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Abstract
We prove that (under appropriate orientation conditions, depending on R) a Hamilto-
nian isotopy ψ1 of a symplectic manifold (M, ω) fixing a relatively exact Lagrangian
L setwise must act trivially on R∗(L), where R∗ is some generalised homology theory.
We use a strategy inspired by that of Hu et al. (GeomTopol 15:1617–1650, 2011), who
proved an analogous result over Z/2 and over Z under stronger orientation assump-
tions. However the differences in our approaches let us deduce that if L is a homotopy
sphere,ψ1|L is homotopic to the identity. Our technical set-up differs from both theirs
and that of Cohen et al. (in: Algebraic topology, Springer, Berlin, 2019) and Cohen
(in: The Floer memorial volume, Birkhäuser, Basel). We also prove (under similar
conditions) that ψ1|L acts trivially on R∗(LL), where LL is the free loop space of L .
From this we deduce that when L is a surface or a K (π, 1), ψ1|L is homotopic to the
identity. Using methods of Lalonde and McDuff (Topology 42:309–347, 2003), we
also show that given a family of Lagrangians all of which are Hamiltonian isotopic
to L over a sphere or a torus, the associated fibre bundle cohomologically splits over
Z/2.
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1 Introduction

1.1 Background

Let (M2n, ω) be a symplectic manifold of dimension 2n, and Ln ⊆ M a Lagrangian
submanifold. Letψ t be a Hamiltonian isotopy of M such that its time-1 flow preserves
L setwise, ψ1(L) = L . Its restriction to L is then a self-diffeomorphism of L . We can
consider the Hamiltonian monodromy group GL ⊆ Diff(L) of diffeomorphisms of L
arising in this way. A natural question is:

Question 1.1 What is GL?

An elementary argument using the Weinstein neighbourhood theorem shows that if
f and g are isotopic diffeomorphisms of L and g lies in GL , then f does too. This
implies that GL is a union of connected components in Diff(L), and hence to study
GL , it suffices to study its image in the mapping class group π0 Diff(L).

The subgroup GL was first studied by Yau in [30], who proved the following theo-
rem.

Theorem 1.2 ([30]) Let T and T ′ be the standard monotone Clifford and Chekanov
tori in C

2 with the same monotonicity constant. Then in both cases L = T or T ′,
π0GL ∼= Z/2.

However, there is no isomorphism H1(T ) ∼= H1(T ′) which respects the Z/2 action
on both and also preserves the Maslov index homomorphism.

This provides a new proof that these two Lagrangians are not Hamiltonian isotopic.
Question 1.1 has been studied in few other places: by Hu, Lalonde and Leclercq

in [19], by Mangolte and Welschinger in [22], by Evans and Rizell in [27], by Ono in
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[25], by Varolgunes in [29], by Keating in [20], and by Augustynowicz, J. Smith and
Wornbard in [6]. Out of these, only Hu-Lalonde-Leclercq and Evans-Rizell focus on
the case when L is exact and embedded, which is where we will focus.

We now assume (for the rest of the paper) the following:

Assumption 1.3 1. M is a product of symplectic manifolds which are either compact
or Liouville.

2. L is compact, connected and relatively exact, i.e. ω vanishes on the relative homo-
topy group π2(M, L).

3. ψ t is compactly supported for all t and constant in t near 0 and 1.

The first two assumptions constrain the behaviour of the holomorphic curves that we
will consider. Note that given ψ t not satisfying the third, we can always deform it
(by multiplying the Hamiltonian by an appropriate cut-off function) so that it does,
without changing ψ1|L , so this assumption does not lose any generality.

GL was studied by Hu, Lalonde and Leclercq in this more restrictive setting in [19],
where they proved the following:

Theorem 1.4 ([19])

1. ψ1|L acts as the identity on H∗(L; Z/2).
2. If L admits a relative spin structure in M which ψ1 preserves, ψ1|L acts as the

identity on H∗(L; Z).

It follows from Yau’s results that relative exactness is a necessary condition here.
We will recover Theorem 1.4 as a special case of Theorem 1.8. Note that in the

case that L is a homotopy sphere, this theorem does not give any information on
the homotopy class of ψ1|L : if ψ1|L were not homotopic to the identity, it would not
preserve any orientation of L and hence would not preserve any relative spin structure.

Our goals will be to weaken the orientation assumptions, extend this result to some
other generalised cohomology theories, and extend this result to the free loop space
of L . From this, we will fully compute GL in the case that n = 2. Our technical set-up
will be very different to that of Hu, Lalonde and Leclercq, but our general approach
is inspired by theirs.

Remark 1.5 Hu, Lalonde and Leclercq prove this using Morse and quantum coho-
mology (as in [7]), and one possible approach to extending Theorem 1.4 to other
generalised cohomology theories would be to recreate Hu, Lalonde and Leclercq’s
proof using the methods of Cohen, Jones and Segal [8, 10]. However one may need
to require stronger orientation hypotheses than Assumption 1.7.

Remark 1.6 If L not assumed to be relatively exact, Theorem 1.4 fails, as seen in
Yau’s example ([30]). However if L is monotone, the failure for Theorem 1.4 to hold
is understood- it can be seen in the failure of a certain element in HF∗(L) to lie in the
centre of HF∗(L) (when L is exact, HF∗(L) ∼= H∗(L) is always commutative)- see
[6, Remark 4.2] and [29] for further discussions on this point.

It would be interesting to see if a similar phenomenon holds in the setting of other
generalised cohomology theories, though there is not yet a construction of aLagrangian
Floer cohomology ring for non-relatively exact Lagrangians in the literature.
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1.2 Extensions to generalised homology theories

Wewill define a spaceD0, which is roughly the space of smooth maps D2 → M send-
ing 1 to L , with moving Lagrangian boundary conditions on the rest of the boundary.
This admits a map π : D0 → L by evaluating at 1. We will construct a virtual vector
bundle called the index bundle, Ind, on any finite CW complex inD0 (compatible with
restriction). After picking a (generic) almost complex structure J on M and some
specific choices of moving Lagrangian boundary conditions, the tangent bundle of the
moduli space of J -holomorphic discs with these boundary conditions will be stably
isomorphic to the restriction of Ind. In particular, L embeds into D0 as the space of
constant discs, with Ind restricting to T L .

We fix some ring spectrum R, and will recall definitions of ring spectra and R-
orientability in Sect. 2. We will make the following assumption, and in Sect. 4.2, find
conditions under which it holds.

Assumption 1.7 The virtual vector bundle Ind − π∗T L is R-orientable.

We will show:

Theorem 1.8 Under Assumption 1.7, the map

ψ1|L : �∞+ L ∧ R → �∞+ L ∧ R

is homotopic to the identity as a map of R-modules.

Remark 1.9 Our proof of this will use a minimal amount of technical machinery:
we will only use standard Gromov compactness results and standard transversality
results, and we will not need any form of gluing. It is possible to prove this without
invoking any transversality results, and instead only use the fact that certain operators
are Fredholm, using ideas in [18]; see [17, Remark 2.13].

From standard duality theory for spectra (Corollary 2.14), we deduce from Theo-
rem 1.8:

Corollary 1.10 Under Assumption 1.7,

1. ψ1|L induces the identity map on R∗(L).
2. ψ1|L induces the identity map on R∗(L).

We will deduce Theorem 1.8 from the following sequence of lemmas.
In Sect. 4, we will define amoduli spaceP of holomorphic discs inM , with moving

boundary conditions, lying naturally inside D0. Its tangent space TP will be stably
isomorphic to Ind. We will prove that it satisfies the following lemmas:

Lemma 1.11 P is a closed smooth manifold of dimension n.

and
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Lemma 1.12 The following diagram commutes up to homotopy:

L

P

L

ψ1

π

π

Furthermore, by varying the boundary conditions in a 1-parameter family, we will
construct a cobordism π : W → L from I d : L → L to π : P → L over L , such
that TW −π∗T L will be R-orientable under Assumption 1.7. A standard application
of the Pontryagin–Thom construction (see Sect. 2) will prove the following lemma:

Lemma 1.13 The induced map π : �∞+ P ∧ R → �∞+ L ∧ R admits a section of
R-module maps (up to homotopy of R-module maps).

Proof This follows from the construction ofW in Section 4, along with Lemma 2.24.
	


Proof of Theorem 1.8 Let s be the section from Lemma 1.13. Then from Lemma 1.12,
we have that

ψ1 � ψ1 ◦ π ◦ s � π ◦ s � I d

as maps of R-modules �∞+ L ∧ R → �∞+ L ∧ R. 	

In Sect. 4.2, we will show the following:

Proposition 1.14 Assumption 1.7 holds when:

1. R = HZ/2 representing mod-2 singular homology.
2. R = HZ representing integral singular homology, andw2(L)(x) = 0whenever x

is a homology class represented by a 2-torus S1×∂D2 in L which can be extended
to a solid torus S1 × D2 in M.

3. R = KU representing complex K -theory, and L admits a spin structure.
4. R = KO representing real K -theory, and T L admits a stable trivialisation over

a 3-skeleton of L which extends (after applying · ⊗ C) to a stable trivialisation of
T M over a 4-skeleton of M.

5. R is a complex-orientable generalised cohomology theory and L is stably paral-
lelisable.

6. R = S is the sphere spectrum and there is a real vector bundle E over X, along
with stable isomorphisms T M ∼= E ⊗ C and T L ∼= E |L compatible with each
other.

