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Abstract
Cominuscule flag varieties generalize Grassmannians to other Lie types. Schubert
varieties in cominuscule flag varieties are indexed by posets of roots labeled long/short.
These labeled posets generalize Young diagrams. We prove that Schubert varieties in
potentially different cominuscule flag varieties are isomorphic as varieties if and only
if their corresponding labeled posets are isomorphic, generalizing the classification of
Grassmannian Schubert varieties using Young diagrams by the last two authors. Our
proof is type-independent.

Mathematics Subject Classification 14M15 · 05E14 · 05E10

1 Introduction

Cominuscule flag varieties correspond to algebraic varieties that admit the structure
of a compact Hermitian symmetric space and have been studied extensively due their
shared properties with Grassmannians [1–3, 11, 15, 17]. These varieties come in five
infinite families and two exceptional types and are determined by a pair (D, γ ) of a
Dynkin diagram D of a reductive Lie group and a cominuscule simple root γ . See
Table 1 for a classification of cominuscule flag varieties. Let X denote the cominuscule
flag variety corresponding to (D, γ ) and R denote the root system of the Dynkin
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Table 1 Cominuscule flag varieties

1 2 n − 1 n
Type An (n ≥ 1)

An/Pm = Gr(m, n + 1)

Grassmannian of type A

1 2 n − 2 n − 1 n
Type Bn (n ≥ 2)

Bn/P1 = Q2n−1 Odd quadric

1 2 n − 2 n − 1 n
Type Cn (n ≥ 3)

Cn/Pn = LG(n, 2n)

Lagrangian Grassmannian

1 2 n − 3
n − 2

n − 1

n

Type Dn (n ≥ 4)

Dn/P1 = Q2n−2 Even quadric

Dn/Pn−1 ∼= Dn/Pn = OG(n, 2n)

Max. orthogonal Grassmannian

1

2

3 4 5 6

Type E6
E6/P1 ∼= E6/P6
Cayley plane

1

2

3 4 5 6 7

Type E7
E7/P7
Freudenthal variety

Cominuscule roots are denoted by the filled-in circles. This table is a modification of [5, Table 1]

diagram D. Set PX :={α ∈ R : α ≥ γ } with the partial order α ≤ β if β − α is
a non-negative sum of simple roots, and give PX a labeling of long/short roots. By
[5]*Theorem 2.4, Schubert varieties in X are indexed by lower order ideals in PX ,
generalizing the fact that Schubert varieties in a Grassmannian are indexed by Young
diagrams.

Our main result Theorem 1 is a combinatorial criterion for distinguishing isomor-
phism classes of Schubert varieties coming from cominuscule flag varieties.

Theorem 1 Let Xλ ⊆ X and Yμ ⊆ Y be cominuscule Schubert varieties indexed
by lower order ideals λ ⊆ PX and μ ⊆ PY , respectively. Then Xλ and Yμ are
algebraically isomorphic if and only if λ and μ are isomorphic as labeled posets.

For illustrative examples of Theorem 1, see Sect. 2.
Since Grassmannians are cominuscule flag varieties, Theorem 1 extends the work

of T. arigradschi andXu in [16], where they prove twoGrassmannian Schubert varieties
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are isomorphic if and only if their Young diagrams are the same or the transpose of
each other. Other related works include Richmond and Slofstra’s characterization of
the isomorphism classes of Schubert varieties coming from complete flag varieties
in [14] using Cartan equivalence. However, they also note that Cartan equivalence is
neither necessary nor sufficient to distinguishSchubert varieties in partial flag varieties.
A class of smooth Schubert varieties in type A partial flag varieties are classified by
Develin, Martin, and Reiner in [6]. Yet many Schubert varieties are singular, with the
first example being the Schubert divisor in the Grassmannian Gr(2, 4).

We discuss preliminaries in Sect. 3, and then in Sect. 4, we prove Theorem 1 and
illustrate it with examples. Our proof is type-independent and employs several new
techniques. To show that the labeled poset λ depends only on the isomorphism class of
the Schubert variety Xλ, we construct it from the effective cone in the Chow group of
Xλ and intersection products of classes in this cone with the unique effective generator
of the Picard group of the variety. To prove the converse, we embed each Schubert
variety Xλ in a “minimal" cominuscule flag variety uniquely determined by the labeled
poset λ. Assuming that the labeled posets λ ⊆ PX and μ ⊆ PY are isomorphic, we
construct an explicit isomorphism between the Dynkin diagrams of the “minimal”
cominuscule flag varieties determined by λ and μ. The corresponding flag variety
isomorphism identifies the Schubert varieties Xλ and Yμ.

