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Abstract
This paper considers the (negative) cyclic open–closed map OC−, which maps the
cyclic homology of the Fukaya category of a symplectic manifold to its S1-equivariant
quantum cohomology. We prove (under simplifying technical hypotheses) that this
map respects the respective natural connections in the direction of the equivariant
parameter. In the monotone setting this allows us to conclude that OC− intertwines
the decomposition of the Fukaya category by eigenvalues of quantum cup product
with the first Chern class, with the Hukuhara–Levelt–Turrittin decomposition of the
quantum cohomology. We also explain how our results relate to the Givental–Teleman
classification of semisimple cohomological field theories: in particular, how the R-
matrix is related toOC− in the semisimple case; we also consider the non-semisimple
case.
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1 Introduction

Kontsevich conjectured [26] that enumerative mirror symmetry, an equality between
Gromov–Witten invariants of a space X and period integrals on Y (see [4]) is a con-
sequence of a homological mirror symmetry:

Fuk(X) ∼= DbCoh(Y ). (1)

This paper focusses on the symplectic side of mirror symmetry. Barannikov [2]
shows that one can extract the Gromov–Witten invariants of X from a variation of
semi-infinite Hodge structures (VSHS) associated to the quantum cohomology of X ,
together with a splitting of the Hodge filtration. This goes via the intermediary step of
a Frobenius manifold. One approach to obtain enumerative invariants from the Fukaya
category is thus to first associate a VSHS to it, and then to specify the correct splitting.
It is by now well understood how to construct the structure of a VSHS on the cyclic
homology of an A∞-category (see [16, 24], or [42]). Characterising the splitting has
not been done in general, but results have been obtained in various settings.

Ganatra et al. [12] characterise the splitting when the VSHS is Z-graded and of
Hodge–Tate type over a one-dimensional base. The geometric setting one should think
of is the Fukaya category of a Calabi–Yau. In this case the splitting is determined by



The cyclic open–closed map, u-connections and R-matrices Page 3 of 90 29

the VSHS itself. Secondly Amorim–Tu [1] show how the grading operator on quantum
cohomology classifies the correct splitting when the Hochschild cohomology ring of
the Fukaya category is semi-simple. The grading operator constitutes extra data, so the
splitting is not necessarily determined intrinsically by the VSHS. The main examples
are all Fano: complex projective space, or quadric hypersurfaces.

1.1 Formal TEP-structures

Hertling [19, Section 2.5] defines TERP-structures.Wewill only need TEP-structures.
Furthermore, rather than working with holomorphic functions, we work with formal
power series in the equivariant parameter. Hence we call them formal TEP-structures.

Definition 1.1 (see Definition 2.1) Let K be a field.

1. A formal pre-T-structure over aK-algebra R, is a pair (E,∇). Here E is an R[[u]]-
module and ∇ : DerKR ⊗ E → u−1E a flat connection.

2. If E is free and finitely-generated, call this a formal T-structure.
3. A formal TE-structure is a formal T-structure together with an extension of the

connection to a flat connection ∇ : DerK(R[[u]]) ⊗ E → u−2E .
4. A formal TEP-structure is a formal TE-structure equipped with polarisation, i.e.

a symmetric, sesquilinear, covariantly constant pairing (·, ·) : E ⊗ E → R[[u]],
which restricts to a non-degenerate pairing (·, ·) : E/uE ⊗ E/uE → R.

Thus a VSHS in the sense of [2] is a formal TP-structure.

Remark 1.2 A TEP-structure can be formalised to yield a formal TEP-structure, this
process forgets information (the Stokes’ data, see [36, §II.6]). The cyclic homology of
an A∞-category only yields a formal TEP-structure, which is why we will always be
talking about formal TEP-structures. For ease of reading, we omit the word ‘formal’
from now on. We hope this doesn’t cause any confusion.

Definition 1.3 The quantum TEP-structure is defined over R = �[[H∗(X)]], where
� is a Novikov ring. It is given by the S1-equivariant quantum cohomology
QH∗(X; R)[[u]]. The connection is as defined in [6], or see Sect. 4.2. The pairing
is given by the sesquilinear extension of the Poincaré pairing.

Definition 1.4 The TEP-structure HC−∗ (C) associated to an R-linear A∞-category is
as defined in [24] or see Sect. 3.

Remark 1.5 In general, the TEP-structure associated to an A∞-category is only a
pre-TEP-structure. If the non-commutative Hodge-de Rham spectral sequence degen-
erates, it is actually aTEP-structure.This is conjectured to hold for smooth and compact
A∞-categories, see [25]. In the Z-graded setting, Kaledin [23] proves this conjectures
holds. Our A∞-categories will only be Z/2-graded, and we will always assume the
Hodge-de Rham spectral sequence degenerates, and can thus drop the prefix ‘pre’.
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1.2 Cyclic open–closedmap

An essential ingredient in proving that the enumerative invariants obtained from the
Fukaya category agree with the Gromov–Witten invariants is an isomorphism of TEP-
structures called the (negative) cyclic open–closed map. Let X be a closed symplectic
manifold. Let Fuk(X) denote the Fukaya category of X , which is an A∞-category over
the Novikov ring �. Assume there exists a bulk-deformed Fukaya category Fukt (X).
By this we mean a Fukaya category which is linear over the ring R = �[[H∗(X)]].
Conjecture 1.6 There exists a cyclic open-map OC− : HC−∗ (Fukt (X)) → QH∗
(X; R)[[u]]. This is a morphism of TEP-structures over �[[H∗(X)]].
Such a morphism has not been constructed in general. Partial results exist: [7, 10]
construct cyclic open–closed maps in a wide range of settings. Ganatra et al. [12]
have announced work proving this is an isomorphism of TP-structures when X is
a projective Calabi–Yau manifold. In their case, R = �, so they consider no bulk-
deformations. Furthermore, Ohta–Sanda [31] show that both TE-structures considered
come from a new algebraic structure they define, a ‘CH-structure’. They show that
an isomorphism of the CH-structures associated to the Fukaya category and quantum
cohomology would imply an isomorphism of associated TE-structures.

We prove a local version of this conjecture, focussing on the cyclic homology of the
A∞-algebra associated to a single Lagrangian.We use the same technical assumptions
as used by Solomon and Tukachinsky [47]: the moduli spaces of holomorphic disks
need to be smooth orbifolds with corners, and the evaluation maps at boundary points
are assumed to be submersions, see Assumptions 4.18. For us the main example sat-
isfying these conditions is X = CP

n and L a Lagrangian torus fibre (see Lemma 4.19
for a proof of the assumptions). Another class of examples is given by flag varieties
and their products, with the Lagrangian given by the real locus (see [47, Example 1.5]).
The A∞-algebra CF∗(L, L) we use is equal up to sign to the A∞-algebra defined by
[47], see Remark 4.41.

Theorem 1.7 (See Theorem 4.71) Let L ⊂ X be an oriented, relatively-spin
Lagrangian submanifold equipped with a U (�)-local system. Suppose there exists
a complex structure J such that (L, J ) satisfy Assumptions 4.18. Then there exists a
bulk-deformed Fukaya A∞-algebra CF∗(L, L). This is an R = �[[H∗(X)]]-linear,
curved and filtered A∞-algebra. Furthermore, there exist a cyclic open–closed map

OC− : HC−∗ (CF∗(L, L)) → QH∗(X; R)[[u]], (2)

which is a morphism of pre-TE-structures over R.

The argument we use to show that the cyclic open–closed map is a morphism of T-
structures is due to Ganatra et al. [11], as announced in [12]. The argument simplifies
in our setting as the A∞-category we use is cyclic and strictly unital. This ensures that
our construction of the cyclic open–closed map does not require higher order terms in
u, as opposed to [10]. This comes at the cost of working over a field containing R. To
shows that the cyclic open–closed map respects the connection in the u-directions
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an extra ingredient is needed, which is that the cyclic open–closed map respects
(Euler-)gradings.

As each component of the Fukaya category Fuk(CPn) is generated by the Clifford
torus (but with different local systems), we can thus construct a bulk-deformed Fukaya
category Fuk(CPn; R) over R = C[[H∗(CPn)]]. We can thus define a global cyclic
open–closed map using our setup:

Corollary 1.8 There exists a cyclic open–closed map

OC− : HC−∗ (Fuk(CPn; R)) → QH∗(CPn; R)[[u]], (3)

which is an isomorphism of TE-structures over R.

Remark 1.9 One reason we adopt the rather restrictive technical assumptions of [47]
is that we plan follow-up work in which we relate the results of this paper, which
concern closed Gromov–Witten invariants, with the open Gromov–Witten invariants
defined in [44]. Similar to [47, Remark 4.2] we expect that these restrictive technical
assumptions can be removed, as their role is purely to simplify the analysis of moduli
spaces of holomorphic disks.

1.3 Image of the cyclic open–closedmap for monotone symplectic manifolds

For the remainder of the introduction, let X be a monotone symplectic manifold.
It is then possible to define the Fukaya category and quantum cohomology over C
(rather than over a Novikov ring). For ease of exposition in this introduction, we set
all bulk-parameters equal to zero and the Novikov parameter to 1, so that R = K = C.
Because we then only have a connection in the u-direction, we call QH∗(X)[[u]] an
E-structure (see Sect. 2.1).

By definition (see [41] for example), Fuk(X;C) =⊕w Fuk(X)w. Here Fuk(X)w
is a C-linear A∞-category with objects monotone Lagrangians with disk potential
w ∈ C. We consider Fuk(X)w as a weakly curved A∞-algebra with curvature w · 1.
For a monotone symplectic manifold, quantum cohomology can also be defined over
C (see [29]). As a vector-space we have QH∗(X;C) = H∗(X;C). The first Chern
class defines a map:

c1� : QH∗(X;C) → QH∗(X;C). (4)

Decompose quantum cohomology into generalised eigenspaces for this map:

QH∗(X;C) =
⊕

w

QH∗(X)w. (5)

The following was first proved by Ritter–Smith:

Theorem 1.10 ([33, Theorem 9.5]) The open–closed map satisfies OC
(HH∗(Fuk(X)w)) ⊂ QH∗(X)w.

A natural question to ask is how this result extends to cyclic homology:
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Question What is the image of the cyclic open closed mapOC−(HC−∗ (Fuk(X)w)) ⊂
QH∗(X)[[u]]?
One might naively think we would have OC−(HC−∗ (Fuk(X)w)) ⊂ QH∗(X)w[[u]],
but the latter is not necessarily invariant under the connection in the u-direction, so
this is incompatible with Conjecture 1.6. Instead, taking inspiration from [24, Sec-
tion 2.28], we apply the Hukuhara–Levelt–Turrittin theorem (see [21, 27, 49]) to
decompose the quantum E-structure as a direct sum of ∇ d

du
-invariant submodules

indexed by the eigenvalues of c1�:

Lemma 1.11 (Hukuhara–Levelt–Turrittin) There exists a unique decomposition of
QH∗(X)[[u]] into C[[u]] submodules:

QH∗(X)[[u]] =
⊕

w

QH∗(X)[[u]]w, (6)

such that each QH∗(X)[[u]]w is invariant under u2∇ d
du
, and QH∗(X)[[u]]w/u

QH∗(X)[[u]]w = QH∗(X)w.

Conjecture 1.6, along with a slight extension of the results in [27], then shows that the
cyclic open–closed map respects this decomposition:

Corollary 1.12 (See 6.5) OC−(HC−∗ (Fuk(X)w)) ⊂ QH∗(X)[[u]]w.
Since we don’t actually prove the full conjecture, the corollary that follows from

our Theorem 1.7 is:

Corollary 1.13 Let L ⊂ X be a monotone Lagrangian with disk potential w. Suppose
(X , L) satisfies Assumptions 4.18, then:

OC−(HC−(CF∗(L, L))) ⊂ QH∗(X)[[u]]w. (7)

Remark 1.14 The Hukuhara–Levelt–Turrittin decomposition has appeared before in
the study of mirror symmetry. It was used first in [20] and later in [24] to introduce
the notion of a Hodge structure of exponential type.

1.4 Semi-simple quantum cohomology

If we additionally assume that QH∗(X;C) is a semi-simple C-algebra (isomorphic
as a ring to a direct sum of copies of C), we can completely determine the E-structure
QH∗(X)[[u]]. To this end, for φ ∈ C[u−1], let Eφ := (C[[u]],∇ d

du
) denote the 1-

dimensional TE-structure (over R = C), with connection given by ∇ d
du

= d
du + dφ

du .
We show the following, which was already obtained by [6], see also [9, 48]:

Lemma 1.15 (See Corollary 6.9) Assume QH∗(X) is semi-simple, then there exists a
basis vi ∈ QH∗(X)[[u]] such that u2∇ d

du
vi = wivi , where thewi are the eigenvalues

of c1�. We call the vi ‘wi -flat sections’. Equivalently, there is an isomorphism of
E-structures

QH∗(X)[[u]]w ∼= E− w
u . (8)
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Remark 1.16 The semi-simplicity assumption is essential; diagonalisability of c1 is
insufficient. This is because we need a special property of the grading operator μ on
quantum cohomology (see Lemma 6.8).

Definition 1.17 Given an E-structure (E,∇) a splitting is aK-linear map s : E/uE →
E splitting the natural projection π : E → E/uE .
Example 1.18 The E-structure Eφ admits a splitting given by:

s : C = Eφ/uEφ → Eφ = C[[u]]
α �→ α. (9)

Remark 1.19 A choice of splitting is equivalent to a choice of opposite subspace as
used by Barannikov [2] to obtain a Frobenius manifold from a VSHS. See also [18,
Section 2.1.7].

The quantumE-structure admits a canonical splitting. This splitting does not respect
the decomposition of Lemma1.11, but it is the one relevant forGromov–Witten theory:

sGW : QH∗(X) → QH∗(X)[[u]]
α �→ α. (10)

When the quantum cohomology is semi-simple, the wi -flat sections define a second
splitting sss : QH∗(X) → QH∗(X)[[u]] given by:

vi (mod u) �→ vi . (11)

Note that whilst the vi are not unique, the associated splitting is uniquely determined,
as any two choices of the vi are related by a constant matrix. This splitting preserves
the decomposition of the quantum TE-structure:

sss(QH∗(X)w) ⊂ QH∗(X)[[u]]w. (12)

For a general E-structure, given two splittings s1, s2, we obtain an element R ∈
Aut(E/uE)[[u]] as R =∑i≥0 u

i Ri , with R0 = I d, and

s1(α) =
∑

i≥0

ui s2(Ri (α)) for all α ∈ E/uE . (13)

Such R is called an R-matrix.

Remark 1.20 R-matrices were used by Givental [17] and Teleman [48] to classify
semi-simple TFT’s. See also [32, chapter 2] for the definition of R-matrices and their
action on cohomological field theories. Their definition of an R-matrix involves an
additional ‘symplectic’ property, namely that R preserves the polarisation. The group
of such symplectic R-matrices is called the Givental loop group. We do not consider
this polarisation, so our R-matrices need not be elements of the Givental loop group.
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The two splittings on the quantum E-structure are thus related by an R-matrix
R ∈ Aut(QH∗(X))[[u]]. A short computation shows that this is indeed the same
R-matrix as defined by Teleman [48] to recover all (including higher genus) Gromov–
Witten invariants of X from its genus 0, 3-point invariants.

By Corollary 1.12, we find the following:

OC−(HC−∗ (Fuk(X)w)) ⊂ R(QH∗(X)w[[u]]). (14)

TheR-matrix thus tells us how to change the naive/constant decomposition of quantum
cohomology to be compatible with the cyclic open–closed map.

Amorim and Tu show the categorical version of Lemma 1.15:

Lemma 1.21 ([1, Corollary 3.8]) Let C = ⊕
w Cw be a direct sum of strictly unital,

smooth, finite-dimensional, cyclic andweakly curved A∞-categories of curvaturew·1.
Assume HH∗(C) is semi-simple. Then there exists a splitting:

sC : HC−∗ (C)/uHC−∗ (C) = HH∗(C) → HC−∗ (C) (15)

characterised by the equation u2∇ d
du
s(α) = ws(α) for all α ∈ HH∗(Cw).

This lemma can be rephrased as the existence of an isomorphism of E-structures

HC−∗ (C) ∼=
⊕

w

E− w
u . (16)

If QH∗(X) is semi-simple, and the closed–open map is an isomorphism, then
HH∗(Fuk(X)) is semi-simple. Thus the previous lemma is indeedwhat was expected
from Conjecture 1.6 and Lemma 1.15.

In Sect. 6.1 we explain how our Conjecture 1.6, if proved in appropriate generality,
can be used to give an alternative proof of the following theorem of Amorim-Tu.

Theorem 1.22 ([1, Theorem1.3])Let X be a symplecticmanifoldwith HH∗(Fuk(X))

semi-simple. Then the category Fuk(X) together with the closed–open map determine
the big quantum cohomology as a Frobenius manifold.

Amorim and Tu prove their theorem under the assumption that CO is a ring isomor-
phism, and use the Dubrovin-Teleman reconstruction theorem ([6, 48]) of semi-simple
Frobenius manifolds. Our proof instead usesOC− and assumes Conjecture 1.6, which
allows us to avoid appealing to the reconstruction theorem.

1.5 Speculations on the general case

When the quantum cohomology is not semi-simple, a basis of w-flat sections does
not necessarily exist. However, sometimes it is still possible to construct a non-trivial
R-matrix. Consider the case when the Fukaya category of X splits as follows:

Fuk(X) ∼=
⊕

i

Fuk(Yi ), (17)
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where the Yi are (not necessarily monotone) symplectic manifolds. This is expected to
hold when X is a blow up (see [50] for a proof in certain cases). Another example is the
complete intersection of two quadric hypersurfaces in CP5 (see [43]). We conjecture:

Conjecture 1.23 When Fuk(X) splits up as above, then theGromov–Witten invariants
of X can be obtained from those of the Yi , together with the genus 0, 3 point invariants
of X.

We will illustrate this conjecture when X is the complete intersection of two quadric
hypersurfaces in CP

5. The eigenvalue decomposition of the Fukaya category is as
follows:

Fuk(X) = Fuk(X)−8 ⊕ Fuk(X)0 ⊕ Fuk(X)8. (18)

Smith proves an equivalence:

Theorem 1.24 ([43, Theorem 1.1]) Dπ Fuk(X)0 ∼= Dπ Fuk(�2), for �2 a genus 2
surface.

Assume that Fuk(X)±8 ∼= Fuk(pt), which [43, Section 1.6] expects. And note that
the Fuk(pt) are considered here with curvature ±8, so that HC−∗ (Fuk(X)±8) ∼=
E∓8/u (see Lemma 3.27). Also note that [42, Chapter 4] proves a natural isomorphism
HC−(DπC) ∼= HC−(C). We thus have an isomorphism of E-structures:

HC−∗ (Fuk(X)) ∼= E8/u ⊕ HC−∗ (Fuk(�2)) ⊕ E−8/u . (19)

The cyclic open–closed map then carries this isomorphism to an isomorphism of E-
structures:

� : QH∗(X)[[u]] ∼= E8/u ⊕ QH∗(�2)[[u]] ⊕ E−8/u, (20)

x �→ (�1(x),�2(x),�3(x)). (21)

An explicit computation shows that � is unique up to rescaling the �i by constants
λi ∈ C. Thus, the following splitting is well-defined:

s1 := �−1 ◦ (s ⊕ sGW ⊕ s) ◦ π ◦ � : QH∗(X) → QH∗(X)[[u]]. (22)

Here s : C → E±8/u is as defined in Example 1.18, sGW denotes the canonical
splitting on QH∗(�2)[[u]], and π is the map given by setting u = 0. Let s2 = sGW :
QH∗(X) → QH∗(X)[[u]] be the canonical splitting. These splittings s1 and s2 are
related by an R-matrix. In Appendix B we show how to compute this R-matrix. We
conjecture:

Conjecture 1.25 This R-matrix recovers all (including higher genus) Gromov–Witten
invariants of X from the genus 0, 3 point invariants of X and the all-genus Gromov–
Witten invariants of �2.
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1.6 Outline of the paper

Section 2 defines formal TEP-structures and related notations. In Sect. 2.2 we define
semi-simple TEP-structures and interpret results of [1] using this language. Next in
Sect. 3 we endow the cyclic homology of an A∞-algebra with a TE-structure. Sec-
tion4.3 outlines properties of the Fukaya category and the cyclic open–closed map
which are sufficient to prove Conjecture 1.6 in a general setting. For a Fukaya category
with a single Lagrangian we then construct a cyclic open–closed map satisfying these
properties in Sect. 4.8. This relies on a structure equation for horocyclic operations,
which we prove in Sect. 5. In Sect. 6 we study applications of Conjecture 1.6. In par-
ticular we show how Lemmas 1.11 and 1.15 follow from general considerations about
TE-structures. We also explain an alternative proof of Theorem 1.22. In Appendix A
we provide heuristics showing how a ‘standard’ definition of a Fukaya category (with
multiple Lagrangians) can be modified to define a Z-graded category (but at the cost
of enlarging the coefficient ring). We also outline why we expect the properties of
Sect. 4.3 (which are sufficient to prove that the cyclic open–closed map is a morphism
of TE-structures) to hold for this Fukaya category. In Appendix Bwe show there exists
a unique R-matrix for the intersection of quadrics in CP

5. Finally in Appendix 1 we
prove a result which was missing in the literature about the orientation properties of
gluing of holomorphic maps.

2 Formal TEP-structures

Let K be a field of characteristic 0. Let R be a Z/2-graded commutative K-algebra.

Definition 2.1 (Formal T(EP)-structure)

1. A formal pre-T-structure over M = Spec(R), is a pair (E,∇). Here E is a Z/2-
graded R[[u]]-module, with u of even degree and ∇ : DerKR ⊗ E → u−1E a flat
connection of even degree.

2. A formal pre-TE-structure is a formal pre-T-structure together with an extension
of the connection to a flat connection ∇ : DerK(R[[u]]) ⊗ E → u−2E .

3. A formal pre-TP-structure is a formal pre-T-structure equippedwith a polarisation,
i.e. a covariantly constant pairing

(·, ·)E : E ⊗ E → R[[u]],

which is R-linear, of even degree and u-sesquilinear. That is, for f (u) ∈ R[[u]],
we have:

f (u)(a, b)E = ( f (u)a, b)E = (−1)| f ||a|(a, f (−u)b)E .

4. For a formal pre-TEP-structure, we require that the pairing is also covariantly
constant with respect to ∇∂u . More precisely:

(∇u∂u a, b)E + (a,∇u∂u b)E = u∂u(a, b)E .
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5. If additionally E is free and finitely-generated, we drop the prefix ‘pre’ from T-
and TE-structures. Let Ẽ = E/uE . For a TP-structure, we additionally require that
the restriction of the pairing (·, ·)Ẽ : Ẽ ⊗ Ẽ → R is non-degenerate.

As mentioned in the introduction, we will always be taking about formal T-structures,
so we will forget about the ‘formal’. Additionally, we call a (pre-)TE(P)-structure with
R = K a (pre-)E(P)-structure.

Definition 2.2 A morphism of pre-T(EP)-structures is an R[[u]]-module map F :
E1 → E2 which respects connections and the pairing (if one exists). A morphism of
T(EP)-structures is the same as a morphism of pre-T(EP)-structures.

Definition 2.3 Let E be a pre-T-structure over spec(R). An Euler-grading on E con-
sists of an even degree K-linear map:

Gr : E → E, (23)

called the grading and a vector field E ∈ DerKR of even degree, called the Euler
vector field, such that for f ∈ R, a ∈ E and X ∈ DerKR:

Gr( f a) = (2u∂u + 2E)( f )a + f Gr(a), (24)

[Gr ,∇X ] = ∇[2E,X ]. (25)

If E is a pre-TP-structure, we additionally require that (2u∂u + 2E)(a, b)E =
(Gr(a), b)E + (a,Gr(b))E .

Remark 2.4 An Euler-grading differs from amore standard definition of graded in that
E is not required to admit a direct sum decomposition into graded pieces.

Definition 2.5 For Euler-graded pre-T-structures E1, E2 over R with grading operators
Gr1 and Gr2, and Euler-vector field E1 = E2, a morphism of Euler-graded pre-T-
structures is a morphism of pre-T-structures F which additionally satisfies F ◦Gr1 =
Gr2 ◦ F .

Definition 2.6 Given an Euler-graded pre-T-structure, we obtain an associated pre-
TE-structure by setting:

∇∂u := 1

2u
Gr − 1

u
∇E . (26)

A short computation shows the total connection is flat, showing this is a valid defi-
nition. As a morphism of Euler-graded pre-T-structures respects the grading and the
connection, we find:

Lemma 2.7 Amorphism of Euler-graded pre-T-structures is a morphism of associated
pre-TE-structures.

Definition 2.8 An Euler-grading on a pre-TE-structure is an Euler-grading on the
underlying T-structure, such that ∇∂u = 1

2u Gr − 1
u∇E .
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2.1 E-structures

Throughout this subsection we take K = C.

Definition 2.9 (E(P)-structure) An E(P)-structure is a TE(P)-structure E over the K-
algebra R = K, so that M = pt . We thus only have a connection ∇ d

du
: E → u−2E .

For ease of notation we will often write ∇ for ∇ d
du

for an E(P)-structure.

Example 2.10 Let E−w/u be the 1-dimensional EP-structure E = C[[u]] with connec-
tion ∇ = d

du + w
u2

and pairing (1, 1) = 1.