Remark 1.15 Our methods show that when R = HZ, Assumption 1.7 holds if L is
spin. We will deduce the stronger statement (2) from a theorem of Georgieva ([15,
Theorem 1.1]).
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Corollary 1.16 When L is a homotopy sphere, ψ1|L is homotopic to the identity.

Proof L admits a spin structure, so ψ1 acts as the identity on integral homology and
so is homotopic to the identity. 	

It is nontrivial to find examples of self-diffeomorphisms of spin manifolds which act
trivially on integral cohomology but non-trivially on complex K -theory, so we provide
an example in Appendix A, following a suggestion of Randal-Williams ([26]). We
furthermore provide an example inAppendixB of a self-diffeomorphism of amanifold
which acts trivially on integral cohomology but non-trivially on real K -theory.

1.3 Extensions to the free loop space

Fix a ring spectrum R. We will prove an analogue of Theorem 1.8 for the free loop
space LL of L , the space of maps S1 → L . Once again, we will need to make an
assumption in order to orient our moduli spaces.

Theorem 1.17 Assume Assumption 5.13 holds. Then the induced map

ψ1|L : �∞+ LL ∧ R → �∞+ LL ∧ R

is homotopic to the identity, as maps of R-modules.

Idea of proof To prove this, we will define L1 to be the space of free loops in the
mapping torus Lψ1 of ψ1|L which have winding number one over S1, and whose
basepoint lies in the fibre of the mapping torus over the basepoint in S1. ψ determines
an automorphism �1 : L1 → L1, which one should think of as parallel transporting
once around this mapping torus.

We will construct a map

p ◦ ([N ] ·) :
∨

j∈Z
�

∞+ j
+ L1 ∧ R → �∞+ LL ∧ R

This will use a moduli space of holomorphic discs with moving boundary conditions
N , as well as Cohen and Jones’ version of the Chas-Sullivan product, constructed
similarly to [9]. We will then show:

1. �1 acts as the identity on L1 up to homotopy.
2. p ◦ ([N ] ·) intertwines the actions of �1 and ψ1|L .
3. p ◦ ([N ] ·) admits a section up to homotopy.

Together, these will imply Theorem 1.17. 	

Corollary 1.18 Assume Assumption 5.13 holds. Then the map

(
ψ1|L

)

∗ : R∗(LL) → R∗(LL)

is the identity.
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Proposition 1.19 Assumption 5.13 holds when

1. R = HZ/2.
2. R = HZ and L admits a spin structure which is preserved by ψ1.
3. R = KU and L admits a spin structure which is preserved by ψ1.
4. R is any complex-orientable generalised cohomology theory and T L admits a

homotopy class of stable trivialisations which is preserved under ψ1|L .
From this, we can obtain strong restrictions on GL for certain L that we could not get
from Theorem 1.8:

Corollary 1.20 1. If L is a K (π1(L), 1), ψ1|L is homotopic to the identity.
2. If n = 2, ψ1|L is isotopic to the identity, and hence GL is trivial.

Proof Recall that a diffeomorphism of a closed surface is homotopic to the identity iff
it is isotopic to the identity. Therefore to prove (2), it suffices to prove (1) along with
the special cases L = S2 and RP

2.
It follows from Corollary 1.16 that if L = S2, then ψ1|L is isotopic to the identity.

Furthermore, since the mapping class group of RP
2 is trivial, we can assume that L

is a K (π1(L), 1).
Note that H0(LL; Z/2) is the free Z/2-module generated by the set of homotopy

classes of free loops in L . Therefore by Theorem 1.17, ψ1|L acts as the identity on
this set of generators. Then by [11, Theorem 2.4], ψ1|L must be homotopic to the
identity. 	


1.4 Extensions to other bases

In this subsection and Sect. 6, we restrict to the case R = HZ/2.

Definition 1.21 Given a fibre bundle E � B, we say it c-splits if the inclusion of a
fibre into E induces an injection on mod-2 singular homology, for any fibre of this
bundle.

If the fibre F has H∗(F; Z/2) finite-dimensional (as will be the case below), the
Leray-Hirsch theorem says that this implies that

H∗(E; Z/2) ∼= H∗(B; Z/2) ⊗ H∗(F; Z/2)

We define LagL to be the space of (unparametrised) Lagrangian submanifolds of M
which are Hamiltonian isotopic to L . There is a natural fibre bundle E over LagL ,
where the fibre over K in LagL is K . This is naturally a subbundle of LagL × M .
Given a map γ : S1 → LagL , Theorem 1.4 implies that the pullback bundle γ ∗E
c-splits. We will use techniques in [21] to deduce the following from Theorem 1.4:

Theorem 1.22 Let X be a finite CW complex that admits a map f : (S1)i → X which
is surjective onmod-2 homology (such as a product of spheres), and let γ : X → LagL
be any map. Then the pullback bundle γ ∗E c-splits.
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2 Spectra and Pontryagin–Thommaps

We assume all spaces that we work with are Hausdorff, paracompact and homotopy
equivalent to CW complexes. For an unbased space X , we will write X+ for X with
a disjoint basepoint added.

We will use the category of spectra described in [28], whose construction and
properties we will sketch here.

2.1 Spectra

Definition 2.1 A spectrum X is a sequence {Xn}n∈N of based spaces along with struc-
ture maps �Xn → Xn+1.

A function f from X to Y is a family of based maps of spaces fn : Xn → Yn such
that the square

�Xn �Yn

Xn+1 Yn+1

� fn

fn+1

commutes.

We will not define a morphism of spectra (see [28, §II.1] for details), but any function
of spectra is a morphism of spectra, and all morphisms of spectra that we will directly
construct will arise in this way.

Remark 2.2 Rudyak actually defines a spectrum in a slightly different way but shows
the two are equivalent in [28, Lemma II.1.19].

Definition 2.3 Given a spectrum X and a based space Z , there is a spectrum X ∧ Z
with (X ∧ Z)n = Xn ∧ Z .

A homotopy between two functions f , g : X → Y is a function

H : X ∧ [0, 1]+ → Y

restricting to f over {0}+ and to g over {1}+.
One can extend this definition to homotopies of morphisms of spectra, as in [28,

Definition II.1.9], and for homotopic morphisms f and g we write f � g. Then for
spectra X and Y , we define [X ,Y ] to be the set of homotopy classes of morphisms
X → Y . There is a natural structure of an abelian group on this set.

From this definition of a homotopy we can define a notion of (homotopy) equiva-
lence as with spaces, which we denote by �.

There is a natural functor �∞ from based spaces to Sp sending a space X to the
spectrum with (�∞X)n = �n X , with structure maps the identity. We write �∞+
for the functor from unbased spaces to Sp sending X to �∞X+. These both send
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homotopies to homotopies. We will denote �∞+ {∗} by S, and call this the sphere
spectrum. This has Sn = Sn , justifying the name.

For any N in Z, there is an endofunctor �N of Sp which sends X to the spectrum
�N X with

(�N X)n =
{
Xn+N if n + N ≥ 0

{∗} Otherwise

This satisfies �N�M X � �N+M X for all X , and [X ,Y ] = [�N X , �NY ] for all
X ,Y . We write �∞+N+ X for �N�∞+ X .

Definition 2.4 Given a family {Xλ}λ∈
 of spectra, we can define their wedge product
to be the spectrum

∨
λ

Xλ with

(
∨

λ

Xλ

)

n

=
∨

λ

Xn

Lemma 2.5 ([28, Proposition II.1.16]) For any spectrum Y , there are natural isomor-
phisms

[
∨

λ

Xλ,Y

]
∼=

∏

λ

[Xλ,Y ]

and
[
Y ,

∨

λ

Xλ

]
∼=

⊕

λ

[Y , Xλ]

We can extend the smash product ∧ to two spectra, functorially in each argument, as
in [2]. We will not need the explicit construction but will use some of its properties:

Theorem 2.6 ([28, Theorems II.2.1 and II.2.2]) There are equivalences

1. (X ∧ Y ) ∧ Z � X ∧ (Y ∧ Z)

2. X ∧ Y � Y ∧ X
3. X ∧ S � X
4. �X ∧ Y � �(X ∧ Y )

such that all natural diagramsmade up of these equivalences commute up to homotopy.

Definition 2.7 A ring spectrum R is a spectrum equipped with a unit morphism η :
S → R and product morphism μ : R ∧ R → R, satisfying appropriate associativity
and unitality conditions up to homotopy.

A (right) module over a ring spectrum is defined similarly.
A map of R-modules X → Y is a map of spectra X → Y which commutes with

the actions of R on X and Y up to homotopy.
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A homotopy of R-module maps between f and g : X → Y is a homotopy of
spectra X ∧ [0, 1]+ → Y between f and g, which is also a map of R-modules.

Example 2.8 The sphere spectrum S is naturally a ring spectrum, and every spectrum
is naturally a module spectrum over it.

Example 2.9 For a ring spectrum R, there is a functor from spectra to (right) R-module
spectra, given by · ∧ R.

Definition 2.10 We define the stable homotopy groups of X to be

πi X := [�i
S, X ]

This is covariantly functorial in X .
Given a spectrum R, we define Ri (X) to be πi (X ∧ R) and Ri (X) to be [X , �i R].

These are functorial in X , covariantly and contravariantly respectively.
Given a space Z , we define R∗(Z) to be R∗(�∞+ Z) and R∗(Z) to be R∗(�∞+ Z).