2 Examples of Theorem 1

For the following examples, recall that cominuscule Schubert varieties are indexed
by lower order ideals in PX . Examples of PX are illustrated in Table 2, where each
element in PX is drawn as a box, and boxes decorated with an “s” correspond to
short roots. The partial order on boxes is given by α ≤ β if and only if α is weakly
north-west of β. In particular, lower order ideals are given by subsets of boxes that are
closed under moving to the north and west.

Example 2 As illustrated below, transposing a Young diagram does not change the
poset structure:

∼= .

Therefore, two Grassmannian Schubert varieties are isomorphic if their indexing
Young diagrams are the transpose of each other. Geometrically, this is related to
the isomorphism Gr(m,m + k) ∼= Gr(k,m + k), which comes from the reflection
symmetry of the Am+k−1 Dynkin diagram:

∼= .
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Table 2 The labeled poset PX
for a cominuscule flag variety X .
Each element in PX is drawn as
a box, and boxes decorated with
an “s” correspond to short roots.
The partial order on boxes is
given by α ≤ β if and only if α

is weakly north-west of β. This
table is a modification of [2,
Table 1]

Grassmannian Gr(3, 7) of type A

1 2 3 4 5 6

Odd quadric Q11 ⊂ P
12

1 2 3 4 5 6

s

Lagrangian Grassmannian LG(6, 12)

1 2 3 4 5 6

s s s s s

s s s s

s s s

s s

s

Max. orthog. Grassmannian OG(6, 12)

1 2 3
4

5

6

Even quadric Q10 ⊂ P
11

1 2 3
4

5

6
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Table 2 continued

Cayley Plane E6/P6

1

2

3 4 5 6

Freudenthal variety E7/P7

1

2

3 4 5 6 7

Example 3

PQ6 = ∼= = POG(4,8),

therefore, Q6 ∼= OG(4, 8). This isomorphism comes from the rotation symmetry of
the D4 Dynkin diagram:

∼= .

Example 4 Using Table 2, it is not hard to see that if a Grassmannian Schubert variety
is isomorphic to a non-type A cominuscule Schubert variety, then they are both iso-
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morphic to a projective space. Indeed, in order to fit inside a PX of another type, the
lower order ideal is forced to be a chain.

As a special case,we also see that anySchubert curve in any cominusculeflagvariety
is isomorphic to P

1. In fact, any Schubert curve in any flag variety is isomorphic to P
1,

which follows from the more general statements that Schubert varieties are rational
normal projective varieties and that P

1 is the only rational normal projective curve.

Example 5 The Schubert divisor in Q3 is not isomorphic to P
2, because the labeling

of their posets does not match:

s � .

We can also see it geometrically, as the Schubert divisor in Q3 is singular.

Example 6 The quadric Q3 embeds in LG(n, 2n) (n ≥ 3) as a Schubert variety, as
illustrated by

s s s
s s

s
.

Example 7 The quadric Q10 embeds in E7/P7 as a Schubert variety, as illustrated by

.

Example 8 There are two non-isomorphic 6-dimensional Schubert varieties in E6/P6,
given by the two order ideals illustrated below.

�

Example 9 While PLG(n,2n) and POG(n+1,2n+2) are isomorphic as posets, this isomor-
phism does not preserve the labeling of long/short roots (see illustration below). As a
result, LG(n, 2n) and OG(n+1, 2n+2) do not contain isomorphic Schubert varieties
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of dimension greater than one.

s s s
s s

s
�

3 Preliminaries

Let G be a complex reductive linear algebraic group. We fix subgroups T ⊂ B ⊂ G,
where T is a maximal torus and B is a Borel subgroup. With this setup, T ⊂ G
determines a root system R of G, with corresponding Weyl group W := N (T )/T ,
and B determines a set of simple roots � ⊆ R. The set of roots decomposes into
positive and negative roots R = R+ � R−, with R+ being non-negative sums of
simple roots. The Weyl group W is generated by the set of simple reflections

S := {sα : α ∈ �}.