Definition 2.11 A splitting of an E-structure is aK-linear map s : Ẽ → E which splits
the canonical map π : E → Ẽ . If E is an EP-structure, we say s is P-compatible if
(s(a), s(b))E = (a, b)Ẽ for all a, b ∈ Ẽ .
As E is finitely generated and free, there always exists a splitting. A choice of splitting
s defines an isomorphism:

�s : Ẽ[[u]] ∼= E
∑

i≥0

aiu
i �→

∑

i

s(ai )u
i . (27)

Note that the sum on the right side makes sense as E is finitely generated. We can then
write the connection on E as

∇ =: d

du
+ A =: d

du
+ u−2

∑

i≥0

Aiu
i , for some linear maps Ai : Ẽ → Ẽ . (28)

Call A the connection matrix and A0 the residue. Given two splittings s1 and s2 we
obtain an isomorphism

R = �−1
s1 ◦ �s2 : Ẽ[[u]] → Ẽ[[u]]. (29)

Writing R =∑i≥0 u
i Ri for linear maps Ri : Ẽ → Ẽ[[u]], we find that R0 = I d. The

splittings s1 and s2 are then related via:

s2(·) =
∑

i≥0

ui s1(Ri (·)). (30)

The connection matrices are related via:

As2 = R−1As1R + R−1 dR

du
, (31)

which shows that the residue A0 is independent of the choice of splitting. Such amatrix
series R is called an R-matrix. Usually an extra condition, symplecticity, is imposed
on R. This condition is satisfied when both splittings are P-compatible.
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We now rephrase a theorem by Levelt [27, Chapter 2] in our setup. This theorem is
the first step in the Hukuhara–Levelt–Turrittin decomposition. See for example [28]
for a modern statement.

Theorem 2.12 Given an E-structure E there exists a unique decomposition E =⊕
w Ew where the w are the eigenvalues of the residue A0 : Ẽ → Ẽ . This decomposi-

tion satisfies:

– u2∇(Ew) ⊂ Ew for all w,
– π(Ew) = Ẽw, where Ẽw denotes the w-generalised eigenspace of the residue.

The proof in [27, Chapter 2] is easily seen to apply in our situation. As we will need a
specific form of the next term in the connection matrix, A1, we will provide a proof.
The main result we need is:

Lemma 2.13 Let {e j } be a basis for E such that the vectors π(e j ) ∈ Ẽ are generalised
eigenvectors for the residue A0. Write the connection as ∇ = d

du + u−2∑
i≥0 Aiui

in this basis. Then there exists another basis {v j } for E such that the following hold:

– π(v j ) = π(e j ).
– Write the connection as ∇ = d

du + u−2∑
i≥0 Ãi ui in the basis {vi }. Then each Ãi

respects the eigenvalue decomposition of Ẽ , that is Ãi |Ẽw
: Ẽw → Ẽw.

– πw ◦ Ã1|Ẽw
= πw ◦ A1|Ẽw

: Ẽw → Ẽw for all w. Here πw : Ẽ → Ẽw.

Proof of Lemma 2.13 Consider a new basis {P(e j )} for some invertible C[[u]]-linear
map P . The new connection matrix is Ã = P−1AP − P−1 dP

du . If we set P =
id + umTm , we find (see [36, Theorem 5.7]): Ãs = As for s < m,

Ãm = Am + [A0, Tm], (32)

and a more complicated expression for Ã>m . Let Ẽw for w ∈ C be the generalised
eigenspaces for A0, then let

WA0 =
{
φ : Ẽ → Ẽ | 0 = πw ◦ φ|Ẽw

: Ẽw → Ẽw for all w
}

. (33)

These are the linear maps which vanish on the diagonal blocks of A0. A short com-
putation shows that the restriction of the adjoint map adA0 = [A0, _] : WA0 → WA0

is an isomorphism. Thus, there exists a Tm ∈ WA0 such that

πw ◦ [A0, Tm]|Ẽw′ = −πw ◦ Am |Ẽw′ : Ẽw′ → Ẽw. (34)

That is, all entries of [A0, Tm] and −Am which are not in the diagonal blocks of A0
agree. We thus have Ãm(Ẽw) ⊂ Ẽw. We then find the Tm successively, starting with
m = 1. Then set P = ∏

m≥1(id + umTm), noting that this product is well-defined,
as for each power of u, only finitely many terms in the product contribute. Then set
v j = P(e j ). This shows the first two properties.

For the final property, note that Ã1 = A1 + [A0, T1]. As we need that Ã1|Ẽw
:

Ẽw → Ẽw, we can choose T1 to only have entries in the off-diagonal blocks. That is,
the restriction T1 : Ẽw → Ẽw vanishes. But then the same holds for [A0, T1]. ��
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Proof of Theorem 2.12 Let Ew = 〈v j |π(v j ) ∈ Ẽw〉. By construction, the Ew are u2∇-
invariant. Uniqueness of the decomposition follows from the following lemma.

Lemma 2.14 Let f : E → E ′ be a morphism of E-structures. Then for any choice of
decomposition by eigenvalues E = ⊕wEw by eigenvalues of A0, and any choice of
decomposition of E ′ by the eigenvalues of A′

0, we have that f (Ew) ⊂ E ′
w.

Remark 2.15 Levelt [27, Chapter 2] proves this lemma when f is an isomorphism.
Our proof of the general case is very similar.

Lemma 2.14 follows directly from:

Lemma 2.16 Let f : E → E ′ be a morphism of E-structures. Assume that the residues
A0 and A′

0 have no eigenvalues in common, then f = 0.

Proof Expand f in a basis for E and E ′ as a matrix F = ∑
i u

i Fi . Expand the con-
nections∇,∇′ as usual with connection matrices A and A′. As f respects connection,
we obtain the equation:

u2
dF

du
= FA − A′F . (35)

Expanding in powers of u, we find

F0A0 − A′
0F0 = 0. (36)

As A′
0 and A0 have no eigenvalues in common, this implies F0 = 0 (see [14, Chap-

ter 8.1]). Next, compare coefficients of um+1. This yields:

Fm+1A0 − A′
0Fm+1 = L(F0, F1, . . . Fm), (37)

where L(F0, . . . , Fm−g) denotes a linear combination of the F≤m with vanishing
constant term. By inductionwe can assume F0, . . . , Fm vanish, which implies Fm+1 =
0. ��

2.2 Semi-simple TEP-structures

In this section we will interpret results from [1] in the language of TEP-structures. For
simplicity, let K = C.

Definition 2.17 (semi-simple E(P)-structure) AnE(P)-structure is semi-simple if there
exists an isomorphism of E(P)-structures E ∼= ⊕

w E−w/u . Here the values w ∈ C

are allowed to occur with multiplicity. Let ξ = u2∇ d
du

: Ẽ → Ẽ be the residue of the

connection. Thus, ξ is given by multiplication by w on each summand E−w/u .

The following two definitions are inspired by [1].
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Definition 2.18 ([1, Definition 3.9]) Let E be a semi-simple EP-structure with a spec-
ified element ω ∈ Ẽ . We call a C-linear map μ : Ẽ → Ẽ a grading operator and say
it is:

1. P-compatible: if (μ(x), y)Ẽ + (x, μ(y))Ẽ = 0 for all x, y ∈ Ẽ ,
2. ξ -compatible: if the restriction πw ◦ μ : Ẽw → Ẽw vanishes. Here πw : Ẽ → Ẽw

denotes the projection onto the w-eigenspace of ξ ,
3. ω-compatible: if μ(ω) = rω for some r ∈ C called the weight of μ.

Definition 2.19 ([1, Definition 3.7]) Let E be an EP-structure with a specified element
ω ∈ Ẽ , and s : Ẽ → E a splitting. We say the splitting is:

1. P-compatible: if (s(a), s(b))E = (a, b)Ẽ for all a, b ∈ Ẽ ,
2. Homogeneous: if ∇ d

du
s(a) ∈ u−1 Im(s) + Im(s) for all a ∈ Ẽ ,

3. ω-compatible: if ∇u d
du
s(ω) ∈ rs(ω) + u−1 Im(s) for some r ∈ C.

Example 2.20 The EP-structure E−w/u admits a canonical homogeneous, P- and ω-
compatible splitting given by scan(1) = 1 ∈ E . Here we have not specified the
element ω ∈ Ẽ , as the splitting is ω-compatible for any choice of ω. This is because,
by definition, ∇u d

du
scan(a) = u−1wscan(a) for all a ∈ Ẽ .

Example 2.21 A semi-simple E-structure E comes with a canonical splitting induced
by the isomorphism � : E ∼= ⊕

w E−w/u and the splitting scan on each E−w/u . This
splitting is independent of the choice of isomorphism� as any two such isomorphisms
are related by an isomorphism 
 : ⊕w E−w/u → ⊕

w E−w/u and any such 
 is
necessarily independent of u.We denote this splitting by sss (the semi-simple splitting)
and note that it is homogeneous andω-compatible, for anyω ∈ Ẽ . If E is a semi-simple
EP-structure, sss is also P-compatible.

Remark 2.22 A splitting is homogeneous if and only if the associated connection
matrix A = u−2∑

i≥0 u
i Ai satisfies Ai = 0 for i ≥ 2.

Amorim and Tu show the following for EP-structures coming from the cyclic homol-
ogy of an A∞-category, see [1, Theorem3.10].We state their result in ourmore general
setup. The proof is identical.

Theorem 2.23 Let E be a semi-simple EP-structure with a specified element ω ∈ Ẽ .
Then there exists a bijection between the set of homogeneous, P- and ω-compatible
splittings s : Ẽ → E and the set of P-, ξ - and ω-compatible grading operators
μ : Ẽ → Ẽ .

We refer the reader to [1, Theorem 3.10] for the details of the proof, but will say
a few words about it. Given a splitting s as in the lemma, there exists a unique series
R =∑i≥0 u

i Ri , where Ri : Ẽ → Ẽ and R0 = I d such that

s(a) =
∑

i≥0

ui scan(Ri (a)). (38)
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The associated grading operator is then defined by μs = [ξ, R1], and one obtains the
following relation on R:

[ξ, Rk+1] = Rk(μ
s − k). (39)

One then checks all the required properties hold. Conversely, given a grading operator
μ : Ẽ → Ẽ , [1] show that there exists a unique R-matrix solving Eq. (39) and then
define the splitting sμ by Eq. (38).

Now letH be an Euler-graded TEP-structure over aC-algebra R. Let H̃ = H/uH.
The following definition is originally due to Saito [37, Definition 3.1].

Definition 2.24 ([1, Definition 4.1]) An element ζ ∈ H is called a primitive form if it
satisfies:

– (Primitivity) The map defined by

ρζ : DerC(R) → H̃, ρζ (v) = [u∇vζ ] (40)

is an isomorphism.
– (Orthogonality) For any tangent vectors v1, v2 ∈ DerC(R), we have:

(u∇v1ζ, u∇v2ζ )H ∈ R. (41)

– (Holonomicity) For any tangent vectors v1, v2, v3 ∈ DerC(R), we have:

(u∇v1u∇v2ζ, u∇v3ζ )H ∈ R ⊕ u · R. (42)

– (Homogeneity) There exists a constant r ∈ C such that

Gr(ζ ) = 2rζ. (43)

If ζ only satisfies the Primitivity property, we will call ζ a primitive element, and call
the TEP-structure H primitive if such ζ exists.

Definition 2.25 Let H be a primitive TEP-structure over R = C[[t1, . . . , tn]]. Let E
be the EP-structure E := H ⊗R C, where C is an R-module under the map ti �→ 0.
For ω ∈ Ẽ say ω is primitive if there exists a primitive element ζ ∈ H such that
ζ |t=u=0 = ω.

Amorim and Tu [1, Theorem 4.2] also prove a bijection between primitive forms
and splittings, which is a bijection originally established in [38]. We rephrase their
theorem to apply to our setup. As already observed by [1, Remark 4.3], their proof
applies to our more general setup (note that what they call a VSHS corresponds to
what we call a TE-structure).
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Theorem 2.26 LetH be aEuler-graded, primitive TEP-structure over R = C[[t1, . . . ,
tn]] and let ω ∈ Ẽ be primitive. Then there exists a natural bijection between the
following two sets:

P := {ζ ∈ H|ζ is a primitive form with ζ |t=0,u=0 = ω}, (44)

S := {homogeneous, P − andω-compatible splittings s : Ẽ → E}. (45)

Definition 2.27 Let H be a TEP-structure over R = C[[t1, . . . , tn]]. We say H is
semi-simple if the associated EP-structure E := H ⊗R C is semi-simple.

For a semi-simple, Euler graded and primitive TEP-structure H as above, with a
choice of primitive ω ∈ Ẽ , Theorems 2.23 and 2.26 thus combine to give a bijection
between the set of P-, ξ - and ω-compatible grading operators μ : Ẽ → Ẽ and the set
of primitive forms ζ ∈ H with ζ |t=0,u=0 = ω.

Corollary 2.28 Let H be a Euler-graded, primitive, semi-simple TEP-structure over
R = C[[t1, . . . , tn]] and let ω ∈ Ẽ be primitive. Then there exists a natural bijection
between the following two sets:

P := {ζ ∈ H|ζ is a primitive form with ζ |t=0,u=0 = ω}, (46)

G := {P-, ξ - and ω-compatible grading operators μ : Ẽ → Ẽ}. (47)

The relevance of this bijection is that given a primitive form ζ as above, Saito and
Takahashi [39] endow Spec(R) with the structure of a Frobenius manifold. A grading
operatorμ on a semi-simple TEP-structure over a ring R thus gives rise to a Frobenius
manifold Mμ. In chapter 6 we will come back to this construction.

3 TE-structure on the cyclic homology of an A∞-algebra

In this section wewill define a TE-structure on the cyclic homology of an A∞-algebra.
All of the definitions can easily be extended to A∞-categories. Let Sn[k] be the set of all
partitions of {1, . . . k} into n ordered sets of the form (1, 2, . . . , k1), (k1 +1, . . . , k1 +
k2), . . . , (k1 + · · · + kn−1 + 1, . . . , k1 + · · · + kn). Let (i : n) denote the i th set of the
partition. The size of (i : n) is ki . We allow for the case ki = 0.

LetK be a field, and assumeK is complete when equippedwith the trivial valuation.
Let R be a Z/2-graded K-algebra with a complete valuation ζR : R → R≥0 ∪ {∞}.
Let A be a Z/2-graded R-module with a complete valuation ζA : A → R≥0 ∪ {∞}.
Let |α| denote the degree of α ∈ A, and |α|′ := |α| − 1 the shifted degree. For
α = (α1, . . . , αk) let ε(α) =∑k

j=1 |α j |′. For a partition P ∈ Sn[k] let εi = ε(α(i :n)).
Let I

∐
J = [l] be a partition of [l] in the usual sense, not respecting the order of

[l]. Equip the subsets I and J with the order induced from [l].
Definition 3.1 ([47, Definition 1.1]) An n-dimensional, strictly unital, curved, cyclic,
Z/2-graded A∞-structure on A consists of:
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– R-multilinear maps mk : A⊗k → A[2 − k]. This means that for t ∈ R and
α1, . . . , αk ∈ A:

mk(α1, . . . , tαi , . . . , αk) = (−1)|t |(|α1|′+···+|αi−1|′+1)tmk(α1, . . . , αi , . . . , αk).

(48)

– A pairing 〈 , 〉 : A ⊗ A → R[n].
– An element e ∈ A with |e| = 0.

These satisfy the following relations:

1. The A∞ relations hold:

∑

P∈S3[k]
(−1)ε1mk1+1+k3(α

(1:3),mk2(α
(2:3)), α(3:3)) = 0. (49)

2. The pairing 〈 , 〉 is graded R-bilinear:

〈aα1, α2〉 = a〈α1, α2〉 = (−1)|a||α1|′ 〈α1, aα2〉. (50)

3. The pairing is graded anti-symmetric:

〈α1, α2〉 = (−1)|α1|′|α2|′+1〈α2, α1〉. (51)

4. The pairing is cyclic: for α = (α1, . . . , αk), we have

〈mk(α1, . . . , αk), β〉 = (−1)|β|′ε(α)〈mk(β, α1, . . . , αk−1), αk〉. (52)

5. The unit is strict:

(a) mk(α1, . . . , αi−1, e, αi+1, . . . , αk) = 0, ∀k �= 0, 2,
(b) m2(e, α) = α = (−1)|α|m2(α, e).

6. The A∞-operations respect the valuation:

(a) ζA(mk(α)) ≥ ζA(α),
(b) m0 = w · e + m0, with ζA(m0) > 0,
(c) ζR(〈α1, α2〉) ≥ ζA(α1) + ζA(α2).

Given an A∞-algebra A, recall the opposite A∞-algebra as defined by [42, defini-
tion 3.5]. As an R-module we have Aop = A. But now:

m
op
k (α1, . . . , αk) := (−1)†(α)mk(αk, . . . , α1). (53)

Here, for α = (α1, . . . , αk), we set †(α) =∑1≤i< j≤k |αi |′|α j |′. If A is strictly unital
with unit e ∈ A, then Aop is strictly unital with unit eop := −e.

We can also define:
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Definition 3.2 (negativeA∞-algebra) Let the negative A∞-algebra be given by
A− := A as R-modules, but m−

k (α1, . . . , αk) = (−1)k−1mk(α1, . . . , αk).

Note that there is an isomorphism of A∞-algebras A ∼= A− given by α �→ −α.
Combining both definitions we have

Definition 3.3 (negative-opposi teA∞-algebra)Thenegative-opposite algebra asso-
ciated to A is given by (Aop)− =: A−op. This is then an n-dimensional, strictly unital,
cyclic, Z/2-graded A∞-algebra with unit e ∈ A.

3.1 Hochschild invariants

Let (A,m) be an n-dimensional, cyclic, strictly unital, curved,Z/2-graded A∞-algebra
over R. Let r ⊂ R be the maximal ideal of elements with positive valuation. Define
the (reduced) Hochschild cochains of A:

CC∗(A) :=
∞∏

k=0

HomR

((
A

R · e [1]
)⊗k

, A[1]
)

. (54)

Also define the uncompleted (reduced) Hochschild chains of A to be:

CCunc∗ (A) :=
∞⊕

k=0

A ⊗
(

A

R · e
)⊗k

. (55)

Following [5, Section 3.5], we define:

Definition 3.4 The completed reduced Hochschild chains and cochains are given by:

CC∗(A) = lim←−CCunc∗ (A/rk). (56)

Remark 3.5 In the remainder of this chapter, we will recall and define various opera-
tions on Hochschild (co)chains. For simplicity, we will often define these operations
only for the uncompleted chains. They descend to operations on the completed
Hochschild chains as the A∞-operations and the pairing are assumed to respect the
valuation.

Remark 3.6 We need to be careful about the R-linearity of Hochschild cochains. For
φ ∈ CC∗(A) and t ∈ R this means that:

φ(α1, . . . , tαi , . . . , αk) = (−1)|t |(|α1|′+···+|αi−1|′+|φ|′)tφ(α1, . . . , αi , . . . , αk).

(57)

Denote an element α ∈ CC∗(A) by α = α0[α1| . . . |αk], and for a subset I ⊂
{1, . . . , k}, write α I for

⊗
j∈I α j .
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Definition 3.7 Hochschild homology is defined as: HH∗(A) := H∗(CC∗(A), b).
Here the differential b is given by:

b(α) =
∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)mk3+1+k1(α

(3:3) ⊗ α0 ⊗ α(1:3))[α(2:3)]

+
∑

P∈S3[k]
(−1)ε1+|α0|′α0[α(1:3)|mk2(α

(2:3))|α(3:3)]. (58)

Note here that in the second sum, terms with k2 = 0 are allowed.

Definition 3.8 The negative cyclic chain complex is given by

CC−∗ (A) = lim←−(CCunc∗ (A/rk)[[u]], b + uB). (59)

Here the second differential B is defined by:

B(α) =
∑

P∈S2[k]
(−1)ε2(|α0|′+ε1)1[α(2:2)|α0|α(1:2)]. (60)

The homology of the negative cyclic chain complex is called the negative cyclic homol-
ogy, denoted HC−∗ (A).

Hochschild cochains admit a differential too. First introduce theGerstenhaber prod-
uct, defined by:

φ ◦ ψ(α1, . . . , αk) =
∑

P∈S3[k]
(−1)|ψ |′ε1φ(α(1:3) ⊗ ψ(α(2:3)) ⊗ α(3:3)). (61)

The Gerstenhaber bracket is then defined by: [φ,ψ] = φ ◦ψ − (−1)|φ|′|ψ |′ψ ◦φ. The
A∞-structure maps mk define a Hochschild chain m ∈ CC2(A). The differential on
CC∗(A) is then given by [m, _]. Hochschild cohomology is defined as HH∗(A) :=
H∗(CC∗(A), [m, _]).

Finally we note that CC∗(A) admits an A∞-structure Mk , defined by [16]. M1 is
the differential [m, _]. We will also need the M2 part of these operations.

Definition 3.9 The cup product on CC∗(A) is given by ψ ∪ φ := (−1)|ψ |M2(ψ, φ).
Here

M2(ψ, φ)(α) : =
∑

P∈S5[k]
(−1)|ψ |′ε1+|φ|′(ε1+ε2+ε3)m(α(1:5)

⊗ψ(α(2:5)) ⊗ α(3:5) ⊗ φ(α(4:5)) ⊗ α(5:5)). (62)

Since A is cyclic, we can consider the pairing:

( , ) : CC∗(A) ⊗ CC∗(A) → R

φ ⊗ α �→ (−1)|α0|(ε(̃α)+1)〈φ(α1, . . . , αk), α0〉. (63)
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Here, for α ∈ CC∗(A) we use α̃ to denote the tuple (α1, . . . , αk).

Lemma 3.10 The pairing above descends to a pairing HH∗(A) ⊗ HH∗(A) → R.
Concretely, we have ([m, φ], α) + (−1)|φ|(φ, b(α)) = 0.

Proof We first write out:

([m, φ], α) = (m ◦ φ − (−1)|φ|′|m|′φ ◦ m, α) (64)

=
∑

P∈S3[k]
(−1)|α0|(ε(̃α)+1)+|φ|′ε1〈m(α(1:3) ⊗ φ(α(2:3)) ⊗ α(3:3)), α0〉 (65)

+
∑

P∈S3[k]
(−1)|φ|′+1+|α0|(ε(̃α)+1)+ε1〈φ(α(1:3) ⊗ m(α(2:3)) ⊗ α(3:3)), α0〉. (66)

Next, we write out:

(φ, b(α)) =
∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)(φ,mk3+1+k1(α

(3:3) ⊗ α0 ⊗ α(1:3))[α(2:3)])

(67)

+
∑

P∈S3[k]
(−1)ε1+|α0|′(φ, α0[α(1:3)|mk2(α

(2:3))|α(3:3)]) (68)

=
∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)+A1〈φ(α(2:3)),mk3+1+k1(α

(3:3) ⊗ α0 ⊗ α(1:3))〉

(69)

+
∑

P∈S3[k]
(−1)ε1+|α0|′+|α0|ε(̃α)〈φ(α(1:3) ⊗ mk2(α

(2:3)) ⊗ α(3:3)), α0〉.

(70)

Where A1 = (ε2 + 1)(|α0|′ + ε1 + ε3). The terms (66) and (70) agree up to a factor
(−1)|φ|′ , as required. We then use cyclic symmetry to make (69) agree with (65), up
to the same factor. We compute

∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)+A1〈φ(α(2:3)),mk3+1+k1(α

(3:3) ⊗ α0 ⊗ α(1:3))〉 (71)

=
∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)+A1+A2〈mk3+1+k1(α

(3:3) ⊗ α0 ⊗ α(1:3)), φ(α(2:3))〉,

(72)

by 51, where A2 = (ε2 + |φ|′)(|α0|′ + ε1 + ε3 + 1). And finally:

=
∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)+A1+A2+A3〈m(α(1:3) ⊗ φ(α(2:3)) ⊗ α(3:3)), α0〉, (73)

where A3 = (|α0|′ + ε3)(|φ|′ + ε2 + ε1). Combining all the signs, we get the required
equality. ��
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We will also need the bilinear maps b1,1, B1,1 : CC∗(A) ⊗ CC∗(A) → CC∗(A),
defined for a Hochschild cochain φ ∈ CC∗(A), and α = α0[α1| . . . |αk] ∈ CC∗(A)

by:

b1,1(φ; α) =
∑

P∈S5[k]
(−1)†mk1+k3+k5+2(α

(3:5) ⊗ φ(α(4:5)) ⊗ α(5:5) ⊗ α0 ⊗ α(1:5))[α(2:5)], (74)

where † = (ε3 + ε4 + ε5)(|α0|′ + ε1 + ε2) + |φ|′ε3, and

B1,1(φ;α) =
∑

P∈S4[k]
(−1)|φ|′ε2+(ε1+|α0|′)(ε2+ε3+ε4)e[α(2:4)|φ(α(3:4))|α(4:4)|α0|α(1:4)].

(75)

There is a nice interplaybetween the cupproduct onCC∗(A), the A∞-module structure
b1,1, and the pairing.

Lemma 3.11 Define the cap product φ ∩ α = (−1)|φ|b1,1(φ, α). We then have:

(φ ∪ ψ, α) = (φ,ψ ∩ α). (76)

Proof This is an easy verification of signs using the cyclic symmetry of the pairing. ��
Definition 3.12 Set i{φ} = b1,1(φ, _) + uB1,1(φ, _) : CC−∗ (A) → CC−∗ (A).

The curvature, or Lie derivative, L : CC∗(A) ⊗ CC∗(A) → CC∗(A) defined in [16]
can be written as:

Lφ(α) =
∑

P∈S3[k]
(−1)ε3(ε2+ε1+|α0|′)φk3+1+k1(α

(3:3) ⊗ α0 ⊗ α(1:3))[α(2:3)]

+
∑

P∈S3[k]
(−1)|φ|′(ε1+|α0|′)α0[α(1:3)|φk2(α

(2:3))|α(3:3)]. (77)

Observe that Lm = b. An easy computation shows:

Lemma 3.13 For any φ,ψ ∈ CC∗(A), we have: [Lψ,Lφ] = L[ψ,φ]. In particular
[b,Lφ] = L[m,φ]. Furthermore [B,Lφ] = 0.