These are functorial in Z , covariantly and contravariantly respectively.

By Brown’s representability theorem ([16, Theorem 4E.1]), for an abelian group G
there is a (unique up to homotopy equivalence) spectrum HG such that HG∗ and
HG∗ are homology and cohomology with co-efficients in G respectively, and when
G is a ring these are in fact ring spectra. Similarly there are (unique up to homotopy
equivalence) ring spectra KO and KU such that KO∗ and KU∗ are real and complex
K -theory respectively.

2.2 Duality

We say a spectrum X is finite if it is of the form X = �∞+i Y for Y a based finite CW
complex, and i in Z. Finite spectra admit duals in the following sense.

Lemma 2.11 ([28, Corollary II.2.9]) For a finite spectrum X, there is another finite
spectrum X∨, unique up to natural homotopy equivalence, along with natural isomor-
phisms

[X , E] ∼= [S, X∨ ∧ E]

and

[X∨, E] ∼= [S, X ∧ E]

for any other spectrum E. These induce further natural isomorphisms

E∗(X) ∼= E−∗(X).

Wewill also use a base-change isomorphism. Let R be a ring spectrum, with unit map
i : S → R.
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Lemma 2.12 Let X be a spectrum and M an R-module, with R-action μ : M ∧ R →
M. Then there is a natural isomorphism

[X , M] ∼= [X ∧ R, M]R

where [·, ·]R denotes homotopy classes of R-module maps.

Proof Let α : [X , M] → [X ∧ R, M]R send φ to the composition

X ∧ R
φ∧R−−→ M ∧ R

μ−→ M

and let β : [X ∧ R, M]R → [X , M] send ψ to the composition

X
X∧i−−→ X ∧ R

ψ−→ M .

Then α and β are inverses to each other. 	


From these two lemmas we deduce the following corollary.

Corollary 2.13 For finite spectra X and Y , there is an isomorphism

[X ∧ R,Y ∧ R]R ∼= [Y∨ ∧ R, X∨ ∧ R]R .

Proof We have isomorphisms

[X ∧ R,Y ∧ R]R ∼= [X ,Y ∧ R]
∼= [Y∨ ∧ X , R]
∼= [Y∨, X∨ ∧ R]
∼= [Y∨ ∧ R, X∨ ∧ R]R .

The first and fourth isomorphisms are from Lemma 2.12, and the second and third
isomorphisms are from Lemma 2.11. 	


Corollary 2.14 Let X be a finite spectrum and f : X → X be a map such that
f ∧ R : X ∧ R → X ∧ R is homotopic to the identity as a map of R-modules. Then
f induces the identity map on both R∗(X) and R∗(X).

Proof R∗(X) = π∗(X ∧ R), so f induces the identity map on R∗(X).
When X = Y , the isomorphism of Corollary 2.13 sends the identity to the identity,

so the induced map of R-modules X∨ ∧R → X∨ ∧R is homotopic to the identity. But
the action of this map on homotopy groups is the same as the action of f on R∗(X). 	
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2.3 Thom spectra

Let ξ : E → X be a vector bundle of rank n over a space X . We let DE and SE
denote the unit disc and unit sphere bundles of E respectively, with respect to some
choice of metric.

Definition 2.15 We define the Thom space of E , denoted XE
u , to be the quotient

DE/SE . This is a based space with basepoint given by the image of SE .
We define the Thom spectrum of E , denoted XE , to be the spectrum �∞XE

u .
If E ′ is a virtual vector bundle which can be written as E ′ ∼= E − R

m
X for some

m (in particular, this includes any virtual vector bundle pulled back from one over a
compact space), we define the Thom spectrum of E ′ to be �∞−mXE

u .

Remark 2.16 None of these depend on the choice of metric up to homotopy equiva-
lence, and furthermore the Thom spectrum only depends on the stable isomorphism
class of the virtual vector bundle by [28, Lemma IV.5.14].

Now let ξ : E → X be a virtual vector bundle of rank n.

Definition 2.17 E is orientable with respect to R if there is a morphism U : XE →
�n R, called the Thom class, whose restriction to a fibre (which is equivalent to a copy
of �n

S) represents plus or minus the unit in R.
An orientation is a homotopy class of such morphisms.

It follows from Remark 2.16 that being R-orientable only depends on the stable iso-
morphism class of E .

Lemma 2.18 [[28, Proposition V.1.10 and Examples V.1.23]]

1. Any virtual vector bundle is canonically oriented with respect to HZ/2.
2. A virtual vector bundle is orientable with respect to HZ iff it is orientable in

the usual sense, and there is a natural bijection between HZ-orientations and
orientations in the usual sense.

3. A trivialisation of a virtual vector bundle induces a natural orientationwith respect
to any R.

4. If E is oriented with respect to R and f : Y → X is any map, the pullback bundle
f ∗E admits a natural R-orientation.

5. If F is another virtual vector bundle over X and any two of E, F and E ⊕ F are
R-oriented, then the third admits a natural R-orientation.

We will need a stable version of the Thom isomorphism theorem:

Theorem 2.19 ([28, Theorem V.1.15 and Exercise V.1.28]) An R-orientation of E
induces an equivalence of R-module spectra

�∞+n+ X ∧ R � XE ∧ R

More generally, if F → X is another virtual vector bundle, then an R-orientation of
E induces an equivalence of R-module spectra

�n X F ∧ R � XE⊕F ∧ R
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2.4 Pontryagin–Thom collapsemaps

Let i : X ↪→ Y be a smooth embedding of manifolds with X compact, such that
i(∂X) ⊆ ∂Y . Let ν be the normal bundle of i , with unit disc bundle Dν and unit
sphere bundle Sν (with respect to some choice of metric). Furthermore we fix a tubular
neighbourhood of X , i.e. we pick an embedding j : Dν ↪→ Y extending i , and not
touching ∂Y apart from over ∂X .

We will denote the one-point compactification of Y by Y∞, viewed as a based space
with basepoint at infinity. If Y is already compact then this is Y+.
Definition 2.20 We define the Pontryagin–Thom collapse map i!,u : Y∞ → Xν

u by

i!,u(x) =
{
j−1(x) if x ∈ j(Dν)

Sν otherwise

We denote the stabilisation �∞i!,u by i!.
The map i!,u is continuous, and both the space Xν

u and the map i!,u are independent of
the choices of metric and tubular neighbourhood up to homotopy.

Now let f : Xm → Yn be any smooth map of manifolds.

Definition 2.21 We define the stable normal bundle of f , ν f , to be the virtual vector
bundle f ∗TY − T X .

When f is an embedding, this is stably isomorphic to the normal bundle of the embed-
ding, defined in the usual sense.

Now assume X and Y are closed, and choose a smooth embedding

i : X ↪→ R
N

for some N . Now ν f ⊕ R
N is stably isomorphic to the normal bundle ν f ×i of the

embedding

f × i : X ↪→ Y × R
N

We can consider the map

( f × i)! : �∞Y∞ � �∞−N
(
Y × R

N
)

∞ → �−N Xν f ×i � Xν f

Lemma 2.22 Up to homotopy, the morphism �∞Y∞ → Xν f does not depend on the
choice of i or N.

Proof First, observe that if we compose i with the standard embedding R
N ↪→ R

N+1,
the resulting map is the same up to suspension.

Assume i , i ′ are two choices of embedding X ↪→ R
N . Pick an embedding

I : X × [0, 1] ↪→ R
N × [0, 1]
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over [0, 1] restricting to i and i ′ over 0 and 1 respectively, increasing N if necessary
as above. Then ( f × I )!,u provides a homotopy between ( f × i)!,u and ( f × i ′)!,u . 	

Now that we know the desuspended map �∞Y∞ → Xν f doesn’t depend on these
choices (up to homotopy), we denote it by f!.

We fix a ring spectrum R. Given an R-orientation of ν f , we consider the following
composition, which is a map of R-modules:

p f : �∞Y∞ ∧ R
f!−→ Xν f ∧ R

�−→ �∞+d+ X ∧ R
f−→ �∞+dY∞ ∧ R

where d = n − m, and the middle map is from the Thom isomorphism theorem. By
construction, this factors through �∞+d+ X ∧ R.

Now suppose that n = m (so d = 0), Y is compact (so Y∞ = Y+), and there is a
cobordism W from X to Y along with a map F : W → Y restricting to the identity
on Y and to f on X , as in the following diagram:

X

W Y

Y

f

Id

F

Remark 2.23 Wewill find ourselves in this situation in the proof of Theorem 1.8, with
Y = L , X = P a moduli space of suitable holomorphic discs with moving Lagrangian
boundary conditions, and W a moduli space of moving boundary conditions varying
in a family of such boundary conditions.

We assume that νF admits an orientation with respect to R, which, by restriction,
induces one for ν f .

Lemma 2.24 After applying �∞+ · ∧R, f admits a section of R-module maps up to
homotopy (of R-module maps).

Proof Wewill show that themap p f constructed above is an equivalence, then f! ◦ p−1
f

will be the desired section.
We pick an embedding

I : W ↪→ R
N × [0, 1]

for some N , such that I−1
(
R

N × {0}) = X and I−1
(
R

N × {1}) = Y . Then choosing
an orientation of νF and performing the above construction to F gives us a homotopy
from p f to pId , where pId is constructed similarly to p f but for I d : Y → Y ,
using some choice of trivialisation on the trivial vector bundle over Y . But pId is a
composition of three equivalences and hence p f is an equivalence.

