗ V a2

b2
and

V a1
b2

⊗ V a2
b1

are irreducible and isomorphic, with an isomorphism W b given explicitly
by

W b : V a1
b1

⊗ V a2
b2

→ V a1
b2

⊗ V a2
b1

〈vK ⊗ vL |W b|vI ⊗ vJ 〉 = δI+J=K+L
Ca1,b2;a2,b1(K , L)

Ca1,b1;a2,b2 (I, J)
�(L, J − L; a2

2/b21, b21/b22),

with the expression vanishing unless J ≥ L.

Proof By the discussion above it is enough to check that the morphisms W a and W b

presented above commute with the action of U ′
q(̂sln+1). We do it by verifying the

statement on the generators {k±1
i }, {x±

i } of U ′
q(̂sln+1). For ki the check is trivial since

W a and W b clearly preserve the weight spaces. The checks for x±
i are similar to each

other and can be readily done by a straightforward but tedious computation. Here we
only provide the verification that x+

1 commutes with the action of W a .
We need to check that 〈vK ⊗ vL |W a x+

1 |vI ⊗ vJ 〉 = 〈vK ⊗ vL |x+
1 W a |vI ⊗ vJ 〉 for

any compositions I, J, K , L. Since W a preserves the weight and x+
1 increases it by

q
1
2α1 , both sides are zero unless I + J − e1 = K + L. Assuming I + J − e1 = K + L

from now on, note that

x+
1 |vI ⊗ vJ 〉 = b1b2

a1a2
q

1
2 (−|I |−|J |−J1+1)[I1]q |vI−e1 ⊗ vJ 〉

+b2
a2

q
1
2 (−|J |+1)[J1]q |vI ⊗ vJ−e1〉,
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〈vK ⊗ vL |x+
1 = b1b2

a1a2
q

1
2 (−|K |−|L|−L1)[K1 + 1]q 〈vK+e1 ⊗ vL |

+b2
a1

q− 1
2 |L|[L1 + 1]q 〈vK ⊗ vL+e1 |,

where the first equality describes the left action on V a1
b1

⊗ V a2
b2

with the assumption
that |vI ′ ⊗ vJ ′ 〉 = 0 when the configurations I ′, J ′ are non-positive, while the second
describes the right action on (V a2

b1
⊗ V a1

b2
)∗. So we need to verify that

b1b2
a1a2

q
1
2 (−|I |−|J |−J1+1)[I1]q〈vK ⊗ vL |W a |vI−e1 ⊗ vJ 〉

+ b2
a2

q
1
2 (−|J |+1)[J1]q〈vK ⊗ vL |W a |vI ⊗ vJ−e1〉

= b1b2
a1a2

q
1
2 (−|K |−|L|−L1)[K1 + 1]q〈vK+e1 ⊗ vL |W a |vI ⊗ vJ 〉

+ b2
a1

q− 1
2 |L|[L1 + 1]q〈vK ⊗ vL+e1 |W a |vI ⊗ vJ 〉.

Plugging the expression for W a , cancelling terms, using that I + J − e1 = K + L
and

Ca1,b1;a2,b2(I − e1, J)

Ca1,b1;a2,b2(I, J)
= 1,

Ca1,b1;a2,b2(I, J − e1)
Ca1,b1;a2,b2(I, J)

= (a1/b1)q
1
2 (|I |−I1),

we can rewrite the needed identity as

(1 − q I1)�(I − K − e1, K ; a2
1/a2

2 , a2
2/b21) + q I1(1 − q J1)�(I − K , K ; a2

1/a2
2 , a2

2/b21)

= (1 − q K1+1)�(I − K − e1, K + e1; a2
1/a2

2 , a2
2/b21)

+q K1(1 − q L1+1)�(I − K , K ; a2
1/a2

2 , a2
2/b21).

Using

�(X,Y ; a, b)

�(X − e1,Y ; a, b)
= bq |Y |−Y1

1 − aq |X|−1

1 − abq |X |+|Y |−1

1 − q X1+Y1

1 − q X1
,

�(X,Y + e1; a, b)

�(X,Y ; a, b)
= 1 − bq |Y |

1 − abq |X |+|Y |
1 − q X1+Y1+1

1 − qY1+1

we finally reduce the verification to

b21
a2
2

(1 − q I1−K1)q−|K |+K1
1 − q |I |−1a2

1/b21
1 − q |I |−|K |−1a2

1/a2
2

+ q I1(1 − q J1)

= b21
a2
2

(1 − q I1−K1)q−|K |+K1
1 − q |K |a2

2/b21
1 − q |I |−|K |−1a2

1/a2
2

+ q K1(1 − q L1+1).
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The latter can be verified by standard algebraic manipulations, using I + J − e1 =
K + L. Finally we note that the degenerate cases when I1 = 0 or I1 = K1 are
automatically handled by our convention on q-Pochhammer symbols from Sect. 1.5.

��

Proposition 3.2 For generic parameters a1, b1, a2, b2 there is an isomorphism

R : V a1
b1

⊗ V a2
b2

→ V a2
b2

⊗ V a1
b1

,

which is given in the following two equivalent ways:

〈vK ⊗ vL |R|vI ⊗ vJ 〉 = δI+J=K+L
Ca2,b2;a1,b1(K , L)

Ca1,b1;a2,b2(I, J)

×
∑

P

�(L − P, K ; a2
1/a2

2, a2
2/b22)�(P, J − P; a2

2/b21, b21/b22), (3.1)

where the sum is over configurations P such that Pi ≤ min(Ji , Li );

〈vK ⊗ vL |R|vI ⊗ vJ 〉 = δI+J=K+L
Ca2,b2;a1,b1(K , L)

Ca1,b1;a2,b2(I, J)

×
∑

P

�(L, K − P; a2
1/b21, b21/b22)�(I − P, P; a2

1/a2
2 , a2

2/b21), (3.2)

where the sum is over configurations P such that Pi ≤ min(Ii , Ki ).

Proof For generic a1, a2, b1, b2 the representations V a1
b1

⊗ V a2
b2

and V a2
b2

⊗ V a1
b1

are
irreducible and have one-dimensional highest weight space, so there exists, up to a
scalar, at most one isomorphism R between them.

The claim now follows from Proposition 3.1, which allows to construct isomor-
phism R as above in two ways corresponding to (3.1) and (3.2):

W a ◦ W b : V a1
b1

⊗ V a2
b2

→ V a1
b2

⊗ V a2
b1

→ V a2
b2

⊗ V a1
b1

W b ◦ W a : V a1
b1

⊗ V a2
b2

→ V a2
b1

⊗ V a1
b2

→ V a2
b2

⊗ V a1
b1

Note that both morphisms above send v0 ⊗ v0 to v0 ⊗ v0, so these two isomorphisms
coincide. ��

Remark 3.3 Proposition 3.2 provides an expression for the action of the R-matrix of
U ′

q(̂sln+1) on V (s)z ⊗V (s′)z′ . In the case ofU ′
q(̂sl2) this expressionwas obtained from

various approaches in the works [25, 28], see also [2, 16] for analogous expressions
in the more general elliptic case. For Uq(̂sln+1) the expression of Proposition 3.2 was
first obtained in [5] using the methods of three-dimensional integrability.
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3.2 Triple tensor products and inhomogeneous Yang–Baxter equations

By Propositions 2.2 and 2.5 generically we have V a1
b1

⊗ · · · ⊗ V am
bm

∼= L( f ) with

f1(u) = ∏

i
a−1

i −ai u

b−1
i −bi u

and fr (u) = 1 for r > 1. Hence, for two collections of generic

parameters a1 . . . am, b1, . . . , bm and ã1 . . . ãm, b̃1, . . . , b̃m the representations V a1
b1

⊗
· · · ⊗ V am

bm
and V ã1

b̃1
⊗ · · · ⊗ V ãm

b̃m
are isomorphic if and only if, up to sign changes, ã

is a permutation of a, b̃ is a permutation of b, and the total number of sign changes is
even. Proposition 3.1 allows to explicitly construct all such isomorphisms, since W a

(W b) is the isomorphism corresponding to a simple transposition of the parameters ai

(respectively bi ), while the sign changes are trivial since V a
b = V (a/b)ab = V −a

−b and
we have

V a1
b1

⊗ V a2
b2

= V a1
b1

⊗ V −a2−b2
∼= V −a2

b1
⊗ V a1−b2

= V a2−b1
⊗ V a1−b2

∼= V a1−b1
⊗ V a2−b2

= V −a1
b1

⊗ V −a2
b2

,

where both isomorphisms above are constructed using W a .
More importantly, since the representations are irreducible, the isomorphism V a1

b1
⊗

· · · ⊗ V am
bm

∼= V ã1
b̃1

⊗ · · · ⊗ V ãm

b̃m
is unique up to a scalar. Hence, if we have multiple

ways of expressing the same isomorphism using W a , W b and R, we obtain nontrivial
equations, including the remarkable Yang–Baxter equations. Below we demonstrate
this idea for triple tensor products, deriving two equalitieswhichwill be used in Sect. 4.

For later use we summarize the expressions form Propositions 3.1 to 3.2, setting:

W a
a1,a2,b1(I, J, K , L) := δI+J=K+L�(I − K , K ; a1/a2, a2/b1)

= δI+J=K+LδI≥K (a2/b1)
|I |−|K |q

∑

i< j (Ii −Ki )K j
(a1/a2; q)|I |−|K |(a2/b1; q)|K |

(a1/b1; q)|I |

×
n
∏

r=1

(q; q)Ir

(q; q)Ir −Kr (q; q)Kr

, (3.3)

W b
a2,b1,b2(I, J, K , L) := δI+J=K+L�(L, J − L; a2/b1, b1/b2)

= δI+J=K+LδJ≥L(b1/b2)
|L|q

∑

i< j Li (J j −L j )
(a2/b1; q)|L|(b1/b2; q)|J |−|L|

(a2/b2; q)|J |

×
n
∏

r=1

(q; q)Jr

(q; q)Lr (q; q)Jr −Lr

, (3.4)

Ra1,b1,a2,b2(I, J, K , L)

:= δI+J=K+L

∑

P

�(L − P, K ; a1/a2, a2/b2)�(P, J − P; a2/b1, b1/b2)

= δI+J=K+L

∑

P

�(L, K − P; a1/b1, b1/b2)�(I − P, P; a1/a2, a2/b1).

(3.5)
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We do not include Ca1,b1;a2,b2(I, J) from Propositions 3.1 to 3.2 in the expressions
above, in this way right-hand sides of (3.3)-(3.5) are rational functions in q, not just

in q
1
2 . Note also that we have replaced a2

i , b2i from Propositions 3.1 to 3.2 by ai , bi .

Remark 3.4 For the later use in Sects. 4 and 5 we note that �(X,Y , x/y, y/z)
is a polynomial in y, and y−|X|−|Y |�(X,Y , x/y, y/z) is a polynomial in y−1.
Hence W a

a1,a2,b1
(I, J, K , L) is a polynomial in a2, W b

a2,b1,b2
(I, J, K , L) is a poly-

nomial in b1 and a−|I |
2 W a

a1,a2,b1
(I, J, K , L) is a polynomial in a−1

2 . Moreover,

a−|I |
2 Ra1,b1,a2,b2(I, J, K , L) is a polynomial in b1 and a−1

2 .

Proposition 3.5 The following identity of rational functions in a1, a2, a3, b1, b2, b3
holds:

∑

C1,C2,C3

W b
a3,b1,b2(C1,C2, B2, B1)W b

a2,b1,b3(A1,C3, B3,C1)

× W b
a3,b2,b3(A2, A3,C3,C2)

=
∑

C1,C2,C3

W b
a2,b2,b3(C2,C3, B3, B2)W b

a3,b1,b3(C1, A3,C3, B1)

× W b
a2,b1,b2(A1, A2,C2,C1).

Proof It is enough to prove that for generic a1, a2, a3, b1, b2, b3 the expression

∑

C1,C2,C3

W b
a23 ,b

2
1,b

2
2
(C1,C2, B2, B1)W b

a22 ,b
2
1,b

2
3
(A1,C3, B3,C1)

×W b
a23 ,b

2
2,b

2
3
(A2, A3,C3,C2)

is equal to

∑

C1,C2,C3

W b
a22 ,b

2
2,b

2
3
(C2,C3, B3, B2)W b

a23 ,b
2
1,b

2
3
(C1, A3,C3, B1)

×W b
a22 ,b

2
1,b

2
2
(A1, A2,C2,C1).

Consider two isomorphisms V a1
b1

⊗ V a2
b2

⊗ V a3
b3

∼= V a1
b3

⊗ V a2
b2

⊗ V a3
b1
:

(1 ⊗ W b)(W b ⊗ 1)(1 ⊗ W b) : V a1
b1

⊗ V a2
b2

⊗ V a3
b3

→ V a1
b1

⊗ V a2
b3

⊗ V a3
b2

→ V a1
b3

⊗ V a2
b1

⊗ V a3
b2

→ V a1
b3

⊗ V a2
b2

⊗ V a3
b1

,

(W b ⊗ 1)(1 ⊗ W b)(W b ⊗ 1) : V a1
b1

⊗ V a2
b2

⊗ V a3
b3

→ V a1
b2

⊗ V a2
b1

⊗ V a3
b3

→ V a1
b2

⊗ V a2
b3

⊗ V a3
b1

→ V a1
b3

⊗ V a2
b2

⊗ V a3
b1

.

Both isomorphisms send v0 ⊗ v0 ⊗ v0 to v0 ⊗ v0 ⊗ v0, so by irreducibility they are
equal. The claim now follows by applying Proposition 3.1 to

〈vB3 ⊗ vB2 ⊗ vB1 |(1 ⊗ W b)(W b ⊗ 1)(1 ⊗ W b)|vA1 ⊗ vA2 ⊗ vA3〉



   40 Page 24 of 70 S. Korotkikh

= 〈vB3 ⊗ vB2 ⊗ vB1 |(W b ⊗ 1)(1 ⊗ W b)(W b ⊗ 1)|vA1 ⊗ vA2 ⊗ vA3〉.

Note that all coefficients Ca,b;a′,b′(I, J, K , L) cancel out. ��
Proposition 3.6 The following identity of rational functions holds:

∑

C1,C2,C3

W b
a2,b1,b3(C1,C2, B2, B1)Ra1,b1,a3,b2(A1,C3, B3,C1)

× W a
a2,a3,b2(A2, A3,C3,C2)

=
∑

C1,C2,C3

W a
a1,a3,b2(C2,C3, B3, B2)Ra2,b1,a3,b3(C1, A3,C3, B1)

× W b
a2,b1,b2(A1, A2,C2,C1)

Proof The claim follows from the same argument as in Proposition 3.5, applied to the
morphisms

(1 ⊗ W b)(R ⊗ 1)(1 ⊗ W a) : V a1
b1

⊗ V a2
b2

⊗ V a3
b3

→ V a1
b1

⊗ V a3
b2

⊗ V a2
b3

→ V a3
b2

⊗ V a1
b1

⊗ V a2
b3

→ V a3
b2

⊗ V a1
b3

⊗ V a2
b1

,

(W a ⊗ 1)(1 ⊗ R)(W b ⊗ 1) : V a1
b1

⊗ V a2
b2

⊗ V a3
b3

→ V a1
b2

⊗ V a2
b1

⊗ V a3
b3

→ V a1
b2

⊗ V a3
b3

⊗ V a2
b1

→ V a3
b2

⊗ V a1
b3

⊗ V a2
b1

.

��
Remark 3.7 The identity from Proposition 3.5 was first established in [4], where it
was called an inhomogeneous Yang–Baxter equation and it was proved by algebraic
manipulations starting with the Yang–Baxter equation

(1 ⊗ R)(R ⊗ 1)(R ⊗ 1)

= (R ⊗ 1)(1 ⊗ R)(R ⊗ 1) : V a1
b1

⊗ V a2
b2

⊗ V a3
b3

→ V a3
b3

⊗ V a2
b2

⊗ V a1
b1

.