Remark 3.14 For any linear maps A and B of homogeneous degrees the commutator
[A, B] is defined as the supercommutator: [A, B] = AB−(−1)|A||B|BA. By extending
linearly, this defines the commutator for all linear maps.

Getzler shows:

Proposition 3.15 ([16, Theorem 2.2])

[i{φ}, b + uB] = uLφ + i{[m, φ]}. (78)
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Getzler furthermore defines a connection in the base directions. We extend his
definition to allow for the case when R is Z/2-graded.

Definition 3.16 The Getzler–Gauss–Manin connection is defined on the chain level
by:

∇GGM : DerCR ⊗K CC−∗ (A) → u−1CC−∗ (A),

∇GGM
v (α) := v(α) + (−1)|v|+1u−1i{v(m)}(α). (79)

Here for a Hochschild cochain φ ∈ CC∗(A) and a derivation v ∈ DerCR, the
Hochschild cochain v(φ) is defined as

v(φ)(α) := v(φ(α)) − (−1)|φ|′|v|φ(v(α)). (80)

Getzler shows the connection descends to the level of cohomology and is flat. This
endows HC−∗ (A) with a Z/2-graded pre-T-structure over Spec(R).

Sheridan proves the following holds over a field K. Nothing in their proof breaks
down if we work over a general ring. We thus have:

Theorem 3.17 ([42, Theorem B.2]) Let F : C → D be an R-linear A∞-morphism.
Then

F∗ : HC−∗ (C) → HC−∗ (D) (81)

is a morphism of pre-T-structures.

3.2 The u-connection

The pre-T-structure HC−∗ (A) has been extended to a pre-TE-structure by [24].We give
another interpretation of this definition. First recall the notion of an Euler-grading on
an A∞-algebra:

Definition 3.18 An Euler-grading on an n-dimensional, strictly unital, cyclic, Z/2-
graded A∞-algebra A consists of an Euler vector field E ∈ DerKR of even degree
and an even degree map Gr : A → A such that

Gr ◦ mk = mk ◦ Gr + (2 − k)mk . (82)

and

Gr( f α) = 2E( f )α + f Gr(α) for f ∈ R and α ∈ hom(L1, L2). (83)

Furthermore, we require that Gr(e) = 0. An R-linear A∞-morphism F : A → B is
said to be Euler-graded if EA = EB and Fk ◦ GrA = GrB ◦ Fk + (k − 1)Fk .
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Now suppose that A is Euler-graded. Consider Gr : A → A as a length-1 Hochschild
cochain. Then define the operator Gr− : CC−∗ (A) → CC−∗ (A) by

Gr− := LGr + � + 2u
∂

∂u
, (84)

where �(α0[α1| . . . |αk]) = −kα0[α1| . . . |αk] is the length operator on cyclic chains.
Lemma 3.19 The grading Gr− descends to cyclic homology, and endows HC−∗ (A)

with an Euler-graded T-structure.

Proof Let m′ = ∏
k(2 − k)mk ∈ CC∗(A). A short computation shows [�, b] =

b − Lm′ and [�, B] = −B. We thus have:

[Gr−, b + uB] = [LGr , b + uB] + [�, b + uB] + 2[u d

du
, b + uB] (85)

= L[Gr ,m] + b − Lm′ − uB + 2uB (86)

= Lm′ + b − Lm′ + uB (87)

= b + uB. (88)

The second equality follows by Lemma 3.13. This shows Gr− descends to cyclic
homology. Next, observe that for f ∈ R[[u]] and α ∈ CC−∗ (A), we have LGr ( f α) =
2E( f )α + f Gr(α). This shows that

Gr−( f α) = (2u∂u + 2E)( f )α + f Gr−α (89)

holds on the chain level. Next, for v ∈ DerCR, we want to compute [Gr−,∇v]. To this
end, first observe that, after picking a basis for A, we have: [LGr , v](α) = [2E, v](α).
Furthermore, a direct computation shows:

[LGr + �, b1,1(v(m), ·)] = b1,1([2E, v](m), ·) + 2b1,1(v(m), ·) (90)

[LGr + �, B1,1(v(m), ·)] = B1,1([2E, v](m), ·). (91)

We thus have:

[Gr−,∇v] = [LGr + � + 2u∂u, v − B1,1(v(m), ·) − u−1b1,1(v(m), ·)] (92)

= [LGr , v] − [LGr + �, b1,1(v(m), ·)] − [LGr

+ �, B1,1(v(m), ·)] + 2u−1b1,1(v(m), ·) (93)

= [2E, v] − B1,1([2E, v](m), ·) − u−1b1,1([2E, v](m), ·) (94)

= ∇[2E,v]. (95)

��
Thus, as an Euler-graded pre-T-structure naturally admits an extension to a pre-
TE-structure, any Euler-graded A∞-algebra naturally admits a pre-TE-structure on
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HC−∗ (A). For an arbitrary A∞-algebra C, we will now define an Euler-graded defor-
mation, and use this to define a u-connection on HC−∗ (C).

Definition 3.20 Let C be any R-linear A∞-algebra. Define the R[s, s−1]-linear A∞-
algebra Cs := C ⊗R R[s, s−1], where s is of odd degree. The operations are defined
by:

ms
k(α1, . . . , αk) := s2−kmk(α1, . . . , αk), (96)

and extending s-linearly.

Lemma 3.21 Define Gr : hom(Cs, Cs) → hom(Cs, Cs) by setting Gr(ska) := kska
for a ∈ hom(C, C). This makes Cs a Z-graded algebra. In particular, by defining
E = s

2
d
ds ∈ DerKR[s, s−1], Cs is an Euler-graded A∞-algebra.

Remark 3.22 The A∞-algebraCs is also used in [5, section 3.1] to define the connection
in the u direction.

Remark 3.23 The deformation Cs is canonical in the following sense: an A∞-
morphism F : C → D induces an A∞-morphism Fs : Cs → Ds given by

Fs
k (α1, . . . , αk) = s1−k Fk(α1, . . . , αk). (97)

This morphism is Euler-graded.

Cs is Euler-graded, so naturally comeswith a u-connection∇s
∂
∂u

= 1
2u Gr− 1

u∇GGM
E

(see Definition 2.6). Define the u-connection on HC−(C) to be the restriction to s = 1
of ∇s

∂
∂u
. One can check that indeed:

∇ ∂
∂u

= ∂

∂u
+ �

2u
+ i{m′}

2u2
, (98)

where m′ = ∑
k(2 − k)mk . Call this the canonical u-connection associated to an

A∞-algebra. This makes HC−∗ (C) into a pre-TE-structure.

Remark 3.24 In the deformationCs , s has odd degree.We can also define the R[e, e−1]-
linear A∞-algebra Ce := C ⊗R R[e, e−1], where e is of even degree. The operations
are defined by:

me
k(a1, . . . , ak) = e

2−k−|mk (a1,...,ak )|+∑i |ai |
2 mk(a1, . . . , ak). (99)

Here |a| is 0 if a has even degree or 1 if a has odd degree. Note that we can divide
by 2 because m is Z/2-graded. This is Euler-graded with E = e∂e, grading operator
Gr(eka) = (2k + |a|)eka.
Lemma 3.25 Let C be an Euler-graded A∞-algebra over R with grading Gr and
Euler-vector field E. Then the canonical u-connection agrees up to homotopy with the
u-connection coming from the Euler-grading.
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Proof Choose an R-basis for all morphism spaces. This defines an operator

deg := Gr − 2E : hom(C, C) → hom(C, C), (100)

Let ∇ d
du

denote the canonical u-connection. The u-connection defined using the Euler
grading is given by

∇̃ d
du

= Gr−

2u
− ∇GGM

E . (101)

Using the definition of deg we can rewrite this as:

∇̃ d
du

= d

du
+ � + Ldeg

2u
+ i{E(m)}

u2
. (102)

The properties of E and Gr show:

[m, deg] = 2E(m) − m′. (103)

By the Cartan homotopy formula 3.15, we thus have:

∇̃ d
du

= ∇ d
du

+ u−2[i{deg}, b + uB]. (104)

��
In particular, if we define a u-connection ∇̃ d

du
on HC−(C) by restricting the connection

∇e coming from the Euler-grading on Ce to e = 1, then ∇̃ d
du

agrees with the canonical
u-connection.

Lemma 3.26 Let F : C → D be an R-linear A∞-morphism. Then F∗ : HC−∗ (C) →
HC−∗ (D) is a morphism of pre-TE-structures.

Proof Let Fs : Cs → Ds be the induced Euler-graded morphism. Now apply Theo-
rem 3.17 to Fs to find that it respects ∇GGM

E up to homotopy. As we also have that
[Fs,Gr ] = 0, we find that Fs respects ∇∂u up to homotopy. Restriction to s = 1
shows the result. ��

We finish this section with a comparison between the E-structures associated to a
weakly curved A∞-algebra and its uncurved associated A∞-algebra. We use this to
conclude that the eigenvalue decomposition of the negative cyclic homology is trivial.
For simplicity, here we assume A is a C-linear A∞-algebra. Suppose that (A,m) is
strictly unital and weakly curved, i.e. m0 = w · e for some w ∈ C. From (A,m) we
can then obtain an uncurved A∞-algebra by setting mk = mk for k ≥ 1, and m0 = 0.

Lemma 3.27 (A,m) is a unital, uncurved A∞-algebra with:



The cyclic open–closed map, u-connections and R-matrices Page 27 of 90 29

HH∗(A,m) ∼= HH∗(A,m), HH∗(A,m) ∼= HH∗(A,m) and HC−∗ (A,m)

∼= HC−∗ (A,m). (105)

Furthermore, there exist an isomorphism of pre-E-structures:

(HC−∗ (A,m),∇m) ∼= (HC−∗ (A,m),∇m) ⊗ E− w
u . (106)

Here on both sides the connection ∇ denotes the canonical connection defined above.

Proof The Hochschild differentials satisfy b = b as we are working with reduced
chains. B = B by definition. m′ = m′ + 2w · e, and then from the fact that e is a

strict unit, we get that b1,1(m′, _) = b
1,1

(m, _)+2w · I d. Furthermore B1,1(m′, _) =
B
1,1

(m′, _) by definition of the reduced chains. The result then follows. ��
The residue of the connection ∇ d

du
is the map b1,1(m′, _) : HC−(A)/uHC−(A) =

HH∗(A) → HH∗(A). The following lemma shows that this decomposition is trivial,
with the only eigenvalue being w. See also [34, Lemma 2.4] and [24, Section 2.2.7].

Lemma 3.28 Let (A,m) be a weakly curved A∞-algebra with finite dimensional
Hochschild homology. Then the operator b1,1(m′, _)−w · I d : HH∗(A) → HH∗(A)

is nilpotent.

Proof Lemma 3.27 allows us to reduce this to the uncurved case. Then, on the
chain level, b1,1(m′, _) : CC∗(A) → CC∗(A) reduces the length of the chain by
at least 1. Take a basis for HH∗(A) and pick representatives αi ∈ CC∗(A). Let
N = maxi length(αi ), then (b1,1(m′, _))N+1 = 0 on HH∗(A). ��
Corollary 3.29 Let A be a C-linear, strictly unital and weakly curved A∞-algebra
with curvature w · e. Assume the Hodge-de Rham spectral sequence of A degenerates.
Then, in the eigenvalue decomposition of Theorem 2.12, the E-structure HC−∗ (A) has
just a single summand associated to the eigenvalue w.

For future reference, we rephrase a result by Amorim and Tu [1, Corollary 3.8] in the
language of TEP-structures:

Theorem 3.30 If A is an n-dimensional, strictly unital, cyclic, Z/2-graded, smooth
and finite dimensional A∞-algebra with HH∗(A) semi-simple, then HC−∗ (A) is a
semi-simple TEP-structure.

4 Cyclic open–closedmap respects connections

4.1 Coefficient rings

Consider the Novikov ring

� =
{ ∞∑

i=0

ai Q
λi |ai ∈ C, λi ∈ R≥0, lim

i→∞ λi = ∞
}

. (107)
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Let Q have degree 0. For a Z-graded C-vector space U , let C[[U ]] be the ring of
formal functions on the completion of U at the origin. Explicitly, let {vi }i∈I be a
homogeneous basis for U , and {v∗

i }i∈I the dual basis for U∗. Let {ti }i∈I be formal
variables of degree −|vi |, then we have an isomorphism:

C[[ti ]]i∈I ∼= C[[U ]],
ti �→ v∗

i . (108)

Each formal vector field v ∈ C[[U ]] ⊗ U on U can be viewed as a derivation ∂v :
C[[U ]] → C[[U ]]. In coordinates, if v = ∑

i fivi , for some fi ∈ C[[U ]], then
∂v =∑i fi∂ti . Define the vector fields

�U =
∑

i

ti∂ti and EU =
∑

i

deg(ti )

2
ti∂ti . (109)

These are independent of the chosen basis.
For l ∈ Z, let U [l] denote the graded vector space with U [l]i = Ui+l . Then set:

QU := �[[U [2]]]. (110)

Following [47], define the valuation ζQ : QU → R≥0 by:

ζQ

⎛

⎝
∞∑

j=0

a j Q
λ j
∏

i∈I
t
li j
i

⎞

⎠ = inf
j

a j �=0

(λ j +
∑

i∈I
li j ). (111)

Let IU = { f ∈ QU |ζQ( f ) > 0} ⊂ QU .
To account for gradings, we will also make use of the ‘universal Novikov ring’:

�e := �[e, e−1], where e has degree 2. Let Qe
U be defined using �e instead of �.

Remark 4.1 A lot of our work is based on [47]. They use a different Novikov ring,more
commonly used in Gromov–Witten theory. Instead of taking series in QR they take
series with terms T β for β ∈ H2(X , L). For them the monomial T β has degree μ(β),
whereμ : H2(X , L) → Z is the Maslov index. The graded map T β �→ Qω(β)eμ(β)/2,
allows us to compare their Novikov ring with the universal Novikov ring �e. Note
that μ(β) ∈ 2Z as we assume our Lagrangian is orientable.

4.2 QuantumTE-structure

Let (X , ω) be a symplectic manifold and let U ⊂ H∗(X;C) be a graded C-vector
subspace. For any ring R, let A∗(X; R) denote the space of differential forms on X
with coefficients in R.

Definition 4.2 A bulk-deformation parameter over U is an element γ ∈ A∗(X; IU )

with dγ = 0, |γ | = 2 and [γ ] = �U ∈ QU ⊗U .
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In Sect. 4.3 we will outline how a general proof that OC− respects T-structures can
be upgraded to a result about TE-structures. In order for this to work, the T-structure
needs to know about deformation in the direction of c1(X), the first Chern class of X .
To that end we make the following assumption:

Assumption 4.3 We assume there exists a Y ∈ Der�e Qe
U be such that [Y (γ )] = c1 ∈

H∗(X; Qe
U ). In this case, note that as |γ | = 2, this implies |Y | = 0.

Let γ be a bulk-deformation parameter over U . We now consider the quantum
cohomology QH∗(X; Qe

U ). As a vector space this is just H∗(X; Qe
U ), but the product

is given by the bulk-deformedquantumcupproductη1�γ η2.Ageneral reference for the
construction of the quantum cup product is [29], however, our coefficient ring includes
the universal Novikov parameter e, so we sketch how to modify the definition. See
also Definition 4.35 for a construction in our specific setup. Recall from [30] that the
quantum cup product is defined as a sum over curve classes β ∈ H2(X):

η1�η2 =
∑

β

Qω(β)(η1�η2)β . (112)

Here (η1�η2)β is defined by the equation

∫

X
η ∪ (η1�η2)β = GWβ

0,3(η, η1, η2) for all η ∈ H∗(X), (113)

where GWβ
0,3 denotes the genus 0, 3 point Gromov–Witten invariant in curve class

β. One can then extend this definition to take into account bulk deformations γ , to
obtain the product �γ on quantum cohomology QH∗(X; QU ). We then define (see
also Definition 4.35) the product on QH∗(X; Qe

U ) by:

η1�γ η2 =
∑

β

Qω(β)ec1(β)(η1�γ η2)β, (114)

where c1 = c1(T X) is the first Chern class.

Definition 4.4 The quantum T-structure over Qe
U ⊃ �e is given as a Qe

U [[u]]-module
by:

QH∗(X; Qe
U )[[u]]. (115)

For v ∈ Der�QU the quantum connection is defined by:

∇vη = v(η) − u−1v(γ )�γ η. (116)

We now wish to extend the quantum T-structure to be defined over Qe
U ⊃ �. To this

end observe that Der�(Qe
U ) = Qe

U ⊗QU Der�QU ⊕ Qe
U 〈∂e〉. Extend the connection

by setting:

∇e∂eη = e∂e(η) − u−1c1�γ η. (117)
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Lemma 4.5 These above definitions make QH∗(X; Qe
U )[[u]] into a T-structure over

Qe
U ⊃ �.

Proof The verification that [∇v,∇w] = ∇[v,w] for v,w ∈ Der�QU is standard, so
we will not do it here. Instead we verify that [∇v,∇e∂e] = 0. The divisor equation for
closed Gromov–Witten invariants shows that for v ∈ Der�QU we have:

e∂e(v(γ )�γ η) = c1�γ v(γ )�γ η + v(γ )�γ e∂e(η). (118)

We also find that:

v(c1�γ η) = c1�γ v(γ )�γ η + c1�γ v(η). (119)

A direct verification then shows that [∇e∂e ,∇v] = 0 holds. ��
We will now define endow QH∗(X; Qe

U )[[u]] with an Euler-graded T-structure.

Definition 4.6 Define the Euler vector field by E = e∂e + EU . Define the grading
operator

Gr− : QH∗(X; Qe
U )[[u]] → QH∗(X; Qe

U )[[u]] (120)

by taking into account the cohomological degrees, the grading on the coefficient rings
and the degree of u, but with the grading shifted down by n so that, for η ∈ H∗(X;C)

and f ∈ Qe
U [[u]], we have:

Gr−( f η) = (| f | + |η| − n) f η = (2u∂u + 2E)( f )α + 2 f μ(α). (121)

where μ : H p(X; Qe
U ) → H p(X; Qe

U ) is given by μ(η) = p−n
2 η.

A short computation then shows:

Lemma 4.7 The above definitions make QH∗(X; Qe
U )[[u]] into an Euler-graded T-

structure.

As the quantumT-structure is Euler-graded, Definition 2.6 endows it with a connection
in the u-direction:

∇∂u = Gr−

2u
− u−1∇E . (122)

This makes QH∗(X; Qe
U )[[u]] a TE-structure.Writing out the definitions ofGr− and

E yields the formula:

∇∂uη = ∂u(η) + u−1μ(η) + u−2(c1 + EU (γ ))�γ η. (123)

Remark 4.8 Defining ∇Q∂Qη := Q∂Q(η) − u−1[ω]�γ η extends the connection to
include the Q-direction, to obtain a TE-structure over Qe

U ⊃ C. We do not use this
connection.



The cyclic open–closed map, u-connections and R-matrices Page 31 of 90 29

Remark 4.9 We can use the same formula 123 to define a TE-structure on QH∗(X;
QU )[[u]]. There then is a natural isomorphism of TE-structures over QU ⊃ �:

QH∗(X; Qe
U )[[u]] ⊗�e � ∼= QH∗(X; QU )[[u]]. (124)

Here � is considered as a �e module via the homomorphism �e → � given by
evaluation at e = 1.

There are alternative definitions of the quantum connections on QH∗(X; Qe
U )[[u]]

given by changing the signs:

Definition 4.10

∇∗
v η = v(η) + u−1v(γ )�γ η (125)

∇∗
e∂eη = e∂e(η) + u−1c1�γ η (126)

The alternative connection in the u-direction is given by∇∗
∂u

= Gr−
2u −u−1∇∗

E .Writing
the formulae out we find:

∇∗
∂u

η = ∂u(η) + u−1μ(η) − u−2(c1 + EU (γ ))�γ η. (127)

Define the Poincaré pairing

〈·, ·〉X : QH∗(X; Qe
U ) ⊗ QH∗(X; Qe

U ) → Qe
U , (128)

by 〈η1, η2〉X = ∫X η1 ∧ η2. Now extend the Poincaré pairing u-linearly to a pairing

〈·, ·〉X : QH∗(X; Qe
U )[[u]] ⊗ QH∗(X; Qe

U )[[u]] → Qe
U [[u]]. (129)

We then have:

〈∇∗
v η1, η2〉X + (−1)|η1||v|〈η1,∇vη2〉X = v(〈η1, η2〉X ), (130)

for all v ∈ Der�Qe
U [[u]].

Remark 4.11 It is customary to extend the Poincaré pairing sesquilinearly to the quan-
tum TE-structure, to obtain a TEP-structure where the polarisation can be matched up
with the higher residue pairing on cyclic homology. However, since we don’t mention
the polarisation in this paper, we use the u-linear extension as it simplifies the proof
that the cyclic open–closed map is a morphism of TE-structures.

4.3 Outline of proof of Theorem 1.7

In this section we give an outline of the proof of Theorem 1.7. We will state sufficient
conditions which imply that the cyclic open–closed map respects the connection ∇∂u .
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We state these conditions in such a way that they should be easy to generalise to
different geometric setups.

LetU ⊂ H∗(X;C) be a graded vector space, and γ a bulk-deformation parameter
overU satisfyingAssumption 4.3. Let L ⊂ X be a Lagrangian submanifold.We define
an Euler-graded A∞-algebra CF∗(L, L)[e] over Qe := QU [e, e−1] in Sect. 4.7. The
Euler vector field is given by E = e∂e + EU , where EU is as in Sect. 4.1 and e is
of degree 2. The Floer cochain complex CF∗(L, L) is then defined by restricting to
e = 1: CF∗(L, L) := CF∗(L, L)[e] ⊗Qe

U
QU .

More generally, suppose there exists a bulk-deformed Fukaya category Fukt (X)

defined over QU . By using e to take into account the Maslov index of holomorphic
disks, it should be possible to construct an Euler-graded Fukaya category Fukt (X)[e]
over Qe. In Appendix A, we construct such an Euler-graded Fukaya category geo-
metrically. In the appendix, U will be the 1-dimensional vector-space spanned by the
first Chern class.

Assume there exists a cyclic open–closed map

OC− : HC−∗ (Fukt (X)) → QH∗(X; QU )[[u]], (131)

which is the restriction to e = 1 of a map

OC−
e : HC−∗ (Fukt (X)[e]) → QH∗(X; Qe

U )[[u]]. (132)

In Sect. 4.8.3, we will construct a cyclic open–closed map by defining a chain level
pairing (which we call the cyclic open–closed pairing):

〈·,OC−
e (·)〉 : (C∗(X; Qe

U )[[u]]) ⊗ CC−∗ (Fukt (X)[e]) → Qe
U [[u]]. (133)

We show that it satisfies:

〈dη,OC−
e (α)〉 + (−1)|η|〈η,OC−

e ((b + uB)(α))〉 = 0. (134)

This ensures the chain level pairing descends to a pairing:

〈·,OC−
e (·)〉 : QH∗(X; Qe

U )[[u]] ⊗ HC−∗ (Fukt (X)[e]) → Qe
U [[u]]. (135)

We then apply Poincaré duality to the QH∗(X; Qe) factor to obtain the map OC−
e . It

is uniquely determined by the property:

〈η,OC−
e (α)〉X = 〈η,OC−

e (α)〉. (136)

On the left, the pairing is the Poincaré pairing on X , and on the right the pairing is the
open–closed pairing.

We expect more generally that given a construction of a chain level cyclic open–
closed map, it can be extended to CC−∗ (Fukt (X)[e]) by taking the Maslov index of
the holomorphic disks into account.

Suppose the cyclic open–closed pairing satisfies the following properties.
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Assumptions 4.12 1. For v ∈ Der�e Qe
U , there exists a pairing 〈_,Gv(_)〉 :

(C∗(X; Qe
U )[[u]]) ⊗ CC−∗ (Fukt (X)[e]) → Qe

U [[u]] such that for all η and α

we have:

〈∇∗
v η,OC−

e (α)〉 + (−1)|η||v|〈η,OC−
e (∇vα)〉 = v

(〈η,OC−
e (α)〉)

+ u−1
(
〈dη,Gv(α)〉 + (−1)|η|+|v|〈η,Gv ((b + uB)(α))〉

)
. (137)

Here ∇∗ is the sign-changed connection from (125). By (130), this implies that
OC−

e is a morphism of T-structures over Qe
U ⊃ �e.

2. There exists a φ ∈ CC1(Fukt (X)[e]), such that Y (me) = e∂e(me) + [me, φ].
3. For any η and α we have:

〈η,Y (OC−
e )(α)〉 = 〈η, e∂e(OC−

e )(α)〉 + 〈α,OC−
e (Lφ(η))〉. (138)

Here, for any v ∈ Der�Qe
U , we define:

〈η, v(OC−
e )(α)〉 := v(〈η,OC−

e (α)〉) − 〈v(η),OC−
e (α)〉 − (−1)|η||v|〈η,OC−

e (v(α))〉.
(139)

4. OC−
e respects the Euler-grading on cyclic invariants: Gr− ◦OC−

e = OC−
e ◦Gr−.

Remark 4.13 Since we construct a cyclic open–closed map via a cyclic open–closed
pairing, we have stated the required properties for the latter. An easy modification
of the assumptions would allow them to be applied to an open–closed map defined
directly as a chain map CC−∗ (Fukt (X)[e]) → C∗(X; Qe

U )[[u]].
Remark 4.14 To define the connections ∇v and ∇e∂e on cyclic homology, we need to
choose a basis for all of the morphism spaces in Fukt (X). Assumption 2 is required
to hold with respect to the same bases as used to define the connections. The same
holds for assumption 3. On quantum cohomology, we take the derivatives with respect
to the standard constant basis (i.e. one in H∗(X;C)).