All the maps and homotopies are constructed either by applying · ∧ R to a map
of spectra or by applying the Thom isomorphism theorem over R, so they are all
R-module maps. 	
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Corollary 2.25 The map f∗ : R∗X → R∗Y is split surjective.

It follows from [28, Lemma II.2.4 and Theorem V.2.3] that

Corollary 2.26 If W is R-orientable (and hence X and Y are too), the map f ∗ :
R∗Y → R∗X is injective.

Wecan also define Pontryagin–Thom collapsemapswithout smoothness assumptions.
Let i : X ↪→ Y be an embedding of spaces.

Definition 2.27 We say X admits a tubular neighbourhood in Y with normal bundle
ν if there is a vector bundle ν over X and an open neighbourhood U of X in Y , such
that there is a homeomorphism φ : U → DE between U and the unit disc bundle
DE of ν (for some choice of fibrewise metric on ν), sending X to the zero section.

Definition 2.28 Let E → Y be another vector bundle.We define thePontryagin–Thom
collapse map i!,u : Y E

u → Xν⊕E
u by

(x, v) �→
{

(φ(x), v) if x ∈ U

S(ν ⊕ E) otherwise

We write i! for the induced map on Thom spectra.
This definition extends to the case when E is a virtual vector bundle of the form

E ′ − R
N , as we can apply this construction to E ′ and desuspend. Similarly to before,

up to homotopy i! := �∞i!,u then only depends on the virtual vector bundle up to
stable isomorphism.

Example 2.29 When X ↪→ Y is a proper embedding of smooth manifolds, X always
admits a tubular neighbourhood in Y , and we recover the earlier construction.

2.5 Fundamental classes

Let Xn be a closed manifold of dimension n. Choose an embedding

i : X ↪→ R
N ↪→ SN

for some N , with normal bundle ν. Then as virtual vector bundles, there is a natural
isomorphism ν − R

N ∼= −T X . Consider the map i!,u : SN → Xν . Stabilising and
desuspending gives us a well-defined (up to homotopy) map of spectra

[X ] : S → X−T X

Given a ring spectrum R and an R-orientation of T X (which induces one on −T X ),
the Thom isomorphism theorem gives us a well-defined (up to homotopy) map of
spectra

[X ] : S → �∞−n+ X ∧ R
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representing an element [X ] in Rn(X). More generally, given a space Z , a map of
spaces f : X → Z , a vector bundle E → Z , and an R-orientation of T X − f ∗E
(which we assume to have rank d), we can use the Thom isomorphism theorem to
obtain a well-defined (up to homotopy) map of spectra

S
[X ]−−→ X−T X ∧ R � �−d X− f ∗E ∧ R → �−d Z−E ∧ R

which we also denote by [X ]. Here the middle homotopy equivalence is the Thom
isomorphism.

We call all of these maps [X ] fundamental classes.
Lemma 2.30 Let X and Y be closed manifolds, and let f : X ↪→ Y be an embedding.
Then the following diagram commutes:

S

Y−TY X−T X

[Y ] [X ]
f!

Proof Let i : Y ↪→ R
N be an embedding. Then i ◦ f : X ↪→ R

N is an embedding
too, and using this embedding to construct the unstable Pontryagin–Thom collapse
map, we get a commutative diagram (of spaces):

SN

Y νi Xνi◦ f

i!,u
(i◦ f )!,u

f!,u

where νi and νi◦ f are the normal bundles of i and i ◦ f respectively.
Stabilising this diagram gives the required diagram. 	


Lemma 2.31 Let Y be another closed manifold of dimension n. Suppose f : X → Z
and g : Y → Z are two maps, such that there is a cobordism W from X to Y , and a
map F : W → Z extending f and g, as shown below.

X

W Z

Y

f

g

F

Let E → Z be a vector bundle and assume there is an R-orientation of TW − F∗E,
which we assume to have rank d + 1. Then the two fundamental classes [X ], [Y ]
in Rd(Z−E ) (defined using the orientations of T X − f ∗E and TY − g∗E given by
restricting the orientation of TW − F∗E) agree.
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Proof Pick an embedding

I : W ↪→ R
N × [0, 1]

for some N , such that W−1
(
R

N × {0}) = X and W−1
(
R

N × {1}) = Y . Then the
composition

S ∧ [0, 1]+ I!−→ WR−TW ∧ R � �−dW−F∗E → �−dY−E

where the middle map is the Thom isomorphism, defines a homotopy between [X ]
and [Y ]. 	

Remark 2.32 Let X = ⊔

i≥0 X
i be a manifold consisting of components Xi of dimen-

sion i . If X is compact (in particular implying that only finitely many components Xi

are non-empty), we can consider the fundamental classes of these independently and
obtain a fundamental class [X ] := ∑

i [Xi ] in ⊕
i Ri

(
X−T X

)
. We will use this later

in Sect. 5.

3 Index bundles and their orientations

3.1 Cauchy–Riemann operators

Let B be a space and A ⊆ B some subspace.

Definition 3.1 A bundle pair over the pair (B, A) is a complex vector bundle E over
B along with a totally real subbundle F of E |A. This is written as

(E, F) → (B, A)

We call E the complex part and F the real part.
We can perform certain operations on bundle pairs, analogously to vector bundles.

• Given a real vector bundle G over B, we define (E, F) ⊗G to be the bundle pair

(E ⊗R G, F ⊗R G|A)

• Given (E ′, F ′) → (B, A) another bundle pair, we define (E, F) ⊕ (E ′, F ′) to be
the bundle pair

(E ⊕ E ′, F ⊕ F ′)

• A virtual bundle pair is a formal difference (E, F)− (E ′, F ′) of two bundle pairs,
and we say two virtual bundle pairs (E, F)− (E ′, F ′) and (G, H) − (G ′, H ′) are
stably isomorphic if there is an isomorphism of bundle pairs

(E, F) ⊕ (G ′, H ′) ⊕ (CN
B , R

N
A ) ∼= (E ′, F ′) ⊕ (G, H) ⊕ (CN

B , R
N
A )
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for some N .
• The rank of a bundle pair (E, F) is RankCE , and the (virtual) rank of a virtual
bundle pair (E, F) − (E ′, F ′) is RankCE − RankCE ′.

• Given a bundle pair (E, F) → (B, A) and a map of pairs f : (B ′, A′) → (B, A),
we define the bundle pair f ∗(E, F) → (B ′, A′) to be the bundle pair ( f ∗E, f ∗F).

• We define a section of (E, F) to be a smooth section of E whose restriction to A
lies in F . We write �(E, F) for the space of sections.

Similarly to the case of real or complex vector bundles, when B is a finite CW complex
and A a subcomplex, every virtual bundle pair over (B, A) is stably isomorphic to
(E, F)− (CN

B , R
N
A ) for some (E, F) and some N . Similarly the pullbacks of a bundle

pair under homotopic maps are isomorphic.
We will usually take (B, A) to be (D2, ∂D2) × X for some space X , and we will

assume this to be the case for the rest of Sect. 3.
For the rest of Sect. 3.1, we will assume that X is a point, so (E, F) is a bundle

pair over (D2, ∂D2).

Definition 3.2 A (real) Cauchy–Riemann operator on (E, F) is anR-linear first order
differential operator

D : �(E, F) → �0,1(E)

satisfying the Leibniz rule:

D( f η) = (∂̄ f )η + f Dη

for f in C∞(D2, R) and η in �(E, F).

Lemma 3.3 ([23, Remark C.1.2]) The space of Cauchy–Riemann operators on (E, F)

is contractible (and in fact, convex).

For a choice of Hermitian metric on E and a real number q > 2 (which we fix), a
Cauchy–Riemann operator induces an operator

D̂ : W 1,q(E, F) → Wq
(

0,1T ∗D2 ⊗ E

)

where these spaces are appropriate Sobolev completions of the above spaces of smooth
sections. By [23, Theorem C.1.10], this operator D̂ is Fredholm, and in fact Ker D̂ =
Ker D.

3.2 Index bundles

Let X be a finite CW complex, and let

(E, F) → (D2, ∂D2) × X

be a bundle pair.
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By Lemma 3.3, we can choose a Cauchy–Riemann operator Dx on

(
E |D2×{x}, F |∂D2×{x}

)

for each x , varying continuously in x . The space of such choices is contractible.

Definition 3.4 Assume D̂x is surjective for all x . The index bundle of (E, F) is the
(real) vector bundle Ind(E, F) over X , with fibre at a point x given by Ker D̂x .

If D̂x is not always surjective, we can still define the index bundle, following [4]. Since
X is compact, we can find, for some finite N , a continuous family of linear maps

φx : R
N → Wq

(

0,1T ∗D2 ⊗ E |D2×{x}

)

for x in X , such that the stabilised operator Tx := D̂x + φx

Tx : W 1,q (
E |D2×{x}, F |∂D2×{x}

) ⊕ R
N → Wq

(

0,1T ∗D2 ⊗ E |D2×{x}

)

is surjective. In this situation we call φ a stabilisation of rank N . We then define
Ind(E, F) + R

N
X to be the vector bundle with fibre over x given by Ker Tx .

Lemma 3.5 The vector bundle Ind(E, F) is well-defined up to stable isomorphism.
Furthermore this stable isomorphism can be chosen in a way that is unique up to
weakly contractible choice.

Proof Firstly we note that stabilising φ by adding another copy of R which is sent to
0 does not change the index bundle up to canonical isomorphism.