To each subset I ⊆ S one can associate a Weyl subgroup WI := 〈s : s ∈ I 〉 ⊆ W ,
a parabolic subgroup PI = BWI B ⊆ G and the corresponding (partial) flag variety
X = G/PI . Schubert varieties in X are indexed by W I , the set of minimal length
coset representatives of W/WI . Explicitly, for w ∈ W I , the Schubert variety

Xw := BwPI /PI

Fig. 1 The Bruhat poset W I

when X = Gr(2, 4).
Permutations in W I are denoted
using one-line notation, and next
to each is the corresponding
lower order ideal in PX .
Join-irreducible elements of W I

are the ones underlined, and the
generator of the corresponding
principal lower order ideal in
PX is decorated with a �
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has dimension the Coxeter length of w, denoted �(w). Moreover, for any u ∈ W I , we
have Xu ⊆ Xw if and only if u ≤ w in Bruhat order.

From now on, X is a cominuscule flag variety. In other words, I = S\{sγ }, where
γ is a cominuscule simple root, i.e., γ appears with coefficient 1 in the highest root
of R. Cominuscule roots are illustrated by filled-in circles in Tables 1 and 2.

Recall that

PX := {α ∈ R : α ≥ γ }

inherits the usual partial order on roots, i.e., α ≤ β if β − α is a non-negative sum of
simple roots, and in addition, we give PX a labeling of long/short roots.

In [12], Proctor proves that W I is a distributive lattice under the induced Bruhat
partial order from W . Birkhoff’s representation theorem implies there is a bijection
betweenW I and the set of lower order ideals in PX . In particular, the join-irreducible
elements of W I are identified with principal lower order ideals of PX and hence with
PX itself. See Fig. 1 for an illustration when X = Gr(2, 4). Explicitly, to eachw ∈ W I

we associate its inversion set

λ(w) := {α ∈ R+ : w.α < 0}, (1)

viewed as a sub-poset of PX . It is well known that �(w) = |λ(w)|. Moreover, the
following proposition was proved in [17, Proposition 2.1 and Lemma 2.2] and [5,
Theorem 2.4 and Corollary 2.6]:

Proposition 10 (Thomas–Yong, Buch–Samuel) For any w ∈ W I , the inversion set
λ(w) is a lower order ideal in PX . Moreover:

(1) The map w �→ λ(w) is a bijection between W I and the set of lower order ideals
in PX .

(2) For any u ∈ W I , we have u ≤ w in Bruhat order if and only if λ(u) ⊆ λ(w).
(3) If α ∈ λ(w) and λ(w) \ {α} is a lower order ideal, then wsα ∈ W I and λ(wsα) =

λ(w) \ {α}, where sα ∈ W is the reflection corresponding to α.

Notation 11 Given a lower order ideal λ ⊆ PX , we will write wλ for the element
of W I corresponding to λ in Proposition 10. We also use Xλ := Xwλ to denote the
corresponding Schubert variety.

In Sect. 4.2, we will use a map δ : PX → � defined in [2] as follows.

Definition 12 For α ∈ PX , let λα be the principal lower order ideal generated by α.
Let δ(α) = −wλα .α ∈ R+. Then sδ(α) = wλα sαw−1

λα
has length 1 [2]*Section 4.1.

Therefore, δ(α) ∈ �.

The following lemma is a restatement of [5]*Corollary 2.10. See also [2]*Section
4.1.

Lemma 13 (Buch–Samuel) Let λ ⊆ PX be a lower order ideal and β1, β2, . . . , β�

be the boxes it contains written in an increasing order. Then sδ(β�) · · · sδ(β2)sδ(β1) is a
reduced decomposition of wλ. Moreover, every reduced decomposition of wλ can be
obtained in this way.
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4 Proof of Theorem 1

In this section, we prove each direction of Theorem 1 separately.

4.1 Forward direction: the isomorphism class of X� determines the labeled poset �

Let iλ : Xλ ↪→ X denote the embedding of a Schubert subvariety into a cominuscule
flag variety X = G/PI . The definition of the labeled poset λ depends on the root
system of the reductive group G and hence on the embedding iλ : Xλ ↪→ X . The goal
of this section is to show that λ (as a labeled poset) can be constructed using only the
variety structure of Xλ and is therefore intrinsic to the isomorphism class of Xλ. We
prove the following proposition which states the “forward" direction of Theorem 1.