Theorem 4.15 Suppose Assumptions 4.12 hold, then OC−
e , and hence OC−, respects

∇∂u on homology.

First we will show that Assumptions 1, 2 and 3 show thatOCe respects the connection
∇e∂e . To this end define:

Definition 4.16 Define the pairing 〈η,Ge∂e (α)〉 by

〈η,Ge∂e (α)〉 = 〈η,GY (α)〉 + (−1)|η|〈η,OC−
e (i{φ}(α))〉

Proposition 4.17 The pairing 〈η,Ge∂e (α)〉 satisfies

〈∇∗
e∂eη,OC−

e (α)〉 + 〈η,OC−
e (∇e∂eα)〉 = e∂e

(〈η,OC−
e (α)〉)

+ u−1
(
〈dη,Ge∂e (α)〉 + (−1)|η|〈η,Ge∂e ((b + uB)(α))〉

)
.
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Proof Applying Assumption 1, with v = Y yields:

[t]u−1〈c1�η,OC−
e (α)〉 − u−1〈η,OC−

e (i{Y (me)}α)〉 = 〈η,Y (OC−
e )(α)〉

+ u−1〈dη,GY (α)〉 + u−1(−1)|η|〈η,GY ((b + uB)(α))〉. (140)

using Assumption 2, this gives:

u−1〈c1�η,OC−
e (α)〉 − u−1〈η,OC−

e (i{e∂e(me)}α)〉 − u−1〈η,OC−
e (i{[me, φ]}α)〉

= 〈η,Y (OC−
e )(α)〉 + u−1〈dη,GY (α)〉 + u−1(−1)|η|〈η,GY ((b + uB)(α))〉.

(141)

By the Cartan homotopy formula (Proposition 3.15) we can rewrite this as:

[t]u−1〈c1�η,OC−
e (α)〉 − u−1〈η,OC−

e (i{e∂e(me)}α)〉
= 〈η,Y (OC−

e )(α)〉 − 〈η,OC−
e (Lφα)〉

+ u−1〈dη,Ge∂e (α)〉 + u−1(−1)|η|〈η,Ge∂e ((b + uB)(α))〉.
(142)

Then apply Assumption 3 to obtain:

[t]u−1〈c1�η,OC−
e (α)〉 − u−1〈η,OC−

e (i{e∂e(me)}α)〉
= 〈η, e∂e(OC−

e )(α)〉 + u−1〈dη,Ge∂e (α)〉
+ u−1(−1)|η|〈η,Ge∂e ((b + uB)(α))〉.

(143)

This implies the result, by rewriting 〈η, e∂e(OC−
e )(α)〉 using (139). ��

Proof of Theorem 4.15 The previous proposition impliesOCe− respects∇e∂e on homol-
ogy. We will spell this out. By the properties of the Poincaré pairing (Eq. 130):

〈η,∇e∂e (OC−
e (α))〉X = e∂e(〈η,OC−

e (α)〉) − 〈∇∗
e∂eη,OC−

e (α)〉. (144)

The above shows that on homology:

〈η,∇e∂e (OC−
e (α))〉X = 〈η,OC−

e (∇e∂e(α))〉, (145)

which shows thatOC−
e (∇e∂e(α)) = ∇e∂e(OC−

e (α)) on homology. As E = e∂e + EU ,
we combine this with Assumption 1, applied to v = EU to find that the open–closed
map respects∇E . Then, as∇∂u = Gr−

2u −u−1∇E , and using the fact thatOC−
e respects

the Euler-grading (Assumption 4), we find thatOC−
e respects the connection∇∂u . The

statement about OC− follows by restriction to e = 1.
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4.4 Regularity assumptions

Let X be a 2n-dimensional symplectic manifold and J be an ω-tame almost complex
structure on X . Let L ⊂ X be an oriented Lagrangian equipped with a U (�)-local
system and a relative spin structure s. For us a relative spin structure comes with a
choice of element ws ∈ H2(X;Z/2) such that ws|L = w2(T L) ∈ H2(L;Z/2).

For l ≥ 0, letMl+1(β) be the moduli space of stable J -holomorphic spheres with
l + 1 marked points in homology class β ∈ H2(X ,Z). Let

evβ
j : Ml+1(β) → X (146)

be the evaluation map at the j’th marked point. For k ≥ −1, l ≥ 0, letMk+1,l(β) be
the moduli space of J -holomorphic stable maps (D, S1) → (X , L) in homology class
β ∈ H2(X , L) with one boundary component, k+1 anti-clockwise ordered boundary
marked points, and l interior marked points. Let

evbβ
i : Mk+1,l(β) → L and eviβj : Mk+1,l(β) → X (147)

be the evaluationmaps at the i’th boundary and j’th interiormarkedpoints respectively.
The relative spin structure determines an orientation on the moduli spacesMk+1,l(β),
see [7, Chapter 8].

We will also need a moduli space of disks with a horocyclic constraint. Recall that
a horocycle in a disk is given by a circle tangent to the boundary. These moduli spaces
are similar to the ones used in [44, Chapter 3], where some of the marked points are
constrained to lie on a geodesic in D. Our definition is entirely analogous, except
that we replace ‘geodesic’ with ‘horocycle’. Let the smooth locus ofMk+1,l;⊥i (β) ⊂
Mk+1,l(β) be the subset defined by requiring the first and second interior marked
points w1 and w2 to lie at −t and t respectively for t ∈ (−1, 1) and fixing the i’th
boundary point zi at −i . Equivalently, we require that zi , w1, w2 lie on a horocycle in
anti-clockwise ordering. This moduli space also appeared in [13], where it was used
to show that the closed–open map is an algebra homomorphism.

We now give a more formal definition of the moduli spaceMk+1,l;⊥i (β) as a fibre
product of known spaces. Consider the forgetful map Mk+1,l(β) → M1,2 = D2,
only remembering the i’th boundary marked point, and the first interior marked point.
Here the identification M1,2 ∼= D2 is achieved by using an automorphism of the
disk to map the boundary marked point to −i , and the interior marked point to 0.
Consider the inclusion I ↪→ D2 given by the arc of the horocycle through −i and 0
with negative real part. This is a circle of radius 1

2 centred at − i
2 . The condition on

the order of the marked points means that second interior lies on the semi-circle with
negative real part. We then define:

Mk+1,l;⊥i (β) = I ×D2 Mk+1,l(β). (148)

Take the orientation on I to be the positive orientation, so that ∂ I = {1} − {0}.
The orientation on Mk+1,l;⊥i (β) is then defined by the fibre-product orientation, as
in [46, Section 2.2].
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We assume the following:

Assumptions 4.18 1. Ml+1(β) is a smooth orbifold with corners.
2. ev0 is a proper submersion.
3. Mk+1,l(β) is a smooth orbifold with corners.
4. evbβ

0 is a proper submersion.
5. Mk+1,l;⊥i (X , β) is a smooth orbifold with corners.

6. evbβ
0 |Mk+1,l;⊥i (X ,β) is a proper submersion.

We will now show these assumptions hold in the following setup:

Lemma 4.19 The above assumptions hold for L ⊂ X a Lagrangian and a complex
structure J with the following properties:

– J is integrable.
– There exists a Lie group GX acting J-holomorphically and transitively on X.
– There exist a Lie subgroup GL ⊂ GX whose action restricts to a transitive action
on L.

Proof This argument is the same as [44, Section 1.3.12], but for horocyclic rather than
geodesic constraints. For Assumptions 4.18.1 and 4.18.2, [29, Proposition 7.4.3] show
that if the above properties hold, all stable holomorphic maps inMl+1(β) are regular,
it then follows from [35] that this space is a smooth orbifold with corners. As GX acts
on Ml+1(β), GX acts transitively on X , and ev0 is equivariant with respect to this
action, ev0 is a proper submersion.

Solomon and Tukachinsky show Assumptions 4.18.3 and 4.18.4 hold in this situa-
tion by adapting the arguments for closed Riemann surfaces to Riemann surfaces with
boundary (see [47, Remark 1.6]).

Furthermore,Mk+1,l;⊥i (β) is a smooth orbifold with corners as the maps I ↪→ D2

andMk+1,l(β) → D2 are transverse (in the sense of [22, Definition 6.1]). This is clear
for any curve mapping to the part of the horocycle not intersecting S1. The remaining
case, for a point in the pre-image of −i ∈ D2 is more involved.

To this end, let u ∈ Mk+1,l(β) be a pre-image of the point −i ∈ D2. Let z0
denote the boundary marked point, and w1, w2 the interior marked points partaking
in the horocycle. The stable curve underlying u has at least 3 components, with one
‘middle’ disk component which has the marked point z0. There is then additionally
a ‘right’ configuration which has the point w1, and a ‘left’ one which has w2. Both
the left and the right configurations either are disks connected to the middle disks,
or have a disk component which connects them to the middle disk. Let p1 and p2
denote the boundary points where the right and left configurations are connected to
the middle disk. Now use a gluing argument to open up the point p1. By stability,
the new middle disk (which might have w1 on it) must now have at least 4 boundary
marked points, or 2 boundary and 1 interior marked point. A one parameter family
can then be constructed by moving the point z0 towards p2. The original map u arises
from the case where z0 merges with p2 and a new disk bubble is formed. The map u
lies in the interior of this one parameter family (as we can move z0 to either side of
p2), so it lies in the same stratum as the family. The forgetful map to D2 is given by
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the location of p2 in this case, so we see that the map at the level of tangent spaces is
indeed surjective onto T−i S1 as required.

Finally note that GL acts onMk+1,l;⊥i (X , β), and the evaluations maps are equiv-

ariant. As GL acts transitively on L , evbβ
0 |Mk+1,l;⊥i (X ,β) is a proper submersion. ��

Example 4.20 The simplest example is (CPn, Tcl), where Tcl denotes the Clifford
torus. Here the groups acting are GX = SU (n + 1) and GL = T n . Other examples
(see [47, Example 1.5]) are (CPn,RPn), or more generally flag varieties and Grass-
mannians with L being the real locus. In these cases GX is a complex matrix group
and GL the real subgroup. Another class of examples are the quadric hypersurfaces
with real locus Sn :

X2,n =
{

n∑

i=0

z2i = z2n+1

}

⊂ CP
n+1. (149)

In this case, GX = SO(n + 1,C) and GL = SO(n + 1,R), with the group acting in
the obvious manner on the first n + 1 coordinates.

4.5 q-operations

This section follows [44, 47] closely. Let L ⊂ X be as in the previous section. Let

hol : H1(L,Z) → U (�) (150)

denote the monodromy representation of the local system on L .
Let A∗(L) denote differential forms on L with coefficients in C, and similarly

for X . For α ∈ A∗(L), let |α| denote its degree as a differential form, and similarly
for differential forms on X . Also, let |α|′ := |α| − 1, and for an ordered set α =
(α1, . . . , αk), write ε(α) :=∑i |αi |′ ∈ Z.

For k, l ≥ 0 and β ∈ H2(X , L) with (k, l, β) /∈ {(1, 0, β0), (0, 0, β0)}, [47] define
operations:

q
ST ,β
k,l : A∗(L)⊗k ⊗ A∗(X)⊗l → A∗(L). (151)

We extend their definition to take into account the local system and set:

q
ST ,β
k,l (α1 ⊗ · · · ⊗ αk; γ1 ⊗ · · · ⊗ γl) := (−1)ζ(α)hol(∂β)(evbβ

0 )∗
⎛

⎝
l∧

j=1

(eviβj )
∗γ j ∧

k∧

i=1

(evbβ
i )∗α j

⎞

⎠ .

(152)

Here ζ(α) = 1 +∑k
j=1 j |α j |′. The special cases are as follows:

q
ST ,β
0,0 := −(evbβ

0 )∗1 ∈ A∗(L), (153)
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q
ST ,β0
1,0 := dα, (154)

q
ST ,β0
0,0 := 0. (155)

For the cleanest staments, we will use a sign convention differing from [47].

Definition 4.21 Let the operations qβ
k,l : A∗(L)⊗k ⊗ A∗(X)⊗l → A∗(L) be defined

by:

q
β
k,l(α1, . . . , αk; γ1, . . . , γl) = (−1)†(α)+k−1q

ST ,β
k,l (αk, . . . , α1; γ1, . . . , γl).

(156)

Here, for α = (α1, . . . , αk), we set †(α) = ∑
1≤i< j≤k |αi |′|α j |′. This is the sign

coming from reversing the order of α.

[44] also define closed operations:

q
ST ,β

∅,l : A∗(X)⊗l → A∗(X), (157)

by

q
ST ,β

∅,l (γ1, . . . , γl) := (−1)ws(β)(evβ
0 )∗

⎛

⎝
l∧

j=1

(evβ
j )

∗γ j

⎞

⎠ , (158)

with special cases:

q
ST ,β0
∅,1 := 0, q

ST ,β0
∅,0 := 0. (159)

We use these operations, without any sign change, so that q∅,l = qST∅,l . The quantum
product _�_ : A∗(X) ⊗ A∗(X) → A∗(X), is then given by

γ1�γ2 = q∅,2(γ1, γ2). (160)

We also define new operations coming from the moduli spaces with horocyclic
constraintsMk+1,l,⊥i (β). We first define these using sign conventions similar to [47].

Definition 4.22 Let qST ,β

k,l;⊥i
: A∗(L)⊗k ⊗ A∗(X)⊗l → A∗(L), be defined by

q
ST ,β

k,l;⊥i
(α1, . . . , αk; γ1, . . . , γl) = (−1)ζ(α)+ζ⊥(α;γ )hol(∂β)(evbβ

0 )∗
⎛

⎝
l∧

j=1

(eviβj )
∗γ j ∧

k∧

j=1

(evbβ
j )

∗α j

⎞

⎠ , (161)
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where ζ⊥(α; γ ) = |α|′ + |γ | + n. Then, we modify the sign convention as before. We
set

q
β
k,l,⊥i

(α1, . . . , αk; γ1, . . . , γl) = (−1)†(α)+k−1q
ST ,β
k,l,⊥k+1−i

(αk, . . . , α1; γ1, . . . , γl).

(162)

The sign †(α) is as before. When i = 0, ⊥k+1 should be interpreted as ⊥0.

For all of the above qβ operations, set

q∗ =
∑

β

Qω(β)e
μ(β)
2 q

β∗ . (163)

Here μ : H2(X , L) → Z is the Maslov-class, and e is of degree 2. We thus have
operations

qk,l : A∗(L;�e)⊗k ⊗ A∗(X;�e)⊗l → A∗(L;�e). (164)

Let 〈α1, α2〉L = (−1)|α2|
∫
L α1∧α2 be the Poincaré pairing on L . [47] prove results

about the operations qST , we state the analogous results for our operations q. These
follows by a direct verification of signs from the results in [47].

Proposition 4.23 (Cyclic symmetry, see [47, Proposition 3.3]) For any α =
(α1, . . . , αk+1) and γ = (γ1, . . . , γl):

〈qk,l(α1, . . . , αk; γ1, . . . , γl), αk+1〉L = (−1)|αk+1|′εk (α)〈
qk,l(αk+1, α1, . . . , αk−1; γ1, . . . , γl), αk〉L (165)

Proposition 4.24 (Degreeproperty, see [47, Proposition3.4])Foranyα = (α1, . . . , αk)

and γ = (γ1, . . . , γl):

|qβ
k,l(α1, . . . , αk; γ1, . . . , γl)| = 2 + ε(α) − μ(β) +

l∑

j=1

(|γ j | − 2) (166)

≡ ε(α) +
l∑

j=1

|γ j | (mod 2) (167)

The last equality holds as L is orientable so the Maslov-index of any disk is even. By
construction, we then have:

|qk,l(α, γ )| = 2 + ε(α) + |γ | − 2l. (168)
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Proposition 4.25 (Unit property, see [47, Proposition 3.2]) For f ∈ A0(L),
α1, . . . , αk ∈ A∗(L; R) and γ ∈ A∗(X; Q)⊗l , we have:

q
β
k,l (α1, . . . , αi−1, f , αi , . . . , αk; γ ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d f (k, l, β) = (1, 0, β0)

(−1)| f | f α1 (k, l, β) = (2, 0, β0), i = 1

(−1)|α1|| f |′ f α1 (k, l, β) = (2, 0, β0), i = 2

0 otherwise

(169)

Proposition 4.26 (Top degree property, see [47, Proposition 3.12]) We have (q
β
k,l

(α; γ ))n = 0 for all lists α, γ for all (k, l, β) /∈ {(1, 0, β0), (0, 1, β0), (2, 0, β0)}.
Here δn denotes the degree n part of a differential form δ ∈ A∗(L; R).

Proposition 4.27 (Divisor property, see [47, Proposition 3.9])Assume γ1 ∈ A2(X , L),
dγ1 = 0, then

q
β
k,l(α, γ ) =

(∫

β

γ1

)

· qβ
k,l−1

⎛

⎝α;
⊗

j≥2

γ j

⎞

⎠ (170)

Proposition 4.28 (Energy-zero property, see [47, Proposition 3.8]) For k ≥ 0,

q
β0
k,l(α1, . . . , αk; γ1, . . . , γl) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dα1, (k, l) = (1, 0),

(−1)|α1|α1 ∧ α2, (k, l) = (2, 0),

γ1|L , (k, l) = (0, 1),

0, otherwise.

(171)

Proposition 4.29 (Fundamental class property, see [47, Proposition 3.7]) For k ≥ 0,

q
β
k,l(α1, . . . , αk; 1, γ1, . . . , γl−1) =

{
1, (k, l, β) = (0, 1, β0),

0, otherwise
(172)

Let γ = (γ1, . . . , γl) be a list of differential forms on X . For subsets I�J = {1, . . . , l},
define signγ (I , J ) by the equation

∧

i∈I
γi ∧

∧

j∈J

γ j = (−1)sign
γ (I ,J )

∧

s∈[l]
γs, (173)

or explicitly

signγ (I , J ) =
∑

i∈I , j∈J , j<i

|γi ||γ j |. (174)
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Proposition 4.30 (Structure equation for qk,l , see[47, Proposition 2.4]) For any α =
(α1, . . . , αk) and γ = (γ1, . . . , γl):

0 =
∑

P∈S3[k]
(2:3)={ j}

(−1)|γ (1:3)|+1qk,l(α; γ (1:3) ⊗ dγ j ⊗ γ (3:3)) (175)

+
∑

P∈S3[k]
I�J=[l]

(−1)i(α,γ,P,I )qk1+1+k3,|I |(α(1:3) ⊗ qk2,|J |(α(2:3); γ J ) ⊗ α(3:3); γ I ),

(176)

where

i(α, γ, P, I ) = (|γJ | + 1)ε1 + |γI | + signγ (I , J ). (177)

Thenew resultweprove concerns the boundary of themoduli spacesMk+1,l;⊥0 (X , β).
The proof is given in chapter 5.

Proposition 4.31 (structure equation for qk,l,⊥0 )

0 =
∑

S3[l]
(2:3)={i}

(−1)1+|γ (1:3)|qk,l;⊥0(⊗k
j=1α j ; γ (1:3) ⊗ dγi ⊗ γ (3:3)) (178)

+
∑

J1∪J2=[l]
1,2∈J2

(−1)sign
γ (J1,J2)qk, j1(α; q∅, j2(γ

J2) ⊗ γ J1) (179)

+
∑

J1∪J2=[l]
1,2∈J2
P∈S3[k]

(−1)sign
γ (J1,J2)+ε1|γ J2 |+1qk1+k3+1, j1(α

(1:3)

⊗ qk2, j2;⊥0(α
(2:3); γ J2) ⊗ α(3:3); γ J1) (180)

+
∑

J1∪J2=[l]
1,2∈J1
P∈S3[k]

(−1)sign
γ (J1,J2)+ε1(|γ J2 |+1)+|γ J1 |qk1+k3+1, j1;⊥0(α

(1:3)

⊗ qk2, j2(α
(2:3); γ J2) ⊗ α(3:3); γ J1) (181)

+
∑

J1∪J2∪J3=[l]
1∈J2, 2∈J3
P∈S5[k]

(−1)A5qk1+k3+k5+2, j1(α
(1:5) ⊗ qk2, j2(α

(2:5); γ J2)

⊗ α(3:5) ⊗ qk4, j3(α
(4:5); γ J3) ⊗ α(5:5); γ J1). (182)

Where

A5 = signγ (J1, J2, J3) + |γ J2 | + (|γ J2 | + 1)ε1 + (|γ J3 | + 1)(ε1 + ε2 + ε3) + 1

(183)
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Additionally we need the following proposition, which is similar to [44, Lemma 3.10]
and is proven in Sect. 5.4.

Proposition 4.32 (Unit on the horocycle) For α = (α0, . . . , αk) ∈ A∗(L)⊗k+1 and
γ ∈ A∗(X)⊗l we have:

〈qk,l (̃α; γ ), α0〉L =
∑

P∈S2[k]
(−1)ε1+|γ |〈qk+1,l,⊥i (α

(1:2), 1, α(2:2); γ ), α0〉L (184)

=
∑

P∈S2[k]
(−1)ε1+(ε1+1)(ε2+|α0|′)+|γ |〈qk+1,l,⊥0(α

(2:2), α0, α
(1:2); γ ), 1〉L . (185)

4.6 Bulk-deformed q-operations

LetU ⊂ H∗(X;C) be a graded vector subspace, and recall the definition of QU from
Sect. 4.1. The same formulae as before then define q-operations for differential forms
with coefficients in Qe

U . Thus, for example we have:

qk,l : A∗(L; Qe
U )⊗k ⊗ A∗(X; Qe

U )⊗l → A∗(L; Qe
U ). (186)

We then have:

Proposition 4.33 (Linearity, see [47, Proposition 3.1]) The q-operations are multi-
linear, in the sense that for f ∈ Qe

U , α = (α1, . . . , αk) and γ = (γ1, . . . , γl), we
have:

qk,l(α1, . . . , αi−1, f αi , . . . , αk; γ ) = (−1)| f |(i+
∑i−1

j=1 |α j |+|γ |) f qk,l(α, γ ),

(187)

and

qk,l(α; γ1, . . . , f γi , . . . , γl) = (−1)| f |
∑i−1

j=1 |γ j | f qk,l(α, γ ). (188)

Definition 4.34 A bulk-deformation pair over U is a pair (b, γ ). Here γ ∈
IU A∗(X; QU ) is a bulk-deformation parameter over U and b ∈ IU A∗(L, Qe

U ) with
|b| = 1.

For a bulk-deformation pair (b, γ ) define the bulk-deformed operations:

q
b,γ
k,l (α1, . . . , αk; γ1, . . . , γl) :=

∑

s,t≥0
s0+···+sk=s

1

t !qk+s,l+t (b
⊗s0 ⊗ α1 ⊗ · · · ⊗ αk ⊗ b⊗sk ; γ1 ⊗ · · · ⊗ γl ⊗ γ ⊗t ). (189)
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Similarly define:

q
γ

∅,l(γ1, . . . , γl) =
∑

t

1

t !q∅,l+t (γ1 ⊗ · · · ⊗ γl ⊗ γ ⊗t ). (190)

Finally we define the bulk-deformed horocyclic q-operations by:

q
b,γ
k,l,⊥i

(α1, . . . , αk; γ1, . . . , γl) :=
∑

s,t≥0
s0+···+sk=s

1

t !qk+s,l+t,⊥
i+∑i−1

j s j
(b⊗s0 ⊗ α1 ⊗ · · · ⊗ αk ⊗ b⊗sk ; γ1 ⊗ · · · ⊗ γl ⊗ γ ⊗t ).

(191)

We also define:

Definition 4.35 For a bulk-deformation parameter γU , the bulk-deformed quantum
cup product is defined by:

�γU : H∗(X; Qe
U ) ⊗ H∗(X; Qe

U ) → H∗(X; Qe
U ), (192)

by setting η1�γU η2 = q
γU
∅,2(η1, η2).

Remark 4.36 When (γ, b) is a bulk-deformation pair, the degree assumptions on γ

and b imply that the properties (4.23)–(4.32), with the exception of the energy-zero
property (4.28), all hold for the operations qb,γ with the same signs as before.

We will need the following lemma later on; it follows from an easy verification of
signs.

Lemma 4.37 For v ∈ Der�e Qe, α ∈ A∗(L; Qe)⊗k and η ∈ A∗(X; Qe)⊗l all of
homogeneous degrees, we have:

v(q
b,γ
k,l (α; η)) =

∑

P∈S3[k]
(2:3)=i

(−1)|η(1:3)||v|qb,γk,l (α; η(1:3) ⊗ v(ηi ) ⊗ η(3:3)) (193)

+ (−1)|η||v|qb,γk,l+1(α; η ⊗ v(γ )) (194)

+
∑

P∈S2[k]
(−1)(|η|+ε1+1)|v|+1q

b,γ
k+1,l(α

(1:2) ⊗ v(b) ⊗ α(2:2); η) (195)

+ (−1)(|η|+1)|v|qb,γk,l (v(α); η). (196)

Here

v(α) =
∑

P∈S3[k]
(2:3)={ j}

(−1)ε1|v|α(1:3) ⊗ v(α j ) ⊗ α(3:3). (197)
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Asimilar lemmaholds for v = e∂e, here one gets an additional term, as the q operations
depend on e. Also note that ∂e(γ ) = 0 by definition of a bulk-parameter. First, define
operations weighted by the Maslov index μ: q̃b,γk,l =∑β μ(β)q

b,γ,β

k,l . We then have:

Lemma 4.38 For α ∈ A∗(L; Qe)⊗k and η ∈ A∗(X; Qe)⊗l all of homogeneous
degrees, we have:

e∂e(q
b,γ
k,l (α; η)) =

∑

P∈S3[k]
(2:3)=i

q
b,γ
k,l (α; η(1:3) ⊗ e∂e(ηi ) ⊗ η(3:3)) (198)

−
∑

P∈S2[k]
q
b,γ
k+1,l(α

(1:2) ⊗ e∂e(b) ⊗ α(2:2); η) (199)

+ q
b,γ
k,l (e∂e(α); η) (200)

+ 1

2
q̃
b,γ
k,l (α; η). (201)

4.7 Fukaya A∞-algebra

LetU ⊂ H∗(X;C) and (γ, b) be a bulk-deformation pair overU . Assume γ satisfies
Assumption 4.3, fixing the derivation Y ∈ Der�e Qe

U such that [Y (γ )] = c1. For ease
of notation, write Q = QU .