We choose a metric on E , and note that the space of such choices is contractible.
This defines a W 0,2 inner product on W 1,q(E, F).

Given two choices of family of Cauchy–Riemann operators and stabilisation (D, φ)

and (D′, φ′), by the above we can assume that both stabilisations are of the same rank.
If (D, φ) and (D′, φ′) have distance less than 1 with respect to the operator norm,
orthogonal projection defines an isomorphism between their kernels. Note that since
the space of such operators is convex, this open ball is contractible.

In general, we can pick a path in the space of such (D, φ), and iterate this process
along the path. Because the spaces of such pairs (D, φ) (up to stabilisation) are weakly
contractible, the uniqueness result follows from a similar argument. 	

Remark 3.6 We needed compactness of X for there to exist a family of linear maps φx

as above. If X was not compact, the D̂x may not have a uniform upper bound on the
rank of its cokernel, in which case such φx cannot exist.

If X was not assumed to be compact, we could construct the index bundle on
compact subsets Y ⊆ X and take colimits in an appropriate manner. This would
require a longer discussion and is not required for our purposes.

We will require some elementary properties of index bundles.
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Lemma 3.7 If X ′ is another finite CW complex and f : X ′ → X is any map, then
there is a natural isomorphism of virtual vector bundles

f ∗Ind(E, F) ∼= Ind f ∗(E, F)

where we write f ∗(E, F) for (I dD2 × f )∗(E, F).

Proof All of the choices made to define the index bundle are compatible under pull-
backs. 	

Lemma 3.8 If (E, F) and (E ′, F ′) are bundle pairs on (D2, ∂D2) × X, then there is
a natural isomorphism of virtual vector bundles

Ind(E, F) ⊕ Ind(E ′, F ′) ∼= Ind(E ⊕ E ′, F ⊕ F ′)

Proof All of the choices made to define the index bundle are compatible under direct
sums. 	

Corollary 3.9 A stable isomorphism between (E, F) and (E ′, F ′) induces a stable
isomorphism between Ind(E, F) and Ind(E ′, F ′).

Lemma 3.10 Let G → X be a real virtual vector bundle over X. Then there is a
canonical (up to weakly contractible choice) stable isomorphism

(Ind(E, F)) ⊗ G ∼= Ind ((E, F) ⊗ G)

Proof We assume G is an actual vector bundle, and observe that the general case
follows from Lemma 3.8.

Let D be a family of Cauchy–Riemann operators on (E, F), and φ a stabilisation of
rank N , corresponding to the family of stabilised operators T . We pick another vector
bundle G ′ over X , along with an isomorphism G ⊕ G ′ ∼= R

M
X for some M .

For each x in X , we consider the Cauchy–Riemann operator

Dx ⊗ I dGx : �
((
E |D2×{x}, F |∂D2×{x}

) ⊗ Gx
) → �0,1 (

ED2×{x} ⊗ Gx
)

along with the stabilisation of rank NM

θx : R
NM ∼= (RN ⊗ Gx ) ⊕ (RN ⊗ G ′

x ) → Wq
(

0,1T ∗D2 ⊗ E |D2×{x} ⊗ Gx

)

sending (a ⊗ u, b ⊗ v) to φx (a) ⊗ u.
Then Ind ((E, F) ⊗ G)x ⊕ R

NM is equal to Ker Sx by definition, where Sx is the
stabilised operator

(
̂Dx ⊗ I dGx

)
⊕ θx
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But Ker Sx is isomorphic to

((Ker Tx ) ⊗ Gx ) ⊕
(
R

N ⊗ G ′
x

)

which is isomorphic to

(
(Ind(E, F))x ⊗ Gx

) ⊕ R
NM

A similar argument to Lemma 3.5 shows that this isomorphism is canonical up to
weakly contractible choice. 	

There is a standard bundle pair of rank 1

H = (C, δ) → (D2, ∂D2)

where δ(z) = √
zR for z in ∂D2.

We can pick a trivialisation E ∼= C
n
D2×{x} over D

2 × {x} for a point x in X . Then
F |∂D2×{x} determines a loop in the space of totally real subspaces of C

n , which is
isomorphic to U (n)/O(n). There are isomorphisms

π1U (n)/O(n) ∼= Z

for alln, compatiblywith stabilisation inn. There are two such choices of isomorphism,
and we fix the one such that H ⊕ (Cn−1

D2 , R
n−1
∂D2) is sent to 1.

Definition 3.11 We define the Maslov index of (E, F), denoted μ(E, F), to be the
image of F under the isomorphism π1U (n)/O(n) → Z after choosing a trivialisation
of E over a point in X . This is well-defined on each path component of X , i.e. it is a
map π0X → Z.

Using the index theorem, one can compute the virtual rank of the index bundle.

Lemma 3.12 ([23, Theorem C.1.10]) The virtual rank of Ind(E, F) is

n + μ(E, F)

We note that therefore Ind H ∼= R
2. We fix such an isomorphism (forever).

3.3 Orientations

If (E, F) is a virtual bundle pair over (D2, ∂D2)×Y for some (possibly non-compact)
space Y , for any map from a finite CW complex X to Y , Ind(E, F)|X is well-defined,
and furthermore this is compatible with restriction.

Definition 3.13 An R-orientation on Ind(E, F) is a choice of R-orientation on
Ind(E, F)|X for all X , compatible with restriction. We say Ind(E, F) is R-orientable
if such a choice exists.
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Our goal in this section will be to establish the following two propositions. These will
be used later to find conditions under which the tangent bundles to the moduli spaces
constructed in Sects. 4.1 and 5.3 are R-orientable for various ring spectra R.

Proposition 3.14 A stable trivialisation of (E, F) induces a stable trivialisation of
Ind(E, F), and hence an R-orientation for any ring spectrum R, compatibly with
direct sums and pullbacks.

Proof We write (Ck, R
k)X for the bundle pair (Ck

D2×X
, R

k
∂D2×X

). By Corollary 3.9,
it suffices to prove the result for (E, F) = (Cn, R

n)X . Over every point x in the base
X , we pick the standard Cauchy–Riemann operator

∂̄ : �
(
C
n, R

n) → �0,1 (
C
n)

on sections over the disc D2 × {x}.
Evaluation at any fixed point z in ∂D2 defines a map Ker ∂̄ → R

n , which is
an isomorphism (and which does not depend on z). Then because the index of this
Cauchy–Riemann operator is n, (the Sobolev completion of) this Cauchy–Riemann
operator must be surjective. Therefore Ker ∂̄ = Ind(Cn, R

n)X and so this gives us the
required trivialisation of Ind(E, F). 	

The following proposition seemswell-known to experts, but to the author’s knowledge
a proof has not yet appeared in the literature.

Proposition 3.15 A stable trivialisation of F induces a stable complex structure on
Ind(E, F), compatibly with direct sums and pullbacks.

Proof Stabilising if necessary, we can assume that we have a choice of (unstable)
trivialisation F ∼= R

n
∂D2×X

.
This trivialisation of F induces a trivialisation of E |{1}×X , which (since the disc is

contractible) naturally extends to a trivialisation E ∼= C
n
D2×X

over D2 × X . This is
compatible with the trivialisation of F over {1} × X , but not necessarily over the rest
of ∂D2 × X .

By identifying ∂D2 with S1, we identify ∂D2 × X/({1} × X) with the suspension
�X+. There is then an inducedmap f : �X+ → U/O , sending y to the the totally real
subspace Fy of Ey ∼= C

n . HereU/O is naturally identifiedwith the colimit as N → ∞
of totally real subspaces of C

N , where a matrix A in U (N )/O(N ) corresponds to the
totally real subspace A(RN ) ⊆ C

N .
The group of based homotopy classes of maps �X+ → U/O classifies virtual

bundle pairs over (D2, ∂D2) × X equipped with a stable trivialisation over {1} × X ,
up to stable isomorphism and stabilisation (i.e. direct summing a copy of (C, R)X ).

Claim 3.16 The trivialisation of F induces a lift f̃ : �X+ → U, fitting into the
commutative diagram
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U

�X+ U/O

q
f

f̃

where q : U → U/O is the quotient map.

Proof of claim Wewill construct f̃ : �X+ → U (n), then stabilising in n will give the
desired map.

Let φ : R
n
∂D2×X

∼=−→ F ⊆ C
n
∂D2×X

be the trivialisation (which we assume to
be orthogonal), let a1, . . . , an be the standard basis of C

n and let b1, . . . , bn be the
standard basis of R

n .
We then define f̃ (y) to be the unitary matrix that sends ai to φ(bi ) for all i . 	


There is a natural commutative diagram, fromBott periodicity (using the isomorphisms
in [3]):

[
X+, BU × Z

] [
X+, BO × Z

]

[
�X+,U

] [
�X+,U/O

]
g ∼= h ∼=

q∗

f lives in the bottom right group and f̃ lives in the bottom left group of the above
diagram.

There is a map

I : [
�X+,U/O

] → [
X+, BO × Z

]

sending a map r to the index bundle of the bundle pair determined by r .

Claim 3.17 The composition I ◦ h : [X+, BO × Z] → [X+, BO × Z] is the identity
map.

In particular, this implies that the map I is an isomorphism. This fact, along with its
relation to orientations on moduli spaces of holomorphic curves, was first observed
by de Silva in [12].