Proposition 14 Let Xλ ⊆ X and Yμ ⊆ Y be cominuscule Schubert varieties indexed
by lower order ideals λ ⊆ PX and μ ⊆ PY , respectively. If Xλ and Yμ are alge-
braically isomorphic, then λ and μ are isomorphic as labeled posets.

Our primary tools come from the intersection theory of algebraic varieties (see [8]
for more details). Let Pic(Xλ) and A∗(Xλ) denote the Picard and Chow groups of
Xλ. It is well known that these groups are algebraic invariants of Xλ. Recall that the
k-th Chow group Ak(Z) of a scheme Z is the free abelian group on the k-dimensional
subvarieties of Z modulo rational equivalence. When Z is a normal variety, the Picard
groupPic(Z) can be identifiedwith the subgroup of Adim(Z)−1(Z) generated by classes
of locally principal divisors (note that all Schubert varieties are normal). Our aim is to
construct the labeled poset λ from the intersection class map or intersection product
[8, Definition 2.3]:

Pic(Xλ) × A∗(Xλ) → A∗(Xλ).

If (σ, τ ) ∈ Pic(Xλ) × A∗(Xλ), we denote the image of the intersection product by
σ · τ . Next, we consider the effective cone of a scheme:

Definition 15 Let Z be a scheme. The effective cone in the Chow group A∗(Z) is the
semigroup in A∗(Z) generated by the classes of closed subvarieties of Z .

Since the flag variety X is cominuscule, there is a unique Schubert variety of codimen-
sion 1 in X , called the Schubert divisor. Its class, denoted D, is the unique effective
generator of the Picard group Pic(X) ⊆ A∗(X). Recall that iλ : Xλ ↪→ X is a
closed embedding of varieties and let i∗λ : Pic(X) → Pic(Xλ) denote the induced
map on Picard groups. Lemma 16 below follows from [10, Proposition 6] (see also
[4, Proposition 2.2.8 part (ii)]).

Lemma 16 For any non-empty lower order ideal λ ⊆ PX , the map i∗λ : Pic(X) →
Pic(Xλ) is an isomorphism.

Since D is effective and generates Pic(X), Lemma 16 implies that i∗λ(D) is the
unique effective generator of Pic(Xλ). Recall from Proposition 10 that we have lower
order ideals μ ⊆ λ if and only if wμ ≤ wλ in Bruhat order. Hence, we have μ ⊆ λ if
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and only if Xμ ⊆ Xλ. We write [Xμ] for the class of Xμ in A∗(Xλ). It is well known
that the classes {[Xμ]}μ⊆λ form an integral basis of A∗(Xλ). Lemma 17 below is a
special case of [7, Corollary of Thereom 1] and allows us to identify Schubert classes
(the effective cone) in A∗(Xλ).

Lemma 17 (Fulton–MacPherson–Sottile–Sturmfels) The Schubert classes [Xμ] such
that μ ⊆ λ are exactly the minimal elements in the extremal rays of the effective cone
in A∗(Xλ).

We shall see later that the poset structure of λ can be recovered from the intersection
products i∗λ(D) · [Xμ]. Let (iλ)∗ : A∗(Xλ) → A∗(X) denote the proper push-forward
on Chow groups. By the projection formula ( [8, Proposition 2.5 (c)]), we have

(iλ)∗(i∗λ(D) · [Xμ]) = D · (iλ)∗([Xμ]).

Since (iλ)∗ is injective, the product i∗λ(D) · [Xμ] in A∗(Xλ) can be computed via the
product D · (iλ)∗([Xμ]) in A∗(X). By [8, Example 19.1.11], the Chow group A∗(X)

can be identified with the homology group H∗(X), with (iλ)∗([Xμ]) corresponding
to the homology class of the Schubert variety Xμ ⊆ X . By [8, Proposition 19.1.2]
we have that the intersection product D · (iλ)∗([Xμ]) can be identified with a cap
product. Since X is a smooth complex variety, the Poincaré duality further identifies
the intersection product with the cup product of cohomology classes corresponding
to D and (iλ)∗([Xμ]). This cup product is given by the Chevalley formula [9, Lemma
8.1]. Using these identifications, we restate the Chevalley formula for cominuscule
flag varieties (and hence Schubert varieties):

Lemma 18 (Fulton–Woodward) Let X be a cominuscule flag variety with correspond-
ing cominuscule simple root γ . For any lower order ideals μ ⊆ λ ⊆ PX , let [Xμ]
denote the class of Xμ in A∗(Xλ). Then

i∗λ(D) · [Xμ] =
∑ (γ, γ )

(α, α)
[Xμ\{α}]

where the sum is over all positive roots α such that μ\{α} is a lower order ideal in
PX . Here (·, ·) denotes the usual inner product.