Solomon and Tukachinsky [47, Theorem 1] construct an A∞-algebra AST using
the operations qSTk,0. We have different sign conventions for our operations q, but the
following still holds.

Definition 4.39 Let (A := CF∗(L, L)[e] := A∗(L; Qe),mk := q
b,γ
k,0 , 〈 , 〉L , 1).

It follows directly from the properties of the q operations that this forms an n-
dimensional, strictly unital and cyclic A∞-algebra. It follows from the degree
property 4.24, and the definition that |e| = 2 that this A∞-algebra is Euler-
graded with Euler vector field E = e∂e + EU . The grading operator is defined by
Gr( f α) = (| f | + |α|) f α for f ∈ Qe and α ∈ A∗(L). Furthermore, this A∞-algebra
is (possibly) curved. The valuation ζA is induced by the valuation ζQ , defined in (111).

Definition 4.40 LetCF∗(L, L) := CF∗(L, L)[e]⊗Qe Q be the A∞-algebra obtained
by setting e = 1.

Remark 4.41 Recall the definition of the negative-opposite of an A∞-algebra (Defini-
tion 3.3). Then CF∗(L, L) is related to AST as CF∗(L, L)−op = AST .

Whenever we have to pick a basis for A in order to compute derivatives, we will
always pick a constant basis, i.e. one in A∗(L;C).

Recall the connection

∇GGM : Dere�Qe ⊗ HC−∗ (A) → u−1HC−∗ (A). (202)

We will now define a connection ∇̃ which agrees with ∇GGM up to homotopy. First,
for v ∈ DerCQe define the length zero Hochschild cochain φv := v(b) ∈ A. Also let
mv(α) := q

b,γ
k,1 (α, v(γ )). Lemma 4.37 then shows:
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Corollary 4.42 For v ∈ Der�e Qe we have:

v(m) = mv + [φv,m].

Definition 4.43 For v ∈ Der�eQe , define Jv = i{φv}.
The Cartan homotopy formula 3.15 then shows:

Corollary 4.44 The connection defined by:

∇̃v(α) := v(α) − Lφv (α) + (−1)|v|+1u−1i{mb,γ
v }(α) (203)

satisfies:

∇v = ∇̃v + u−1[Jv, b + uB]. (204)

We finish this section by showing that the property 4.12.2 holds. To this end, set
m̃k = q̃

b,γ
k,0 . Lemma 4.38 then shows:

Lemma 4.45 2e∂e(mb,γ ) = m̃b,γ − [mb,γ , φ2e∂e ].
Applying Lemma 4.42 to v = Y , and using the divisor equation (4.27) to rewrite
2mb,γ

Y = m̃b,γ , we find:

Lemma 4.46 The Fukaya A∞-algebra thus defined satisfies property 4.12.2.

Y (mb,γ ) = e∂e(m
b,γ ) + [mb,γ , φe∂e − φY ]. (205)

4.8 Closed–open and open–closedmaps

In [7] an open–closed map is defined directly. In our setup one would want to define
it using operations pk : CC∗(A) → A∗(X) given by:

pk(α) = (evi1)∗

⎛

⎝
k∧

j=0

evb∗
jα j

⎞

⎠ , (206)

where now the push forward is along the interior evaluation evi1 : Mk+1,1 → X .
However, in the present setup the push-forward along interior evaluation is not well
defined, as evi1 : Mk+1,l(β) → X need not be a submersion.

The approach we thus take is to first construct a closed–open map, and then dualise
to obtain an open–closed map. The fact that the closed–open map is an algebra homo-
morphism (a result first shown by [8, 13]), will then translate into the result that the
open–closed map is a morphism of QH∗(X) modules (see also [13]). We will then
construct a cyclic open–closed map, which was also done in [10]. We then upgrade
the result that the open–closed map is a morphism of QH∗(X)-module to show that
the cyclic open–closed map is a morphism of T-structures, using an argument due to
[11]. We then show Assumptions 4.12 hold for the cyclic open–closed map in order
to conclude that it respects the connection in the u-direction.
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4.8.1 The closed–openmap

We define the closed–open map COe : A∗(X; Qe) → CC∗(A) on the chain level.
Set

COe(η)(α1, . . . , αk) = q
b,γ
k,1 (α1, . . . , αk; η). (207)

It follows from the unit property, Proposition 4.25, that theHochschild cochainCOe(η)

is reduced. Furthermore, it follows from the degree property, Proposition 4.24, that
|COe(η)| = |η| (mod 2), so that the closed–open map is a Z/2-graded map.

Lemma 4.47 The closed–open map is a chain map. That is: [m, COe(η)] = COe(dη).

Proof By definition:

[m, COe(η)](α1, . . . , αk) =
∑

P∈S3[k]
(−1)ε1(1+|η|)qb,γk1+1+k3,0

(α(1:3) ⊗ q
b,γ
k2,1

(α(2:3); η) ⊗ α(3:3))

+
∑

P∈S3[k]
(−1)ε1+|η|qb,γk1+1+k3,1

(α(1:3) ⊗ q
b,γ
k2,0

(α(2:3)) ⊗ α(3:3); η), (208)

which, by Proposition 4.30 equals COe(dη). ��
Let COe : H∗(X; Qe) → HH∗(A) be the induced map on cohomology. Next up we
will prove the following, which is originally due to [8, 13] in different setups:

Proposition 4.48 The closed–open map induces a unital algebra homomorphism on
cohomology.

To this end, we first define:

Definition 4.49 Let the homotopy operator H : A∗(X; Qe)⊗2 → CC∗(A) be given
by

H(γ1, γ2)(α1, . . . , αk) = q
b,γ
k,2,⊥0

(α; γ1 ⊗ γ2). (209)

Unitality follows from the fundamental class property 4.29. The following lemma
immediately implies that the closed–open map respects the product.

Lemma 4.50 The homotopy operator H satisfies:

COe(γ1�γ2) = COe(γ1) ∪ COe(γ2) + H(d(γ1 ⊗ γ2)) + [m, H(γ1, γ2)]. (210)

Proof We write down the terms one by one. Firstly:

COe(γ1�γ2)(α) = q
b,γ
k,1 (α; qb,γ∅,2 (γ1, γ2)). (211)

Furthermore:
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COe(γ1) ∪ COe(γ2)(α) = (−1)|γ1|M2(COe(γ1), COe(γ2))

=
∑

P∈S5[k]
(−1)�qb,γk1+k3+k5+2(α

(1:5) ⊗ q
b,γ
k2,1

(α(2:5); γ1) ⊗ α(3:5) ⊗ q
b,γ
k4,1

(α(4:5); γ2) ⊗ α(5:5)),

(212)

where � = |γ1| + (|γ1| + 1)ε1 + (|γ2| + 1)(ε1 + ε2 + ε3).
We then compute the homotopy terms:

H(d(γ1 ⊗ γ2)) = q
b,γ
k,2,⊥0

(α; dγ1 ⊗ γ2) + (−1)|γ1|qb,γk,2,⊥0
(α; γ1 ⊗ dγ2). (213)

Finally we find:

[m, H(γ1, γ2)] = m ◦ H(γ1, γ2) + (−1)|γ1|+|γ2|+1H(γ1, γ2) ◦ m (214)

=
∑

P∈S3[k]
(−1)ε1(|γ1|+|γ2|)qb,γk1+k3+1,0(α

(1:3) ⊗ q
b,γ
k2,2;⊥0

(α(2:3); γ1 ⊗ γ2) ⊗ α(3:3))

(215)

+
∑

P∈S3[k]
(−1)ε1+|γ1|+|γ2|+1q

b,γ
k1+k3+1,2;⊥0

(α(1:3) ⊗ q
b,γ
k2,0

(α(2:3)) ⊗ α(3:3); γ1 ⊗ γ2).

(216)

Lemma (4.50) then follows by applying the structure equation (4.31) with interior
inputs γ1 ⊗ γ2. ��
We conclude this section with the following observations:

Lemma 4.51 COe(c1) = m̃/2.

Proof Pick a representative η ∈ A2(X , L) for the Maslov class μ. Then η also repre-
sents 2c1 ∈ H∗(X). The divisor property 4.27 shows that COe(γ1) = m̃. ��
Furthermore, by definition of mv we have:

Lemma 4.52 For v ∈ DerCQe we have: COe(v(γ )) = mv . It follows that
COe(EU (γ )) = mEU .

4.8.2 The open–closed map

The open–closed map will take the form OC : HH∗(A) → QH∗(X; Qe). To this
end, we first define the open–closed pairing A∗(X; Qe) ⊗ CC∗(A) → Qe. We then
show this descends to a pairing on (co)homology. Finally, by dualising the first factor,
and using Poincaré duality, we obtain the open–closed map.

Definition 4.53 The open–closed pairing 〈_,OCe(_)〉 : A∗(X; Qe)⊗CC∗(A) → Qe

is defined as

〈η,OCe(α)〉 := (COe(η), α) = (−1)|α0|(ε(̃α)+1)〈qb,γk,1 (̃α; η), α0〉L . (217)
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Here the pairing (·, ·) is as in Eq. (63).
We will show (Lemma 4.55) that the open–closed pairing descends to homology, so
that the following makes sense.

Definition 4.54 The open–closed map OC : HH∗(A) → QH∗(X; Qe) is defined by
requiring that

〈η,OC(α)〉X = 〈η,OCe(α)〉. (218)

On the left, the pairing is the Poincaré pairing on X , and on the right the pairing is the
open–closed pairing.

Since the closed–open map is a chain map (Lemma 4.47), and the pairing respects
differentials (Lemma 3.10), the following is immediate.

Lemma 4.55 We have:

〈dη,OCe(α)〉 + (−1)|η|〈η,OCe(b(α))〉 = 0. (219)

The open–closed pairing thus descends to (co)homology.

Ganatra [13] shows the closed–open map makes HH∗(A) into a QH∗(X)-module.
We prove this in our setup.

Proposition 4.56 The open–closed map is a map of QH∗(X; Qe)-modules.

To this end, first define:

Definition 4.57 Recall the map H from Definition 4.49. Then let

〈_,G(_)〉 : A∗(X)⊗2 ⊗ CC∗(A) → Re (220)

γ1 ⊗ γ2 ⊗ α �→ 〈γ1 ⊗ γ2,G(α)〉 = (H(γ1, γ2), α). (221)

The following lemma follows directly from Lemma 4.50.

Lemma 4.58 The pairing G satisfies:

〈γ1�γ2,OCe(α)〉 = 〈γ1,OCe(COe(γ2) ∩ α)〉 + 〈d(γ1 ⊗ γ2),G(α)〉 + (−1)|γ1||γ2|

+〈γ1 ⊗ γ2,G(b(α))〉. (222)

Proof of Proposition 4.56 Lemma 4.58 shows that on homology we have::

〈γ1,OCe(COe(γ2) ∩ α)〉X = 〈γ1�γ2,OC(α)〉X (223)

= 〈γ1, γ2�OC(α)〉X . (224)

Thus γ �OC(α) = OCe(COe(γ ) ∩ α).
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4.8.3 The cyclic open–closed map

In order to define the cyclic open–closed map, we first show the open–closed pairing
descends to cyclic homology.

Definition 4.59 Extend the open–closed pairing (Definition 4.53) u-linearly to a map:

〈_,OC−
e (_)〉 : (A∗(X; Qe)[[u]]) ⊗ CC−(A) → Qe[[u]]. (225)

We then have:

Lemma 4.60 The open–closed pairing descends to a pairing QH∗−(X; Re) ⊗
HC−(A) → Qe[[u]].
Proof We have already shown the open–closed pairing respects the first differential b.
We are then done if 〈η,OC(B(α))〉 = 0. Now

〈η,OCe(B(α))〉 =
∑

P∈S2[k]
(−1)ε2(|α0|′+ε1)(COe(η), 1[α(2:2)|α0|α(1:2)]) (226)

=
∑

P∈S2[k]
(−1)ε2(|α0|′+ε1)+ε(α)+|η|〈qb,γk+1,1(α

(2:2) ⊗ α0 ⊗ α(1:2); η), 1〉L
(227)

= 0. (228)

The first equality is by definition of B andOC. The second equality holds by definition
of COe. The last equality follows by the top degree property 4.26. ��
Extend the Poincaré pairing on X u-linearly to a pairing QH∗(X; Qe)[[u]] ⊗
QH∗(X; Qe)[[u]] → Qe[[u]].
Definition 4.61 The cyclic open–closed map OC−

e : HC−∗ (A) → QH∗(X; Qe)[[u]]
is defined by requiring that

〈η,OC−
e (α)〉X = 〈η,OC−

e (α)〉. (229)

On the left, the pairing is the Poincaré pairing on X , and on the right the pairing is the
open–closed pairing.

We now prove:

Theorem 4.62 The cyclic open–closedmapOC−
e : HC−(A) → (QH∗(X; QU )[[u]],

∇) is a morphism of T-structures over Qe ⊃ �e.

Our proof follows the same ideas as outlined by Ganatra-Perutz-Sheridan in talks.
First we observe that the same reasoning as for Lemma 4.60 shows that:

Lemma 4.63 〈η,OC(B1,1(φ, α))〉 = 0 for any η ∈ A∗(X; Qe), α ∈ CC∗(A) and
φ ∈ CC∗(A).
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Next we define:

Definition 4.64 For v ∈ Der�e Qe, set

〈η, G̃v(α)〉 := (−1)|v||η|〈η ⊗ v(γ ),G(α)〉, (230)

where we have extended G from Definition 4.57 u-linearly.

We then have:

Lemma 4.65 The pairing G̃v satisfies:

〈∇∗
v η,OC−

e (α)〉 + (−1)|η||v|〈η,OC−
e (∇̃vα)〉 = v

(〈η,OC−
e (α)〉)

+u−1
(
〈dη, G̃v(α)〉 + (−1)|η|+|v|〈η, G̃v ((b + uB)(α))〉

)
.

In order to prove this, we first show the following:

Lemma 4.66 We have:

v
(〈η,OC−

e (α)〉)+ (−1)|η|+|v|〈η, G̃v(B(α))〉 = 〈v(η),OC−
e (α)〉

+(−1)|η||v|〈η,OC−
e

(
v(α) − Lφv (α)

)〉. (231)

Proof Using Lemma 4.32, we find that:

〈η, G̃v(B(α))〉 = (−1)|η||v|+|α0|(ε(̃α)+1)+|v|+|η|+1〈qb,γk,l+1(̃α; η ⊗ v(γ )), α0〉L .

(232)

We also write out the other terms.

〈v(η),OC−
e (α)〉 = (−1)|α0|(ε(̃α)+1)〈qb,γk,1 (̃α; v(η)), α0〉L , (233)

〈η,OC−
e (v(α))〉

= (−1)(|v|+|α0|)(ε(̃α)+1)〈qb,γk,1 (̃α; η), v(α0)〉L + (−1)|α0|(ε(̃α)+1)〈qb,γk,1 (v(̃α); η), α0〉L ,

(234)

〈η,OC−
e (Lφv (α))〉 =

∑

P∈S2[k]
(−1)|α0|(ε(̃α)+1)+|v|(ε1+1)

〈qb,γk+1,1(α
(1:2) ⊗ v(b) ⊗ α(2:2); η), α0〉L . (235)

By definition of the open–closed pairing, we also have:

v
(〈η,OC−

e (α)〉) = (−1)|α0|(ε(̃α)+1)〈v(q
b,γ
k,1 (̃α; η)), α0〉L + (−1)|α0|(ε(̃α)+1)+|v|(ε(̃α)+|η|+1)

〈qb,γk,1 (̃α; η), v(α0)〉L . (236)

Then, apply Lemma 4.37 to compute v(q
b,γ
k,1 (̃α; η)). Keeping track of all the signs

shows the result. ��
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Proof of Lemma 4.65 As all the terms in the above equation are u-linear, we may
assume α and η are independent of u, and then prove this order by order in u.

To verify the u−1 term, apply Lemma 4.58 with γ1 = η and γ2 = v(γ ) and use
Lemma 4.52 to compute COe(v(γ )) = mv . Equality of the u0 terms is shown by
Lemma 4.66.

Definition 4.67 Recall the definition of Jv from Definition 4.43. Then define the pair-
ing:

〈η,Gv(α)〉 := 〈η, G̃v(α)〉 + (−1)|η|′|v|′+1〈η,OC−
e (Jv(α))〉. (237)

Proposition 4.68 The pairing Gv satisfies:

〈∇∗
v η,OC−

e (α)〉 + (−1)|η||v|〈η,OC−
e (∇vα)〉 = v

(〈η,OC−
e (α)〉)

+u−1
(
〈dη,Gv(α)〉 + (−1)|η|+|v|〈η,Gv ((b + uB)(α))〉

)
.

Proof This follows directly from Lemma 4.65, Corollary 4.44, and a verification of
signs. ��
Proof of Theorem 4.62 By the properties of the Poincaré pairing 130:

〈η,∇v(OC−
e (α))〉X = (−1)|η||v|v(〈η,OC−

e (α)〉) − (−1)|η||v|〈∇∗
v η,OC−

e (α)〉.
(238)

Lemma 4.68 then shows that on homology:

〈η,∇v(OC−
e (α))〉X = 〈η,OC−

e (∇v(α))〉, (239)

which shows that OC−
e (∇v(α)) = ∇v(OC−

e (α)).

We next show that the Assumptions 4.12 hold in our setup, so that the open–closed
map respects u-connections. Assumption 4.12(1) is Lemma 4.68. Assumption 4.12(2)
is Lemma 4.46 with φ = φe∂e − φY .

The following lemma shows Assumption 4.12(3) holds in our setup.

Lemma 4.69 For any η and α we have:

〈η,Y (OC−
e )(α)〉 = 〈η, e∂e(OC−

e )(α)〉 + 〈α,OC−
e (Lφ(η))〉, (240)

Where φ is as above.

Proof First note that a computation similar to Lemma 4.66 shows that

e∂e
(〈η,OC−

e (α)〉) = 〈e∂e(η),OC−
e (α)〉 + 〈η,OC−

e

(
v(α) − Lφe∂e

(α)
)〉

+
∑

β

(−1)|α0|(ε(̃α)+1) μ(β)

2
〈qb,γk,1 (̃α; η), α0〉L . (241)
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We thus find that:

〈η, e∂e(OC−
e )(α)〉 + 〈η,OC−

e (Lφe∂e
(α))〉 =

∑

β

(−1)|α0|(ε(̃α)+1) μ(β)

2
〈qb,γk,1 (̃α; η), α0〉L .

(242)

Similarly, we have:

〈η,Y (OC−
e )(α)〉 + 〈η,OC−

e (LφY (α))〉 = (−1)|α0|(ε(̃α)+1)〈qb,γk,2 (̃α; η ⊗ c1), α0〉L
(243)

=
∑

β

(−1)|α0|(ε(̃α)+1) μ(β)

2
〈qb,γk,1 (̃α; η), α0〉L .

(244)

The last equality follows from the divisor property 4.27. The result follows. ��
Finally we show that Assumption 4.12(4) holds:

Lemma 4.70 We have: Gr− ◦ OC−
e = OC−

e ◦ Gr−.

Proof First observe that for α = α0[α1, . . . , αk], with αi ∈ A∗(L;C), we have:

Gr−(α) = (1 + ε(α))α (245)

We then compute

|η| + |OC−
e (α)| − 2n = |〈η,OC−

e (α)〉X | (246)

= |〈qb,γk,1 (̃α; η), α0〉L | (247)

= |qb,γk,1 (̃α; η)| + |α0| − n (248)

= ε(̃α) + |η| + |α0| − n. (249)

We thus have |OC−
e (α)| = 1 + ε(α) + n. As the grading Gr− on QH∗(X; Qe

U )[[u]]
is shifted down by n compared to the cohomological grading, we have

Gr−(OC−
e (α)) = (1 + ε(α))OC−

e (α) = OC−
e (Gr−(α)). (250)

��
Theorem 4.15 thus implies that the cyclic open–closed map OC−

e is a morphism of
TE-structures. Now recall that CF∗(L, L) = A ⊗Qe Q. The cyclic open–closed map
then restricts at e = 1 to a map

OC− : HC−∗ (CF∗(L, L)) → QH∗(X; Q). (251)
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We have thus proved Theorem 1.7.

Theorem 4.71 (Theorem 1.7) Under Assumptions 4.18 the cyclic open–closed map

OC− : HC−(CF∗(L, L)) → QH∗(X; QU )[[u]]

is a morphism of TE-structures.

5 Analysis on the horocyclic moduli space

The main goal of this chapter is to prove Proposition 4.31. Finally, in the last section
we proof Proposition 4.32.

The following sections use themethod of proof explained to the author in an unpub-
lished draft by Jake Solomon and Sara Tukachinsky. We prove the following result for
the operations qSTk,l,⊥, which were defined using the sign convention similar to [47].

Proposition 5.1

0 =
∑

S3[l]
(2:3)={i}

(−1)1+|γ (1:3)|qSTk,l;⊥0
(⊗k

j=1α j ; γ (1:3) ⊗ dγi ⊗ γ (3:3)) (252)

+
∑

J1∪J2=[l]
1,2∈J2

(−1)sign
γ (J1,J2)qSTk, j1 (α; qST∅, j2

(γ J2 ) ⊗ γ J1 ) (253)

+
∑

J1∪J2=[l]
1,2∈J2
P∈S3[k]

(−1)sign
γ (J1,J2)+ε1|γ J2 |+1qSTk1+k3+1, j1 (α

(1:3) ⊗ qSTk2, j2;⊥0
(α(2:3); γ J2 )

⊗ α(3:3); γ J1 ) (254)

+
∑

J1∪J2=[l]
1,2∈J1
P∈S3[k]

(−1)sign
γ (J1,J2)+ε1(|γ J2 |+1)+|γ J1 |qSTk1+k3+1, j1;⊥0

(α(1:3) ⊗ qSTk2, j2 (α
(2:3); γ J2 )

⊗ α(3:3); γ J1 ) (255)

+
∑

J1∪J2∪J3=[l]
1∈J3, 2∈J2
P∈S5[k]

(−1)A5qSTk1+k3+k5+2, j1 (α
(1:5) ⊗ qSTk2, j2 (α

(2:5); γ J2 ) ⊗ α(3:5)

⊗ qSTk4, j3 (α
(4:5); γ J3 ) ⊗ α(5:5); γ J1 ). (256)

Here

A5 = signγ (J1, J2, J3) + |γ J2 | + (|γ J2 | + 1)ε1 + (|γ J3 | + 1)(ε1 + ε2 + ε3)

(257)
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Proposition 4.31 then follows from the above by a direct verification of signs. In the
following, we prove Proposition 5.1 assuming that the U (�)-local system is trivial.
The general result then follows easily.

Recall that the orientation on Mk+1,l;⊥0(β) is defined by the fibre-product orien-
tation, as defined in [46, Section 2.2]. We take the orientation on I to be the positive
orientation, so that ∂ I = {1} − {0}. The boundary is then identified as:

∂Mk+1,l;⊥0 (β) ∼= ∂(I ×D2 Mk+1,l (β)) = ∂ I ×D2 Mk+1,l (β) − I ×D2 ∂Mk+1,l (β).

(258)

We now further decompose each of the terms in the boundary. For each, we identity
them with a fibre product of other moduli spaces (both with and without horocyclic
constraints).

5.1 Signs of boundary components

In this section we identify boundary components of the moduli spaces with fibre
products of different moduli spaces.We compute the difference in orientation between
the induced orientation on the boundary components, and the fibre product orientation.
First we consider the boundary components coming from I ×D2 ∂Mk+1,l(β). Let
k = k1 + k2 + k3 and write M1 := Mk1+k3+2,l(β1), M2 := Mk2+1,l(β2). Finally
writeM j,⊥ = I ×D2 M j . Let B⊥ be a boundary component where a disk bubbles off
at the (k1+1)-th boundary point, with k2 of the boundarymarked points and the interior
marked points labelled by J . The boundary I ×D2 ∂Mk+1,l(β) can be decomposed
into two components, B⊥,1, where the bubbling is not at the zeroth marked point and
B⊥,2, where the bubbling is at the zeroth marked point.

Lemma 5.2 There exists diffeomorphisms:

φ1 : M1,⊥evb
β1
k1+1

×
evb

β2
0
M2

∼−→ B⊥,1, (259)

φ2 : M1evb
β1
k1+1

×
evb

β2
0
M2,⊥

∼−→ B⊥,2. (260)

The maps φ j change the orientation by sign(φ j ), where:

sign(φ1) = (−1)1+k2k3+k1+n, (261)

sign(φ2) = (−1)k3(k2+1)+n+1. (262)

The proof of this lemma uses:

Proposition 5.3 ([47, Proposition 2.8]) Let k, l ∈ Z≥0. Let P ∈ S3[k] and β1 + β2 =
β ∈ H2(X , L). Let I � J = [l] be a partition. Let B ⊂ ∂Mk+1,l(β) be the boundary
component where a disk bubbles off at the k1 + 1-th boundary point, with k2 of the
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boundary marked points and the interior marked points labelled by J lying on the
bubble disk. Then the canonical diffeomorphism

θ : Mk1+k3+1,l(β1)evb
β1
k1+1

×
evb

β2
0
Mk2+1,l(β2) → B (263)

changes orientation by the sign (−1)δ1 , with

δ1 = k2k3 + k1 + n. (264)

Proof of Lemma 5.2 We can decompose φ1 as

M1,⊥ ×L M2 → (I ×D2 M1) ×L M2
m1−→ I ×D2 (M1 ×L M2)

θ̂−→ I ×D2 B
t−→ B⊥,1.