Proof of claim Let H be the bundle pair of rank 1 over (D2, ∂D2) defined in Sect. 3.2.
It admits a canonical trivialisation over {1}. Then h is defined to send (the classifying
map for) a virtual vector bundle G over X to (the classifying map for) the bundle pair

H ⊗ G − (C, R)X ⊗ G

equipped with its canonical stable trivialisation over {1} × X .
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Then by the properties of index bundles developed in Sect. 3.2, we have isomor-
phisms

Ind(h(G)) ∼= Ind (H ⊗ G − (C, R)X ⊗ G)

∼= Ind(H) ⊗ G − Ind(C, R)X ⊗ G

∼= R
2
X ⊗ G − RX ⊗ G

∼= G

as required. 	

Then since h−1( f ) is the classifying map of Ind(E, F), g−1( f̃ ) is the choice of stable
complex structure that we desired. Note that all choices we made were compatible
with direct sums and pullbacks. 	


4 Themoduli spacesP andW
4.1 Construction of themoduli spaces

Let C be a convex domain in the upper half plane in C, with smooth boundary ∂C
containing 0. Let f : ∂C → [0, 1] be a smooth map sending 0 to 0, and let J be an
ω-tame almost complex structure on M which is convex at infinity.

Definition 4.1 We define D f ,C to be the space of smooth maps u : C → M such that
for all z in ∂C , u(z) lies in ψ f (z)(L).

We define π to be the natural evaluation map π : D f ,C (J ) → L sending u to u(0).

Definition 4.2 We define U f ,C (J ) to be the space of maps u in D f ,C which are J -
holomorphic, namely

J ◦ du = du ◦ j

where j is the complex structure on C ⊆ C.
We call the triple (C, f , J ) the moduli data.

Let G be a fixed convex domain in C with smooth boundary, such that both line
segments (−η, η) ⊂ R and i + (−η, η) ⊂ i + R are contained in ∂G for some η > 0.
Let G± be G ∩ C±Re≥0.

For l ≥ 0, define Zl to be [0, 1]i + [−l, l], and Gl to be

Zl ∪ (G+ + l) ∪ (G− − l)

as shown below.
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0

i

l−l

Zl :

0

i

l−l

Gl :

We now define a 1-parameter family of moduli data (Cl , fl , Jl) as follows.

Cl :=
{
Gl−1 if l ≥ 1

G0 if l ≤ 1

fl(z) :=
{
Im z if l ≥ 1

lIm z if l ≤ 1

and Jl is defined to be some choice of ω-tame almost complex structure (convex at
infinity if M is non-compact) on M which is independent of l (though we will apply
an l-dependent generic perturbation to Jl soon).

As a 1-parameter family of domains inC andmaps to [0, 1],Cl and fl are continuous
everywhere in l and vary smoothly in l except at 1, so we pick a small smoothing of
these families supported near l = 1, by reparametrising in the l direction.

Relative exactness of L in M gives us a uniform energy bound.

Lemma 4.3 There exists some A in R such that for any l ≥ 0 and any smooth map u
in D fl ,Cl , the topological energy

∫
Cl
u∗ω is bounded above by A.

The proof is a minor adaptation of that of [18, Lemma 2].We remark that if the isotopy
ψ t were through symplectomorphisms instead of Hamiltonian diffeomorphisms, the
proof of this lemma would fail.

Proof We choose H : M × [0, 1] → M a time-dependent Hamiltonian generating
ψ t , meaning that for x in M and t in [0, 1],

ω

(
·, d

dt
(ψ t )(x)

)
= dHt (x)

and we choose H to be constant outside compact subsets of M .
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Choose l ≥ 0. There is some λ in [0, 1] such that fl(z) = λIm z for all z in ∂Cl .
Choose u in D fl ,Cl , and define w : Cl → M by

w(s + i t) := (ψλt )−1(u(s + i t))

Then w sends ∂Cl to L so by relative exactness of L , we must have
∫
Cl

w∗ω = 0.
The topological energy of u is

∫

Cl

u∗ω =
∫

s+i t∈Cl

ω(∂su, ∂t u)ds dt

=
∫

s+i t∈Cl

ω

(
dψλt (∂sw), dψλt (∂tw) + d

dt
(ψλt )(w)

)
ds dt

=
∫

s+i t∈Cl

ω(∂sw, ∂tw)ds dt +
∫

s+i t∈Cl

ω

(
dψ t (∂sw), λ

d

dt
(ψ t )(w)

)
ds dt

=
∫

Cl

w∗ω + λ

∫

s+i t∈Cl

dHt
(
dψ t (∂sw)

)
ds dt

= 0 + λ

∫ 1

t=0
Ht

(
ψ t (w(smax (t) + i t))

) − Ht
(
ψ t (w(smin(t) + i t))

)
dt

≤ max
t,x

Ht (x) − min
t,x

Ht (x) =: A

where smax (t) is the largest s such that s + i t lies in Cl , and smin(t) is the smalles s
such that s + i t lies in Cl . 	

We now pick a Riemannian metric on L , with injectivity radius ε and distance function
d. Using this energy bound, [18, Proposition 3] then directly implies the following
result, which should be viewed as a form of Gromov compactness. Roughly, Hofer
shows that for large l, these moduli spaces, when restricted to Zl , live close to holo-
morphic strips with boundary on L and ψ1(L), which we know are constant since
L = ψ1(L) is relatively exact.

Lemma 4.4 There is some c > 1 such that for all l ≥ c and u in U fl ,Cl (Jl),

d(u(i), u(0)) < ε

Proof We apply [18, Proposition 3], to the Lagrangians L and itself. In this setting, for
l > 1, what Hofer calls �Jl (L, L) is the space of finite-energy Jl -holomorphic strips
with boundary sent to L , and so consists only of constant maps to L , and in particular
does not depend on l.

Then take the open neighbourhood U of �Jl (L, L) to be the space of maps u :
R × [0, 1] → M such that d(u(i), u(0)) < ε (where we equip these mapping spaces
with the weak C∞ Whitney topology). [18, Proposition 3] says that there is some
c > 1 such that for all l ≥ c and u in U fl ,Cl (Jl), rl(u) lies in U , where Hofer defines
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rl(u) : R × [0, 1] → M so that in particular rl(u) and u agree when restricted to
neighbourhoods of i[0, 1], and so in particular u also lies in U . 	

Standard techniques in [23] show that for a generic (l-dependent) perturbation of
Jl , W ′ := ⊔

l≥0 U fl ,Cl (Jl) is a smooth manifold with boundary U f0,C0(J0), which
consists only of constant maps C0 → L and hence π : U f0,C0(J0) → L is a diffeo-
morphism. If we choose the perturbation small enough then Lemma 4.4 still holds, by
Lemma 4.3 along with Gromov compactness.

Let Ul = U fl ,Cl (Jl), and let p : W ′ → R send Ul to l.

Lemma 4.5 Each Ul is compact and p is a proper map.

Proof We will show each Ul is compact, a similar argument shows that p is a proper
map.

Let ui be a sequence inUl . Gromov compactness as in [14] implies that this contains
a convergent subsequence, but only after precomposing with a sequence of holomor-
phic automorphisms of the domain.

Let M̃ be M × C, with almost complex structure Jl times the standard complex
structure on C. Let τ : M̃ → C be the projection map onto the second factor. Let L̃
be

⋃

z∈∂Cl

ψ fl (z)(L) × {z}

a totally real submanifold of M̃ .
We let Ũl be the moduli space of holomorphic discs in M̃ with boundary in L̃ . There

is an embedding θ : Ul ↪→ Ũl sending u to the map ũ which sends z to (u(z), z). This
clearly is a bijection with the subset of Ũl consisting of sections of τ |τ−1Cl

.
For u in Ul , the energy of ũ is equal to the energy of u plus the area of Cl , so in

particular by Lemma 4.3, the energies of the ũi are uniformly bounded. Therefore by
[14, Theorem 1.1], there is a subsequence (which we will continue to call ũi , by abuse
of notation) and a sequence of holomorphic automorphisms φi of Cl , such that ũi ◦φi

lives in Ũl for all i , and ũi ◦ φi converges to some v in Ũl .
τ ◦ ũi ◦φi = φi also converges to φ := τ ◦v which is a holomorphic automorphism

of Cl , so ũi converges to v ◦ φ−1, which lies in the image of θ and so v = ũ for some
u in Ul . Therefore ui converges to u in Ul . 	

We pick c′ > c (where c is from Lemma 4.4), a regular value of p. We then defineW
to be the path component of U0 = L in p−1[0, c′], and P to be

W ∩ Uc′

Then, by construction, π : W → L is a cobordism from I d : L → L to π : P → L
over L . Furthermore whilst W ′ may have had different path components of different
dimensions,W is a manifold (with boundary) of dimension n+1, andP is a manifold
of dimension n.
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Proof of Lemma 1.12 We define π ′ : P → L to send u to u(i). Then by Lemma 4.4,
this is homotopic to π . We now write down a homotopy

H : P × [0, 1] → L

from ψ1 ◦ π to π ′.
Let γ : [0, 1] → ∂Cc′ be some fixed path from 0 to i . For u in P and t in [0, 1],

we define H(u, t) to be

ψ1
((

ψ Im γ (t)
)−1

(u (γ (t)))

)

	

Remark 4.6 [18, Theorem 1] shows that even without any genericity assumption on
the almost complex structure, the map π : P → L induces an injective map

H∗(L; Z/2) ∼= Ȟ∗(L; Z/2) → Ȟ∗(P; Z/2)

where Ȟ∗ denotes Čech cohomology. The statement of Lemma 4.4 still holds and
hence so does Lemma 1.12. From this it follows that ψ1|L induces the identity map
on H∗(L; Z/2).