Observe that Lemma 18 reinterprets the Chevalley formula as a degree lowering
operator since intersection product with divisors is a map from Ak(Xλ) to Ak−1(Xλ).
This is opposite to the standard presentation of the Chevalley formula as a degree
raising operator in cohomology.

Example 19 By Lemma 18, the following calculations hold for X = LG(3, 6). We
refer to Table 1 for the poset PX .

D ·
[
X s s

]
= 2

[
X s

]
+

[
X s s

]
,

D ·
[
X s

]
=

[
X s

]
,
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D ·
[
X s

]
= 2

[
X

]
.

Remark 20 Note that a coefficient 2 occurs whenever the removed box (root) is short.
Otherwise the coefficient is 1. This is due to the fact that cominuscule flag varieties
only appear in Dynkin types that are at most “doubly laced" (see Table 2).

Proof of Proposition 14 Let X̃ be a variety that is algebraically isomorphic to a comi-
nuscule Schubert variety. Let Ẽ := {E1, . . . , Ek} ⊆ A∗(X̃) denote the set of minimal
elements in the extremal rays of the effective cone. By Lemma 17, these classes form
the Schubert basis of A∗(X̃). Lemma 16 implies there is a unique effective generator
of Pic(X̃) which we denote by Z . For any Ei ∈ Ẽ , consider the intersection product

Z · Ei =
∑

j

ci j E j .

Define a partial order on the set Ẽ via the covering relations

E j < Ei if and only if ci j �= 0.

If X̃ � Xλ and iλ : Xλ ↪→ X = G/PI is an embedding of a Schubert subvariety
into a cominuscule flag variety, then Z corresponds to i∗λ(D) under the identification
Pic(X̃) � Pic(Xλ). Lemma 18 implies that the poset Ẽ is isomorphic to the set of
lower order ideals in PX that is contained in λ, ordered by inclusion. Hence, Ẽ can
be identified with the Bruhat interval {u ∈ W I : u ≤ wλ} via Proposition 10. Let
λ̃ denote the sub-poset of join-irreducible elements in Ẽ . Our discussions in Sect. 3
imply that λ̃ is poset isomorphic toλ. Hence, the poset is independent of the embedding
iλ : Xλ ↪→ X .

We finish the proof by showing that the labeling of long/short roots can also be
recovered from the Chevalley formula. Let Ei ∈ λ̃ and hence Ei is join-irreducible in
the poset Ẽ . First, if Ei is the unique minimal element in λ̃, then we label Ei as long
(this corresponds to the cominuscule simple root). Otherwise, Lemma 18 implies that

Z · Ei = ci j E j

for some unique E j ∈ Ẽ with ci j �= 0. If ci j = 1, then we label Ei as long. If ci j �= 1,
then we label Ei as short. If X̃ � Xλ, then Lemma 18 implies that this labeling of λ̃

corresponds to the labeling of long/short roots in λ.
In conclusion, the labeled poset λ̃ only depends on the isomorphism class of X̃ . In

particular, if two cominuscule Schubert varieties Xλ and Yμ are algebraically isomor-
phic, then λ � μ as labeled posets. ��
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4.2 Converse direction: the labeled poset � determines the isomorphism class of
X�

Let X = G/PI be a cominuscule flag variety and λ ⊆ PX be a lower order ideal. In
this section, we prove that the poset λ and its labeling of long/short roots determine the
isomorphism class of Xλ. More precisely, we prove the following proposition, which
states the “converse" direction of Theorem 1.

Proposition 21 Let Xλ ⊆ X and Yμ ⊆ Y be cominuscule Schubert varieties indexed
by lower order ideals λ ⊆ PX and μ ⊆ PY , respectively. If λ and μ are isomorphic
as labeled posets, then Xλ and Yμ are algebraically isomorphic.