(265)

Here θ̂ is the map induced by θ from the Proposition 5.3. By [7, Lemma 8.2.3(4)], we
have sign(θ̂) = sign(θ). From Eq. (258) it is clear that sign(t) = −1. Finally, from
the associativity of the fibre product [7, Lemma 8.2.3(2)], sign(m1) = 1. Thus

sign(φ1) = (−1)1+k2k3+k1+n . (266)

Similarly, we decompose φ2 as:

M1 ×L M2,⊥ → M1 ×L (I ×D2 M2)
m2−→ I ×D2 (M1 ×L M2)

ˆþeta−−→ I ×D2 B
t−→ B⊥,2.

(267)

We can compute sign(m2) as follows:

M1 ×L (I ×D2 M2) = (−1)(k2+1)(k1+k3)(I ×D2 M2) ×L M1 (268)

= (−1)(k2+1)(k1+k3+1) I ×D2 (M2 ×L M1) (269)

= (−1)(k2+1)(k1+k3+1)+k2(k1+k3)) I ×D2 (M1 ×L M2).

(270)

So that sign(m2) = (−1)k1+k3+1, and thus:

sign(φ2) = (−1)k3(k2+1)+n+1. (271)

Nowwe consider the boundary components coming from ∂ I ×D2 Mk+1,l(β). First
we set up some notation regarding the moduli spaces of holomorphic disks. We have

M̃main(β) = {u : (D2, S1) → (X , L)|u is holomorphic and u∗([D2, S1])
= β ∈ H2(X , L)}. (272)
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The superscriptmain here denotes that this is the top-dimensional stratum of the mod-
uli space. The moduli spaces M̃main(β) are oriented using the relative spin structure
as in [7, Chapter 8]. Adding marked points and quotienting by Aut(D2) gives the
moduli spaces Mmain

k+1,l(β) as open subsets

Mmain
k+1,l(β) ⊂

(
M̃main(β) × (S1)k+1 × (D2)l

)
/Aut(D2). (273)

Here we need to be careful about the ordering in (S1)k+1. We stick to the convention
in [7], so that (S1)k+1 = S10 × S11 × · · · × S1k . Here S1i is the circle corresponding to
the i’th boundary marked point. The orientation of a quotient by a Lie group is defined
as in [7]. This means that the orientation on Mk+1,l(β) is such that there exists an
orientation preserving local diffeomorphism:

Mmain
k+1,l(β) × Aut(D2) ∼= M̃main(β) × (S1)k+1 × (D2)l . (274)

Lemma 5.4 Let k ≥ 1 and l ≥ 1. Fixing the 0th boundary marked point at −i , and
the first interior marked point at 0 defines a local diffeomorphism:

Mmain
k+1,l(β) → M̃main(β) × (S1)k × (D2)l−1, (275)

which changes orientation by (−1)k .

Proof Recall that in [7] the orientation on Aut(D2) is given by considering the local
diffeomorphism:

Aut(D2) → (S1)3

g �→ (gz0, gz1, gz2), (276)

for three points z0, z1, z2 ⊂ S1 in counter-clockwise ordering. By definition, this map
is orientation preserving. One can check that the map

Aut(D2) → S1 × D2

g �→ (g · −i, g · 0), (277)

is also orientationpreserving.Nowmultiply both sides byM̃main(β)×(S1)k×(D2)l−1

on the left, and commute the various terms through to obtain a local diffeomorphism:

M̃main(β) × (S1)k × (D2)l−1 × Aut(D2) ∼= (−1)kM̃main(β) × (S1)k+1 × (D2)l .

(278)

The sign (−1)k here comes from the change in ordering from (S1)k × S10
∼=

(−1)k(S1)k+1. Finally, apply Eq. (274) and cancel the factor Aut(D2) to obtain the
result. ��
Similar considerations show:
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Lemma 5.5 Let k = k1 + k2 + k3. Fixing the three boundary marked points with
indices 0, k1 + 1 and k1 + k2 + 2, we obtain a local diffeomorphism:

Mmain
k+3,l(β) → M̃main(β) × (S1)k × (D2)l−1, (279)

which changes orientation by (−1)k+k2 = (−1)k1+k3 .

Lemma 5.6 Fixing the first three marked points at 0, 1,∞ gives an orientation pre-
serving local diffeomorphism:

Mmain
∅,l1+1(β) → M̃main

∅ (β) × (S2)l1−2. (280)

We nowwant to study the boundary components ∂ I ×D2 Mk+1,l(β). Observe that:

∂ I ×D2 Mk+1,l(β) = {1} ×D2 Mk+1,l(β) − {0} ×D2 Mk+1,l(β). (281)

First we look at the casewhere the two interiormarked points collide. This corresponds
to {0} ×D2 Mk+1,l(β). Let B⊥,3 be a boundary component where the interior marked
points labelled by I bubble off on a sphere. Note that 1, 2 ∈ I . Together with the
output marked point on the sphere, this gives at least 3 marked points.

For gluing the moduli spaces of holomorphic maps M̃main
∅ (β1) and M̃main(β2),

we use the following:

Proposition 5.7 (Lemma C.1) The gluing map

M̃main
∅ (β1) ×X M̃main(β2) → M̃main(β1 + β2) (282)

is a local diffeomorphism which changes orientation by (−1)ws(β1).

Remark 5.8 This proposition is implicit in [44] and the statement was communicated
to the author by Sara Tukachinsky. See also [15, Remark 2.7]. As far as the author is
aware, the proof of this statement has not appeared in any literature before. We thus
prove it in Appendix 1.

We then prove:

Proposition 5.9 The canonical local diffeomorphism

φ3 : M∅,l1+1(β1) ×X Mk+1,l2+1(β2)
∼−→ B⊥,3 ⊂ ∂Mk+1,l;⊥0(β) (283)

changes orientation by sign(φ3) = (−1)1+ws(β1). Here β = β1 + β2.

Proof Let (v, u) be a stable map, where v : S2 → X , u : (D2, S1) → (X , L) and
evi0(v) = evi0(u) = x ∈ X . We will compute the change in orientation locally at
(v, u). By definition of the fibre product orientation, we have:

T(0,(v,u)){0} ×D2 Mk+1,l(β) ⊕ T0D
2 ∼= TuMk+1,l(β). (284)
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by Lemma 5.4 we have:

TuMk+1,l(β) ⊕ Tx X ∼= (−1)kT(v,u)M̃(β) ⊕ R
k ⊕ C

l−1 ⊕ Tx X . (285)

Now use Proposition 5.7 to rewrite this as:

∼= (−1)ws(β1)+kT(v,u)M̃∅(β1) ×X M̃(β2) ⊕ Tx X ⊕ R
k ⊕ C

l−1. (286)

By definition of the fibre product orientation, this is isomorphic to

∼= (−1)ws(β1)+kTvM̃∅(β1) ⊕ TuM̃(β2) ⊕ R
k ⊕ C

l−1. (287)

Next, we rearrange the terms, to obtain:

∼= (−1)ws(β1)+k(TvM̃∅(β1) ⊕ C
l1−2) ⊕ (TuM̃(β2) ⊕ R

k ⊕ C
l2) ⊕ C. (288)

By Lemmas 5.4 and 5.6, this is isomorphic to:

∼= (−1)ws(β1)TvM∅,l1+1(β1) ⊕ TuMk,l2(β2) ⊕ C. (289)

Again, by definition of the fibre product orientation, this is isomorphic to:

∼= (−1)ws(β1)T(v,u)M∅,l1+1(β1) ⊗X TuMk,l2(β2) ⊕ Tx X ⊕ C. (290)

Thus, as T0D ∼= C, and cancelling the terms Tx X , we obtain:

T(0,(v,u)){0} ×D2 Mk+1,l(β) ∼= (−1)ws(β1)T(v,u)M∅,l1+1(β1) ×X TuMk,l2(β2)

(291)

The extra change in sign then comes from Eq. (281). ��
Next we consider the case when one of the horocyclicly constrained points collides
with the boundary marked point. This corresponds to {1} ×D2 Mk+1,l(β). Here two
disks bubble off on either side of the disk. Let B⊥,4 be this boundary component. We
show:

Proposition 5.10 The map

φ4 : Mk4+1,l3(β3) ×L Mk1+k3+k5+3,l1(β1) ×L Mk2+1,l2(β2) → B⊥,4

⊂ ∂Mk+1,l,⊥0(β) (292)

changes orientation with sign(φ4) = k4(k1 + k2 + k3) + k2(k3 + k5) + k3.

Applying [7, Lemma 8.3.5] twice shows:
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Lemma 5.11 The gluing map:

θ : M̃(β3) ×L M̃(β1) ×L M̃(β2) → M̃(β), (293)

is an orientation preserving local diffeomorphism. Here β = β1 + β2 + β3.

Proof of 5.10 Let u = (u1, u2, u3) ∈ B⊥,4 be a stable map. For simplicity, write
M1 = Mk1+k3+k5+3,l1 , M2 = Mk2+1,l2(β2) and Mk4+1,l3(β3). We first note that
by definition of the fibre product orientation:

T(1,u){1} ×D2 Mk+1,l(β) ⊕ T1D
2 ∼= TuMk+1,l(β). (294)

We then use Lemma 5.4 to write:

TuMk+1,l(β) ⊕ T L ⊕ T L ∼= (−1)kM̃(β) ⊕ R
k ⊕ C

l−1 ⊕ T L ⊕ T L, (295)

which, by Proposition 5.11 is isomorphic to:

∼= (−1)kTu(M̃(β3) ×L M̃(β1) ×L M̃(β2)) ⊕ R
k ⊕ C

l−1 ⊕ T L ⊕ T L. (296)

By applying the definition of the fibre product orientation twice, this is isomorphic to:

∼= (−1)k+nTu3M̃(β3) ⊕ Tu1M̃(β1) ⊕ Tu2M̃(β2) ⊕ R
k ⊕ C

l−1. (297)

Commuting the various terms through, noting that C is even dimensional, and R is
odd dimensional, this gives:

∼= (−1)k+n+A(Tu3M̃(β3) ⊕ R
k4 ⊕ C

l3−1) ⊕ (Tu1M̃(β1) ⊕ R
k1+k3+k5 ⊕ C

l1)

⊕(Tu2M̃(β2) ⊕ R
k2 ⊕ C

l2−1) ⊕ C,

(298)

where A = k4(k1+k2+k3)+n(k1+k3+k5)+k2(k3+k5). Then apply Lemmas 5.4
and 5.5 to find:

∼= (−1)k+n+A+BTu3Tu3M3 ⊕ Tu1M1 ⊕ Tu2M2 ⊕ C, (299)

where B = k1 + k2 + k4 + k5. Finally, apply the definition of the fibre product
orientation twice to obtain:

∼= (−1)k+n+A+B+n(k1+k3+k5+n)Tu(M3 ×L M1 ×L M2) ⊕ T L ⊕ T L ⊕ C.

(300)

The result then follows by cancelling the factors T L and noting that T1D2 ∼= C. ��
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5.2 Stokes’ theorem and push-forward

The next step is to apply Stokes’ theorem for the push-forward of differential forms.

Theorem 5.12 ([46, Theorem 1]) Let M be a smooth orbifold with boundary. For a
smooth submersion f : M → N of relative dimension s, and ξ ∈ At (M). We have:

0 = f∗(dξ) − d( f∗ξ) + (−1)s+t ( f |∂M )∗ξ. (301)

Recall the following facts about the push-forward of differential forms, see [46]:

Lemma 5.13 1. Let f : M → N be a proper submersion, α ∈ A∗(N ), β ∈ A∗(M).
Then:

f∗( f ∗α ∧ β) = α ∧ f∗β. (302)

2. Let

M ×N P P

M N

q

p

g
f

(303)

be a pull-back diagram of smooth maps, where g and f are proper submersions.
Let α ∈ A∗(P). Then:

q∗ p∗α = f ∗g∗α. (304)

Similarly, if β ∈ A∗(M), then:

p∗q∗β = (−1)(dim(M)−dim(N ))(dim(P)−dim(N ))g∗ f∗β. (305)

To obtain the structure equations for the qST⊥ operations, we will apply Stokes’
theorem with M = Mk+1,l,⊥0(β), N = L , f = evb0 and ξ = ∧

i=1 evi
∗γi ∧∧

j=1 evb
∗
jα j . When it is clear which evaluation maps are used, we will simply write

evi∗γ for
∧

i=1 evi
∗γi and similarly for the boundary evaluations.

The first term in Stokes’ theorem is:

(evb0)∗(dξ) = (evb0)∗

⎛

⎜
⎜
⎝

∑

S3[l]
(2:3)={i}

(−1)|γ (1:3)|evi∗(γ (1:3) ∧ dγi ∧ γ (3:3)) ∧ evb∗α

(306)

+
∑

S3[k]
k2=1

(−1)|γ |+ε1+k1evi∗γ ∧ evb∗(α(1:3) ∧ dαk1+1 ∧ α(3:3))

⎞

⎟
⎟
⎠ ,

(307)
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by definition of the q operations, this equals:

=
∑

S3[l]
(2:3)={i}

(−1)|γ (1:3)|+ζ(α)+ζ⊥(α,dγ )q
ST ,β

k,l;⊥0
(⊗k

j=1α j ; γ (1:3) ⊗ dγi ⊗ γ (3:3)) (308)

+
∑

S3[k]
k2=1

(−1)|γ |+ζ(α)+1+ε1+ζ⊥(dα,γ )q
ST ,β

k,l;⊥0
(α(1:3) ⊗ q

ST ,β0
1,0 (αk1+1) ⊗ α(3:3); γ ),

(309)

by expanding the signs ζ⊥, we find:

=
∑

S3[l]
(2:3)={i}

(−1)n+|γ |+ζ(α)+ε(α)+|γ (1:3)|+1q
ST ,β

k,l;⊥0
(⊗k

j=1α j ; γ (1:3) ⊗ dγi ⊗ γ (3:3))

(310)

+
∑

S3[k]
k2=1

(−1)n+|γ |+ζ(α)+ε(α)+ε1+|γ |qST ,β

k,l;⊥0
(α(1:3) ⊗ q

ST ,β0
1,0 (αk1+1) ⊗ α(3:3); γ ).

(311)

The second term in Stokes’ theorem reads:

−d((evb0)∗ξ) = −q
ST ,β0
1,0 ((evb0)∗ξ) = (−1)ζ(α)+1+ζ⊥(α,γ )q

ST ,β0
1,0 (q

ST ,β
k,l,⊥0

(α, γ ))

(312)

= (−1)n+|γ |+ζ(α)+ε(α)+1q
ST ,β0
1,0 (q

ST ,β
k,l,⊥0

(α, γ )).

(313)

The final term in Stokes’ theorem is given by restricting to the various boundary
components B⊥,i for i = 1, 2, 3, 4. We first compute the overall sign (−1)s+t . Note
that |ξ | = |γ | + |α|, dim(M) ≡ k + 1 (mod 2) and dim(L) = n, so s ≡ k + 1 + n.
The overall sign is thus

s + t ≡ |γ | + ε(α) + n + 1 (mod 2). (314)

5.2.1 B⊥,1

Here we will show:

Lemma 5.14 The terms in Stokes’ theorem coming from (evb0|B1,⊥)∗ξ are

∑

P∈S3[k]
β1+β2=β

β2 �=0
J1∪J2=[l]
γ1,γ2∈J1

(−1)C1q
ST ,β1
k1+1+k3,l1,⊥(α(1:3) ⊗ q

ST ,β2
k2,l2

(α(2:3); γ J2) ⊗ α(3:3); γ J1), (315)
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where C1 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2) + (|γ J2 | + 1)ε1 + |γ J1 |.
Recall that

φ1 : Mk1+k3+2,l1,⊥0 (β1)evb
β1
k1+1

×
evb

β2
0
Mk2+1,l2 (β2)

∼−→ B⊥,1 (316)

changes orientation by δ1 := sign(φ1) = n + k1 + k2k3.
Denote everything associatedwithMk1+k3+2,l1,⊥0(β1)with a subscript 1 and every-

thing associated with Mk2+1,l2(β2) with a subscript 2. Consider the commutative
diagram:

M1,⊥ ×L M2 M2

M1,⊥ L

p1

p2

evb20evb1k1+1

(317)

Let

ξ = φ∗
1ξ, (318)

ξ1 = (evi1)∗γ J1 ∧ (evb1)∗(α(1:3) ∧ α(3:3)), (319)

ξ2 = (evi2)∗γ J2 ∧ (evb2)∗α(2:3). (320)

Define δ2 by

p∗
1ξ1 ∧ p∗

2ξ = (−1)δ2ξ . (321)

We thus find:

δ2 = signγ (J1, J2) + |γ J2 |(ε1 + k1 + ε3 + k3) + (ε2 + k2)(ε3 + k3). (322)

Now compute

(evb0|B⊥,1)∗ξ = (−1)δ1+δ2(evb10)∗(p1)∗(p∗
1ξ1 ∧ p∗

2ξ2), (323)

by using the relation (302), this equals:

= (−1)δ1+δ2(evb10)∗(ξ1 ∧ (p1)∗(p2)∗ξ2), (324)

using Eq. (304) we obtain:

= (−1)δ1+δ2(evb10)∗(ξ1 ∧ (evb1k1+1)
∗(evb20)∗ξ2), (325)

which, by definition of qST equals:

= (−1)δ1+δ2+δ3(evb10)∗(ξ1 ∧ q
ST ,β2
k2,l2

(α(2:3); γ J2)), (326)
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where δ3 = ζ(α(2:3)). Expanding ξ1 and rearranging gives:

= (−1)δ1+δ2+δ3+δ4 (evb10)∗((evi1)∗γ J1 ∧ (evb1)∗(α(1:3) ∧ q
ST ,β2
k2,l2

(α(2:3); γ J2 ) ∧ α(3:3))),
(327)

where δ4 = (|γ J2 | + ε2)(ε3 + k3). Finally by definition this equals:

= (−1)δ1+δ2+δ3+δ4+δ5q
ST ,β1
k1+1+k3,l1,⊥(α(1:3) ⊗ q

ST ,β2
k2,l2

(α(2:3); γ J2) ⊗ α(3:3); γ J1),

(328)

where δ5 = ζ(α(1:3), qST (α(2:3); γ J2), α(3:3)) + ζ⊥(α(1:3), qST (α(2:3); γ J2), α(3:3)).
Adding all signs together with the sign in Stokes’ theorem, we get an overall sign:

C1 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2) + (|γ J2 | + 1)ε1 + |γ J1 |. (329)

Here we have used [47, Lemma 2.9] to compute

ζ(α(2:3)) + ζ(α(1:3), qSTk2,l2(α
(2:3); γ J2), α(3:3))

= ζ(α) + ε(α) + ε1 + (k1 + 1)|γ J2 | + k3k2. (330)

5.2.2 B⊥,2

We repeat the above argument for the boundary component B⊥,2. We show:

Lemma 5.15 The terms in Stokes’ theorem coming from (evb0|B2,⊥)∗ξ are

∑

P∈S3[k]
β1+β2=β

β1 �=0
J1∪J2=[l]
γ1,γ2∈J2

(−1)C2q
ST ,β1
k1+1+k3,l1

(α(1:3) ⊗ q
ST ,β2
k2,l2,⊥(α(2:3); γ J2) ⊗ α(3:3); γ J1), (331)

where C2 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2) + |γ J2 |ε1 + 1.

Recall that

φ2 : Mk1+k3+2,l1(β1)evb
β1
k1+1

×
evb

β2
0
Mk2+1,l2,⊥0(β2)

∼−→ B⊥,2 (332)

changes orientation by δ1 := sign(φ1) = n + k3 + k2k3 + 1.
Denote everything associated withMk1+k3+2,l1(β1) with a subscript 1, everything

associated with Mk2+1,l2,⊥0(β2) with a subscript 2. Consider the commutative dia-
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gram:

M1 ×L M2,⊥ M2,⊥

M1 L

p1

p2

evb20evb1k1+1

(333)

Let

ξ = φ∗
2ξ, (334)

ξ1 = (evi1)∗γ J1 ∧ (evb1)∗(α(1:3) ∧ α(3:3)), (335)

ξ2 = (evi2)∗γ J2 ∧ (evb2)∗α(2:3). (336)

δ2 is as before:

p∗
1ξ1 ∧ p∗

2ξ = (−1)δ2ξ . (337)

Now compute

(evb0|B⊥,2)∗ξ = (−1)δ1+δ2(evb10)∗(p1)∗(p∗
1ξ1 ∧ p∗

2ξ2) (338)

= (−1)δ1+δ2(evb10)∗(ξ1 ∧ (p1)∗(p2)∗ξ2) (339)

= (−1)δ1+δ2(evb10)∗(ξ1 ∧ (evb1k1+1)
∗(evb20)∗ξ2) (340)

= (−1)δ1+δ2+δ3(evb10)∗(ξ1 ∧ q
ST ,β2
k2,l2,⊥(α(2:3); γ J2)), (341)

where δ3 = ζ(α(2:3)) + ζ⊥(α(2:3); γ J2). Expanding ξ1 and rearranging gives:

= (−1)δ1+δ2+δ3+δ4 (evb10)∗((evi1)∗γ J1 ∧ (evb1)∗(α(1:3) ∧ q
ST ,β2
k2,l2,⊥(α(2:3); γ J2 ) ∧ α(3:3))),

(342)

where δ4 = (|γ J2 |+ ε2 +1)(ε3 + k3). By definition of the qST operations, this equals:

= (−1)δ1+δ2+δ3+δ4+δ5q
ST ,β1
k1+1+k3,l1,⊥(α(1:3) ⊗ q

ST ,β2
k2,l2,⊥(α(2:3); γ J2) ⊗ α(3:3); γ J1),

(343)

where δ5 = ζ(α(1:3), qSTk2,l2,⊥0
(α(2:3); γ J2), α(3:3)). Adding all signs together with the

sign in Stokes’ theorem 5.12, we get an overall sign:

C2 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2) + |γ J2 |ε1 + 1. (344)
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5.2.3 B⊥,3

We show:

Lemma 5.16 The terms in Stokes’ theorem coming from (evb0|B3,⊥)∗ξ are

∑

β1+β2=β
J1∪J2=[l]
γ1,γ2∈J1

(−1)C3qSTk,l2(α; qST∅,l1
(γ J1) ⊗ γ J2), (345)

where C3 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2).

Recall that

φ3 : M∅,l1+1(β1) ×X Mk+1,l2+1(β2)
∼−→ B⊥,3 ⊂ ∂Mk+1,l;⊥0(β) (346)

changes orientation by δ1 := sign(φ3) = ws(β1) + 1.
Denote everything associated with M∅,l1+1(β1) with a subscript 1, and those for

Mk+1,l2+1(β2) with a subscript 2. Consider the commutative diagram:

M1 ×X M2 M2

M1 X

p1

p2

evi21
evi10

(347)

Let

ξ = φ∗
3ξ, (348)

ξ1 = (evi1)∗γ J1, (349)

ξ2 = (evi2)∗γ J2 ∧ (evb2)∗α. (350)

δ2 is defined by:

p∗
1ξ1 ∧ p∗

2ξ = (−1)δ2ξ, (351)

so that:

δ2 = signγ (J1, J2). (352)

Now compute

(evb0|B⊥,3)∗ξ = (−1)δ1+δ2(evb20)∗(p2)∗(p∗
1ξ1 ∧ p∗

2ξ2) (353)

= (−1)δ1+δ2+δ3(evb20)∗((p2)∗(p1)∗ξ1 ∧ ξ2), (354)
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where δ3 = reldim(p2)|ξ1| ≡ 0 (mod 2). Using the commutative diagram, we find:

= (−1)δ1+δ2(evb20)∗((evi21 )∗(evi10)∗ξ1 ∧ ξ2) (355)

= (−1)δ1+δ2+δ4(evb20)∗((evi21 )∗(q
ST ,β1
∅,l1

(γ J1) ∧ ξ2)), (356)

where δ4 = ws(β1). By definition this equals:

= (−1)δ1+δ2+δ4+δ5qSTk,l2(α; qST∅,l1
(γ J1) ⊗ γ J2), (357)

where δ5 = ζ(α). Adding all signs together with the sign in Stokes’ theorem 5.12, we
get an overall sign:

C3 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2). (358)

5.2.4 B⊥,4

Lemma 5.17 The terms in Stokes’ theorem coming from (evb0|B4,⊥)∗ξ are

∑

P∈S5[k]
β1+β2+β3=β
J1∪J2∪J3=[l]
1∈J3, 2∈J2

q
ST ,β1
k1+1+k3+k5,l1

(α(1:5) ⊗ q
ST ,β2
k2,l2

(α(2:5); γ J2) ⊗ α(3:5)

⊗q
ST ,β4
k4,l4

(α(4:5); γ J3) ⊗ α(5:5); γ J1), (359)

where C4 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2, J3) + (|γ J2 | + 1)ε1 + (|γ J3 | +
1)(ε1 + ε2 + ε3) + |γ J2 |.
Recall that

φ4 : Mk4+1,l3 (β3) ×L Mk1+k3+k5+3,l1 (β1) ×L Mk2+1,l2 (β2) → B⊥,4 ⊂ ∂Mk+1,l,⊥0 (β)

(360)

changes orientation by δ1 := sign(φ4) = k4(k1 + k2 + k3) + k2(k3 + k5) + k3.
Denote everything associated with Mk1+k3+k5+3,l1(β1) with a subscript 1,

everything associated with Mk2+1,l2(β2) with a subscript 2 and subscript 3 for
Mk4+1,l3(β3). Consider the commutative diagram:

M3 ×L M1 ×L M2 M3 ×L M1 M3 L

M2 L M1

p13

p2 evb1k1+1◦p131

p133

p131

evb30

evb20 evb1k1+1

evb1k1+k3+k5+2

(361)
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Let

ξ = φ∗
4ξ, (362)

ξ1 = (evi1)∗γ J1 ∧ (evb1)∗(α(1:5) ∧ α(3:5) ∧ α(5:5)), (363)

ξ2 = (evi2)∗γ J2 ∧ (evb2)∗α(2:5), (364)

ξ3 = (evi3)∗γ J3 ∧ (evb3)∗α(4:5). (365)

δ2 is defined by:

p∗
3ξ3 ∧ p∗

1ξ1 ∧ p∗
2ξ = (−1)δ2ξ, (366)

so that:

δ2 = signγ (J1, J2) + signγ (J3, J1 ∪ J2) + |γ J1 |(k4 + ε4)

+|γ J2 |(k5 + ε5 + k4 + ε4 + k3 + ε3 + k1 + ε1)

+(ε4 + k4)(ε1 + k1 + ε3 + k3) + (ε2 + k2)(k5 + ε5 + k4 + ε4 + k3 + ε3).