Back then it was not clear for us if there exists some quantum group reasoning
behind the existence of such equations and if there is a systematic way to con-
struct them. The discussion of this section answers both questions by considering
instead of isomorphisms of the form V1 ⊗ V2 ⊗ V3 ∼= V3 ⊗ V2 ⊗ V1 isomorphisms
V1 ⊗ V2 ⊗ V3 ∼= Ṽ3 ⊗ Ṽ2 ⊗ Ṽ1, where representations Ṽi are different from Vi . This
new understanding allows us to obtain Proposition 3.6 here, which is new.

4 Vertexmodels and transfer matrices

From this point wemove away from the quantum affine algebras and focus on applying
the relations obtained in Sect. 3 to the algebraic-combinatorial objects of our interest.
In this section we introduce row operators B(x | A,B), B

∗(y | A,B) and prove
exchange relations between them by iterating Propositions 3.5 and 3.6. To make our
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expressions and manipulations clearer we also explain the language of vertex models
here.

We use the following notation. Since in what follows we only need Propositions 3.5
and 3.6 when n = 1, that is, when the quantum algebra in question is U ′

q(̂sl2), we
replace all length 1 compositions I = (I ) by nonnegative integers I . From now on
we treat q as a formal variable, and let A = (a0, a1, . . . ), B = (b0, b1, . . . ) denote
two infinite sequences of parameters ai and bi , which we treat as formal variables. Let
k = Q(q,A,B) denote the field of rational functions in q, a0, a1, . . . and b0, b1, . . . .
For a sequence X = (χ0, χ1, . . . ) we set

τ nX = (χn, χn+1, . . . , ), X = (χ−1
0 , χ−1

1 , . . . ).

4.1 Vertexmodels

By a vertex model we mean the following data:

• A collection of oriented lines in the plane, whose intersections are called vertices,
while the line segments between vertices are called edges. The edges are oriented
in the same way as the underlying lines, and each vertex has exactly two incoming
edges and two outgoing edges. An edge is internal if it connects a pair of distinct
vertices, and is boundary if it is connected to only one vertex.

• A collection of pairs of edge parameters (a, b), which are assigned to the edges
and are constrained by the following rule: for each vertex if (a, b) and (a′, b′) are
the parameters of the incoming edges of the vertex, then its outgoing edges have
either parameters (a, b) and (a′, b′), or parameters (a, b′) and (a′, b). See Fig. 1
for the assignments satisfying this constrain.

A configuration of a vertex model is an assignment of non-negative integer labels to
the edges. In this text we usually denote these labels by capital letters I , J , . . . . Given
a configuration around a vertex, that is, a collection of four edge labels I , J , K , L
attached to the adjacent edges, we define the corresponding vertex weight by tracking
the behavior of the edge parameters a, a′, b, b′ and correspondingly using expressions
(3.3)–(3.5) in the way demonstrated in Fig. 1.

In other words, we define four types of vertices I d, W a, W b, R, which are deter-
mined by the arrangement of the parameters a, b, a′, b′. For example, the vertex of type
W a preserves the parameters a, a′ but swaps the parameters b, b′ between the lines.
Note that in each of these situations the vertex weight vanishes unless I + J = K + L ,
we call this fact the conservation law.

The weight of a configuration of a vertex model is the product of the weights
of all vertices. A boundary condition for a vertex model is an assignment of labels
to the boundary edges. Given a vertex model and a boundary condition we define
the corresponding partition function as the sum of the weights of all configurations
satisfying the boundary condition, that is, configurations whose labels of the boundary
edges coincide with the boundary condition. For example, both sides of the identities
from Propositions 3.5 to 3.6 can be rewritten as partition functions in the following
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Fig. 1 Possible vertices in vertex models and their weights

way:

A1; a1, b1

B1; a3, b1
A2; a2, b2

B2; a2, b2

A3; a3, b3

B3; a1, b3

W b

W b

W b =

A1; a1, b1

B1; a3, b1
A2; a2, b2

B2; a2, b2

A3; a3, b3

B3; a1, b3

W b

W b

W b

(4.1)

A1; a1, b1

B1; a2, b1
A2; a2, b2

B2; a1, b3

A3; a3, b3

B3; a3, b2

Wa

R

W b =

A1; a1, b1

B1; a2, b1
A2; a2, b2

B2; a1, b3

A3; a3, b3

B3; a3, b2

R

Wa

W b

(4.2)

Here to each boundary edge we assign a triple (I ; a, b), where I is the label of the
boundary condition, and (a, b) are the corresponding edge parameters. To lighten the
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notation, instead of specifying the edge parameters of the internal edges we specify
the types of the vertices, W a, W b or R; the labels of the internal edges can be uniquely
reconstructed from this information.

Remark 4.1 The vertex models described above are directly related to the repre-
sentations from Sect. 3: we can think about the edge with parameters (a, b) as

of the representation V
√

a√
b
, and each vertex corresponds to one of the operators

V
√

a1√
b1

⊗ V
√

a2√
b2

→ V
√

ã1√
b̃1

⊗ V
√

ã2√
b̃2
. Note that the whole partition function corresponds

to a matrix coefficient of the isomorphism between two tensor products of the form

V
√

a1√
b1

⊗ · · · ⊗ V
√

aL√
bL

, with the parameters ai and bi determined by the parameters of
the incoming and outgoing edges.

Remark 4.2 One can also write the usual Yang–Baxter equation (1⊗ R)(R ⊗ 1)(R ⊗
1) = (R ⊗ 1)(1 ⊗ R)(R ⊗ 1) using vertex models:

A1; a1, b1

B1; a1, b1
A2; a2, b2

B2; a2, b2

A3; a3, b3

B3; a3, b3

R

R

R =

A1; a1, b1

B1; a1, b1
A2; a2, b2

B2; a2, b2

A3; a3, b3

B3; a3, b3

R

R

R

(4.3)

Note that when a1 = a2 = a3, the Eq. (4.1) becomes equivalent to the usual Yang–
Baxter equation, while setting a1 = a2, b2 = b3 makes (4.2) and (4.3) equivalent.

4.2 Row operators

For N ∈ Z≥0 define V (N ) as the vector space over kwith a basis consisting of the vec-
tors |A1, A2, . . . , AN 〉 enumerated by N -tuples (A1, . . . , AN ) ∈ Z

N≥0. Equivalently,
the same basis can be enumerated by partitions μ of length at most N in the following
way:

|μ〉 = |μ1 − μ2, μ2 − μ3, . . . , μN 〉;

we use both notations interchangeably. For N < M we have an embedding V (N ) ⊂
V (M) which is defined by |μ〉 �→ |μ〉 where l(μ) ≤ N < M , or, equivalently,
|A1, . . . , AN 〉 �→ |A1, . . . , AN , 0, . . . , 0〉. Let 〈λ|, 〈B1, . . . , BN | denote the vectors
dual to the basis {|μ〉}l(μ)≤N .
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Recall that A = (a0, a1, a2, . . . ) and B = (b0, b1, b2, . . . ) denote two infinite
sequences of parameters. For variables x, y we define row-to-row transfer matrices
T b,N

I ,L (x | A,B), T a,N
K ,J (y | A,B) : V (N ) → V (N ) by setting

T b,N
I ,L (x | A,B)|J1, . . . , JN 〉

=
∑

K1,...,KN :
Lr :=I+J[1,r ]−K[1,r ]≥0,

L N =L

N
∏

r=1

W b
ar+1,x,br

(Lr−1, Jr , Kr , Lr )|K1, . . . , KN 〉 (4.4)

T a,N
K ,J (y | A,B)|I1, . . . , IN 〉

=
∑

L1,...,L N :
Jr :=K+L[1,r ]−I[1,r ]≥0,

JN =J

N
∏

r=1

(y/b0)
−Ir W a

ar ,y,br
(Ir , Jr , Jr−1, Lr )|L1, . . . , L N 〉,

(4.5)

where for a sequence (A1, . . . , AN ) we set A[1,0] = 0, A[1,r ] = A1 + · · · + Ar

for r ≥ 1. The same definitions can be graphically represented using the following
partition functions:

〈K1, . . . , KN | T b,N
I ,L (x | A,B) |J1, . . . , JN 〉 (4.6)

= I ; a1, x … L; aN , x

J1; a2, b1

K1; a1, b1

J2; a3, b2

K2; a2, b2

JN ; aN+1, bN

KN ; aN , bN

W b W b W b

〈L1, . . . , L N | T a,N
K ,J (y | A,B) |I1, . . . , IN 〉

= (y/b0)
−I[1,N ]

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

K ; y, b1

…
J ; y, bN+1

I1; a1, b1

L1; a1, b2

I2; a2, b2

L2; a2, b3

IN ; aN , bN

L N ; aN , bN+1

Wa Wa Wa

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Here we follow the same conventions as in (4.1) and (4.2), and in the second
partition function we use the vertices of type W a rotated by 90◦. Note that for each
partition function above there exists at most one configuration with nonzero weight,
and Lr , Jr from (4.4) to (4.5) respectively are the labels of the internal edges in these
configurations.
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In the following statement we summarize simple facts about the operators T b,N
I ,0

and T a,N
K ,0 :

Proposition 4.3 Let N ∈ Z≥0 and λ,μ be partitions of length at most N .
(1) Duality: The operators T a,N

K ,0 and T b,N
K ,0 are dual in the following sense:

〈μ| T a,N
K ,0 (y | A,B) |λ〉 = (a0/y)K (y/b1; q)K

(q; q)K

ψλ(A,B)

ψμ(A, τB)
〈λ| T b,N

K ,0 (y−1 | B,A) |μ〉,

where τB denotes the shifted sequence and ψλ(A,B) is defined by

ψλ(A,B) =
∏

r≥0

(br/ar )
λr+1

∏

r≥1

(q; q)λr −λr+1

(ar/br ; q)λr −λr+1

.

(2) Polynomiality: 〈λ| T b,N
I ,L (x | A,B) |μ〉 is a polynomial in x, and 〈μ| T a,N

K ,J (y |
A,B) |λ〉 is a polynomial in y−1. Moreover, both are rational functions in q regular
at q = 0.

(3) Interlacing: 〈λ| T b,N
I ,0 (x | A,B) |μ〉 = 〈μ| T a,N

I ,0 (y | A,B) |λ〉 = 0 unless
λ1 − μ1 = I and μ ≺ λ, that is,

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ . . . .

In particular, for any M > N we have T b,M
I ,0 (x | A,B) V (N ) ⊂ V (N+1) and T a,M

K ,0 (y |
A,B) V (N ) ⊂ V (N ).

(4) Stability: For any M > N we have

〈λ| T b,M
I ,0 (x | A,B) |μ〉 = 〈λ| T b,N

I ,0 (x | A,B) |μ〉,
〈μ| T a,M

K ,0 (x | A,B) |λ〉 = 〈μ| T a,N
K ,0 (x | A,B) |λ〉.

Proof Part (1) follows at once from (4.4) to (4.5) and the relation

W a
ar ,y,br

(Ir , Jr , Jr−1, Lr ) = (ar/br )
−Jr (y/br )

Lr

× (q; q)Ir (q; q)Jr (y/br ; q)Jr−1(ar/br+1; q)Lr

(ar/br ; q)Ir (y/br+1; q)Jr (q; q)Jr−1(q; q)Lr

W b
b−1

r+1,y
−1,a−1

r
(Jr−1, Lr , Ir , Jr ),

which is verified using (3.3) and (3.4). Part (2) is also immediate from (3.3) to (3.4),
see Remark 3.4.

For the interlacing statement from part (3), by part (1) it is enough to prove it for
T b,N

I ,0 (x | A,B). Set Jr = μr − μr+1, Kr = λr − λr+1 and Lr = I + J[1,r ] − K[1,r ].
Recall from (3.4) that the weights W b

ar+1,x,br
(Lr−1, Jr , Kr , Lr ) vanish unless Jr ≥

Lr ≥ 0. Hence, for 〈K1, . . . , KN | T b,N
I ,0 (x | A,B) |J1, . . . , JN 〉 to be nonzero we

must have Jr ≥ Lr ≥ 0 for every r , and moreover L N = 0. Noting that Lr =
I +μ1−μr+1−λ1+λr+1 and, in particular, L N = I +μ1−λ1, we get that 〈λ| T b,N

I ,0 (x |
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A,B) |μ〉 = 0 unless I = λ1−μ1 andμr −μr+1 ≥ I +μ1−μr+1−λ1+λr+1 ≥ 0 for
every r . The last inequality is equivalent to μr ≥ λr+1 ≥ μr+1 for all r = 1, . . . , N ,
and since λ1 − μ1 = I ≥ 0 the interlacing μ ≺ λ follows.

The second statement of part (3) follows immediately from the interlacing by notic-
ing that μ ≺ λ implies l(μ) ≤ l(λ) ≤ l(μ) + 1. Finally, part (4) follows from the fact
that W b

a,x,b(0, 0, 0, 0) = W a
a,y,b(0, 0, 0, 0) = 1 and the relation

〈λ| T b,M
I ,0 (x | A,B) |μ〉 = W b

aN+1,x,bN
(0, 0, 0, 0)〈λ| T b,M−1

I ,0 (x | A,B) |μ〉

which holds since l(λ), l(μ) ≤ N < M . The claim for T a,M
K ,0 is handled similarly. ��

Let V :=⋃N V (N ) be a vector space over k with a basis {|μ〉}μ∈Y where we have
no restrictions on the length of μ. The natural embeddings V (N ) ⊂ V are given by
identifying the vectors |μ〉 in V and V (N ) when l(μ) ≤ N . By parts (3) and (4) of
Proposition 4.3 we can define operators T

b
I (x | A,B), T

a
K (y | A,B) : V → V by

setting for v ∈ V (N )

T
b
I (x | A,B) v = T b,N+1

I ,0 (x | A,B) v, T
a
K (y | A,B) v = T a,N

K ,0 (y | A,B) v.

Using these operators, we can formally define

B(x | A,B) =
∑

r≥0

(x/b0)
r (a1x−1; q)r

(q; q)r
T

b
r (x | A,B),

B
∗(y | A,B) =

∑

r≥0

T
a
r (y | A,B).

More precisely, B
∗(y | A,B) is an operator V → V such that

〈μ| B∗(y | A,B) |λ〉 = 〈μ| Ta
λ1−μ1

(y | A,B) |λ〉,

which is well-defined since 〈μ| Ta
λ1−μ1

(y | A,B) |λ〉 �= 0 only if μ ≺ λ, and there
is a finite number of such μ given a fixed λ. On the other hand, B(x | A,B) is not a
well-defined operator V → V , since given a fixedμwe haveT

b
r (x | A,B) |μ〉 �= 0 for

infinitely many r in general. However, we can resolve this issue by considering q and x
as formal variables: byProposition 4.3 thematrix coefficients 〈λ| Tb

λ1−μ1
(x | A,B) |μ〉

can be viewed as elements of the algebra of formal power series k[[x, q]], while the
combined degree with respect to x and q of (x/b0)r (a1x−1;q)r

(q;q)r
is at least r . Hence

B(x | A,B) is a well-defined operator V [[x, q]] → V [[x, q]], where V [[x, q]] is the
vector space of formal power series in x, q with coefficients in V .

The operators B(x | A,B) and B
∗(y | A,B) are dual to each other in the following

sense:

Proposition 4.4 For any λ,μ we have

〈μ| B∗(y | A,B) |λ〉 = ψλ(A,B)

ψμ(A, τB)
〈λ| B(y−1 | B,A) |μ〉,
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where ψλ(A,B) is defined by

ψλ(A,B) =
∏

r≥0

(br/ar )
λr+1

∏

r≥1

(q; q)λr −λr+1

(ar/br ; q)λr −λr+1

.

Proof Follows from Proposition 4.3, part (1). ��

4.3 Exchange relations

Now we consider commutation relations between the operators B(x | A,B) and
B

∗(y | A,B), which follow from the Eqs. (4.1) and (4.2). In fact, our construction
of the operators T

b
r (x | A,B), T

a
r (y | A,B) is motivated by (4.1) and (4.2) and the

desire for the arguments below to work, while the linear combinations B(x | A,B),
B

∗(x | A,B) are distinguished by especially nice commutation relations.