Our strategy is to embed Xλ in a “minimal" flag variety X ′ determined by the
labeled poset λ.

Recall that S is the set of simple reflections defined in Sect. 3.

Definition 22 The support of λ is defined as

S(λ):={s ∈ S : s ≤ wλ}.

Equivalently, S(λ) is the set of simple reflections appearing in any reduced decompo-
sition of wλ.

Every reduced decomposition of wλ, and in particular, S(λ), can be read out from
the poset λ [2, Section 4]. The variety X ′ is constructed using S(λ) as follows. Let G ′
be the reductive subgroup of PS(λ) with Weyl group W ′:=WS(λ) and P ′:=G ′ ∩ PI be
the reductive subgroup of G ′ corresponding to I ′:=I ∩ S(λ). Set X ′:=G ′/P ′. Note
that wλ ∈ W ′ I ′

.
Lemma 23 below is a restatement of [13, Lemma 4.8].

Lemma 23 Richmond–Slofstra The inclusion X ′ ↪→ X induces an isomorphism
X ′

wλ
→ Xλ.

Let Y be another cominuscule flag variety andμ ⊆ PY be a lower order ideal. Next,
we show that a labeled poset isomorphism between λ and μ induces an isomorphism
between X ′ andY ′, which restricts to an isomorphismbetween Xλ andYμ.We shall see
that X ′ and Y ′ are cominuscule and that this isomorphism is given by an isomorphism
of their Dynkin diagrams.

In the following, let DX be the Dynkin diagram of X with vertex set �X .

Definition 24 The diagram Dλ
X is defined to be the full subgraph of DX with vertex

set

�λ
X :={α ∈ �X : sα ∈ S(λ)}.

Definition 25 Let a Dynkin chain in PX be a chain π ⊆ PX such that:

(1) the set π is a lower order ideal;
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Fig. 2 We highlight P�
X ⊂ PX with a bold border and label its boxes by the images of δ

(2) the lengths of roots in π are weakly decreasing.

The lower order ideal P�
X ⊆ PX is defined to be the union of all Dynkin chains in

PX .

In the proof of Lemma 26, we shall see that Dynkin chains in PX correspond to
paths in DX starting from the cominuscule root γ . Examples of P�

X are illustrated in
Fig. 2.

Lemma 26 The restriction δ : P�
X → �X is a bijection.

Proof Note that the cominuscule rootγ is the uniqueminimal root inPX and δ(γ ) = γ .
Also, since γ is a long root, it does not obstruct condition (2) in Definition 25 and
is an element of any non-empty Dynkin chain. Moreover, if γ, β1, . . . , βm−1, βm are
distinct simple roots along a path in DX , then

γ < (γ + β1) < · · · < (γ + β1 + · · · + βm)

is a Dynkin chain in PX and δ(γ + β1 + · · · + βm) = βm . This proves surjectivity.
To prove injectivity, note that for β, β ′ in PX , if δ(β) = δ(β ′), then β and β ′ are

comparable [2, Remark 4.2(b)]. SinceDynkin chains are lower order ideals (Definition
25 part (1)), it suffices to prove that each Dynkin chain in P�

X maps injectively to �X .
Let γ0 < γ1 < γ2 < · · · < γk be a Dynkin chain inP�

X . (While we will not need it, we
must have γ0 = γ because a Dynkin chain is a lower order ideal and γ is the unique
minimal root inPX .) By [2, Remark 4.2(c)]we have that δ(γ0), δ(γ1), . . . , δ(γk) forms
a walk on DX . For a contradiction, assume this walk is not a path. Since DX does not
contain any cycles, we can assume without loss of generality that δ(γi−1) = δ(γi+1)

for some i , where 0 < i < k. By definition,

δ(γ j ) = −w j .γ j for all j,
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where w j :=wλγ j
. By Lemma 13, we have

wi = sδ(γi )wi−1 and wi+1 = sδ(γi+1)sδ(γi )wi−1.

Therefore,

γi−1 = −w−1
i−1.δ(γi−1) = −w−1

i−1.δ(γi+1),

γi = −w−1
i−1sδ(γi ).δ(γi ) = w−1

i−1.δ(γi ),

γi+1 = −w−1
i−1sδ(γi )sδ(γi+1).δ(γi+1) = w−1

i−1sδ(γi ).δ(γi+1).