This can be adapted to other generalised cohomology theories too, as in [17].

4.2 Orientations on themoduli space

In this subsection, we will prove Proposition 1.14.
We define D0 to be the space of triples ( f ,C, u), where C is a convex domain in

the upper half plane in C with smooth boundary ∂C containing 0, f : ∂C → [0, 1]
is a smooth map sending 0 to 0, and u is an element of D f ,C . Note that because the
choices of C and f were contractible, each inclusion D f ,C ↪→ D0 is a homotopy
equivalence.

There is a tautological smooth fibre bundle overD0 with fibre over ( f ,C, u) given
by C . The structure group of this bundle is the group of orientation-preserving diffeo-
morphisms of D2 which send 1 to itself. This group is contractible, so we can pick a
trivialisation � from D2 × D0 to this bundle, sending 1 in D2 to 0 in each C . Note
the space of such choices is contractible.

For each ( f ,C), we choose some extension f̃ of f to the entirety of C . Since for
each ( f ,C) the space of such extensions is contractible, we canmake some continuous
choice over the whole of D0, and furthermore this choice is unique up to contractible
choice.

There is then an evaluation map

ev :
(
D2, ∂D2

)
× D0 → (M, L)



Families of relatively exact Lagrangians, free loop spaces… Page 29 of 53 21

sending (z, u) in D2 × D f ,C to

(
ψ f̃ (�(z))

)−1
(u (�(z)))

Because the space of choices for the extensions f̃ was contractible, this defines ev
uniquely up to a contractible space of choices.

There is a bundle pair over
(
D2, ∂D2

) × D0 given by ev∗ (T M, T L). For a map
from a finite CW complex g : X → D0, we write Ind for the index of the pullback of
this bundle pair along g. Note that the virtual rank of Ind may be different on different
components of X if the evaluation map lands in different components of D0.

Because the linearisation of the Cauchy–Riemann equation along its zero set is a
Cauchy–Riemann operator, if J is regular, TU f ,C (J ) is stably isomorphic to the index
bundle Ind, and similarly TW is stably isomorphic to Ind ⊕ R.

Fix X a finite CW complex and g : X → D0 some map. In the rest of this section
wewill find conditions under which Ind is R-orientable over X for various ring spectra
R.

Proposition 4.7 If there is a real vector bundle E over M, along with stable isomor-
phisms T M ∼= E ⊗ C and T L ∼= E |L compatible with each other, then Ind − π∗T L
is stably trivial and hence R-orientable for any ring spectrum R.

Proof Weobserve that the bundle pair ev∗(T M, T L)−ev∗(E⊗C, E) is stably trivial,
and that ev∗(E⊗C, E) ∼= q∗π∗(E⊗C, E)where q : (D2, ∂D2)×X → X collapses
the disc to a point. Therefore Ind(ev∗(E ⊗ C, E)) ∼= π∗E ∼= π∗T L .

Then Ind − π∗T L is stably isomorphic to Ind(ev∗(T M, T L) − ev∗(E ⊗ C, E)),
which is the index bundle of a stably trivial bundle pair, which is stably trivial by
Proposition 3.14. 	

Proposition 4.8 If there is a stable trivialisation T L ∼= R

n
L3

over the 3-skeleton of L
which (after applying · ⊗ C) extends to a stable trivialisation T M ∼= C

n
M4

over the
4-skeleton of M, then Ind and hence Ind − π∗T L are K O-orientable.

Proof We pick a 3-skeleton L3 of L , a 4-skeleton M4 of M containing L3, and a
2-skeleton X2 of X . Then the map of pairs ev : (D2, ∂D2) × X2 → (M, L) can be
homotoped to land in (M4, L3), and we can apply Proposition 3.14 to see that Ind
admits a stable trivialisation over a 2-skeleton. Then by [5, Theorem 12.3], Ind is
KO-orientable. 	

Lemma 4.9 If there is a stable trivialisation T L ∼= R

n
Li+1

over the (i + 1)-skeleton of
L, Ind admits a stable complex structure over the i-skeleton of X.

Proof The real part of the bundle pair (ev∗T M, ev∗T L) → (D2, ∂D2) × X is pulled
back from a map ∂D2 × X → L . Letting Xi be some choice of i-skeleton of X ,
ev : ∂D2 × Xi → L can be homotoped to have image in the (i + 1)-skeleton of L , so
by Proposition 3.15, Ind admits a stable complex structure over Xi . 	

Corollary 4.10 1. If L admits a spin structure, Ind and Ind − π∗T L are orientable.
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2. If L admits a spin structure, Ind and Ind − π∗T L are KU-orientable.

Proof 1. If L admits a spin structure, T L is stably trivial over the 2-skeleton of L , and
so Ind admits a complex structure over the 1-skeleton of X and hence is orientable.

2. A vector bundle over L is stably trivial over an i-skeleton Li iff the classifyingmap
L → BO is nullhomotopic when restricted to Li . Since π3BO = 0, if L2 → BO
is nullhomotopic, so is L3 → BO . So if L admits a spin structure, T L admits a
stable trivialisation over any 3-skeleton. Therefore Ind admits a spinc structure,
i.e. it admits a stable complex structure over any 2-skeleton. Then by [5, Theorem
12.3], Ind is KU -orientable.

	

We use the computation ofw1 of the index bundle of a bundle pair from [15] to weaken
the hypothesis of Corollary 4.10(1).

Lemma 4.11 If w2(L)(x) = 0 whenever x is a homology class represented by a 2-
torus S1 × ∂D2 in L which extends to a solid torus S1 × D2 in M, then Ind − π∗T L
is orientable.

Proof w1(Ind − π∗T L) vanishes by [15, Theorem 1.1]. 	

Together, the results in this section combine to form Proposition 1.14.

5 Monodromy in the looped case

5.1 General set-up

We define Lψ1 ⊆ S1×M to be the space of pairs (t, x), where t lies in S1 = R/Z and
x lies in ψ t (L). We let q : Lψ1 → S1 be the projection map to the first co-ordinate.
This is a model for the mapping torus of ψ1|L . We denote its vertical tangent space
by T vLψ1 .

The Hamiltonian flow induces a natural family of maps which we denote by � t :
Lψ1 → Lψ1 for t in R, which live over the identity map on S1 for t in Z. More
explicitly, pick s in S1, x in ψ s(L) and t in R, and write t + s = m + τ , where m is
in Z and τ is in [0, 1). Then we define � t (s, x) to be

(
τ, ψτ ◦ (ψ1)◦m ◦ (ψ s)−1(x)

)

Then�0 is the identity map,� t is continuous in t and� t ◦�s = � t+s for all t, s in
R. Furthermore �1|q−1({0}) = ψ1|L . � t should be thought of as parallel transporting
by a distance t around the base of the fibre bundle Lψ1 � S1.

The free loop space LLψ1 of Lψ1 is naturally a fibre bundle over Lψ1 . We define L
to be the restriction of this to the fibre over 0 in S1. Then L is naturally a fibre bundle
over L and splits into a disjoint union

L =
⊔

j∈Z
L j
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where L j is the space of loops in L with winding number j about S1.
�1 induces a map L → L which preserves winding numbers, �1(Li ) = Li for all

i , and we will also write �1 for this restriction.
We define L′

j to be subspace of L j given by loops γ such that the composition

S1 → Lψ1 → S1 is given by z �→ j z, and L′ to be the disjoint union of all L′
j . Then

�1 sends L′ to L′.

Lemma 5.1 The inclusion L′ ↪→ L is a homotopy equivalence.

Proof We first define a continuous map f : L j → {continuousmaps [0, 1] → R}.
For all γ in L j , f (γ ) is uniquely determined by the following properties.

1. f (γ )(0) = 0
2. f (γ )(1) = j
3. The composition

[0, 1] → S1
γ−→ Lψ1

q−→ S1

agrees with the composition

[0, 1] f (γ )−−→ R → S1

We define a map F : L → L′ by

F(γ )(t) = � j t− f (γ )(t)(γ (t))

for t in [0, 1]. Then this is a homotopy inverse to the inclusion L′ ↪→ L. 	


By Lemma 5.1, L′
0

�−→ L0, and we see that the action of �1 on L0 restricts to the
action of ψ1|L on LL = L′

0.
Therefore to study the action of ψ1|L on LL , it suffices to study the action of �1

on L0.

Lemma 5.2 �1 acts as the identity on L±1 up to homotopy.

Proof Note by Lemma 5.1 it suffices to prove �1 acts as the identity on L′±1.
We define H : L′±1 × [0, 1] → L′±1 by

H(γ, s)(t) = �±s(γ (t − s))

Then H(·, 0) is the identity and H(·, 1) is �±1. In the case of +1, H is the required
homotopy, and in the case of −1, �1 ◦ H is the required homotopy. 	
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5.2 A Chas-Sullivan type product

In this section we construct a product structure on the Thom spectrum L−T L (defined
shortly).UnderHypothesis 5.13, themoduli spacesM andN (constructed in Sect. 5.3)
will have fundamental classes living in R∗(L−T L). This structure will be crucial in
proving Theorem 1.17.

We first note that by [24], all spaces considered so far in this section are homotopy
equivalent to CWcomplexes, and furthermore they are all Hausdorff and paracompact.