(367)

Now compute

(evb0|B⊥,4)∗ξ = (−1)δ1+δ2(evb10)∗(p1)∗(p∗
3ξ3 ∧ p∗

1ξ1 ∧ p∗
2ξ2) (368)

= (−1)δ1+δ2(evb10)∗(p131 )∗(p13)∗((p13)∗((p133 )∗ξ3 ∧ (p131 )∗ξ1) ∧ p∗
2ξ2) (369)

= (−1)δ1+δ2(evb10)∗(p131 )∗((p133 )∗ξ3 ∧ (p131 )∗ξ1 ∧ (p13)∗ p∗
2ξ2) (370)

= (−1)δ1+δ2(evb10)∗(p131 )∗((p133 )∗ξ3 ∧ (p131 )∗ξ1 ∧ (p131 )∗(evb1k1+1)
∗(evb20)∗ξ2)

(371)

= (−1)δ1+δ2+δ3(evb10)∗((p131 )∗(p133 )∗ξ3 ∧ ξ1 ∧ (evb1k1+1)
∗(evb20)∗ξ2), (372)

where δ3 = k4(|γ J1 | + |γ J2 | + k5 + ε5 + k3 + ε3 + k1 + ε1 + ε2).

= (−1)δ1+δ2+δ3+δ4 (evb10)∗((evb1k1+k3+k5+2)
∗(evb30)∗ξ3 ∧ ξ1 ∧ (evb1k1+1)

∗(evb20)∗ξ2)

(373)

where δ4 = k4(k1 + k3 + k5)

= (−1)
∑5

i=1 δi (evb10)∗((evb1k1+k3+k5+2)
∗(evb30)∗ξ3 ∧ ξ1 ∧ (evb1k1+1)

∗qSTk2,l2 (α
(2:5); γ J2 ))

(374)
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where δ5 = ζ(α(2:5))

= (−1)
∑6

i=1 δi (evb10)∗((evb1k1+k3+k5+2)
∗qSTk4,l4(α

(4:5); γ J3) ∧ ξ1 ∧ (evb1k1+1)
∗

qSTk2,l2(α
(2:5); γ J2)) (375)

where δ6 = ζ(α(4:5))

= (−1)
∑7

i=1 δi (evb10)∗((evi1)∗γ J1 ∧ (evb1)∗(α(1:5) ∧ qSTk2,l2(α
(2:5); γ J2) ∧ α(3:5)

∧ qSTk4,l4(α
(4:5); γ J3) ∧ α(5:5))) (376)

where δ7 = (|γ J1 | + ε1 + k1 + ε3 + k3)(ε4 + |γ J3 |) + (|γ J2 | + ε2)(k5 + ε5 + k3 +
ε3 + ε4 + |γ J3 |)

= (−1)
∑8

i=1 δi q
ST ,β1
k1+1+k3+k5,l1

(α(1:5) ⊗ q
ST ,β2
k2,l2

(α(2:5); γ J2) ⊗ α(3:5)

⊗ q
ST ,β4
k4,l4

(α(4:5); γ J3) ⊗ α(5:5); γ J1) (377)

where δ8 = ζ(α(1:5), qSTk2,l2(α
(2:5); γ J2), α(3:5), qSTk4,l4(α

(4:5); γ J3), α(5:5)). Adding all
signs together with the sign in Stokes’ theorem 5.12, we get an overall sign:

C4 = n + |γ | + ζ(α) + ε(α) + signγ (J1, J2, J3) + (|γ J2 | + 1)ε1
+(|γ J3 | + 1)(ε1 + ε2 + ε3) + |γ J2 |. (378)

The above computation relies on the following lemma, which is similar to [47,
Lemma 2.9]:

Lemma 5.18 Let P ∈ S5[k], then

ζ(α(2:5)) + ζ(α(4:5)) + ζ(α(1:5), qSTk2,l2(α
(2:5); γ J2), α(3:5), qSTk4,l4(α

(4:5); γ J3), α(5:5))
≡ ζ(α) + ε2 + ε3 + k3 + |γ J2 |(k1 + 1) + |γ J3 |(k1 + k3)

+1 + k2(ε3 + ε4 + ε5) + k4ε5 (mod 2). (379)

Proof All our computations here will be done modulo two. From the definition of ζ

we have:

ζ(α(2:5)) = 1 +
k2∑

i=k1+1

(i − k1)|αi |′ = 1 + k1ε2 +
k2∑

i=k1+1

i |αi |′. (380)

Similarly we have:
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ζ(α(4:5)) = 1 +
k1+k2+k3+k4∑

i=k1+k2+k3+1

(i − (k1 + k2 + k3))|αi |′

= 1 + (k1 + k2 + k3)ε4 +
k1+k2+k3+k4∑

i=k1+k2+k3+1

i |αi |′. (381)

Finally:

ζ(α(1:5), qSTk2,l2(α
(2:5); γ J2), α(3:5), qSTk4,l4(α

(4:5); γ J3), α(5:5))

= 1 +
k1∑

i=1

i |αi |′ + (k1 + 1)(ε2 + |γ J2 | + 1)

+
k1+k2+k3∑

i=k1+k2+1

(i + 1 − k2)|αi |′ + (k1 + k3 + 2)(ε4 + |γ J3 | + 1)

+
k∑

i=k1+k2+k3+k4+1

(i + 2 − k2 − k4)|αi |′

= 1 +
k1∑

i=1

i |αi |′ +
k1+k2+k3∑

i=k1+k2+1

i |αi |′ +
k∑

i=k1+k2+k3+k4+1

i |αi |′ + (k1 + 1)

(ε2 + |γ J2 | + 1) + (k2 + 1)ε3 + (k1 + k3)(ε4 + |γ J3 | + 1) + (k2 + k4)ε5.

(382)

Adding up these three terms gives the result. ��

5.3 Concluding the proof of the structure equation

The last step of the proof of Proposition 5.1 is to combine the terms coming from B⊥,1
with term (311) coming from (evb0)∗(dξ). Because the disk bubbles in B⊥,1 must be
stable, there are no disks contributing with β2 = β0. These contributions are exactly
provided by the term (evb0)∗(dξ) in Stokes’ theorem. The same holds for B⊥,2 and
the terms coming from d(evb0)∗ξ . We then sum all the terms together with those from
B⊥,3 and B⊥,4. Finally multiply by (−1)n+|γ |+ζ(α)+ε(α) to get Proposition 5.1.

To prove Proposition 4.31, one easily adapts the signs. The main computation one
needs is the following, which can be directly verified:

Lemma 5.19 We have:

†
(
α(1:5), qSTk2, j2(α

(2:5); γ J2), α(3:5), qSTk4, j3(α
(4:5); γ J3), α(5:5); γ J1

)
+ †(α(2:5))

+ † (α(4:5))
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Fig. 1 the coloured regions show the areas swept out by w2

= †(α) + 1 + ε2 + ε4 + |γ J2 |(ε1 + ε3 + ε4 + ε5 + 1)

+|γ J2 |(ε1 + ε2 + ε3 + ε5 + 1 + |γ J2 |). (383)

5.4 Unit on the horocycle

This proof follows that of [44, Lemma 3.10] very closely. Let pi : Mk+2,l;⊥i (β) →
Mk+1,l(β) be the map given by forgetting the boundary marked point zi and the
horocyclic constraint. This map is injective, as there is a unique horocycle through any
two interior points w1 and w2. Fixing the interior marked point w1 and the boundary
marked points z j for j �= i , we see that as zi moves between the two adjacent boundary
marked points z j and z j+1, the point w2 sweeps out a lunar arc between the two
horocycles through w1 and z j , and through w1 and z j+1 (see Fig. 1). As these lunar
arcs cover the entire unit disk we see that the image of

p := �k+1
i=1 pi : �k+1

i=1Mk+2,l;⊥i (β) → Mk+1,l(β) (384)

is an open dense subset.
We next compute the sign of pi :

Lemma 5.20 The map pi : Mk+2,l;⊥i (β) → Mk+1,l(β) is a local diffeomorphism
with sign(pi ) = n + i .

Proof The orientation on Mk+2,l,⊥i (β) = I ×D2 Mk+2,l(β) is defined by the fibre-
product orientation (see [46, Section 2.2]). At the level of tangent spaces, this means
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that we have a natural identification

Tt I ⊕ TuMk+2,l(β) ∼= Tt D
2 ⊕ T(t,u)(I ×D2 Mk+2,l(β)). (385)

To calculate the sign of pi , we multiply both sides by a factor of D2 and Aut(D2).
This does not change the sign. Let Ri denote the tangent space to the factor S1i in the
definition of the orientation on Mk+2,l(β) (see Eq. 273). Thus, sign(pi ) is equal to
the sign of the map:

Tt I ⊕ TuM̃main(β) ⊕ R0 ⊕ · · · ⊕ Rk+2 ⊕ C
l ⊕ Tz Aut(D

2)

→ Tt D
2 ⊕ TuM̃main(β) ⊕ R0 ⊕ · · · ⊕ Ri−1 ⊕ Ri+1 ⊕ . . .

⊕Rk+2 ⊕ C
l ⊕ Tz Aut(D

2). (386)

Bringing the summand Ri to the second position, which gives a sign of (−1)i+n , and
cancelling the obvious summands, we find that sign(pi ) is given by the sign of:

Tt I ⊕ Ri → (−1)n+i Tt D
2. (387)

By drawing a local picture, it is clear that the natural map Tt I ⊕ Ri → Tt D2 is
orientation preserving. We have thus shown that sign(pi ) = i + n. ��
Proof of Proposition 4.32 Let evi j and evb j denote the evaluation maps for the space
Mk+1,l(β). Use evi ij and evbij for those of Mk+2,l,⊥i . The map pi then satisfies

evi j ◦ pi = evi ii and:

evb j ◦ pi =
{
evbij if j < i

evbij+1 if j > i
(388)

Let ξ = ∧l
j=1(evi j )

∗γ j ∧∧k
j=0(evb j )

∗α j and ξi = p∗
i ξ . Then as the images of pi

for 1 ≤ i ≤ k + 1 form an open dense set inMk+1,l(β), we have:

pt∗ξ =
k+1∑

i=1

(−1)sign(pi ) pt∗ξi . (389)

A short sign computation shows that

pt∗ ((evb0)∗ξ ∧ α0) = (−1)ζ (̃α)+|α0|(ε(̃α)+1)〈qST ,β
k,l (α1, . . . , αk; γ ), α0〉L .

(390)

Take the partition with (1 : 2) = (1, . . . , i − 1). We then compute:

pt∗ξi = (−1)ζ (̃α)+|α0|(ε(̃α)+1)+1+|γ |+n+ε2+i 〈qST ,β
k+1,l,⊥i

(α(1:2), 1, α(2:2)); γ ), α0〉L .

(391)

Combining this, we have shown:
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〈qSTk,l (̃α; γ ), α0〉L =
∑

P∈S2[k]
(−1)ε1+|γ |+1〈qSTk+1,l,⊥i

(α(1:2), 1, α(2:2); γ ), α0〉L .

(392)

Taking into account the sign changes between the operations qST and q, the first result
of Proposition 4.32 follows. The second equality follows from a cyclic symmetry
property of the q⊥ operations, which is the direct analogue of Proposition 4.23.

6 Applications of Conjecture 1.6 in themonotone setting

Let (X , ω) be a 2n dimensional monotone symplectic manifold, i.e c1 = c1(T X) =
τ [ω] ∈ H2(X;R) for some τ ∈ R>0. We can then consider quantum cohomology
QH∗(X) = H∗(X;C) with coefficients in C, as for example in [41].

Definition 6.1 (Quantum E-structure) The quantum E-structure is the C[[u]]-module
QH∗(X)[[u]] with connection:

∇ d
du

= d

du
+ μ

u
+ c1�

u2
. (393)

Here � is the quantum cup product, and μ : QH∗(X) → QH∗(X) is the grading
operator withμ(α) = p−n

2 α for α ∈ QH p(X). The residue of the connection is given
by c1�. The canonical map π : QH∗(X)[[u]] → QH∗(X) is given by evaluation at
u = 0. We will often write ∇ for ∇ d

du
.

Definition 6.2 Quantum cohomology admits a canonically defined splitting, given by:

sGW : QH∗(X) → QH∗(X)[[u]]
α �→ α. (394)

As this is the splitting relevant for Gromov–Witten theory (see e.g. [18]), we call this
the Gromov–Witten splitting.

Decompose quantum cohomology as a direct sum of generalised eigenspaces of
c1�

QH∗(X) =
⊕

w

QH∗(X)w. (395)

Proposition 2.12 shows that we can extend this decomposition by eigenvalues of
c1� to the E-structure QH∗(X)[[u]].
Lemma 6.3 There exists a unique decomposition of QH∗(X)[[u]]:

QH∗(X)[[u]] =
⊕

w

QH∗(X)[[u]]w, (396)
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which is compatible with the connection:

u2∇ : QH∗(X)[[u]]w → QH∗(X)[[u]]w, (397)

and respects the eigenvalue decomposition of QH∗(X):

π(QH∗(X)[[u]]w) = QH∗(X)w. (398)

Remark 6.4 Note that in general QH∗(X)[[u]]w �= QH∗(X)w[[u]]. This is because
the map u2∇ does not map QH∗(X)w[[u]] to itself, as in general μ will not, see
Example 6.10. Similarly, the Gromov–Witten splitting does not respect the eigenvalue
decomposition. So in general sGW (QH∗(X)w) �⊂ QH∗(X)[[u]]w. See Example 6.10.

Lemma 2.14 together with Corollary 3.29 then shows:

Corollary 6.5 Let X be amonotone symplectic manifold. AssumeConjecture 1.6 holds.
Then the cyclic open–closed map respects the decompositions, that is:

OC−(HC−∗ (Fuk(X)w)) ⊂ QH∗(X)[[u]]w. (399)

6.1 Semi-simple quantum cohomology

Now assume additionally that the quantum cohomology ring QH∗(X) is semi-simple.
This is the case for example for X = CP

n . The main result is:

Theorem 6.6 Let X be a monotone symplectic manifold with semi-simple quantum
cohomology. Then the EP-structure QH∗(X)[[u]] is semi-simple in the sense of Def-
inition 2.17.

Remark 6.7 This theorem is a rephrasing of results in [6, 9].

In order to prove this theorem,we need the following lemma. Thiswas first observed
by Dubrovin [6], but see also [48, Remark 8.2 (iii)] or [9, Lemma 2.4.4].

Lemma 6.8 ([6, Lemma 3.2]) When QH∗(X) is semi-simple, 0 = πw ◦ μ|QH∗
w(X) :

QH∗
w(X) → QH∗

w(X). I.e. the diagonal blocks for a matrix representation of μ

vanish, when we choose a basis of eigenvectors for c1�.

Proof of theorem 6.6 By Proposition 2.12, after changing to a basis for the C[[u]]-
modules QH∗(X)[[u]]w the connection is given by

∇ = d

du
+ u−2c1� + u−1B−1 +

∑

i≥0

Biu
i . (400)

We also have that B−1|QH∗(X)w = πw ◦ μ|QH∗(X)w = 0 by Lemma 6.8. As B−1
also respects the decomposition of QH∗(X) into eigenspaces for c1�, we find that
B−1 = 0. The connection on QH∗(X)[[u]]w is thus given by:

∇ = d

du
+ w

u2
+
∑

i≥0

ui Bi . (401)
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The connection ∇̃w on QH∗(X)[[u]]w ⊗ E w
u is then given by:

∇̃w = d

du
+
∑

i≥0

ui Bi . (402)

As in [49, Chapter 2, case 1], there now exists a further change of basis so that the
connection matrix on QH∗(X)[[u]]w ⊗ E w

u vanishes. Equivalently, there exists an
isomorphism QH∗(X)[[u]]w ∼= E− w

u . ��
We thus obtain the following result, which is a part of [9, Proposition 2.5.1].

Corollary 6.9 When QH∗(X) is semi-simple, there exists a basis vi ∈ QH∗(X)[[u]]
such that u2∇ d

du
vi = wivi , where the wi are the eigenvalues of c1�.

We call the basis {vi } a w-flat basis. As in Example 2.21, we obtain a splitting:

sss : QH∗(X) → QH∗(X)[[u]]
π(vi j ) → vi j . (403)

There then exists a unique transformation R = ∑
i≥0 u

i Ri , where Ri : QH∗(X) →
QH∗(X) such that

sss(α) =
∑

i≥0

ui sGW (Ri (α)). (404)

We will now show R agrees with the R-matrix as defined by Teleman [48]. Start with
a basis for QH∗(X) consisting of eigenvectors {ei } for c1�. Thus in this basis for
QH∗(X)[[u]] the connection reads:

∇ = d

du
+ u−2c1� + u−1μ. (405)

The R-matrix then changes bases to vi = R(ei ), in which the connection can be
expanded as

R∗∇ = d

du
+ u−2c1�. (406)

We thus obtain the recursive relation for R:

[c1�, Ri+1] + (μ + i)Ri = 0, (407)

which agrees with the relation in [48, Proposition 8.5].

Example 6.10 Consider a basis 1, H for S2, where H is the point class. Then c1 = 2H .
The quantum multiplication table reads

1�1 = 1, 1�H = H , H�H = 1. (408)
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Thus QH∗(S2) ∼= C[H ]
〈H2−1〉 , which is semi-simple. The decomposition into eigenspaces

for c1 is:

QH∗(S2) = QH∗(S2)−2 ⊕ QH∗(S2)2 = 〈H − 1〉 ⊕ 〈1 + H〉 := 〈v〉 ⊕ 〈w〉.
(409)

Now μ(v) = w
2 and μ(w) = v

2 . Thus the C[[u]]-modules 〈1 + H〉C[[u]] and
〈1−H〉C[[u]] are not invariant under u2∇. In fact, we can solve the differential equation
u2∇ d

du
w̃ = 2w̃ directly, and find

w̃ =
∑

n≥0

un(αnw + βnv), (410)

where

αn+1 = 4−2(n+1)

(n + 1)!
n∏

j=0

(4 j2 − 1) and βn = −2nαn . (411)

Similarly we obtain a solution to u2∇ d
du

ṽ = 2ṽ:

ṽ =
∑

n≥0

un(γnw + δnv), (412)

where

γn = −2nδn and δn+1 = (−1)n+14−2(n+1)

(n + 1)!
n∏

j=0

(4 j2 − 1). (413)

The R-matrix in the basis (v,w) is thus:

Rn+1 = 4−2(n+1)

(n + 1)!
n∏

j=0

(4 j2 − 1)

(
(−1)n+1 (−1)n2(n + 1)

−2(n + 1) 1

)

, (414)

which indeed agrees with the R-matrix computed in [1, Example 5.4] for the cyclic
homology of Fuk(S2).

We now rephrase [1, Theorem 5.9] and provide an alternative proof. The proof
in [1] uses the closed–open map and the Dubrovin–Teleman reconstruction theorem
[48]. Our proof instead uses the cyclic open–closed map and assumes Conjecture 1.6.
In particular, it does not rely on the Dubrovin-Teleman reconstruction theorem.

Theorem 6.11 Let X be a symplectic manifold such that OC : HH∗(Fuk(X)) →
QH∗(X) is an isomorphism and HH∗(Fuk(X)) is semi-simple. Let μOC = OC−1 ◦
μ◦OC : HH∗(Fuk(X)) → HH∗(Fuk(X)) be the pull-back of the grading operator
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μ on QH∗(X). Then the Frobenius manifoldMμOC associated toμOC (see Sect.2.2)
is isomorphic to the big quantum cohomology of X. Here Fuk(X) denotes a non-bulk
deformed Fukaya category defined over � (or C in the monotone case).

Proof As the open–closed map is an isomorphism, so is the closed–open map CO :
QH∗(X) → HH∗(Fuk(X)). Thus, QH∗(X) is also semi-simple. Lemma 6.6 then
shows QH∗(X)[[u]] is a semi-simple EP-structure. Let R = C[[H∗(X)]] parametrise
bulk-deformations. Let QH∗(X; R)[[u]] denote the quantum TEP-structure over R.

Let Fukt (X) denote the bulk-deformedFukaya category.AsCO is an isomorphism,
this is a versal deformation of Fuk(X), and can thus be extracted from the categorical
data of Fuk(X).

Now apply the bijection between grading operators and primitive forms (Corol-
lary 2.28) to the TEP-structure QH∗(X; R)[[u]]. It follows directly from the definition
of the product andmetric in [39], that the Frobenius manifold associated to the grading
operatorμ and the primitiveω = 1 ∈ QH∗(X) is indeed the big quantum cohomology
ring QH∗(X; R).

Amorim and Tu [1, Corollary 3.8] show that as HH∗(Fuk(X)) is semi-simple,
HC−(Fukt (X)) is a semi-simple TEP-structure. The grading operator μOC on
HH∗(Fuk(X)) is pulled back from the grading operator on QH∗(X). The primi-
tive element ω ∈ HH∗(Fuk(X)) is defined as OC−1(1).

Now consider the bulk deformed cyclic open–closed map

OC− : HC−∗ (Fukt (X)) → QH∗(X; R)[[u]]. (415)

By conjecture 1.6, this is an isomorphism of TEP-structures. Furthermore, the cyclic
open–closed map:

OC− : HC−(Fuk(X)) → QH∗(X)[[u]] (416)

respects the grading operator and the primitive elementω. Thus, Corollary 2.28 equips
the TEP-structures HC−(Fukt (X)) and QH∗(X; R)[[u]] with the same primitive
form under the cyclic open–closed map. Hence, the associated Frobenius manifolds
MμOC and QH∗(X; R) are isomorphic. ��

6.2 Example: intersection of quadrics

Wewill nowgive an examplewhere, even though the quantumcohomology is not semi-
simple, it is still possible to construct an R-matrix. Let X be a complete intersection
of two quadric hypersurfaces in CP5, which is a monotone symplectic manifold. The
eigenvalue decomposition of the Fukuya category is as follows:

Fuk(X) = Fuk(X)−8 ⊕ Fuk(X)0 ⊕ Fuk(X)8. (417)

Smith proves an equivalence:

Theorem 6.12 ([43, Theorem 1.1]) Dπ Fuk(X)0 ∼= Dπ Fuk(�2), for �2 a genus 2
surface.
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Assume that Fuk(X)±8 ∼= Fuk(pt),which [43, Section1.6] expects.Andnote that the
Fuk(pt) are considered here with curvature ±8, so that HC−∗ (Fuk(X)±4) ∼= E∓8/u .
Also note that [42, Chapter 4] proves a natural isomorphism HC−∗ (DπC) ∼= HC−∗ (C).
We thus have an isomorphism of TE-structures:

HC−∗ (Fuk(X)) ∼= E8/u ⊕ HC−∗ (Fuk(�2)) ⊕ E−8/u . (418)

As the TEP-structure associated to an A∞-category is canonical, Conjecture 1.6
implies:

Lemma 6.13 There exists an isomorphism of TEP-structures:

� : QH∗(X)[[u]] ∼= E −8
u ⊕ QH∗(�2)[[u]] ⊕ E 8

u . (419)

We prove Lemma 6.13 in Appendix B by a direct computation, providing evidence
for the conjecture. Moreover, we show that this isomorphism is unique.
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Appendix A: Euler-grading on Fukaya category

In this appendix we will explain how a ‘standard’ definition of the Fukaya category
(see for example [40]), can be adapted to define an Euler-graded A∞-category. We
will also show that bulk-deformations by c1 are unobstructed. We will thus construct
a Fukaya category satisfying the properties required in Sect. 4.3. We will show why
Assumption 4.12(2) holds in this setup. We already verified these assumptions for the
case of a Fukaya category with a single Lagrangian, but here we work with a Fukaya
category with multiple objects.

http://creativecommons.org/licenses/by/4.0/
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A.1: Euler-grading

Let X be a symplectic manifold. Let LX → X denote the Grassmanian bundle of
oriented Lagrangian subspaces of T X . Note that an oriented Lagrangian L comes
with a canonical section sL : L → LX .

Let e have degree 2. We then define a Fukaya category over �[e, e−1], denoted
by Fuk(X)[e], as follows. Objects in Fuk(X)[e] are given by oriented, relatively
spin Lagrangian submanifolds L ⊂ X . For any two (transverse) oriented Lagrangians
L1, L2 and p ∈ L1 ∩ L2, denote by L(L1, L2, p) the set of homotopy classes of paths
p̃ : [0, 1] → Lp X with p̃(0) = TpL1 and p̃(1) = TpL2. Then define:

CF∗(L1, L2) =
⊕

p

〈L(L1, L2, p)〉�. (420)

As in [40, Section 11g], there is a grading onCF∗(L1, L2) given by theMaslov-index
for the pair of paths ( p̃, p̃(1)). The�[e, e−1]-module structure is given by defining e· p̃
to be the homotopy class of paths which haveMaslov-index I nd(e · p̃) = I nd( p̃)+2.