(2)

Note that (δ(γ j ), δ(γ j )) = (γ j , γ j ) for all j . Hence, using 2 we have

(δ(γi−1), δ(γi−1)) = (δ(γi+1), δ(γi+1)),

and by the decreasing condition on lengths (Definition 25), we must have

(δ(γi−1), δ(γi−1)) = (δ(γi ), δ(γi )) = (δ(γi+1), δ(γi+1)).

Since the simple roots δ(γi+1) and δ(γi ) are adjacent in the Dynkin diagram and of
the same length,

〈δ(γi+1), δ(γi )〉:=2(δ(γi+1), δ(γi ))

(δ(γi ), δ(γi ))
= −1.

As a consequence,

sδ(γi ).δ(γi+1) = δ(γi+1) − 〈δ(γi+1), δ(γi )〉δ(γi ) = δ(γi+1) + δ(γi ). (3)

By 2 and 3, we have

γi+1 − γi = w−1
i−1.δ(γi+1) = −γi−1,

which is a contradiction. ��
Corollary 27 Let λ ⊆ PX be a lower order ideal. Then δ(λ ∩ P�

X ) = �λ
X , and Dλ

X is
a connected Dynkin diagram.

Proof By [2]*Remark 4.2.(b), for each α ∈ �X , there is a unique minimal root
β ∈ PX such that δ(β) = α. From Lemma 26 we see that β ∈ P�

X . It follows that
δ(λ) = δ(λ∩P�

X ). By Lemma 13, we have δ(λ) = �λ
X . Therefore, δ(λ∩P�

X ) = �λ
X .

Note that λ ∩ P�
X is exactly the union of Dynkin chains contained in λ, and by the

proof of Lemma 26, the map δ sends each Dynkin chain to a path inDX starting from
γ . Therefore, Dλ

X is connected. ��
Remark 28 Corollary 27 implies that X ′ is the cominuscule flag variety given by the
pair (Dλ

X , γ ).



The isomorphism problem for cominuscule Schubert… Page 15 of 17    38 

The last ingredient is Proposition 29, a purely combinatorial result. Geometrically,
it implies that the “minimal” cominuscule flag varieties for Schubert varieties with
isomorphic labeled posets are isomorphic.

Proposition 29 Let λ ⊆ PX and μ ⊆ PY be lower order ideals. Then every labeled
poset isomorphism between λ and μ induces a graph isomorphism between Dλ

X and
Dμ

Y that identifies reduced decompositions of wλ and wμ.

Proof Let λ ⊆ PX and μ ⊆ PY be lower order ideals and f : λ → μ a labeled poset
isomorphism. Note that f restricts to a labeled poset isomorphism f : λ ∩ P�

X →
μ ∩ P�

Y , since λ ∩ P�
X is exactly the union of Dynkin chains contained in λ. Define

a map ψ f : �λ
X → �

μ
Y by ψ f (α) = δ ◦ f ◦ δ−1(α), where δ−1 : �X → P�

X is the
inverse of δ : P�

X → �X . Then ψ f is a bijection.
By the proof of Lemma 26, simple roots α and β are adjacent vertices in DX

if and only if either δ−1(α) < δ−1(β) or δ−1(β) < δ−1(α) is a covering relation.
Since δ preserves root lengths, the map ψ f can be extended to a graph isomorphism
Dλ

X → Dμ
Y .

The identification of reduced decompositions now follows from Lemma 13. ��
Proof of Proposition 21 Let γX and γY denote the cominuscule simple roots corre-
sponding to the cominuscule flag varieties X and Y . Let X ′ and Y ′ denote the
cominuscule flag varieties given by the pairs (Dλ

X , γX ) and (Dμ
Y , γY ). Proposition

29 implies the cominuscule flag varieties X ′ and Y ′ are isomorphic. By Lemma 23,
this isomorphism restricts to an isomorphism between Xλ and Yμ, upon identifying
them with Schubert varieties in X ′ and Y ′, respectively. ��

We illustrate the above process with Example 30 and Example 31 below.