Proposition 4.5 We have

B
∗(y | A,B)B(x | A,B) = (a1/y; q)∞(x/b1; q)∞

(a1/b1; q)∞(x/y; q)∞
B(x | A, τB)B∗(y | τA,B),

or, more precisely, the following relation holds:

∑

λ

〈ν| B∗(y | A,B) |λ〉〈λ| B(x | A,B) |μ〉

= (a1/y; q)∞(x/b1; q)∞
(a1/b1; q)∞(x/y; q)∞

∑

λ

〈ν| B(x | A, τB) |λ〉〈λ| B∗(y | τA,B) |μ〉,

where both sides are viewed as formal power series in x, y−1 and q.

Proof We prove the latter identity, fixing μ, ν from the statement and setting Lr =
νr − νr+1, Jr = μr − μr+1.
Step 1:We start by consequently applying (4.2) to get a relation between the operators
T b,N

I ,0 and T a,N
K ,0 . Using (4.2) we have

B1; y, br+1

A1; y, br

A2; ar , x

B2; ar+1, x

Jr ; ar+1, br

Lr ; ar , br+1

W b

Wa

R =

B1; y, br+1

A1; y, br

A2; ar , x

B2; ar+1, x

Jr ; ar+1, br

Lr ; ar , br+1

Wa

W b

R
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where A1, A2, B1, B2 are arbitrary nonnegative integers. Choosing N ∈ Z≥0 such
that N > l(μ), l(ν) and applying these identities with r = N , N − 1, . . . , 2, 1 we get
for arbitrary I , K ∈ Z≥0

. . .K ; y; b1

I ; a1, x . . .
0; y, bN+1

0; aN+1, x

JN ; aN+1, bN

L N ; aN , bN+1

J1; a2, b1

L1; a1, b2

Wa

W b

Wa

W b

R

=
. . .

K ; y, b1

I ; a1, x

. . .

0; y, bN+1

0; aN+1, x

J1; a2, b1

L1; a1, b2

JN ; aN+1, bN

L N ; aN , bN+1

Wa

W b

Wa

W b

R (4.7)

Comparing with (4.4) and (4.5), the identity of partition functions above is equivalent
to

∑

Ĩ ,K̃ ,λ

(y/b0)
λ1〈ν|T a,N

K ,K̃
(y | A,B)|λ〉〈λ|T b,N

I , Ĩ
(x | A,B)|μ〉 RaN+1,x,y,bN+1( Ĩ , 0, K̃ , 0)

=
∑

J ,L

(y/b0)
μ1 Ra1,x,y,b1(I , J , K , L)〈ν| T b,N

L,0 (x | A, τB)T a,N
J ,0 (y | τA,B)|μ〉,

(4.8)

where in the left-hand side the sum is over partitions λ such that l(λ) ≤ l(μ)+1 ≤ N ,
with the restriction on length coming from Proposition 4.3, part (3).

From (4.4) we have

〈λ| T b,N
I , Ĩ

(x | A,B) |μ〉
= 〈˜λ| T b,N−1

I , Ĩ+λN −μN
(x | A,B) |μ̃〉 W b

aN+1,x,bN
( Ĩ + λN − μN , μN , λN , Ĩ ),
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where

˜λ := (λ1 − λN , . . . , λN−2 − λN , λN−1 − λN , 0, . . . ),

μ̃ := (μ1 − μN , . . . , μN−2 − μN , μN−1 − μN , 0 . . . ).

But N > l(μ), so μN = 0, μ̃ = μ and hence

〈λ| T b,N
I , Ĩ

(x | A,B) |μ〉 = 〈˜λ| T b,N−1
I , Ĩ+λN

(x | A,B) |μ〉 W b
aN+1,x,bN

( Ĩ + λN , 0, λN , Ĩ ).

Recall that W b
a,x,b(I , J , K , L) vanishes unless L ≤ J , so the expression above van-

ishes unless Ĩ = 0; hence in the left-hand side of (4.8) the nonzero terms have Ĩ = 0.
Since RaN+1,x,y,bN+1(0, 0, K̃ , 0) = δK̃ ,0, the non-zero summands in the left-hand side

of (4.8) must also have K̃ = 0 and we obtain

∑

λ

(y/b0)
λ1〈ν| T a,N

K ,0 (y | A,B) |λ〉〈λ| T b,N
I ,0 (x | A,B) |μ〉

=
∑

J ,L

(y/b0)
μ1 Ra1,x,y,b1(I , J , K , L)〈ν| T b,N

L,0 (x | A, τB)T a,N
J ,0 (y | τA,B)|μ〉.

(4.9)

Step 2: Now we use (4.9) to obtain the claim. First, using the definitions of T
b
I and

T
a
K , we obtain

∑

λ

b−I
0 〈ν| Ta

K (y | A,B) |λ〉〈λ| Tb
I (x | A,B) |μ〉

=
∑

J ,L

y−I Ra1,x,y,b1(I , J , K , L)〈ν| Tb
L(x | A, τB)Ta

J (y | τA,B) |μ〉,

where in the left-hand side we have used that λ1 = μ1 + I to simplify the term
(y/b0)λ1 . Both sides are now elements of k[[q, x, y−1]], cf. Remark 3.4 and part (2)
of Proposition 4.3. So we can multiply both sides by x I (a1/x;q)I

(q;q)I
and take the sum over

I , K such that I + μ1 = K + ν1, obtaining an identity in k[[q, x, y−1]]:
∑

λ

〈ν| B∗(y | A,B) |λ〉〈λ| B(x | A,B) |μ〉

=
∑

I ,K ,J ,L

(x/y)I (a1/x; q)I

(q; q)I
Ra1,x,y,b1(I , J , K , L)

〈ν| Tb
L(x | A, τB)Ta

J (y | τA,B) |μ〉. (4.10)
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To prove the claim it is now enough to show that for fixed J , L ≥ 0

∑

I ,K≥0

(x/y)I (a/x; q)I

(q; q)I
Ra,x,y,b(I , J , K , L)

= (a/y; q)∞(x/b; q)∞
(a/b; q)∞(x/y; q)∞

(x/b)L (a/x; q)L

(q; q)L
. (4.11)

Indeed, if (4.11) holds we can apply it to the right-hand side of (4.10) to get

∑

λ

〈ν| B∗(y | A,B) |λ〉〈λ| B(x | A,B) |μ〉

= (a1/y; q)∞(x/b1; q)∞
(a1/b1; q)∞(x/y; q)∞
∑

J ,L≥0

(x/b1)
L (a1/x; q)L

(q; q)L
〈ν| Tb

L(x | A, τB)Ta
J (y | τA,B) |μ〉

= (a1/y; q)∞(x/b1; q)∞
(a1/b1; q)∞(x/y; q)∞

〈ν| B(x | A, τB)B∗(y | τA,B) |μ〉. (4.12)

Step 3: To finish the proof we need to establish (4.11). Since both sides are power
series in x, y−1, q with coefficients in C(a, b), it is enough to consider the case when
x = q Sa for S ∈ Z≥0: if for a formal series f (q, x) ∈ F[[q, x]]we have f (q, q S) = 0
for all S ∈ Z≥0 then f (q, x) = 0, cf. [43, Lemma 3.2]. So, from now on we set
x = q Sa.

Let A ∈ Z≥0 be a sufficiently large integer. From (4.2) we have

J ; y, b

0; y; b

S; a, q Sa

L; a, q Sa

A; a, b

A + S + J − L; a, b

Wa

W b

R =
J ; y, b

0; y, b

S; a, q Sa

L; a, q Sa

A; a, b

A + S + J − L; a, b

Wa

W b

R

(4.13)

Consider the right-hand side of (4.13). Note that for J̃ , L̃ ≥ 0 we have

Ra,q Sa,y,b(S, J̃ , 0, L̃) = δS+ J̃=L̃�(L̃, 0; q−S, q Sa/b)�(S, 0; a/y, q−S y/a)

= δS+ J̃=L̃(q Sa/b)L̃ (q−S; q)L̃

(a/b; q)L̃

(q−S y/a)S (a/y; q)S

(q−S; q)S
,
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where for the first equality we have used the second line of (3.5), noting that since
K = 0 the only nonzero summand has P = 0. Since L̃ = J̃ + S ≥ S and (q−L̃ ; q)S

vanishes unless L̃ ≤ S, we get

Ra,q Sa,y,b(S, J̃ , 0, L̃) =
{

(y/b)S (a/y;q)S
(a/b;q)S

, if J̃ = 0, L̃ = S;
0, otherwise.

Hence in the right-hand side (4.13) the configuration around the vertex of type R is
fixed, and the partition function is equal to

(y/b)S (a/y; q)S

(a/b; q)S
W a

a,y,b(A, J , 0, A + J )W b
a,q Sa,b(S, A + J , A + J + S − L, L)

= (y/b)S (a/y; q)S

(a/b; q)S
(y/b)A (a/y; q)A

(a/b; q)A
(q Sa/b)L (q−S; q)L (q Sa/b; q)A+J−L (q; q)A+J

(a/b; q)A+J (q; q)L (q; q; )A+J−L
.

For the left-hand side of (4.13) we can use (3.3) and (3.4) to write it as

∑

I ,K

(q Sa/b)I (q−S; q)I (q Sa/b; q)A−I (q; q)A

(a/b; q)A(q; q)I (q; q)A−I
(y/b)A+S−I (a/y; q)A+S−I

(a/b; q)A+S−I

×Ra,q Sa,y,b(I , J , K , L).

Note that in the summation above we can assume I ≤ S, since (q−S; q)I vanishes
otherwise. In particular, the number of terms is bounded by S regardless of the value
of A.

To finish the proof we need to consider the dependence on A. Namely, we rewrite
(4.13) in a way that both sides are rational in q A: using the identity

(u; q)A+X

(u; q)A+Y
= (uq A+Y ; q)X−Y

and the expressions above for the both sides we readily obtain

∑

I≤S
K=I+J−L

(q Sa/y)I (q−S; q)I (q A−I+1; q)I (aq A/y; q)S−I

(q; q)I (q A+J−L+1; q)L(aq A+J /b; q)S−L
Ra,q Sa,y,b(I , J , K , L)

= (a/y; q)S

(a/b; q)S
(q Sa/b)L (q−S; q)L

(q; q)L
. (4.14)

Note that the both sides of (4.14) are rational functions in q A, which are equal when A
is a sufficiently large integer. Hence (4.14) holds for any value of q A, and in particular
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we can set q A = 0 getting

∑

I≤S
K=I+J−L

(q Sa/y)I (q−S; q)I

(q; q)I
Ra,q Sa,y,b(I , J , K , L) = (a/y; q)S

(a/b; q)S
(q Sa/b)L (q−S; q)L

(q; q)L
,

which is exactly (4.11) when x = q Sa. ��
Remark 4.6 One can check that (4.11) from the proof above is equivalent to the q-
Gauss identity

∑

k≥0

( c

ab

)k (a; q)k(b; q)k

(c; q)k(q; q)k
= (c/a; q)∞(c/b; q)∞

(c; q)∞(c/(ab); q)∞
.

Proposition 4.7 ([4, Proposition 4.5]) The following relation holds

B(x1 | A,B)B(x2 | τA,B) = B(x2 | A,B)B(x1 | τA,B)

Proof (Idea of the proof) This is exactly [4, Proposition 4.5], and the proof is similar
to Proposition 4.5 above, so we provide only a brief sketch of it. First, similarly to
steps 1,2 of the proof of Proposition 4.5, we use (4.1) to get a commutation relation

TI (x1 | A,B)TJ (x2 | τA,B)

=
∑

K ,L

W b
a2,x1,x2(I , J , K , L)TK (x2 | A,B)TL(x1 | τA,B).

Then the claim follows from multiplying both sides of the commutation equation
above by (x1/b0)I (x2/b0)J (a1/x1;q)I (a2/x2;q)J

(q;q)I (q;q)J
, taking the sum over I , J and applying

the relation

∑

I ,J

(x1/b0)
I (x2/b0)

J (a1/x1; q)I (a2/x2; q)J

(q; q)I (q; q)J
W b

a2,x1,x2(I , J , K , L)

= (x2/b0)
K (a1/x2; q)K

(q; q)K
(x1/b0)

L (a2/x1; q)L

(q; q)L

where K , L are fixed. The last relation can be proved by taking (4.1) and setting
A1 = A2 = 0, B1 = L, B2 = K , while B3 → ∞ and A3 = B1 + B2 + B3. ��

5 Inhomogeneous spin q-Whittaker polynomials

In this section we describe inhomogeneous spin q-Whittaker polynomials, originally
introduced in [4], and apply the results from previous sections to establish a new
Cauchy-type identity and a new characterization theorem for these functions. We
continue to use A = (a0, a1, . . . ) and B = (b0, b1, . . . ) to denote sequences of
parameters and we continue to use the notation τA,A from Sect. 4.
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5.1 Basic properties

For a pair of partitions λ,μ and a collection of variables x1, . . . , xn the inhomoge-
neous spin q-Whittaker polynomial Fλ/μ(x1, . . . , xn | A,B) is defined in terms of the
operators B(x | A,B) from Sect. 4 by

Fλ/μ(x1, . . . , xn | A,B) = 〈λ| B(x1 | A,B)B(x2 | τA,B) . . . B(xn | τ n−1A,B) |μ〉.
(5.1)

When μ = ∅ we write Fλ instead of Fλ/∅.
The following properties of Fλ/μ(x1, . . . , xn | A,B) were proved in [4]7; for the

sake of completeness we sketch their proofs:

Proposition 5.1 We have the following expression for the single-variable function
Fλ/μ(x | A,B):

Fλ/μ(x | A,B) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x |λ|−|μ|∏

r≥1

bμr −λr
r−1

(ar/x; q)λr −μr (x/br ; q)μr −λr+1(q; q)μr −μr+1

(q; q)λr −μr (q; q)μr −λr+1(ar+1/br ; q)μr −μr+1

,

if μ ≺ λ;

0, otherwise.

Proof Thevanishing part follows fromProposition 4.3, part (3). For the explicit expres-
sion we use (3.4) and (4.4) and the relation

〈λ| B(x | A,B) |μ〉 = (x/b0)
λ1−μ1

(a1/x; q)λ1−μ1

(q; q)λ1−μ1

〈λ| Tb
λ1−μ1

(x | A,B) |μ〉.

��
Proposition 5.2 The following branching rule holds:

Fλ/ν(x1, x2, . . . , xn | A,B) =
∑

μ≺λ

Fλ/μ(x1 | A,B)Fμ/ν(x2, . . . , xn | τA,B),

where the sum is over partitions μ such that λr ≥ μr ≥ λr+1 for all r .

Proof Follows from (5.1) and Proposition 4.3, part (3). ��
Corollary 5.3 Fλ/μ(x1, . . . , xn | A,B) = 0 unless μ ⊂ λ and l(λ) ≤ l(μ) + n. ��
Proposition 5.4 The functions Fλ/μ(x1, x2, . . . , xn | A,B) are symmetric polynomi-
als in x1, . . . , xn.

7 Our functions Fλ/μ were denoted by F
s
λ/μ in [4], and our ar , br are equal to ξr sr and ξr /sr from [4].
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Fig. 2 The partition function Z
r1,...,rn
λ/μ used to compute Fλ/μ(x1, . . . , xn | A,B)

Proof Fλ/μ(x1, x2, . . . , xn | A,B) is a polynomial since 〈λ| B(x | A,B) |μ〉 is a poly-
nomial in x for any λ,μ, and Fλ/μ(x1, x2, . . . , xn | A,B) is a finite sum of products of
such matrix elements thanks to Proposition 5.2. The symmetry in x1, . . . , xn follows
from Proposition 4.7. ��
Remark 5.5 Using (4.6), we can also obtain a graphical definition of the functions
Fλ/μ(x1, . . . , xn | A,B) in terms of vertex models:

Fλ/μ(x1, . . . , xn | A,B) =
∑

r1,...,rn≥0

n
∏

i=1

(xi/b0)
ri

(ai x−1
i ; q)ri

(q; q)ri

Zr1,...,rn
λ/μ

where Zr1,...,rn
λ/μ is the partition function from Fig. 2.