In the ‘standard’ Fukaya category, the product operations are defined by counting
holomorphic disks as follows. Let L0, . . . , Lk be pairwise transversely intersecting
Lagrangians. Choose points p0, . . . , pk , with pi ∈ Li−1 ∩ Li , where L−1 denotes Lk .
Let z0, . . . , zk ∈ ∂D be marked points. Then the coefficient of p0 in mk(p1, . . . , pk)
is given by counting the number of holomorphic maps u : D\{z0, . . . zk} → X , which
extend to continuous maps u : D → X with marked points u(zi ) = pi . Furthermore
the boundary in between zi and zi+1, ∂iD is required to satisfy u(∂iD) ⊂ Li . Let
M0(p0, . . . , pk; [u]) denote the zero-dimensional component of the moduli space of
such disks in the homotopy class [u]. Then,

mk(p1, . . . , pk) =
∑

p0∈Lk∪L0[u]|I nd([u])=2−k

|M0(p0, . . . , pk; [u])|Qω([u]) p0. (421)

Given lifts p̃1, . . . , p̃k , where p̃i ∈ L(Li−1, Li , pi ), and a holomorphic disk u as
above.We explain how to determine a lift p̃0 ∈ L(L0, Lk, p0). To this end, concatenate
the paths p̃i together with the paths sLi (u|∂iD), to obtain a path γ ∈ LX . This is a
path starting at Tp0L0 and finishing at Tp0Lk . As the bundle u∗T X → D is trivial,
we obtain a projection L|im(u)X → Lp0X . The projection of γ defines the lift p̃0 ∈
L(L0, Lk, p0). In other words, we have [γ ◦ ( p̃0)−1] = 0 ∈ π1(LX , Tp0L0). So
the Maslov index of the loop γ ◦ ( p̃0)−1 vanishes. Alternatively, there exists a lift
ũ : D\{z0, . . . , zk} → LX covering u, which by including small extra chords γi at the
punctures zi extends to a continuousmap ũ : D → Lwith ũ◦γi = p̃i for i = 0, . . . , k.

The above procedure determines the lift p̃0 as a function of p̃1, . . . , p̃k and the
class of the disk [u]. We then define:

me
k( p̃1, . . . , p̃k) :=

∑

p0∈Lk∪L0[u]|I nd([u])=2−k

|M0(p0, . . . , pk; [u])|Qω([u]) p̃0( p̃1, . . . , p̃k; [u]).

(422)
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Lemma A.1 The above definition endows Fuk(X)[e] with the structure of a Z-graded
A∞-category. The grading operator is given by Gr( p̃) := I nd( p̃) p̃.

Proof The fact that the product operations define an A∞-structure follows directly
from the verification for Fuk(X). By (one of the many) definition(s) of the Maslov
index, we have I nd(u) = I nd( p̃0) − ∑

i=1 I nd( p̃i ) so that the product satisfies
[Gr ,me

k] = (2 − k)me
k as required. ��

A.2: Bulk-deforming by c1

LetU be a 1-dimensional vector space, with grading 2.We thus identify QU := �[[t]]
for a formal parameter t of degree 0. We will now construct a Qe

U -linear category
Fukt [e]. One should think of this as bulk-deforming Fuk(X)[e] by γ = tc1.

Let SX := S1(�n
C
T )X

π−→ X be the circle bundle associated to the top (complex)
exterior power of the tangent bundle of X . By [3, Chapter 11] there exist a global
angular form θ ∈ �1(SX) such thatdθ = π∗c1,wherewehavepicked a representative
c1 ∈ �2(X) for the first Chern class of T X .

Consider the map � : LX → SX defined by sending an oriented Lagrangian
subspace to its orientation class. For an oriented Lagrangian l : L ↪→ X we thus
obtain a map l̃ = � ◦ sL : L → SX . Define the element αL = l̃∗θ ∈ �1(L). This
satisfies dαL = l∗c1. Thus, the element (c1, αL) ∈ H2(X , L) represents the Maslov
class of L . Note that here we are using a de Rham model for relative cohomology as
in [3, Chapter 6].

For α = (αL0 , . . . , αLk ) with αLi ∈ �∗(Li ) as defined above, set:

(c1, α)(u) =
∫

D

u∗c1 +
∑

i

∫

∂iD

u∗αLi . (423)

Note that this only depends on the homotopy class of u. We then define:

mt,e
k ( p̃1, . . . , p̃k) :=

∑

p0∈Lk∪L0[u]|I nd([u])=2−k

|M0(p0, . . . , pk; [u])|Qω([u])

exp (t(c1, α)([u])) p̃0( p̃1, . . . , p̃k; [u]). (424)

Lemma A.2 The product mt,e makes Fukt (X)[e] into an Euler-graded A∞-category
with E = e∂e.

We will now show that Assumption 4.12(2) holds for Fukt (X)[e]. To this end, we
need to pick a basis for each morphism space CF∗(L, L ′). Here, a basis is determined
by a choice of designated paths p̃ ∈ L(L, L ′, p) for each p ∈ L ∪ L ′. Given such a
choice of paths, define the length-1 Hochschild cochain φ ∈ CC∗ (Fukt (X)[e]) by:

φ( p̃) = −
(∫

p̃
�∗θ

)

p̃, (425)
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for the designated path p̃. Then extend φ linearly in t and e. Note that this integral
is well-defined. For if [ p̃] = [ p̃′] ∈ L(L, L ′, p), then there exists a homotopy h :
[0, 1]2 → Lp X . We then have:

∫

p̃
�∗θ −

∫

p̃′
�∗θ =

∫

[0,1]2
h∗�∗dθ =

∫

[0,1]2
h∗�∗π∗c1. (426)

But π ◦ � ◦ h is the constant map [0, 1]2 → {p}. Thus the latter integral is zero.
Lemma A.3 We have: ∂t (m

t,e) = e∂e(mt,e) + [mt,e, φ].
Proof Fix Lagrangians L0, . . . , Lk and intersection points pi ∈ Li−1 ∩ Li . Let
p̃i ∈ L(Li−1, Li , pi ) be the designated paths defining the bases. Let u ∈
M0(p0, . . . , pk; [u]) be a holomorphic disk contributing to the productmt,e( p̃1, . . . ,
p̃k). Let p̃′

0 ∈ L(L0, Lk, p0) be the output path defined by u. We can then write
p̃′
0 = es p̃0 for some s ∈ Z.
The contribution to e∂e(mt,e)( p̃1, . . . , p̃k) from this disk is thus given by:

s exp(t(c1, α)([u])) p̃′
0. (427)

The contribution to ∂t (m
t,e)( p̃1, . . . , p̃k) from u is given by:

(c1, α)(u) exp(t(c1, α)([u])) p̃′
0. (428)

Finally, the contribution of this disk to [mt,e, φ]( p̃1, . . . , p̃k) is given by:

(∫

p̃0
�∗θ −

k∑

i=0

∫

p̃i
�∗θ

)

exp(t(c1, α)([u])) p̃′
0. (429)

It suffices to prove the statement in the lemma for the contribution of each disk u
separately. It thus suffices to show:

(c1, α)(u) = s +
∫

p̃0
�∗θ −

k∑

i=0

∫

p̃i
�∗θ, (430)

for every disk u as above. To this end, recall the path γ ⊂ LX used to define the lift
p̃′
0, and consider the loop γ ◦ ( p̃′

0)
−1 ⊂ LX . By construction [γ ◦ ( p̃′

0)
−1] = 0 ∈

π1(LX , Tp0L0). The loop�◦ (γ ◦ ( p̃′
0)

−1) : S1 → SX is then also null-homologous.
As before, this means that we can construct a lift ũ : D\{z0, . . . , zk} → SX covering
u. By including small extra chords γi at the punctures zi , this extends to a continuous
map ũ : D → SX with ũ(γi ) = p̃i for i = 1, . . . , k and ũ(γ0) = p̃′

0. We then use
Stokes’ theorem to obtain:

∫

D

u∗c1 =
∫

D

ũ∗π∗c1 =
∫

∂D

ũ∗θ. (431)
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There are two different kinds of boundary to ũ(∂D). The chords γi get mapped to the
paths φ( p̃i ) and the segments ∂iD to the image of the Lagrangians Li under � ◦ sLi .
We thus have:

∫

∂D

ũ∗θ = −
k∑

i=0

∫

∂iD

ũ∗θ −
k∑

i=1

∫

p̃i
�∗θ +

∫

p̃′
0

�∗θ, (432)

= −
k∑

i=0

∫

∂iD

u∗αLi −
k∑

i=1

∫

p̃i
�∗θ +

∫

p̃0
�∗θ +

∫

p̃′
0− p̃0

�∗θ, (433)

= −
k∑

i=0

∫

∂iD

u∗αLi −
k∑

i=1

∫

p̃i
�∗θ +

∫

p̃0
�∗θ + s. (434)

For the second equality, we have used that ũ|∂iD = � ◦ sLi ◦ u|∂iD. The last equality
here follows as θ is the global angular form on SX and the fact that I nd( p̃0) + 2s =
I nd( p̃′

0). The path � ◦ ( p̃′
0 ◦ ( p̃0)−1) : S1 → SX then has winding number s, as LX

consists of oriented Lagrangian subspaces. We have thus proved Eq. (430). ��

For an open–closed map defined using holomorphic disks, exactly the same reasoning
would show Assumption 4.12(3) holds.

Appendix B: Example: intersection of quadrics

Let X be a complete intersection of two quadric hypersurfaces in CP5. In this section
we will show:

Lemma B.1 There exists an isomorphism of TE-structures over C ⊃ C:

� : QH∗(X)[[u]] ∼= E 8
u ⊕ QH∗(�2)[[u]] ⊕ E −8

u . (435)

First, observe that for both QH∗(X)[[u]] and QH∗(�2)[[u]], the TEP-structure asso-
ciated to the odd-degree cohomology is trivial, as here both c1� and μ vanish on the
odd-degree cohomology.

Take the basis 〈−2H , 1〉 for QH∗(�2)[[u]], and the standard basis 〈1〉 for both
factors E± 8

u . The connection ∇ d
du

for E −8
u ⊕ QH∗(�2)[[u]] ⊕ E 8

u is then given by:

∇ d
du

= d

du
+ u−1

⎛

⎜
⎜
⎝

0 0 0 0
0 1

2 0 0
0 0 − 1

2 0
0 0 0 0

⎞

⎟
⎟
⎠+ u−2

⎛

⎜
⎜
⎝

−8 0 0 0
0 0 1 0
0 0 0 0
0 0 0 8

⎞

⎟
⎟
⎠ =: d

du
+ u−1N + u−2 J .

(436)
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Start out with the basis 〈1, H , H∪2, H∪3〉 for QH∗(X)[[u]]. The connection is then
given by:

∇ d
du

= d

du
+ u−1

⎛

⎜
⎜
⎝

− 3
2 0 0 0
0 − 1

2 0 0
0 0 1

2 0
0 0 0 3

2

⎞

⎟
⎟
⎠+ u−2

⎛

⎜
⎜
⎝

0 8 0 32
2 0 16 0
0 2 0 8
0 0 2 0

⎞

⎟
⎟
⎠ . (437)

We will show there exists a basis 〈v0, v1, v2, v3〉 for QH∗(X)[[u]] such that the con-
nection for QH∗(X)[[u]] agrees with the connection in Eq. (436). To this end, on
QH∗(X)[[u]], first change to a basis 〈̃v0, ṽ1, ṽ2, ṽ3〉 consisting of generalised eigen-
vectors for c1�. The change of basis matrix is given by

P =

⎛

⎜
⎜
⎝

1 0 1 1
− 3

4
2
3 0 3

4
1
4 0 − 1

12
1
4− 1

16 − 1
6 0 1

16

⎞

⎟
⎟
⎠ . (438)

Thus, for example, ṽ1 = 2
3H − 1

6H
∪3. In this new basis, the connection is given by:

∇ d
du

= d

du
+ u−1

⎛

⎜
⎜
⎜
⎝

0 2
3 − 1

4 0
9
16 1 0 − 9

16
− 3

2 0 −1 − 3
2

0 − 2
3 − 1

4 0

⎞

⎟
⎟
⎟
⎠

+ u−2

⎛

⎜
⎜
⎝

−8 0 0 0
0 0 1 0
0 0 0 0
0 0 0 8

⎞

⎟
⎟
⎠

=: d

du
+ u−1M + u−2 J .

(439)

Thus, in the basis 〈̃v0, ṽ1, ṽ2, ṽ3〉 for QH∗(X)[[u]], the u−2 term of the connection
agrees with the one in Eq. (436). In Sect. B.1, we show there exists a unique R-matrix
R = ∑∞

i=0 u
i Ri such that in the basis 〈v0, v1, v2, v3〉, where vi = R(̃vi ), the con-

nection on QH∗(X)[[u]] is also given by Eq. (436). We thus define the isomorphism

� : QH∗(X)[[u]] → E 8
u ⊕ QH∗(�2)[[u]] ⊕ E −8

u by

v0 �→ (1, 0, 0), (440)

v1 �→ (0,−2H , 0), (441)

v2 �→ (0, 1, 0), (442)

v3 �→ (0, 0, 1). (443)
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B.1: Construction of the R-matrix

We need R to satisfy:

(
d

du
+ u−1N + u−2 J

)

R = R

(
d

du
+ u−1M + u−2 J

)

. (444)

Equating powers of u yields the relation:

[J , Ri+1] = Ri (M − i I d) − N Ri . (445)

We will show this equation has a unique solution R with R0 = I d. Suppose we have
solved this equation up to Ri . Let

Ri =

⎛

⎜
⎜
⎝

x000 x001 x002 x003
x010 x011 x012 x013
x020 x021 x022 x023
x030 x031 x032 x033

⎞

⎟
⎟
⎠ , Ri+1 =

⎛

⎜
⎜
⎝

x100 x101 x102 x103
x110 x111 x112 x113
x120 x121 x122 x123
x130 x131 x132 x133

⎞

⎟
⎟
⎠ . (446)

We then find:

[J , Ri+1] =

⎛

⎜
⎜
⎝

0 −8 x101 −x101 − 8 x102 −16 x103
8 x110 + x120 x121 −x111 + x122 −8 x113 + x123

8 x120 0 −x121 −8 x123
16 x130 8 x131 −x131 + 8 x132 0

⎞

⎟
⎟
⎠ . (447)

Thus, Eq. (445) uniquely determines the entries x101, x
1
02, x

1
03, x

1
13, x

1
23,x

1
10, x

1
20, x

1
30, x

1
31

and x132. These are the entries of Ri+1 which are in the off-diagonal blocks with respect
to the Jordan-decomposition of J . Furthermore, the entry x121 is also determined, but
a solution only exists provided that

(Ri (M − i I d) − N Ri )11 = −(Ri (M − i I d) − N Ri )22. (448)

Similarly we need to have

(Ri (M − i I d) − N Ri )00 = (Ri (M − i I d) − N Ri )33

= (Ri (M − i I d) − N Ri )21 = 0. (449)

These conditions hold for i = 0, so assume they hold for i . We will now write out all
the entries of Ri+1 we determined, and the conditions on Ri . Conditions:

− i x000 + 9

16
x001 − 3

2
x002 = 0 (450)

− i x033 − 9

16
x031 − 3

2
x032 = 0 (451)
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(
3

2
− i

)

x021 + 2

3
x020 − 2

3
x023 = 0 (452)

−
(

i + 1

2

)

x022 − 1

4
x020 − 1

4
x023 =

(

i − 1

2

)

x011 − 2

3
x010 + 2

3
x013 (453)

We also found the solutions:

x101 = 1

8
(i − 1)x001 − 1

12
x000 + 1

12
x003 (454)

x102 = − 1

64
(i − 1)x001 + 1

8
i x002 + 1

24
x000 + 1

8
x002 + 1

48
x003 (455)

x103 = 1

16
i x003 + 9

256
x001 + 3

32
x002 (456)

x110 = − 1

64
i
(
8 x010 − x020

)
− 1

16
x010 + 9

128
x011 − 3

16
x012

− 1

128
x020 − 9

1024
x021 + 3

128
x022 (457)

x113 = 1

64
i
(
8 x013 + x023

)
+ 9

128
x011 + 3

16
x012 + 1

16
x013 + 9

1024
x021

+ 3

128
x022 − 1

128
x023 (458)

x120 = −1

8
i x020 + 1

16
x020 + 9

128
x021 − 3

16
x022 (459)

x123 = 1

8
i x023 + 9

128
x021 + 3

16
x022 − 1

16
x023 (460)

x130 = − 1

16
i x030 + 9

256
x031 − 3

32
x032 (461)

x131 = −1

8
i x031 + 1

12
x030 + 1

8
x031 − 1

12
x033 (462)

x132 = − 1

64
i
(
x031 + 8 x032

)
− 1

48
x030 + 1

64
x031 − 1

8
x032 − 1

24
x033 (463)

x121 = −i x011 + 2

3
x010 + 1

2
x011 − 2

3
x013. (464)

Finally, we also find a relation between the entries x111 and x122:

x122 − x111 = −i x012 − 1

4
x010 − 3

2
x012 − 1

4
x013. (465)

The entries x100, x
1
12 and x133 are as of yet undetermined. Now observe that if we are to

solve the next recurrence for Ri+2 the conditions obtained above should hold with i
replaced by i + 1. Equation (450) thus determines x100 in terms of the entries of Ri+1
we already found. We obtain:

x100 = 6 (i − 1)x001 − 12 (i + 1)x002 − 7 x000 + x003
64 (i + 1)

. (466)
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Similarly, Eq. (451) determines x133:

x133 = 6 i
(
x031 + 2 x032

)− x030 − 6 x031 + 12 x032 + 7 x033
64 (i + 1)

. (467)

Next, observe that the coefficients in front of x111 and x122 in Eqs. 453 and 465 are
linearly independent. Thus these two equations can be solved to determine x111 and
x122. This yields:

x111 = 192 i2x012 + 8 i
(
4 x010 + 72 x012 + 4 x013 + x020 − x023

)+ 64 x010 + 384 x012 + 64 x013 − 4 x020 − 9 x021 + 4 x023
384 (i + 1)

(468)

x122 = −i x012 − 1

4
x010 − 3

2
x012 − 1

4
x013

+ 192 i2x012 + 8 i
(
4 x010 + 72 x012 + 4 x013 + x020 − x023

)+ 64 x010 + 384 x012 + 64 x013 − 4 x020 − 9 x021 + 4 x023
384 (i + 1)

.

(469)

We are thus left with a single entry, x121, to be determined, and a single condition,
Eq. (452) to be satisfied. We will use this condition to determine x121. For Ri+1 this
condition reads:

(
1

2
− i

)

x121 + 2

3
x120 − 2

3
x123 = 0. (470)

We now substitute in the solutions we found. This gives a new relation for the entries
x0 of Ri :

− 1

4
x022 + 1

24
(2 − i)(x020 + x023) +

(
1

2
− i

)((
1

2
− i

)

x011 + 2

3
x010 − 2

3
x013

)

= 0.

(471)

Again, assume that this condition is satisfies. We want to construct Ri+1 so that this
condition holds with i + 1 instead of i . The relation is:

− 1

4
x122 + 1

24
(1 − i)(x120 + x123) +

(

−1

2
− i

)((

−1

2
− i

)

x111 + 2

3
x110 − 2

3
x113

)

= 0.

(472)

Again, all of these entries have already been determined in terms of the entries x0 of
Ri . So substitute these in. This gives a new relation for the variables x0 which includes
a term x012 with a coefficient which is non-zero for all i > 0. We have not written out
the equation, as it is rather large. Again, we want this relation to hold for the variables
x1 with i + 1 instead of i . This equation then determines x121 in terms of the other
entries x1 which have already been determined. Substituting in the solutions for these
entries gives:
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x112 = (768
(
i3 + 6 i2 + 12 i + 8

)
)−1
(

8
(
4 i3 + 16 i2 + 22 i + 9

)
x010

−18
(
4 i2 + 8 i + 5

)
x011

−8
(
4 i3 + 16 i2 + 22 i + 9

)
x013 −

(
8 i2 + 6 i − 5

)
x020 − 6 (4 i + 5)x022

−
(
8 i2 + 6 i − 5

)
x023

)

. (473)

By construction, the matrix Ri+1 satisfies the conditions we assumed held for Ri .
Thus, this recursion uniquely determines R.

Appendix C: Orientation properties of gluing at interior points

In this section we will prove:

Lemma C.1 The gluing map

M̃main
∅ (β1) ×X M̃main(β2) → M̃main(β1 + β2) (474)

is a local diffeomorphism which changes orientation by (−1)ws(β1).

Here we will use notation and definitions from [45]. Instead of using Pin± structures,
we will use spin structures.

Proof It suffices to prove this locally. To this end, let v : S2 → X and u : (D, S1) →
(X , L) be holomorphic maps of degree β1 and β2 respectively. Assume u(0) = v(0).
For a fixed gluing parameter, consider the glued map u#v : (D, S1) → (X , L). The
gluing map gives an isomorphism of determinant lines

Det(Du) ⊗ Det(Dv) → Det(Du#v). (475)

We need to compute the change in orientation of this map. Recall first that the relative
spin structure on i : L → X consists of a triangulation of X and L and a vector bundle
V → X3 such that i∗w2(V ) = w2(T L), and a spin structure p on T L ⊕ V |L . Here
w2 denotes the second Stiefel-Whitney class.

We will now explain briefly, following [45], how to orient Det(Du). First, up
to homotopy, we may assume that u : (D, S1) → (X3, L2). We then consider the
Fredholm problem Du ⊕ D0

u on u∗(T X ⊕ V ) for some choice of Fredholm operator
D0
u on the bundle u∗(V ⊗ C) → D. The spin structure p on T L ⊕ V |L defines a

canonical orientation of Det(Du ⊕ D0
u) (see [45, Proposition 2.8]). Furthermore, as

u∗(V ⊗C) → D, and D is contractible, there exists a spin structure p̃u0 on u
∗(V ⊗C).

By restricting to (u|L)∗V → S1, this defines a spin structure pu0, thus equipping
Det(Du

0 ) with an orientation. Solomon shows ([45, Lemma 2.11]) this orientation
does not depend on the choice of spin structure p̃u0. As

Det(Du) ∼= Det(Du ⊕ Du
0 ) ⊗ Det(Du

0 )
∗, (476)
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we obtain a canonical orientation on Det(Du).
The procedure for Du#v is similar. We pick a Fredholm operator Du#v

0 and a spin
structure p̃u#v0 and obtain an isomorphism:

Det(Du#v) ∼= Det(Du#v ⊕ Du#v
0 ) ⊗ Det(Du#v

0 )∗. (477)

To orient Det(Dv), we note that Dv is a (complex) Cauchy Riemann problem,
and thus obtains a canonical orientation from the complex structure on ker(Dv) and
coker(Dv).

We can thus rewrite the isomorphism 475 as

Det(Du ⊕ Du
0 ) ⊗ Det(Du

0 )
∗ ⊗ Det(Dv) ∼= Det(Du#v ⊕ Du#v

0 ) ⊗ Det(Du#v
0 )∗.

(478)

Now let Dv
0 be an arbitrary (complex) Cauchy-Riemann operator on v∗(V ⊗C) → S2.

We can then glue (see [51, Section 2.4]) the bundle v∗(T X ⊕ (V ⊗ C)) → S2 with
u∗(T X ⊕ (V ⊗ C)) → D and obtain a Cauchy-Riemann operator

(Du ⊕ Du
0 )#(Dv ⊕ Dv

0)
∼= (Du#Dv) ⊕ (Du

0 ⊕ Dv
0)

∼= (Du#v ⊕ Du#v
0 ). (479)

Here we have to be careful about spin structures. The gluingmap equips the right-hand
side with the same spin structure on the boundary as on the left-hand side. Thus, on
both sides the spin structure is given by u|∗

∂D
p. This spin structure was also used for

the canonical orientation of Det(Du#v ⊕ Du#v
0 ). The result is that the induced map on

determinant line bundles:

Det(Du ⊕ Du
0 ) ⊗ Det(Dv ⊕ Dv

0)
∼= Det(Du#v ⊕ Du#v

0 ), (480)

respects orientations (see [51, Theorem 4.3.3]). Substituting this into Eq. (478), and
noting that Det(Dv ⊕ Dv

0)
∼= Det(Dv) ⊗ Det(Dv

0), we can rewrite the isomorphism
as:

Det(Du
0 ; pu0) ⊗ Det(Dv

0)
∼= Det(Du#v

0 ; pu#v0 ). (481)

Here we have included in the notation the spin structures that we consider on the
boundary. Finally, gluing of the operators Du

0 and Dv
0 allows us to compare them with

Du#v
0 . Again, the gluing map equips the bundles both before and after with the same

spin structure. The result is an orientation preserving isomorphism:

Det(Du
0 ) ⊗ Det(Dv

0)
∼= Det(Du#v

0 ; pu0). (482)

We have thus reduced our main problem to figuring out the change in orientation
between:

Det(Du#v
0 ; pu0) and Det(Du#v

0 ; pu#v0 ). (483)
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The spin structure pu#v0 extends over all of D, but pu0 might not. As pu0 extends over
u∗V → D, general obstruction theory tells us that the obstruction to extending pu0
over (u#v)∗V → D is given by w2(V )(v∗([S2]).

Now, for any bundle F → D, the spin structures on F |S1 → S1 are classified
by whether or not they extend over the entirety of D. Combining this with [45,
Lemma 2.10], we find that the orientations in Eq. (483) agree if w2(V )(v∗([S2]) = 0,
and are opposed otherwise. ��
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