Example 30 Let X = E6/P6 and λ be the lower order ideal depicted on the left below.
Then S(λ) = {s2, s3, s4, s5, s6}, where si is the simple reflection corresponding to
the simple root labeled by i . Therefore, the pair (Dλ

X , γ ) is as depicted on the right,
isomorphic to that of Q8, showing X ′ ∼= Q8, and Xλ

∼= X ′
λ′ , where λ′ is the lower

order ideal depicted on the right below.

X = E6/P6 X ′

1

2

3456 6 5 4

2

3

∼=
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Example 31 Let X = E6/P6 and λ be the lower order ideal depicted on the left below.
Then S(λ) = {s1, s3, s4, s5, s6}, where si is the simple reflection corresponding to
the simple root labeled by i . Therefore, the pair (Dλ

X , γ ) is as depicted on the right,
isomorphic to that of P

5, showing Xλ
∼= X ′ ∼= P

5.

X = E6/P6 X ′

1

2

3456 13456

∼=

Acknowledgements We thank Anders Buch for helpful discussions and the anonymous referee for helpful
comments. ER was supported by a grant from the Simons Foundation 941273. MT. andWXwere supported
by NSF Grant MS-2152316.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Buch, A.S., Chaput, P.-E., Mihalcea, L.C., Perrin, N.: A Chevalley formula for the equivariant quantum
K-theory of cominuscule varieties. Algebr. Geom. 66, 568–595 (2018)

2. Buch,A.S., Chaput, P.-E.,Mihalcea, L.C., Perrin,N.: Positivity ofminuscule quantumK-theory (2022).
arXiv:2205.08630 [math]

3. Brion, M., Polo, P.: Generic singularities of certain Schubert varieties. Mathematische Zeitschrift
231(2), 301–324 (1999)

4. Brion, M.: Lectures on the Geometry of Flag Varieties, Topics in Cohomological Studies of Algebraic
Varieties, pp. 33–85 (2005)

5. Buch, A.S., Samuel,M.J.: K-theory ofminuscule varieties. J. für die reine und angewandteMathematik
Crelles J. 719, 133–171 (2016)

6. Develin,M.,Martin, J.L., Reiner, V.: Classification ofDing’s Schubert varieties: finer rook equivalence.
Can. J. Math. 59(1), 36–62 (2007)

7. Fulton, W., MacPherson, R., Sottile, F., Sturmfels, B.: Intersection theory on spherical varieties. J.
Algebr. Geom. 4(1), 181–193 (1995)

8. Fulton, W.: Intersection Theory. Springer, New York (1998)
9. Fulton, W., Woodward, C.: On the quantum product of Schubert classes. J. Algebr. Geom. 13(4),

641–661 (2004)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2205.08630


The isomorphism problem for cominuscule Schubert… Page 17 of 17    38 

10. Mathieu, O.: Formules de caractères pour les algèbres de Kac–Moody gènérales. Astérisque 159–160,
267 (1988)

11. Perrin, N.: The Gorenstein locus of minuscule Schubert varieties. Adv. Math. 220(2), 505–522 (2009)
12. Robert,A.: Proctor,Bruhat lattices, plane partition generating functions, andminuscule representations.

Eur. J. Combin. 5(4), 331–350 (1984)
13. Richmond, E., Slofstra,W.: Billey–Postnikov decompositions and the fibre bundle structure of Schubert

varieties. Mathematische Annalen 366(1–2), 31–55 (2016)
14. Richmond, E., Slofstra, W.: The isomorphism problem for Schubert varieties, arXiv, (2022).

arXiv:2103.08114 [math]
15. Richmond, E., Slofstra, W., Woo, A.: The Nash blow-up of a cominuscule Schubert variety. J. Algebra

559, 580–600 (2020)
16. Tarigradschi, M., Weihong, X.: The isomorphism problem for Grassmannian Schubert varieties. J.

Algebra 633, 225–241 (2023)
17. Thomas, H., Yong, A.: A combinatorial rule for (co)minuscule Schubert calculus. Adv. Math. 222(2),

596–620 (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/2103.08114

	The isomorphism problem for cominuscule Schubert varieties
	Abstract
	1 Introduction
	2 Examples of Theorem 1
	3 Preliminaries
	4 Proof of Theorem 1
	4.1 Forward direction: the isomorphism class of Xλ determines the labeled poset λ
	4.2 Converse direction: the labeled poset λ determines the isomorphism class of Xλ

	Acknowledgements
	References