Remark 5.6 Spinq-Whittaker polynomialswere originally introduced in [10], and later
a different but related version was constructed in [29]. The inhomogeneous spin q-
Whittaker polynomials Fλ/μ(x1, . . . , xn | A,B) generalize both these versions: when
a1 = a2 = · · · = s and b1 = b2 = · · · = s−1 the function Fλ/μ(x1, . . . , xn | A,B)

degenerates to the corresponding spin q-Whittaker polynomial from [10],while setting
b1 = b2 = · · · = s−1, an+l(μ) = 0 and ai = s for all i �= n + l(μ) reduces
Fλ/μ(x1, . . . , xn | A,B) to the version from [29].

5.2 Cauchy identity

To formulate the Cauchy identity we define dual functions F
∗(y1, . . . , ym | A,B) by

F
∗
λ/μ(y1, . . . , ym | A,B) = ψλ(A,B)

ψμ(τmA,B)
Fλ/μ(y1, . . . , ym | A,B),
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where ψλ(A,B) is defined in Proposition 4.4:

ψλ(A,B) =
∏

r≥0

(br/ar )
λr+1

∏

r≥1

(q; q)λr −λr+1

(ar/br ; q)λr −λr+1

.

Equivalently, the dual functions can be defined using the operators B
∗(y | A,B) from

Sect. 4:

Proposition 5.7 We have

F
∗
λ/μ(y1, . . . , ym | B,A) = 〈μ| B∗(y−1

m | A, τm−1B) . . . B∗(y−1
1 | A,B) |λ〉.

Proof Follows immediately from Proposition 4.4. Note that ψλ(A,B) = ψλ(B,A).
��

Theorem 5.8 For any partitions μ, ν the following equality of formal power series in
xi , y j , q holds:

∑

λ

Fλ/μ(x1, . . . , xn | A,B)F∗
λ/ν(y1, . . . , ym | B,A) =

n
∏

i=1

m
∏

j=1

(ai y j ; q)∞(xi/b j ; q)∞
(xi y j ; q)∞(ai/b j ; q)∞

×
∑

λ

F
∗
μ/λ(y1, . . . , ym | B, τ nA)Fν/λ(x1, . . . , xn | A, τmB).

In particular, setting μ = ν = ∅ yields

∑

λ

Fλ(x1, . . . , xn | A,B)F∗
λ(y1, . . . , ym | B,A) =

n
∏

i=1

m
∏

j=1

(ai y j ; q)∞(xi/b j ; q)∞
(xi y j ; q)∞(ai/b j ; q)∞

.

(5.2)

Proof This follows from Proposition 4.5 in the following way: set

B
(n)(x1, . . . , xn | A,B) := B(x1 | A,B)B(x2 | τA,B) . . . B(xn | τ n−1A,B).

Repeatedly using the exchange relation from Proposition 4.5, shiftingA on each step,
we have

B
∗(y | A,B)B(n)(x1, . . . , xn | A,B)

=
n
∏

i=1

(ai/y; q)∞(xi/b1; q)∞
(xi/y; q)∞(ai/b1; q)∞

B
(n)(x1, . . . , xn | A, τB)B∗(y | τ nA,B).

(5.3)

Setting

B
(m)∗(y1, . . . , ym | A,B) := B

∗(y−1
m | A, τm−1B) . . . B∗(y−1

1 | A,B).
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and iterating (5.3) for m times, substituting y = y−1
j for j = 1, . . . , m, we get

B
(m)∗(y1, . . . , ym | A,B)B(n)(x1, . . . , xn | A,B) =

n
∏

i=1

m
∏

j=1

(ai y j ; q)∞(xi/b j ; q)∞
(xi y j ; q)∞(ai/b j ; q)∞

×B
(n)(x1, . . . , xn | A, τmB)B(m)∗(y1, . . . , ym | τ nA,B).

Evaluating both sides of the last identity at 〈ν| · |μ〉 yields the claim. ��
Remark 5.9 In the case b0 = b1 = b2 = · · · = 1 Theorem 5.8 was proved in [4]
using the dual skew Cauchy identity between spin q-Whittaker functions and spin
Hall–Littlewood functions.

5.3 Vanishing and characterization properties

It turns out that the functions Fλ(x1, . . . , xn | A,B) satisfy vanishing and charac-
terization properties similar to interpolation symmetric functions. We start with the
vanishing property. Recall that Y

n denotes the set of partitions of length at most n.
For a partition μ ∈ Y

n set

xn
A(μ) := (a1qμ1−μ2 , a2qμ2−μ3 , . . . , anqμn ). (5.4)

Proposition 5.10 Let λ,μ ∈ Y
n be partitions of length at most n. Then we have

Fλ(xn
A(μ) | A,B) = Fλ(a1qμ1−μ2 , a2qμ2−μ3 , . . . , anqμn | A,B) = 0, unless λ ⊆ μ.

Moreover, when λ = μ, we have

Fλ(xn
A(λ) | A,B) = Hλ(A,B) �= 0.

where

Hλ(A,B) = (−1)λ1q
λ1(λ1−1)

2

n
∏

i=1

(ai/bi−1)
λi

n
∏

i, j=1

(qλi+1−λi a j+i/ai ; q)λ j+i −λ j+i+1

(a j+i/b j ; q)λ j+i −λ j+i+1

.

Proof The proof is by induction on n, with the case n = 0 being trivial.
Assume that we have proved the claim for n − 1. Using the branching rule from

Proposition 5.2 we get

Fλ(xn
A(μ) | A,B) =

∑

ν≺λ

Fλ/ν(a1qμ1−μ2 | A,B)Fν(x
n−1
τA (μ̃) | τA,B),

where μ̃ = (μ2, μ3, . . . ). Note that by induction hypothesis Fν(x
n−1
τA (μ̃) | τA,B) =

0 unless ν ⊆ μ̃. But ν ≺ λ implies˜λ := (λ2, λ3, . . . ) ⊆ ν, so if in the sum above the
summand corresponding to ν does not vanish then˜λ ⊆ ν ⊆ μ̃.
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At the same time, Fλ/ν(a1qμ1−μ2 | A,B) vanishes unless λ1 − ν1 ≤ μ1 − μ2,
because of the factor (qμ2−μ1; q)λ1−ν1 in

Fλ/ν(a1qμ1−μ2 | A,B) = 〈λ| B(a1qμ1−μ2 | A,B) |μ〉

=
(

a1qμ1−μ2

b0

)λ1−ν1 (qμ2−μ1; q)λ1−ν1

(q; q)λ1−ν1

〈λ| Tb
λ1−ν1,0(a1qμ1−μ2 | A,B) |μ〉.

Hence, if Fλ(xn
A(μ) | A,B) �= 0, then for some ν we have λ1 − ν1 ≤ μ1 − μ2 and

˜λ ⊆ ν ⊆ μ̃. But then

λ1 ≤ μ1 − μ2 + ν1 ≤ μ1,

so λ ⊆ μ as desired.
To prove the second statement, note that if λ = μ then the only possible ν in the

discussion above is ν =˜λ = (λ2, λ3, . . . ). Hence

Fλ(xn
A(λ) | A,B) = Fλ/˜λ(a1qλ1−λ2 | A,B)F

˜λ(x
n−1
τA (˜λ) | τA,B)

and the second statement readily follows from Proposition 5.1. ��
Remark 5.11 We can use the graphical definition of Fλ(x1, . . . , xn | A,B) from
Remark 5.5 to sketch an alternative proof of Proposition 5.10. Namely, we have

Fλ(xn
A(μ) | A,B) =

∑

r1,...,rn≥0

n
∏

i=1

(ai q
μi −μi+1/b0)

ri
(qμi+1−μi ; q)ri

(q; q)ri

Zr1,...,rn
λ ,

where Zr1,...,rn
λ is the partition function from Fig. 2 with xi = ai qμi −μi+1 . Note that the

factors (qμi+1−μi ; q)ri force ri ≤ μi −μi+1 in the sum above. On the other hand, since
the weights W b(I , J , K , L) vanish unless I + J = K + L and I ≤ K , the partition
function Zr1,...,rn

λ vanishes unless r1 + · · · + rn = λ1 and r1 + · · · + ri ≤ λ1 − λi+1
for any i . These restrictions on ri imply that non-zero terms in the sum above must
satisfy λi ≤ ri + · · · + rn ≤ μi , hence Fλ(xn

A(μ) | A,B) vanishes unless λi ≤ μi .

Now we can consider a characterization for Fλ(x1, . . . , xn | A,B) in terms of the
vanishing property. To do so, we need the following notation. For an integer n and a
partition μ ∈ Y

n define

Gn
μ(x1, . . . , xn | A,B) =

n
∏

i=1

∏

r≥1

(xi/br ; q)μr −μr+1

(ai/br ; q)μr −μr+1

.

Note that Gn
μ are symmetric polynomials in x1, . . . , xn . Define a filtration Gn

0 ⊂ Gn
1 ⊂

· · · ⊂ k[x1, . . . , xn]Sn of the algebra of symmetric polynomials in x1, . . . , xn with
coefficients in k = Q(q,A,B) by

Gn
m := span{Gn

μ}μ∈Y
n

|μ|≤m
.
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Theorem 5.12 For each partition λ ∈ Y
n the function Fλ(x1, . . . , xn | A,B) is

uniquely characterized by the following properties:

1. Fλ(x1, . . . , xn | A,B) ∈ Gn|λ|.
2. For any partition μ such that |μ| ≤ |λ| and μ �= λ we have Fλ(xn

A(μ) | A,B) = 0.
3. Fλ(xn

A(λ) | A,B) = Hλ(A,B), where Hλ(A,B) is defined in Proposition 5.10
above.

Moreover, for each m ∈ Z≥0 both {Fλ(x1, . . . , xn | A,B)}λ∈Y
n

|λ|≤m
and {Gn

μ(x1, . . . , xn |
A,B)}μ∈Y

n

|μ|≤m
are bases of Gn

m.

Proof We start with the last statement. Let μ ∈ Y
n and consider the Cauchy identity

(5.2) with m = n and yi = qμi −μi+1/bi . We get

∑

λ

Fλ(x1, . . . , xn | A,B)F∗
λ(q

μ1−μ2/b1, . . . , qμn /bn | B,A)

=
n
∏

i, j=1

(xi/b j ; q)μ j −μ j+1

(ai/b j ; q)μ j −μ j+1

= Gn
μ(x1, . . . , xn | A,B). (5.5)

Note that (qμ1−μ2/b1, . . . , qμn /bn) = xn
B(μ), so we can apply the vanishing property

from Proposition 5.10 to F
∗
λ(x

n
B(μ) | B,A), obtaining

F
∗
λ(x

n
B(μ) | B,A) = ψλ(B,A)Fλ(xn

B(μ) | B,A) = 0, unless λ ⊆ μ,

F
∗
μ(xn

B(μ) | B,A) = ψμ(B,A)Hμ(B,A) �= 0,

where ψλ(A,B) is defined in Proposition 4.4. Hence we can rewrite (5.5) as

Gn
μ(x1, . . . , xn | A,B) =

∑

λ⊆μ

cλμ Fλ(x1, . . . , xn | A,B) (5.6)

for some coefficients cλμ such that cμμ �= 0. Thus, the transition matrix expressing
Gn

μ in terms of Fλ is upper-triangular with respect to the partial order of inclusion of
Young diagrams. Moreover, this transition matrix has non-zero diagonal entries cμμ,
so it is invertible and

Fλ(x1, . . . , xn | A,B) =
∑

μ⊆λ

cμλ Gn
μ(x1, . . . , xn | A,B) (5.7)

for some other coefficients cμλ.
Note that (5.6) and (5.7) imply that

span{Fλ(x1, . . . , xn | A,B)}λ∈Y
n

|λ|≤m
= span{Gn

μ(x1, . . . , xn | A,B)}μ∈Y
n

|μ|≤m
= Gn

m .
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On the other hand, the vanishing property implies that the functions Fλ are linearly
independent: if we have

∑

λ

αλFλ(x1, . . . , xn | A,B) = 0,

with αλ being nonzero for some λ, then we get a contradiction by plugging
(x1, . . . , xn) = xn

A(μ) for a minimal μ such that αμ �= 0 and using the vanishing
property from Proposition 5.10. Hence {Fλ(x1, . . . , xn | A,B)}λ∈Y

n

|λ|≤m
is a basis of Gn

m ,

and consequently {Gn
μ(x1, . . . , xn | A,B)}μ∈Y

n

|μ|≤m
is also a basis of Gn

m in view of (5.6)

and (5.7).
Now we can prove the characterization property. We have already proved that

Fλ(x1, . . . , xn | A,B) ∈ Gn
m , and the other properties follow from Proposition 5.10,

so we only need to prove that Fλ(x1, . . . , xn | A,B) is the unique function satisfy-
ing properties (1)–(3) above. Let f (x1, . . . , xn) be a function which also satisfies
properties (1)–(3), and consider the difference g(x1, . . . , xn) = f (x1, . . . , xn) −
Fλ(x1, . . . , xn | A,B). We have g(x1, . . . , xn) ∈ Gn

m and g(xn
A(μ)) = 0 for any

μ such that |μ| ≤ |λ|. Since {Fλ(x1, . . . , xn | A,B)}λ∈Y
n

|λ|≤m
is a basis of Gn|λ|, for some

coefficients αν ∈ k we have

g(x1, . . . , xn) =
∑

ν:l(ν)≤n,|ν|≤|λ|
ανFν(x1, . . . , xn | A,B).

Assume that g �= 0 and let μ be a minimal partition such that αμ �= 0. Then by
Proposition 5.10

g(xn
A(μ)) = αμFμ(xn

A(μ) | A,B) �= 0,

which leads to contradiction. Hence, g = Fλ − f = 0, and the uniqueness follows. ��

5.4 Degenerations of F�

In this section we introduce two degenerations of the functions Fλ, the importance
of which is explained in Sect. 6 where the interpolation symmetric functions are dis-
cussed.

We start by considering bi → ∞ in the functions Fλ/μ(x1, . . . , xn | A,B). Recall
that Fλ/μ(x1, . . . , xn | A,B) is a rational function in bi , but Proposition 5.1 implies
that when we set b−1

i = 0 for all i ≥ 1, the function just vanishes. So, to get a
meaningful object we first need to renormalize the function: set

˜Fλ/μ(x1, . . . , xn | A,B) =
n
∏

r=1

bλr −μr
r−1 F(x1, . . . , xn | A,B)



   40 Page 44 of 70 S. Korotkikh

and let ˜Fλ/μ(x1, . . . , xn | A,∞) denote the result of the substitution b−1
0 = b−1

1 =
· · · = 0.

Almost all the properties of Fλ/μ(x1, . . . xn | A,B) described earlier in this section
can be readily modified to obtain properties of˜Fλ/μ(x1, . . . , xn | A,∞). For instance,
we can compute˜Fλ/μ(x1, . . . , xn | A,∞) using degenerations of the explicit expres-
sion from Proposition 5.1 and the branching rule from Proposition 5.2: we have

˜Fλ/ν(x1, x2, . . . , xn | A,∞) =
∑

μ≺λ

˜Fλ/μ(x1 | A,∞)˜Fμ/ν(x2, . . . , xn | τA,∞),

(5.8)

˜Fλ/μ(x | A,∞) =

⎧

⎪

⎨

⎪

⎩

x |λ|−|μ|∏

r≥1

(ar/x; q)λr −μr (q; q)μr −μr+1

(q; q)λr −μr (q; q)μr −λr+1

, if μ ≺ λ;

0, otherwise.

(5.9)

In the same manner we can degenerate the vanishing property from Proposition 5.10,
since it does not depend on B in a significant way:

Proposition 5.13 Let λ,μ be partitions of length at most n. Then we have

˜Fλ(xn
A(μ) | A,∞) = 0, unless λ ⊆ μ,

Moreover, when λ = μ, we have

˜Fλ(xn
A(λ) | A,∞) = (−1)λ1q

λ21−λ1
2

n
∏

i=1

aλi
i

n
∏

i, j=1

(qλi+1−λi a j+i/ai ; q)λ j+i −λ j+i+1 .

��
The only property proved earlier which cannot be immediately degenerated to

B = ∞ is Theorem 5.12, since our definition of the filtration Gn
m makes little sense

when b−1
i ≡ 0. To state the appropriate characterization, let k[x1, . . . , xn]Sn≤m denote

the space of degree ≤ m symmetric polynomials with coefficients in k = C(A, q),
and let Pλ/μ(x1, . . . , xn; q, 0) denote the q-Whittaker function corresponding to
λ/μ, that is, the t = 0 specialization of the Macdonald symmetric polynomial
Pλ/μ(x1, . . . , xn; q, t), cf. [27, Chapter VI].

Proposition 5.14 The function ˜Fλ(x1, . . . , xn | A,∞) can be characterized in the
following two equivalent ways: it is the unique function satisfying

(1) ˜Fλ(x1, . . . , xn | A,∞) ∈ k[x1, . . . , xn]Sn≤|λ|,
(2) ˜Fλ(xn

A(μ) | A,∞) = 0 for any partition μ such that |μ| ≤ |λ| and μ �= λ,

(3) ˜Fλ(xn
A(λ) | A,∞) = (−1)λ1q

λ21−λ1
2

n
∏

i=1

aλi
i

n
∏

i, j=1

(

qλi+1−λi a j+i

ai
; q

)

λ j+i −λ j+i+1

;

and it is also the unique function satisfying
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(1’) ˜Fλ(x1, . . . , xn | A,∞) ∈ k[x1, . . . , xn]Sn≤|λ|, identically to (1),

(2’) ˜Fλ(xn
A(μ) | A,∞) = 0 for any partition μ such that |μ| < |λ|,

(3’) The top degree homogeneous component of ˜Fλ(x1, . . . , xn | A,∞) has degree
|λ| and is equal to Pλ(x1, . . . , xn; q, 0).

Proof First we show that ˜Fλ(x1, . . . , xn | A,∞) indeed satisfy the properties from
the statement. Properties (2), (2’) and (3) follow directly from Proposition 5.13. For
the remaining properties (1), (1’) and (3’) note that by (5.9) the one-variable function
˜Fλ/μ(x | A,∞) is a polynomial of degree |λ| − |μ|, whose top term coincides with
Pλ/μ(x; q, 0), cf. [27, Chapter VI, (7.13’)]. Then (5.8) implies that˜Fλ(x1, x2, . . . , xn |
A,∞) has degree at most |λ|, and since the branching identical to (5.8) holds for the
functions Pλ/μ, we deduce that the top-degree component of˜Fλ(x1, . . . , xn | A,∞)

is indeed Pλ(x1, . . . , xn; q, 0).
To show uniqueness for both characterizations it is enough to prove that if g ∈

k[x1, . . . , xn]Sn≤m and g(xn
A(μ)) = 0 for all |μ| ≤ m, then g = 0. Indeed, for the

first chracterization fix λ and assume that f ∈ k[x1, . . . , xn]Sn satisfies the conditions
(1)–(3). Then g = f −˜Fλ(x1, . . . , xn | A,∞) is a polynomial in k[x1, . . . , xn]Sn≤|λ|
such that g(xn

A(μ)) = 0 for any μ ∈ Y
n, |μ| ≤ |λ|, since the conditions (2) and (3)

fix the values of f and ˜Fλ(x1, . . . , xn | A,∞) at xn
A(μ) for |μ| ≤ |λ|. Similarly, if

f ′ is a function satisfying (1’)–(3’) set g′ = f ′ −˜Fλ(x1, . . . , xn | A,∞). By (2’) the
functions f ′ and˜Fλ(x1, . . . , xn | A,∞) both vanish at xn

A(μ)when |μ| ≤ |λ|−1, and
by (3’) the top degree homogeneous components of these functions coincide. Hence
g′ ∈ k[x1, . . . , xn]Sn≤|λ|−1 and g′(xn

A(μ)) = 0 for |μ| ≤ |λ| − 1.

So, it is enough to prove that if g ∈ k[x1, . . . , xn]Sn≤m and g(xn
A(μ)) = 0 for all μ

such that |μ| ≤ m, then g = 0. This follows from Lemma 5.15 below, which for later
convenience we state in a much greater generality. ��
Lemma 5.15 Assume that for a function � : Y

n → kn there exists a family of poly-
nomials Fλ(x1, . . . , xn | �) such that

• Fλ(x1, . . . , xn | �) ∈ k[x1, . . . , xn]Sn≤|λ|;
• Fλ(�(μ) | �) = 0 for any partitions λ,μ ∈ Y

n such that |μ| ≤ |λ|, λ �= μ;
• Fλ(�(λ) | �) �= 0.

Then the following holds

1. The functions Fλ(x1, . . . , xn | �) are uniquely determined up to a scalar;
2. Let m ∈ Z≥0. If f ∈ k[x1, . . . , xn]Sn≤m and f (�(μ)) = 0 for all μ ∈ Y

n such that
|μ| ≤ m, then f = 0.

3. For each m ∈ Z≥0 the functions Fλ(x1, . . . , xn | �) with |λ| ≤ m form a basis of
k[x1, . . . , xn]Sn≤m;

4. The degree of Fλ(x1, . . . , xn | �) is |λ|.
Proof Fix m ∈ Z≥0 and fix a choice of functions Fλ(x1, . . . , xn | �) for |λ| ≤ m. We
claim that these functions are linearly independent: assume that

∑

λ:|λ|≤m

αλFλ(x1, . . . , xn | �) = 0
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with αλ �= 0 for some λ. Choose μ such that αμ �= 0 with minimal possible |μ|. Then
for all λ �= μ either |λ| < |μ| and αλ = 0, or |μ| ≤ |λ| and Fλ(�(μ) | �) = 0 by the
definition of Fλ(x1, . . . , xn | �). Hence

∑

λ:|λ|≤m

αλFλ(�(μ) | �) = αμFμ(�(μ) | �) �= 0,

leading to contradiction.
Note that the k-dimension of k[x1, . . . , xn]Sn≤m is equal to the number of partitions

λ ∈ Y
n such that |λ| ≤ m, hence the functions Fλ(x1, . . . , xn | �) with |λ| ≤ m

form a basis of k[x1, . . . , xn]Sn≤m , proving (3). In particular, Fλ(x1, . . . , xn | �) with

|λ| ≤ m − 1 form a basis of k[x1, . . . , xn]Sn≤m−1, so if |λ| = m then the degree
of Fλ(x1, . . . , xn | �) is m, proving (4). Finally, (2) implies (1) by considering the
difference between two candidates for Fλ(x1, . . . , xn | �), so we only need to prove
the former. Let f ∈ k[x1, . . . , xn]Sn≤m be such that f (�(μ)) = 0 for all μ satisfying
|μ| ≤ m, and assume that f �= 0. Consider the expansion

f =
∑

λ:|λ|≤m

αλFλ(x1, . . . , xn | �).

and choose μ such that αμ �= 0 with minimal |μ|. Then, in the same way as in the first
part of the proof,

f (�(μ)) =
∑

λ:|μ|≤|λ|≤m

αλFλ(�(μ) | �) = αμFμ(�(μ) | �) �= 0,

leading to contradiction. ��
Another degeneration of Fλ is obtained by considering the regime q, xi , ai → 1

in˜Fλ(x1, . . . , xn | A,∞). More precisely, let ε, d, r1, . . . , rn be parameters such that
d �= 0, and let C = (c0, c1, . . . ) be an infinite sequence of real parameters. Define
F

el
λ/μ(r1, . . . , rn | C,∞) as the limit

F
el
λ/μ(r1, . . . , rn | C,∞) = (−d)λ1−μ1 lim

ε→0
ε|μ|−μ1−|λ|+λ1˜Fλ/μ(x1, . . . , xn | A,∞)

in the following regime:

xi = eεri , ai = eεci , q = eεd . (5.10)

From (5.9) we get the following expression for the one-variable function

F
el
λ/μ(r | C,∞) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∏

i≥1

(μi − μi+1)!∏λi −μi −1
j=0 (r − ci − jd)

(λi − μi )!(μi − λi+1)! , if μ ≺ λ;

0, otherwise,

(5.11)
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where we have used the following relation

lim
ε→0

ε−k(eεu; eεd)k = (−1)k
k−1
∏

j=0

(u + jd).

From (5.11) we see that F
el
λ/μ(r | C,∞) is a polynomial in r of degree |λ| − |μ|, with

coefficients depending polynomially on d and ci . Moreover, the top homogeneous
degree term is Pλ/μ(r1, . . . , rn; 1, 0), that is, it is a q = 1, t = 0 specialization of the
Macdonald polynomial. The branching rule (5.8) implies thatFel

λ (r1, . . . , rn | C,∞) is
a symmetric polynomial in r1, . . . , rn of degree |λ|with coefficients in kel = Q(d, C),
and the top homogeneous degree of F

el
λ (r1, . . . , rn | C,∞) is Pλ(r1, . . . , rn; 1, 0).

From [27, VI.4] it is known that Pλ(r1, . . . , rn; 1, 0) = eλ′(r1, . . . , rn) is the elemen-
tary symmetric polynomial, where λ′ is the partition conjugate to λ, and the elementary
symmetric polynomials are defined by

eμ(x1, . . . , xn) =
∏

i≥1

eμi (x1, . . . , xn),

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 . . . xin .

We have the following analogues of the vanishing and characterization properties,
obtained as limits of Propositions 5.13 and 5.14. For a partition μ ∈ Y

n set

rn
C(μ) = (c1 + (μ1 − μ2)d, c2 + (μ2 − μ3)d, . . . , cn + μnd). (5.12)

Proposition 5.16 Let λ,μ be partitions of length at most n. Then we have

F
el
λ (rn

C(μ) | C,∞) = 0, unless λ ⊆ μ.

Moreover, when λ = μ, we have

F
el
λ (rn

C(λ) | C, ∞) = (−1)|λ|(−d)λ1
n
∏

i, j=1

λi+ j −λi+ j+1
∏

k=1

(c j+i − ci + d(λi+1 − λi + k − 1)).

��
Proof Note that in the regime (5.10)

F
el
λ (rn

C(μ) | C,∞) = (−d)λ1 lim
ε→0

ε−|λ|+λ1˜Fλ(xn
A(μ) | A,∞),

so we obtain the claim as the limit of Proposition 5.13. ��
Proposition 5.17 The function F

el
λ (r1, . . . , rn | C,∞) is the unique function satisfying
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(1) F
el
λ (r1, . . . , rn | C,∞) ∈ k[r1, . . . , rn]Sn≤|λ|,

(2) F
el
λ (rn

C(μ) | C,∞) = 0 for any partition μ such that |μ| ≤ |λ| and μ �= λ,

(3) F
el
λ (rn

C(λ) | C,∞) = (−1)|λ|(−d)λ1
n
∏

i, j=1

λi+ j −λi+ j+1
∏

k=1

(c j+i − ci + d(λi+1 − λi +
k − 1));

and it is also the unique function satisfying

(1’) F
el
λ (r1, . . . , rn | C,∞) ∈ k[r1, . . . , rn]Sn≤|λ|, identically to (1),

(2’) F
el
λ (rn

C(μ) | C,∞) = 0 for any partition μ such that |μ| < |λ|,
(3’) The top degree homogeneous component of F

el
λ (r1, . . . , rn | C,∞) has degree

|λ| and is equal to eλ′(r1, . . . , rn).

Proof By the discussion above and Proposition 5.16 F
el
λ (r1, . . . , rn | C,∞) satisfies

(1)–(3) and (1’)–(3’). The uniqueness follows in the same way as in Theorem 5.14,
by applying Lemma 5.15 with �(μ) = rn

C(μ). ��
In view of Proposition 5.17, we callFel

λ (r1, . . . , rn | C,∞) interpolation elementary
polynomials.

Remark 5.18 For the later use we note that instead of considering the fields k =
Q(q,A),kcl = Q(d, C) we can consider q, ai , d, ci above as elements of an arbitrary
field k. The induced functions ˜Fλ(x1, . . . , xn | A,∞) ∈ k[x1, . . . , xn]Sn are well-
defined as long as q is not a root of unity, and our proofs of the vanishing property and
the characterization for˜Fλ(x1, . . . , xn | A,∞) hold as long as˜Fλ(xn

A(λ) | A,∞) �=
0, which is equivalent to ai/a j /∈ qZ≥0 for any i, j such that i �= j . Similarly, the
functions F

el
λ (r1, . . . , rn | C,∞) ∈ k[r1, . . . , rn]Sn are well-defined as long as the

characteristic of k is 0, while for the characterization property we also need ci − c j /∈
dZ for any i �= j .

6 Classification of interpolation symmetric polynomials

Our interest in the vanishing property fromProposition 5.13 and the characterization of
Proposition 5.14 comes from the fact that the symmetric functions with similar prop-
erties were actively studied earlier. More precisely, there are roughly three classes of
known symmetric polynomials with similar vanishing and characterization properties:
factorial monomial polynomials, factorial Schur polynomials and interpolation Mac-
donald functions. In [34] these three classes and their variations were distinguished as
the only solutions to a certain interpolation problem. In this section we describe how
our new functions fit into this classification, expanding it.

6.1 Interpolation problem

Below we state the general interpolation problem from [34]. Let k be a field; for
simplicity we assume that char k = 0. As before, we use Y

n to denote the set of
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partitions of length at most n and k[x1, · · · , xn]Sn≤m to denote the space of symmetric
polynomials in n variables, of degree ≤ m and with coefficients in k.

An n-grid is a map � : Y
n → kn . An n-grid � is non-degenerate if for every

λ ∈ Y
n there exists a symmetric polynomial Fλ(x1, . . . , xn | �) satisfying:

1. Fλ(x1, . . . , xn | �) ∈ k[x1, . . . , xn]Sn≤|λ|;
2. Fλ(�(μ) | �) = 0 for every μ ∈ Y

n such that |μ| ≤ |λ|, λ �= μ;
3. Fλ(�(λ) | �) �= 0.

Ann-grid� is calledperfect if it is non-degenerate and the polynomials Fλ additionally
satisfy the following vanishing property:

Fλ(�(μ) | �) = 0, unless λ ⊆ μ. (6.1)

The main result of [34] is the following classification of all perfect grids of a certain
form.

Theorem 6.1 ([34]) Assume that � is an n-grid of the form
�(λ) = ( f1(λ1), . . . , fn(λn)).

Then � is perfect if and only if one of the following cases holds:

(E1) fi ( j) = c j where c0, c1, . . . are pairwise distinct elements of k;
(E2) fi ( j) = c j−i where . . . , c−1, c0, c1, . . . are pairwise distinct elements of k;
(I) fi ( j) = a +bq j t i +cq− j t i where a, b, c, q, t are elements of a field extension
of k;
(II) fi ( j) = α + β j + β ′i + γ (β j + β ′i)2, where α, β, β ′, γ ∈ k;
(III) fi ( j) = α + ε jε′i (α′ + β j + β ′i) where ε, ε′ ∈ {±1} and α, α′, β, β ′ ∈ k;
(IV) This case only exists when n = 2, then f1( j) = α+βq j , f2( j) = α+β ′q− j

where α, β, β ′, q ∈ k.

All cases above should additionally satisfy fi ( j) �= fi ′( j ′) for all integers i ≤ i ′, j >

j ′.

The polynomials Fλ(x1, . . . , xn | �) corresponding to the cases E1,E2, I above
are respectively factorial monomial polynomials, factorial Schur polynomials and
interpolation Macdonald functions. The polynomial Fλ has degree |λ|, and in these
three cases the top-degree homogeneous component of Fλ is respectively a monomial,
Schur or Macdonald symmetric polynomial. Moreover, the functions Fλ for case II
above include interpolation functions related to Jack polynomials, see [26, 37].

Propositions 5.13–5.17 about vanishing and interpolation properties of the functions
˜Fλ(x1, . . . , xn | A,∞) and F

el
λ (r1, . . . , rn | C,∞) indicate that there is another class

of solutions to this interpolation problem, where n-grids have an alternative form
�(μ) = ( f1(μ1 − μ2), . . . , fn(μn)), cf. the expressions for xn

A(μ) and rn
C(μ) from

(5.4) to (5.12). In this section we show that the function ˜F, F
el actually lead to all

perfect grids of this alternative form, at least when n ≥ 3.

Theorem 6.2 Assume that n ≥ 3 and � is an n-grid of the form

�(λ) = ( f1(λ1 − λ2), f2(λ2 − λ3), . . . , fn(λn)).
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Then � is perfect if and only if the functions fi have one of the following two forms:

1. fi (k) = c + ai qk for constants c, q, a1, . . . , an ∈ k such that q is not a root of
unity, q �= 0 and ai/a j �= qk for any i �= j, k ∈ Z. In this case the functions
Fλ(x1, . . . , xn | �) are proportional to ˜Fλ(x1 − c, x2 − c, . . . , xn − c | A,∞),
where ai are identified with elements of A.

2. fi (k) = ci +kd for constants d, c1, c2, . . . , cn ∈ k such that d �= 0 and ci −c j �=
kd for any i �= j, k ∈ Z. In this case the functions Fλ(x1, . . . , xn | �) are
proportional to F

el
λ (x1, . . . , xn | C,∞), where ci are identified with elements of C.

The remainder of this section is devoted to the proof of Theorem 6.2.

Remark 6.3 Following the existing terminology, the characterization property from
Proposition 5.14 allows us to call the functions˜F interpolation q-Whittaker polyno-
mials. Note that, while setting t = 0 reduces Macdonald polynomials to q-Whittaker
polynomials, setting t = 0 in interpolation Macdonald polynomials does not result in
any interpolation polynomials, because the characterization property for interpolation
Macdonald polynomials does not survive in any form after setting t = 0.

Remark 6.4 Note that Theorem 6.2 does not cover perfect 2-grids of the form �(μ) =
( f1(μ1 − μ2), f2(μ2)). While both types of grids listed in Theorem 6.2 are well-
defined and perfect when n = 2, numerical simulations suggest that there exist more
general perfect grids when n = 2. However, our proof of Theorem 6.2 does not cover
the n = 2 case.

6.2 General properties of n-grids

We start with adapting some arguments from [34] to our setting. From now on we
always assume that n-grids � have the form

�(λ) = (�(1; λ1 − λ2), �(2; λ2 − λ3), . . . , �(n; λn)),

where �(1; ·), . . . , �(n; ·) are functions Z≥0 → k.
For later convenience, we below restate Lemma 5.15 in terms of non-degenerate

grids:

Lemma 6.5 Let � be a non-degenerate n-grid.

1. The functions Fλ(x1, . . . , xn | �) are uniquely determined up to a scalar;
2. Let m ∈ Z≥0. If f ∈ k[x1, . . . , xn]Sn≤m and f (�(μ)) = 0 for all μ ∈ Y

n such that
|μ| ≤ m, then f = 0.

3. For each m ∈ Z≥0 the functions Fλ(x1, . . . , xn | �) with |λ| ≤ m form a basis of
k[x1, . . . , xn]Sn≤m;

4. The degree of Fλ(x1, . . . , xn | �) is |λ|.
��

In particular, given a non-degenerate n-grid � the functions Fλ(x1, . . . , xn | �) are
well-defined up to scalars. We will fix a convenient normalization later.

The following operations on grids will be useful. Let � be an n-grid.
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• For m ∈ Z≥1 such that m ≤ n define an m-grid �m by

�m(λ) = (�(1; λ1 − λ2), �(2; λ2 − λ3), . . . , �(m; λm)), λ ∈ Y
m .

That is, �m(i; j) = �(i; j) for i = 1, . . . , m.
• For l ∈ Z≥0 such that l < n define an (n − l)-grid l� by

l�(λ) = (�(l + 1; λ1 − λ2), �(l + 2; λ2 − λ3), . . . , �(n; λn−l)), λ ∈ Y
n−l .

That is, l�(i; j) = �(i + l; j) for i = 1, . . . , n − l.
• For k ∈ Z define an n-grid �

k by

�
k(λ) = �(λ + kn) = (�(1; λ1 − λ2), . . . , �(n − 1; λn−1 − λn), �(n; λn + k)),

where λ + kn denotes the partition with parts λi + k. In other words, �
k(i; j) =

�(i; j) for i = 1, . . . , n − 1 and �
k(n, j) = �(n; j + k).

Our first goal is to show that the three operations above preserve perfect grids. We
start with �m .

Proposition 6.6 Assume that � is a non-degenerate n-grid. Then for any m ≤ n the
m-grid �m is non-degenerate with

Fλ(x1, . . . , xm | �m) = Fλ(x1, . . . , xm, �(m + 1, 0), . . . , �(n, 0) | �) (6.2)

for each λ ∈ Y
m. Moreover, if � is perfect then �m is perfect as well.

Proof For the first statement it is enough to show that the functions

fλ(x1, . . . , xm) := Fλ(x1, . . . , xm, �(m + 1, 0), . . . , �(n, 0) | �), λ ∈ Y
m,

satisfy the defining properties of Fλ(x1, . . . , xm | �m), which readily follows from
noticing that for μ ∈ Y

m

fλ(�m(μ)) = Fλ(�(μ) | �).

The last statement follows immediately from the vanishing property for � and the
identity above. ��
Proposition 6.7 For any non-degenerate n-grid � the following statements hold:

1. �(i; j) �= �(n; 0) for any integer pair (i, j) �= (n, 0);
2. �

1 is non-degenerate and Fλ can be chosen so that

Fλ(x1, . . . , xn | �
1)

n
∏

i=1

(xi − �(n; 0)) = Fλ+1n (x1, . . . , xn | �); (6.3)
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3. If � is perfect, then �
1 is perfect.

Proof Let λ ∈ Y
n and consider

fλ(x1, . . . , xn−1) := Fλ+1n (x1, . . . , xn−1, �(n; 0) | �).

Note that fλ(x1, . . . , xn−1) has degree at most |λ| + n, and for any μ ∈ Y
n−1 such

that |μ| ≤ |λ| + n we have

fλ(�n−1(μ)) = Fλ+1n (�(1;μ1 − μ2), . . . , �(n − 1;μn−1), �(n; 0) | �)

= Fλ+1n (�(μ) | �) = 0,

since μ �= λ + 1n . Hence, by Lemma 6.5 we have fλ = 0. In other words,
Fλ+1n (x1, . . . , xn | �)

∣

∣

xn=�(n;0) = 0, so xn −�(n; 0) divides Fλ+1n (x1, . . . , xn | �).
By symmetry, xi − �(n; 0) for i = 1, . . . , n divide Fλ+1n (x1, . . . , xn | �) and so

Fλ+1n (x1, . . . , xn | �) = gλ(x1, . . . , xn)

n
∏

i=1

(xi − �(n; 0)) (6.4)

for some gλ(x1, . . . , xn) ∈ k[x1, . . . , xn]Sn≤|λ|.
To prove (1) take j ∈ Z≥0 and set λ = (nj, (n − 1) j, . . . , 2 j, j). Recall that

Fλ+1n (�(λ + 1n) | �) �= 0, so from (6.4) we have

Fλ+1n (�(λ + 1n) | �) = gλ(�(λ + 1n))(�(n; j + 1)

−�(n; 0))
n−1
∏

i=1

(�(i; j) − �(n; 0)) �= 0.

Hence �(i; j) �= �(n; 0) for any i < n and �(n; j + 1) �= �(n; 0), which implies
(1) since j ∈ Z≥0 was arbitrary.

To prove (2) note that from (6.4) we have for any μ ∈ Y
n

gλ(�
1(μ))

n
∏

i=1

(�1(i;μi − μi+1) − �(n; 0)) = Fλ+1n (�1(μ) | �)

= Fλ+1n (�(μ + 1n) | �). (6.5)

By (1) we know that�1(i; j)−�(n; 0) = �(i; j +δi,n)−�(n; 0) �= 0 for any j ≥ 0,
hence (6.5) implies that Fλ+1n (�(μ + 1n) | �) = 0 if and only if gλ(�

1(μ)) = 0.
In particular, for any μ ∈ Y

n such that |μ| ≤ |λ| and μ �= λ we get gλ(�
1(μ)) = 0,

while gλ(�
1(λ)) �= 0. Since the degree of Fλ+1n is |λ| + n, the degree of gλ is not

greater than |λ|. So, gλ satisfies the defining properties of Fλ(x1, . . . , xn | �
1), which

proves (2).
To prove part (3) assume that � is perfect. Then Fλ+1n (�(μ + 1n) | �) = 0 unless

λ ⊆ μ, and hence gλ(�
1(μ)) = Fλ(�

1(μ) | �
1) = 0 unless λ ⊆ μ. So the vanishing

property for � implies the vanishing property for �
1. ��
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Using Proposition 6.7 we can inductively get the following results.

Corollary 6.8 If � is non-degenerate then �
k is non-degenerate for any k ∈ Z≥0. If �

is perfect then �
k is perfect for any k ∈ Z≥0. ��

Corollary 6.9 If � is non-degenerate then �(i; j) �= �(i ′, j ′) for all pairs (i, j) �=
(i ′, j ′).

Proof Let � be a non-degenerate n-grid and fix (i, j) �= (i ′, j ′). Without loss of
generality we can assume that i ≤ i ′. By Proposition 6.6 �i ′ is also non-degenerate,
hence replacing � by �i ′ we can assume that i ′ = n. If i < n, then �

j ′ is non-
degenerate, and by Proposition 6.7 applied to �

j ′

�(i; j) = �
j ′(i; j) �= �

j ′(n; 0) = �(i ′; j ′).

If i = i ′ = n, then we can additionally assume that j > j ′ and use Proposition 6.7 to
get

�(n; j) = �
j ′(n; j − j ′) �= �

j ′(n; 0) = �(n; j ′).

��
It turns out that the converse to Corollary 6.9 is also true, so we can classify all

non-degenerate grids:

Proposition 6.10 An n-grid � is non-degenerate if and only if �(i; j) �= �(i ′, j ′) for
all (i, j) �= (i ′, j ′).

Proof By Corollary 6.9 we only need to prove that � is non-degenerate if �(i; j) �=
�(i ′, j ′) for all (i, j) �= (i ′, j ′). It is enough to prove the following statement: for any
� as in the statement, any m ∈ Z≥0 and any function

φ(λ) : {λ ∈ Y
n : |λ| ≤ m} → k

there exists a polynomial f ∈ k[x1, . . . , xn]Sn≤m such that f (�(λ)) = φ(λ) for any
λ ∈ Y

n, |λ| ≤ m.
We prove the latter claim by induction on n and m, reducing the claim for (n, m) to

the claims for (n′, m′) with either n′ < n or m′ < m. Note that the cases when n = 1
or m = 0 are trivial.

For the inductive step recall that the monomial symmetric functions are defined by

mλ(x1, . . . , xn) =
∑

α

xα1
1 . . . xαn

n ,

where the sum is over all permutations α of the n-tuple (λ1, . . . , λn). Let n ≥ 2 and
fix n-grid � as in the claim. Define a degree-preserving map

Sym : k[x1, . . . , xn−1]Sn−1 → k[x1, . . . , xn]Sn
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by sending mλ(x1 − �(n; 0), . . . , xn−1 − �(n; 0)) to mλ(x1 − �(n; 0), . . . , xn −
�(n; 0)). Note that for any f ∈ k[x1, . . . , xn]Sn we have

(Sym f )(x1, . . . , xn−1, �(n; 0)) = f (x1, . . . , xn−1). (6.6)

Let φ(λ) be an arbitrary function on the partitions λ ∈ Y
n, |λ| ≤ m. We will construct

the required function f as

f = Sym f1 + f2

n
∏

i=1

(xi − �(n; 0)).

Consider the restriction of φ to the partitions from Y
n−1. By the induction hypoth-

esis, there exists a function in n − 1 variables f1 ∈ k[x1, . . . , xn−1]Sn−1≤m such
that f1(�n−1(λ)) = φ(λ) for all partitions λ ∈ Y

n−1, |λ| ≤ m. Since for all
λ ∈ Y

n−1, |λ| ≤ m, the substitution (x1, . . . , xn) = �(λ) sets xn = �(n; 0), by
(6.6) we have

(Sym f1)(�(λ)) = f1(�n−1(λ)) = φ(λ), λ ∈ Y
n−1, |λ| ≤ m.

If n < m then any partition λ such that |λ| ≤ m is in Y
n−1 and we are done. If n ≥ m

consider the following function φ2 on {λ ∈ Y
n : |λ| ≤ m − n}:

φ2(λ) = φ(λ + 1n) − Sym f1(�(λ + 1n))

(�(n; 1) − �(n; 0))∏n−1
i=1 (�(i; λi − λi+1) − �(n; 0)) .

By induction inm and since�
1 also satisfies the assumptions on� from the statement,

we can construct a function f2 ∈ k[x1, . . . , xn]Sn≤m−n such that f2(�(λ + 1n)) =
f2(�1(λ)) = φ2(λ). The resulting function

f = Sym f1 + f2

n
∏

i=1

(xi − �(n; 0))

satisfies f ∈ k[x1, . . . , xn]Sn≤m and f (�(λ)) = φ(λ). ��
We can use (6.2) and (6.3) to introduce a natural normalization for the functions

Fλ. For an n-grid � let �
k
m denote the m-grid (�m)k .

Proposition 6.11 For a non-degenerate n-grid � there exists a unique choice of func-
tions Fλ(x1, . . . , xm | �

k
m) for all m = 1, . . . , n and k ∈ Z≥0 satisfying

1. F∅(x1, . . . , xm | �
k
m) = 1 for all m, k;

2. Fλ are consistent with (6.2), that is, for any λ ∈ Y
m−1

Fλ(x1, . . . , xm−1 | �m−1) = Fλ(x1, . . . , xm−1, �(m; k) | �
k
m).

Note that (�k
m)m−1 = �m−1.
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3. Fλ are consistent with (6.3), that is, for any λ ∈ Y
m

Fλ+1m (x1, . . . , xm | �
k
m) = Fλ(x1, . . . , xm | �

k+1
m )

m
∏

i=1

(xi − �(m; k)).

This unique choice of functions Fλ(x1, . . . , xm | �
k
m) is determined by setting

Fλ(�(λ) | �) =
∏

r≥1

r
∏

i=1

λr −1
∏

j=λr+1

(�(i; λi − λi+1) − �(r; j − λr+1)) (6.7)

for any non-degenerate grid �.

Proof We use induction on n. When n = 1 all functions F(λ1)(x1 | �
k) satisfying the

conditions (1) and (3) from the statement must be of the form

F(λ1)(x1 | �
k) =

λ1−1
∏

j=0

(x1 − �(1; j + k)) =
λ1−1
∏

j=0

(x1 − �
k(1; j)),

and the claim follows.
Now assume that � is a non-degenerate n-grid and we have proved the claim for

�n−1. Note that the functions Fλ(x1, . . . , xm | �
k
m) are uniquely determined by the

numbers Hλ(�
k
m) := Fλ(�

k
m(λ) | �

k
m), defined for λ ∈ Y

m . Moreover, if the choice
of Fλ(x1, . . . , xm | �

k
m) satisfies conditions (1)-(3) from the statement, then by the

inductive assumption applied to the (n − 1)-grid �n−1 we have

Hλ(�
k
m) =

∏

r≥1

r
∏

i=1

λr −1
∏

j=λr+1

(�k
m(i; λi − λi+1) − �

k
m(r; j − λr+1))

for any k ∈ Z≥0, m < n and λ ∈ Y
m . So we only need to prove that Hλ(�

k) are
uniquely determined and are given by (6.7).

Let λ ∈ Y
n . If l(λ) < n, then by the consistency with (6.2) we have Hλ(�

k) =
Hλ(�n−1), and we are done. If l(λ) = n, then we can write λ = λ + an for some
λ ∈ Y

n−1 and a = λn . Then, using consistency with (6.3), we have

Hλ+an (�
k) = Hλ(�

k+a)

n
∏

i=1

a−1
∏

j=0

(�k+a(i; λi − λi+1) − �
k(n; j)).

Since λ ∈ Y
n−1, we already know that Hλ(�

k+a) is givn by (6.7), and one can readily
check that the resulting expression for Hλ(�

k) = Hλ+an (�
k) is also consistent with

(6.7). ��
From now on we will assume that {Fλ}λ are normalized as in Proposition 6.11.
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Proposition 6.12 Let � be a perfect n-grid with n ≥ 2. Then 1� is perfect and we
have

Fλ(x1, . . . , xn | �) = xλ1
1 F̃λ(x2, . . . , xn | 1�) + lower x1 − degree terms,

where˜λ = (λ2, λ3, . . . ).

Proof As before, let mλ(x1, . . . , xn) denote monomial symmetric function corre-
sponding to λ, and let μ � λ denote the lexicographical order on the partitions (that
is μ � λ if and only if either μ = λ or for some r we have λi = μi for i < r and
μr < λr ).

First we want to prove that if � is a non-degenerate n-grid and λ ∈ Y
n is a partition

such that for μ ∈ Y
n

Fλ(�(μ) | �) = 0 unless λ ⊂ μ, (6.8)

then we have

Fλ(x1, . . . , xn | �) =
∑

μ�λ

αμλmμ(x1, . . . , xn). (6.9)

We prove the latter statement by induction on n, with n = 1 case being trivial. Fix
�, λ as above and let d = degx1 Fλ(x1, . . . , xn | �). If d < λ1 then we are trivially
done with αλλ = 0, so consider the case when d ≥ λ1. Define g(x2, . . . , xn) by

Fλ(x1, . . . , xn | �) = xd
1 g(x2, . . . , xn) + lower x1 − degree terms.

Clearly, g �= 0. Since the total degree of Fλ is λ, the total degree of g satisfies
deg g = |λ| − d ≤ |λ| − λ1 = |˜λ|, where˜λ = (λ2, λ3, . . . ). Let μ ∈ Y

n−1 be a
partition such that˜λ �⊂ μ. Then the partition μ(k) = (μ1 + k, μ1, μ2, . . . ) satisfies
λ �⊂ μ(k) for any k ∈ Z≥0, so by assumption (6.8)

Fλ(�(1; k), �(2;μ1 − μ2), . . . , �(n;μn−1)) = Fλ(�(μ(k)) | �) = 0

for any k. In other words, the polynomial Fλ(x1, 1�(1;μ1 − μ2), . . . , 1�(n −
1;μn−1) | �) vanishes at x1 = �(1; k), and since all these points are distinct by
Corollary 6.9, this implies

Fλ(x1, 1�(1;μ1 − μ2), . . . , 1�(n − 1;μn−1) | �) = 0

as a polynomial in x1. In particular, for μ ∈ Y
n−1 we get

g(1�(μ)) = g(�(2;μ1 − μ2), . . . , �(n;μn−1)) = 0 unless˜λ ⊂ μ. (6.10)

Recall that the degree of g is at most |˜λ|. By Proposition 6.10 the (n − 1)-grid 1� is
non-degenerate, so Lemma 6.5 and (6.10) imply that g = c · F̃λ(x2, . . . , xn | 1�) for
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some c ∈ k. Note that g �= 0, hence c �= 0 and the degree of g is exactly |˜λ|, forcing
d = λ1. Moreover, (6.10) implies that the assumption of our statement holds for the
pair (1�,˜λ), hence by induction

g(x2, . . . , xn) = c · F̃λ(x2, . . . , xn | 1�) =
∑

μ�˜λ
α′

μ˜λ
mμ(x2, . . . , xn).

This implies (6.9):

Fλ(x1, . . . , xn | �) =
∑

μ�˜λ
α′

μ˜λ
xλ1
1 mμ(x2, . . . , xn) + lower x1 − degree terms.

Thus, we have proved that if � is perfect, then the transition matrix expressing
Fλ(x1, . . . , xn | �) in terms of mλ(x1, . . . , xn) is upper-triangular with respect to
the lexicographical order. But both families of functions form bases of the ring of
symmetric polynomials, hence the transition matrix must be invertible, and αλλ �= 0
in (6.9). In particular, in the argument above d = λ1 always holds and the case d < λ1
never happens, so the construction of g(x2, . . . , xn) can be performed for any λ:

Fλ(x1, . . . , xn | �) = cλxλ1
1 F̃λ(x2, . . . , xn | 1�) + lower x1 − degree terms

for cλ �= 0. Moreover, (6.10) implies that 1� is perfect.
It only remains to show that cλ = 1. Note that it is enough to show that for perfect

� we always have αλλ = 1 in (6.9). Recall that if � is perfect then all grids of the
form �

k
m are also perfect, so we can define a renormalization ˜Fλ(x1, . . . , xm | �

k
m)

such that

˜Fλ(x1, . . . , xm | �
k
m) = mλ(x1, . . . , xm) +

∑

μ�λ,μ�=λ

αμλmμ(x1, . . . , xm)

and ˜Fλ is proportional to Fλ. Then the functions ˜Fλ(x1, . . . , xm | �
k
m) satisfy the three

conditions of Proposition 6.11, hence ˜Fλ = Fλ, finishing the proof. ��

6.3 Pieri rule and explicit expressions for some F�

Our next goal is to prove Theorem 6.2 when n = 3. From here on our arguments
are completely different from [34], and we will need to compute polynomials Fλ for
perfect 2-grids. To do it, we use the following analogue of the Pieri rule:

Lemma 6.13 Let � be a perfect 2-grid. Then for any k ∈ Z≥1 we have

(x1 + x2 − �(1; k) − �(2; 0))F(k)(x1, x2 | �)

= F(k+1)(x1, x2 | �) + κk(�)(x1 − �(2; 0))(x2 − �(2; 0))F(k−1)(x1, x2 | �
1),
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where

κk(�) = (�(1; k − 1) + �(2; 1) − �(1; k) − �(2; 0))F(k)(�(1; k − 1), �(2; 1) | �)

(�(2; 1) − �(2; 0))(�(1; k − 1) − �(2; 0))∏k−2
i=0 (�(1; k − 1) − �(1; i))

.

Proof Fix k ≥ 1 and set

f (x1, x2) = (x1 + x2 − �(1; k) − �(2; 0))F(k)(x1, x2 | �).

Note that f ∈ k[x1, x2]S2≤k+1, and moreover f (�(μ)) = 0 for all μ such that |μ| ≤ k:
for μ �= λ we have F(k)(�(μ) | �) = 0, while for μ = λ we set x1 = �(1; k), x2 =
�(2; 0) and x1 + x2 − �(1; k) − �(2; 0) vanishes. Hence the expression

f (x1, x2) − αk F(k+1)(x1, x2 | �) − βk F(k,1)(x1, x2 | �)

with

αk = f (�((k + 1)))

F(k+1)(�((k + 1)) | �)
, βk = f (�((k, 1)))

F(k,1)(�((k, 1)) | �)

vanishes for any (x1, x2) = �(μ) with |μ| ≤ k + 1, so by Lemma 6.5 we have

f (x1, x2) = αk F(k+1)(x1, x2 | �) + βk F(k,1)(x1, x2 | �). (6.11)

Note that by Lemma 6.12 the top x1-degree term on the sides of (6.11) are xk+1
1

and αk xk+1
1 , hence αk = 1. By (6.7), we have

F(k,1)(�((k, 1)) | �) = (�(1; k − 1) − �(2, 0))(�(2; 1)

−�(2; 0))
k−2
∏

i=0

(�(1; k − 1) − �(1; i)),

hence βk = κk(�) from the statement. Finally, by Proposition 6.7 we have
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F(k,1)(x1, x2 | �) = (x1 − �(2; 0))(x2 − �(2; 0))F(k−1)(x1, x2 | �
1),

finishing the proof. ��

Using Lemma 6.13 we can get explicit expressions for F(k)(x1, x2 | �) when
k = 1, 2, 3. Let � be a perfect 2-grid. To make expressions below manageable we
use the notation [i; j] := �(i; j). By our choice in Proposition 6.11, we clearly have
F∅(x1, x2 | �) = 1. For F(1)(x1, x2 | �) recall that this is a degree 1 symmetric poly-
nomial vanishing at (x1, x2) = �(∅) and with top term x1 + x2 by Proposition (6.12).
Hence

F(1)(x1, x2 | �) = x1 + x2 − [1; 0] − [2; 0].

From now we can use Lemma 6.13. Direct computations give

κ1(�) = [1; 0] + [2; 1] − [1; 1] − [2; 0]
[1; 0] − [2; 0] ;

F(2)(x1, x2 | �) = x21 + x22 + [1; 0] + [1; 1] − [2; 0] − [2; 1]
[1; 0] − [2; 0] x1x2

−[1; 0]2 + [1; 0][1; 1] − [2; 0]2 − [2; 0][2; 1]
[1; 0] − [2; 0] (x1 + x2)

+[1; 0]2[1; 1] + [1; 0]2[2; 0] − [1; 0][2; 0]2 − [2; 0]2[2; 1]
[1; 0] − [2; 0] ;

κ2(�) = ([1; 1] + [2; 1] − [1; 2] − [2; 0])([1; 0] + [1; 1] − [2; 0] − [2; 1])
([1; 0] − [2; 0])([1; 1] − [2; 0]) ;

(6.12)

F(3)(x1, x2 | �) = (x1 + x2 − [1; 2] − [2; 0])F(2)(x1, x2 | �)

−κ2(�)(x1 − [2; 0])(x2 − [2; 0])(x1 + x2 − [1; 0] − [2; 1]). (6.13)

For Lemma 6.16 below we also need an explicit expression for F(2)(x1, x2, x3 | �)

when � is a perfect 3-grid such that �(3; 0) = 0. To get F(2)(x1, x2, x3 | �) we
can use the expression for F(2)(x1, x2 | �2) above and follow the construction from
Proposition 6.10 to get

F(2)(x1, x2, x3 | �) = Sym F(2)(x1, x2 | �2)

= x21 + x22 + x23 + [1; 0] + [1; 1] − [2; 0] − [2; 1]
[1; 0] − [2; 0] (x1x2 + x1x3 + x2x3)

−[1; 0]2 + [1; 0][1; 1] − [2; 0]2 − [2; 0][2; 1]
[1; 0] − [2; 0] (x1 + x2 + x3)

+[1; 0]2[1; 1] + [1; 0]2[2; 0] − [1; 0][2; 0]2 − [2; 0]2[2; 1]
[1; 0] − [2; 0] . (6.14)
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6.4 n = 3 case

Nowwe can prove Theorem 6.2 for perfect 3-grids. The main idea is to use vanishings
Fλ(�(μ) | �) = 0 for various λ �⊂ μ to obtain enough constraints on �(i; j) for the
desired classification.

Lemma 6.14 Let � be a perfect n-grid. Then for any i, j ∈ Z≥1 such that i ≤ n − 1
we have

(�(i; 1) − �(i + 1; j − 1)) (�(i; 1) − �(i + 1; j + 1))

= (�(i; 0) − �(i + 1; j))(�(i; 2) − �(i + 1; j)). (6.15)

Proof Replacing � by the 2-grid i−1�i+1, which is perfect by Propositions 6.6 and
6.12, we can assume that i = 1 and � is a perfect 2-grid. Moreover, replacing � by
�

j−1, which is perfect by Corollary 6.8, we can assume that j = 1.
So, it is enough to prove that for a perfect 2-grid � we have

(�(1; 1) − �(2; 0)) (�(1; 1) − �(2; 2)) = (�(1; 0) − �(2; 1))(�(1; 2) − �(2; 1)).

This follows from the vanishing F(3)(�((2, 2)) | �) = 0: by explicit computation
using (6.13) we have

F(3)(�((2, 2)) | �) = (�(2; 0) − �(2; 2))(�(2; 1) − �(2; 2))
�(1; 1) − �(2; 0) G,

where

G = (�(1; 0) − �(2; 1))(�(1; 2) − �(2; 1))
− (�(1; 1) − �(2; 0)) (�(1; 1) − �(2; 2)).

Since � is non-degenerate, �(i; j) �= �(i ′; j ′) as long as (i, j) �= (i ′, j ′), hence
F(3)(�((2, 2)) | �) = 0 implies G = 0 and the claim follows. ��

From now on, let � be a perfect 3-grid.

Lemma 6.15 We have

[3; 1] = [1; 0][2; 1] − [1; 1][2; 0] − [2; 1][3; 0] + [1; 1][3; 0]
[1; 0] − [2; 0] . (6.16)

Proof We first note that if a grid� is perfect then for any constant c ∈ k the grid�+c,
defined by (� + c)(i; j) = �(i; j) + c, is also perfect with

Fλ(x1, x2, x3 | � + c) = Fλ(x1 − c, x2 − c, x3 − c | �).

On the other hand, the desired identity (6.16) is equivalent to

([2; 1] − [3; 1])([1; 0] − [2; 0]) − ([1; 1] − [2; 1])([2; 0] − [3; 0]) = 0.
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The left-hand side above clearly stays intact when we change � to � + c, so it is
enough to prove the claim for the perfect 3-grid�−[3; 0]. In other words, it is enough
to consider the case [3; 0] = 0.

Since � is perfect, we must have F(2)(�((1, 1, 1)) | �) = 0. Using (6.14), we
obtain by explicit computation

F(2)([1; 0], [2; 0], [3; 1] | �) = [3; 1]([1; 0][3; 1] − [2; 0][3; 1] + [1; 1][2; 0] − [1; 0][2; 1])
[1; 0] − [2; 0] .

Since� is non-degenerate and [3; 0] = 0,wehave [3; 1] �= 0.Hence F(2)(�((1, 1, 1)) |
�) = 0 implies

[1; 0][3; 1] − [2; 0][3; 1] + [1; 1][2; 0] − [1; 0][2; 1] = 0,

which is equivalent to the claim when [3; 0] = 0. ��
Lemma 6.16 We have

([2; 1] − [1; 2])([2; 0] − [1; 0]) = ([2; 1] − [1; 1])([2; 0] − [1; 1]).

Proof Similarly to the proof of Lemma 6.15, the claim for the grid � is equivalent to
the claim for a grid �+c for arbitrary c. So, to simplify computations, we can assume
that [3; 0] = 0 throughout the proof without loss of generality.

To prove the claim we consider two different expressions for [3; 2] in terms of
[1; 0], [1; 1], [1; 2], [2; 0], [2; 1], and show that equating them implies the claim. For
the first expression we use Lemma 6.15 for the grids � and �

1, obtaining

[3; 1] = [1; 0][2; 1] − [1; 1][2; 0]
[1; 0] − [2; 0] ,

[3; 2] = [1; 0][2; 1] − [1; 1][2; 0] − [2; 1][3; 1] + [1; 1][3; 1]
[1; 0] − [2; 0] .

The other expression comes from Lemma 6.14 applied to (i, j) = (1, 1) and (i, j) =
(2, 1), leading to

[2; 2] = [1; 1] + ([2; 1] − [1; 0])([2; 1] − [1; 2])
[2; 0] − [1; 1] ,

[3; 2] = [2; 1] − ([3; 1] − [2; 0])([3; 1] − [2; 2])
[2; 1] .

Subtracting the two expressions for [3; 2] from each other we get

[1; 0][2; 1] − [1; 1][2; 0] − [2; 1][3; 1] + [1; 1][3; 1]
[1; 0] − [2; 0] − [2; 1]

+ ([3; 1] − [2; 0])([3; 1] − [2; 2])
[2; 1] = 0,
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which, after algebraic manipulations, gives

([3; 1] − [2; 0])([1; 1][2; 1] − [2; 1]2 + [3; 1]([1; 0] − [2; 0]) − [2; 2]([1; 0] − [2; 0]))
[2; 1]([1; 0] − [2; 0]) = 0.

Since [3; 1] �= [2; 0], we get

[1; 1][2; 1] − [2; 1]2 + [3; 1]([1; 0] − [2; 0]) − [2; 2]([1; 0] − [2; 0]) = 0.

Plugging the values for [3; 1], [2; 2] above results in

−([2; 1] − [1; 1])([2; 1] − [1; 0]) + ([2; 1] − [1; 0])([2; 1] − [1; 2])([1; 0] − [2; 0])
[1; 1] − [2; 0] = 0,

and since [2; 0] �= [1; 1] and [2; 1] �= [1; 0], we finally get

−([2; 1] − [1; 1])([2; 0] − [1; 1]) + ([2; 1] − [1; 2])([2; 0] − [1; 0]) = 0.

��
The constraints proved above are almost sufficient to prove the classification for

n = 3. Namely, we can now prove the following:

Lemma 6.17 One of the following cases holds for the perfect 3-grid �:

1. For some constants c, q, a1, a2, a3 ∈ k we have

[1; 0] = c + a1, [1; 1] = c + a1q, [1; 2] = c + a1q2,

[2; k] = c + a2qk, [3; k] = c + a3qk, k ∈ Z≥0.

2. For some constants d, c1, c2, c3 ∈ k we have

[1; 0] = c1, [1; 1] = c1 + d, [1; 2] = c1 + 2d,

[2; k] = c2 + kd, [3; k] = c3 + kd, k ∈ Z≥0.

Note that in order to satisfy the non-degeneracy condition from Corollary 6.9, we have
to assume that q �= 0 and q is not a root of unity in the first case.

Proof Set

q := [2; 1] − [1; 1]
[2; 0] − [1; 0] .

We have 2 cases.
Case 1: q �= 1. Set

a1 := [1; 0] − [1; 1]
1 − q

, c := [1; 0] − a1, a2 := [2; 0] − c, a3 := [3; 0] − c,
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so we have

[1; 0] = c + a1, [1; 1] = c + a1q, [2; 0] := c + a2,

[2; 1] = c + a2q, [3; 0] = c + a3.

Plugging these values into the constraint from Lemma 6.16 we get

(c + a2q − [1; 2])(a2 − a1) = (a2q − a1q)(a2 − a1q) = (a2q − a1q2)(a2 − a1).

Note that since [1; 0] �= [2; 0], we have a1 �= a2, and hence the equation above implies
[1; 2] = c + a1q2.

To prove that [2; k] = c + a2qk we use induction on k, with cases k = 0, 1 already
covered. For the inductive step, assume that [2; k−1] = c+a2qk−1, [2; k] = c+a2qk ,
and apply Lemma 6.14 with (i, j) = (1, k). This gives

([2; k + 1] − c − a1q)(a2qk−1 − a1q) = (a2qk+1 − a1q)(a2qk−1 − a1q).

Since [2; k − 1] �= [1; 1] implies a2qk−1 − a1q �= 0, we get [2; k + 1] = c + a2qk+1.
Similarly, we can use induction to prove that [3; k] = c + a3qk . We already know

the case k = 0. Applying Lemma 6.15 to the perfect grid �
k , we get

[3; k + 1] = [1; 0][2; 1] − [1; 1][2; 0] − [2; 1][3; k] + [1; 1][3; k]
[1; 0] − [2; 0]

= c(1 − q) + q[3; k],

which implies the inductive step and finishes the proof of this case.
Case 2: q = 1. The argument is similar to the previous case. Set

c1 := [1; 0], c2 := [2; 0], c3 := [3; 0],
d := [1; 1] − [1; 0] = [2; 1] − [2; 0],

where the last equality follows from q = 1. Then we have

[1; 0] = c1, [1; 1] = c1 + d, [2; 0] = c2, [2; 1] = c2 + d, [3; 0] = c3.

Plugging these values into Lemma 6.16 we get

(c2 + d − [1; 2])(c2 − c1) = (c2 − c1)(c2 − c1 − d).

Since [1; 0] �= [2; 0], we have c1 �= c2 and hence the equation above implies [1; 2] =
c1 + 2d.

To prove that [2; k] = c2 + kd and [3; k] = c3 + kd we can use Lemmas 6.14 and
6.15 in exactly the same way as in Case 1. ��
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At this point, in order to reach the classification from Theorem 6.2 for n = 3, we
only need to determine the values of [1; k] for k ≥ 3. To do so we focus on the 2-grid
�2 and, considering each case separately, compute the functions F(k)(x1, x2 | �2).
The result is summarized below.

Lemma 6.18 Let ˜� be a perfect 2-grid.

1. Assume that for some q, c, a1, a2 ∈ k we have

˜�(1; 0) = c + a1, ˜�(1; 1) = c + a1q, ˜�(2; k) = c + a2qk, k ∈ Z≥0.

Then we have ˜�(1; k) = c + a1qk for all k and

F(k)(x1 + c, x2 + c | ˜�) =
k
∑

i=0

xi
1xk−i

2
(a1/x1; q)i (a2/x2; q)k−i (q; q)k

(q; q)i (q; q)k−i
, (6.17)

where we have shifted the variables x1, x2 by c.
2. Assume that for some d, c1, c2 ∈ k we have

˜�(1; 0) = c1, ˜�(1; 1) = c1 + d, ˜�(2; k) = c2 + kd, k ∈ Z≥0.

Then we have ˜�(1; k) = c1 + kd for all k and

F(k)(x1, x2 | ˜�) =
k−1
∏

i=0

(x1 + x2 − c1 − c2 − i d). (6.18)

Proof For both parts we simultaneously prove the expressions for ˜�(1; k) and
F(k+1)(x1, x2 | ˜�) by induction on k.

Part 1. Note that without loss of generality we can replace˜� by˜� − c and assume
that c = 0. When k = 0 we have ˜�(1; 0) = a1 and

F(1)(x1, x2 | ˜�) = x1 + x2 −˜�(1; 0) −˜�(2; 0) = x1 − a1 + x2 − a2.

When k = 1 we have ˜�(1; 1) = a1q and from (6.12) one can obtain

F(2)(x1, x2 | ˜�) = (x1 − a1)(x1 − a1q)

+(1 + q)(x1 − a1)(x2 − a2) + (x2 − a2)(x2 − a2q).

Nowassume that k ≥ 2 andwe have proved the claim for˜�(1; i) and F(i+1)(x1, x2 |
˜�) with i < k. Applying the Pieri rule from Lemma 6.13, we have

(x1 + x2 −˜�(1; k) − a2)F(k)(x1, x2 | ˜�)

= F(k+1)(x1, x2 | ˜�) + κk(˜�)(x1 − a2)(x2 − a2)F(k−1)(x1, x2 | ˜�1),
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where

κk(˜�) = (a1qk−1 + a2q −˜�(1; k) − a2)F(k)(a1qk−1, a2q | ˜�)

(a2q − a2)(a1qk−1 − a2)
∏k−2

i=0 (a1qk−1 − a1qi )
. (6.19)

Note that when for any j = 0, . . . , k we plug x1 = a1qk− j and x2 = a2q j in the
right-hand side of (6.17), there is only one non-zero term in the sum and this term
corresponds to i = j . So, we have

F(k)(�((k, j)) | ˜�) = F(k)(a1qk− j , a2q j | ˜�)

= ak− j
1 a j

2q(k− j)2+ j2 (q−k+ j ; q)k− j (q− j ; q) j (q; q)k

(q; q)k− j (q; q) j
. (6.20)

Plugging this expression into (6.19), we get

κk(˜�) = (a1qk−1 + a2q −˜�(1; k) − a2)(1 − qk)

(a1qk−1 − a2)(1 − q)
,

and, consequently,

F(k+1)(x1, x2 | ˜�) = (x1 + x2 −˜�(1; k) − a2)F(k)(x1, x2 | ˜�)

− (a1qk−1 + a2q −˜�(1; k) − a2)(1 − qk)

(a1qk−1 − a2)(1 − q)

(x1 − a2)(x2 − a2)F(k−1)(x1, x2 | ˜�1).

(6.21)

Since ˜� is perfect, we must have

F(k+1)(˜�((k, 2)) | ˜�) = F(k+1)(a1qk−2, a2q2 | ˜�) = 0.

Hence (6.21) implies

(a1qk−2 + a2q2 −˜�(1; k) − a2)F(k)(˜�((k, 2)) | ˜�) = a1qk−1 + a2q −˜�(1; k) − a2
a1qk−1 − a2

×1 − qk

1 − q
(a1qk−2 − a2)(a2q2 − a2)F(k−1)(˜�

1((k − 1, 1)) | ˜�1).

Applying (6.20) to F(k) and F(k−1), noting for the latter that �
1 also satisfies the

assumption of the first part with a2 multiplied by q, we get after elementary manipu-
lations

(a1qk−2 + a2q2 −˜�(1; k) − a2)(a1qk−1 − a2)(1 − q)

= (a1qk−1 + a2q −˜�(1; k) − a2)(a1qk−2 − a2)(1 − q2).
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This is a linear equation in ˜�(1; k) of the form

(q − 1)(a1qk−2 − a2q)˜�(1; k) = β

for some β independent of ˜�(1; k). Since ˜� is non-degenerate, q �= 1 and a1qk−2 =
˜�(1; k−2) �= ˜�(2; 1) = a2q, hence the system is non-degenerate and it can be readily
checked that˜�(1; k) = a1qk is its unique solution. Sowehave proved˜�(1; k) = a1qk .

Returning to (6.21), plugging ˜�(1; k) = a1qk we now have

κk(˜�) = 1 − qk,

F(k+1)(x1, x2 | ˜�) = (x1 + x2 − a1qk − a2)F(k)(x1, x2 | ˜�)

−(1 − qk)(x1 − a2)(x2 − a2)F(k−1)(x1, x2 | ˜�1).

Plugging expressions for F(k) and F(k−1) and doing elementary manipulations, we get

F(k+1)(x1, x2 | ˜�) = (x1 + x2 − a1qk − a2)
k
∑

i=0

xi
1xk−i

2
(a1/x1; q)i (a2/x2; q)k−i (q; q)k

(q; q)i (q; q)k−i

−(x1 − a2)
k−1
∑

i=0

(1 − qk−i )xi
1xk−i

2
(a1/x1; q)i (a2/x2; q)k−i (q; q)k

(q; q)i (q; q)k−i
,

which can be rewritten as

F(k+1)(x1, x2 | ˜�) =
k
∑

i=0

qk−i x i+1
1 xk−i

2
(a1/x1; q)i+1(a2/x2; q)k−i (q; q)k

(q; q)i (q; q)k−i

+
k
∑

i=0

xi
1xk−i+1

2
(a1/x1; q)i (a2/x2; q)k−i+1(q; q)k

(q; q)i (q; q)k−i

=
k+1
∑

i=0

xi
1xk−i

2
(a1/x1; q)i (a2/x2; q)k−i (q; q)k+1

(q; q)i (q; q)k−i+1
,

finishing the proof of this part.
Part 2. We again proceed by induction on k. When k = 0 we have ˜�(1; 0) = a1

and

F(1)(x1, x2 | ˜�) = x1 + x2 −˜�(1; 0) −˜�(2; 0) = x1 − c1 + x2 − c2.

Similarly, when k = 1 we have ˜�(1; 0) = a1 + d and (6.12) implies

F(2)(x1, x2 | ˜�) = (x1 − c1 + x2 − c2)(x1 − c1 + x2 − c2 − d).
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Nowassume that k ≥ 2 andwe have proved the claim for˜�(1; i) and F(i+1)(x1, x2 |
˜�) with i < k. Applying Lemma 6.13 again, we have

(x1 + x2 −˜�(1; k) − c2)F(k)(x1, x2 | ˜�)

= F(k+1)(x1, x2 | ˜�) + κk(˜�)(x1 − c2)(x2 − c2)P(k−1)(x1, x2 | ˜�1),

where

κk(˜�) = (c1 + kd −˜�(1; k))F(k)(c1 + (k − 1)d, c2 + d | ˜�)

(c1 + (k − 1)d − c2)dk(k − 1)! .

Plugging the expression for F(k)(x1, x2 | ˜�), we get

κk(˜�) = k(c1 + kd −˜�(1; k))

(c1 + (k − 1)d − c2)
.

F(k+1)(x1, x2 | ˜�) = (x1 + x2 −˜�(1; k) − c2)F(k)(x1, x2 | ˜�)

−k(c1 + kd −˜�(1; k))

(c1 + (k − 1)d − c2)
(x1 − c2)(x2 − c2)F(k−1)(x1, x2 | ˜�1). (6.22)

Since F(k+1)(˜�((k, 2)) | ˜�) = F(k+1)(c1 + (k − 2)d, c2 + 2d | ˜�) = 0, we get

(x1 + x2 −˜�(1; k) − c2)F(k)(c1 + (k − 2)d, c2 + 2d | ˜�)

= k(c1 + kd −˜�(1; k))

(c1 + (k − 1)d − c2)
(x1 − c2)(x2 − c2)F(k−1)(c1 + (k − 2)d, c2 + 2d | ˜�1).

Using expressions for F(k) and F(k−1), we get after elementary manipulations

(c1 + kd −˜�(1; k)) = 2(c1 + (k − 2)d − c2)
(c1 + kd −˜�(1; k))

(c1 + (k − 1)d − c2)
.

which is equivalent to

(c1 + kd −˜�(1; k))(c1 + (k − 3)d − c2) = 0.

Note that c1 + (k − 3)t − c2 = ˜�(1; k − 1) −˜�(2; 4) �= 0 since˜� is non-degenerate.
Hence the equation above implies˜�(1; k) = c1 + kd. Plugging this value for˜�(1; k)

into (6.22) we get

F(k+1)(x1, x2 | ˜�) = (x1 + x2 − c1 − c2 − kd)F(k)(x1, x2 | ˜�),

which implies the claim. ��
Let us summarize Lemmas 6.17 and 6.18:

Corollary 6.19 Let � be a perfect 3-grid. Then one of the following holds:
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1. For some constants c, q, a1, a2, a3 ∈ k we have

�(1; k) = c + a1qk, �(2; k) = c + a2qk, �(3; k) = c + a3qk, k ∈ Z≥0.

2. For some constants d, c1, c2, c3 ∈ k we have

�(1; k) = c1 + kd, �(2; k) = c2 + kd, �(3; k) = c3 + kd, k ∈ Z≥0.

��

6.5 Proof of Theorem 6.2

We first prove that two types of n-grids described in Theorem 6.2 are indeed perfect.
Propositions 5.13 and 5.14 combinedwithRemark 5.18 imply that the following n-grid
� is perfect:

�(i; j) = ai q
j

for q, a1, . . . , an ∈ k such that ai , q �= 0, q is not a root of unity, and ai/a j �= qk for
any i �= j and k ∈ Z. Hence the grid � + c is also perfect for any c ∈ k, covering
the first type from Theorem 6.2. Similarly, Propositions 5.16, 5.17 and Remark 5.18
imply that the grids of the form �(i; j) = ci + jd are perfect for c1, . . . , cn, d ∈ k
such d �= 0 and ci − c j �= kd for any i �= j and k ∈ Z.

Hence, it is enough to prove that all perfect n-grids for n ≥ 3 are described by
Theorem 6.2. We do it by induction on n, where the base case n = 3 follows from
Corollary 6.19. Note that the restrictions ai , q �= 0, ai/a j �= qk and ci − c j �= kd
follow automatically from Corollary 6.9, so its enough to just prove that � has the
form �(i; j) = c + ai q j or �(i; j) = ci + jd.

For the inductive step assume that we have proved Theorem 6.2 for all (n − 1)-
grids �. Let � be a perfect n-grid. Then the (n − 1)-grid �n−1 is also perfect, and
by inductive assumption we either have �(i; j) = c + ai q j or �(i; j) = ci + jd for
i ≤ n − 1. At the same time, the 3-grid n−3� is also perfect, and so we either have

�(n − 2; j) = c̃ + ãn−2q̃ j , �(n − 1; j) = c̃ + ãn−1q̃ j , �(n; j) = c̃ + ãnq̃ j

for some c̃, q̃, ãn−2, ãn−1, ãn ∈ k, or

�(n − 2; j) = c̃n−2 + j˜d, �(n − 1; j) = c̃n−1 + j˜d, �(n; j) = c̃n + j˜d

for some ˜d, c̃n−2, c̃n−1, c̃n ∈ k. But note that for c, a, q, c′, d ∈ k we can simul-
taneously have �(n − 1; k) = c + aqk = c′ + kd for all k ∈ Z≥0 only if d = 0
and all numbers c + aqk, c′ + kd are equal. However, this is impossible since � is
non-degenerate and the numbers �(n − 1; k) are distinct. Hence, both grids �n−1 and

n−3� are of the same type, and moreover q = q̃ or d = ˜d. Thus, if �(i; j) = c +ai q j

for i < n then �(n; j) = c + anq j as well, and similarly for �(i; j) = ci + jd. This
finishes the proof of Theorem 6.2. ��
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