We denote the pullback of the virtual vector bundle −T L → L to L also by −T L .
We will define ring and module structures on the spectra L−T L and L, following [9].
These will be needed in Sects. 5.6 and 5.7 to prove Theorem 1.17.

We have a commutative diagram:

L j ×L Lk L j × Lk

L j+k

�

c

where L j ×L Lk is the fibre product of L j and Lk over L , � is the natural inclusion
map into L j × Lk , and c is a concatenation map: given (γ, δ) in L j ×L Lk and t in
[0, 1], we define

c(γ, δ)(t) =
{

γ (2t) if t ≤ 1
2

δ(2t − 1) if t ≥ 1
2

Then L j ×L Lk admits a tubular neighbourhood in L j ×Lk with normal bundle T L ,
and by applying Definition 2.28 with the virtual vector bundles −T L � −T L and
−T L � 0 over L j × Lk , we obtain two maps, both of which we denote by μ:

μ : L−T L
j ∧ L−T L

k
�!−→ (L j ×L Lk

)−T L c−→ L−T L
j+k

μ : L−T L
j ∧ �∞+ Lk

�!−→ �∞+
(L j ×L Lk

) c−→ �∞+ L j+k

which fit together to give maps

μ : L−T L ∧ L−T L → L−T L

μ : L−T L ∧ �∞+ L → �∞+ L

It follows from the coassociativity of � that these define a homotopy associative
product on L−T L , and a left module action of this on �∞+ L.

Let i : L ↪→ L be the inclusion of constant loops into L0. The composition

[L] : S
[L]→ L−T L i→L−T L



Families of relatively exact Lagrangians, free loop spaces… Page 33 of 53 21

defines a unit for L−T L , similarly to [9]. Together, we have

Proposition 5.3 L−T L is a ring spectrum, and �∞+ L is a left module over it.
Furthermore if R is a ring spectrum, L−T L ∧ R is a ring spectrum, and �∞+ L∧ R

is a left module over it.

It follows from construction that

Lemma 5.4 All of the maps μ constructed in this subsection commute with the map
�1 up to homotopy.

Remark 5.5 For R-homology classes x and y in the R-homology of L−T L or �∞+ L,
we will often write x · y for μ(x, y) when it is unambiguous to do so.

5.3 Themoduli spacesM,N andQ

We fix G a convex domain in C with smooth boundary, such that ∂G contains (−η, η)

and (−η, η) + i for some η > 0, and G is symmetric in the lines iR and i
2 + R. We

define

D+ = (R≤0 + i[0, 1]) ∪ G 
 {−∞}

and

D− = (R≥0 + i[0, 1]) ∪ G 
 {+∞}

viewed as the one-point compactifications of half-infinite strips. Both are compact
Riemann surfaces with boundary, biholomorphic to a disc.

We fix biholomorphisms φ± : D2 → D± which send ∓1 to ∓∞, satisfying

φ−(z) = i − φ+(−z)

for all z, as shown below.

−→
∼=
φ−

D2

+1
... +∞

D−

−→
∼=
φ+

D2

−1
...−∞

D+

Definition 5.6 We defineR± to be the space of smooth maps w : D± → M such that
for all z �= ∓∞ in ∂D±, w(z) lies in ψ Im z(L).

Remark 5.7 Since D± are compact, the topological energy
∫

w∗ω of any w in R± is
finite.
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Fix J an ω-tame almost complex structure on M which is convex at infinity.

Definition 5.8 We define M to be the moduli space of J -holomorphic maps in R−,
and N to be the moduli space of J -holomorphic maps inR+.

There are natural evaluation maps π : R± → L sending u to u(∓∞). We define
Q to be the fibre product N ×L M with respect to these evaluation maps.

Remark 5.9 Morally Q is the limit as l → ∞ of P .

For generic J the moduli spaces M and N are naturally smooth manifolds, and a
similar argument to Sect. 4 shows that they are compact. Furthermore, for generic J
the two maps π : M → L and π : N → L are transverse, and hence Q is also a
compact smooth manifold. We assume we have chosen our J sufficiently generically
to satisfy all of this.

M andN may have different connected components which have different dimen-
sions.

However, note that since both of these moduli spaces are compact, they only have
finitely many non-empty components.

5.4 Bundle pairs on themoduli spaces

We define � to be the space

(D− ∪ [−1,+1] ∪ D+) / ∼

where +∞ ∼ −1 and +1 ∼ −∞, as shown below (identifying D± with discs, using
φ±).

�:

D− D+

+∞ −∞

We define ∂� ⊆ � to be the subspace

(∂D− ∪ [−1,+1] ∪ ∂D+) / ∼

There are natural collapse maps

ξ± : (�, ∂�) → (D±, ∂D±)

which collapse D∓ and [−1, 1] to ∓∞, and are the identity on D±.
We define a submanifold L̃ψ1 ⊆ C × M to be the space of pairs (z, x) such that

|z| = 1 and if z = 1 then x lies in L , otherwise x lies in

ψ Im φ−(z)(L)
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This is diffeomorphic to Lψ1 . We let T v L̃ψ1 be its vertical tangent bundle.
There are natural maps

ev± : (D±, ∂D±) × R± →
(
C × M, L̃ψ1

)

defined by

ev+(z, w) =
(
−φ−1+ (i + z̄), w(z)

)

and

ev−(z, w) =
(
φ−1− (z), w(z)

)

We define a map

C : (�, ∂�) × Q →
(
C × M, L̃ψ1

)

by

C(z, (v, u)) :=

⎧
⎪⎨

⎪⎩

(ev−(z, u)) if z ∈ D−
(ev+(z, v)) if z ∈ D+
(1, u(+∞)) if z ∈ [−1,+1]

We will consider the bundle pairs

ξ∗±ev∗±
(
T M, T v L̃ψ1

)
,

C∗ (
T M, T v L̃ψ1

)

and

ξ∗±π∗ (
T M, T v L̃ψ1

)
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From the construction, we see that the fibres of the complex parts of these bundle pairs
are given as follows.

(
ξ∗−ev∗−T M

)
(z,(v,u))

=

⎧
⎪⎨

⎪⎩

Tu(z)M if z ∈ D−
Tu(+∞)M if z ∈ D+
Tu(+∞)M if z ∈ [−1, 1]

(
ξ∗+ev∗+T M

)
(z,(v,u))

=

⎧
⎪⎨

⎪⎩

Tu(+∞)M if z ∈ D−
Tv(z)M if z ∈ D+
Tu(+∞)M if z ∈ [−1, 1]

(
C∗T M

)
(z,(v,u))

=

⎧
⎪⎨

⎪⎩

Tu(z)M if z ∈ D−
Tv(z)M if z ∈ D+
Tu(+∞)M if z ∈ [−1, 1]

(
ξ∗±π∗T M

)
(z,(v,u))

= Tu(+∞)M

Similarly, the fibres of the real parts are given as follows, where z now lies in ∂�.

(
ξ∗−ev∗−T v L̃ψ1

)

(z,(v,u))
=

⎧
⎪⎨

⎪⎩

Tu(z)ψ
Im z(L) if z ∈ ∂D−

Tu(+∞)L if z ∈ ∂D+
Tu(+∞)L if z ∈ [−1, 1]

(
ξ∗+ev∗+T v L̃ψ1

)

(z,(v,u))
=

⎧
⎪⎨

⎪⎩

Tu(+∞)L if z ∈ ∂D−
Tv(z)ψ

Im z(L) if z ∈ ∂D+
Tu(+∞)L if z ∈ [−1, 1]

(
C∗T v L̃ψ1

)

(z,(v,u))
=

⎧
⎪⎨

⎪⎩

Tu(z)ψ
Im z(L) if z ∈ ∂D−

Tv(z)ψ
Im z(L) if z ∈ ∂D+

Tu(+∞)L if z ∈ [−1, 1]
(
ξ∗±π∗T v L̃ψ1

)

(z,(v,u))
= Tu(+∞)L

Lemma 5.10 There is an isomorphism of bundle pairs F from

ξ∗−ev∗−
(
T M, T v L̃ψ1

)
⊕ ξ∗+ev∗+

(
T M, T v L̃ψ1

)

to

C∗ (
T M, T v L̃ψ1

)
⊕ ξ∗+π∗ (

T M, T v L̃ψ1

)

Proof We define F(z,(v,u)) explicitly as follows.
If z lies in D−, then

F(z,(v,u)) : Tu(z)M ⊕ Tu(+∞)M → Tu(z)M ⊕ Tu(+∞)M
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is given by the identity.
If z lies in D+, then

F(z,(v,u)) : Tu(+∞)M ⊕ Tv(z)M → Tv(z)M ⊕ Tu(+∞)M

is given by the matrix

(
0 1

−1 0

)

with respect to the direct sum decomposition above.
If z lies in [−1,+1], then

F(z,(v,u)) : Tu(+∞)M ⊕ Tu(+∞)M → Tu(+∞)M ⊕ Tu(+∞)M

is given by the matrix

(
cos

( z+1
4 π

)
sin

( z+1
4 π

)

− sin
( z+1

4 π
)
cos

( z+1
4 π

)

)

with respect to the decomposition above.
Note that this map F respects the totally real subbundles when z lies in ∂D. 	


Note that

Ind π∗ (
T M, T v L̃ψ1

)

is isomorphic to π∗T L , over both R±.
Now pick a “pinch” map r : (

D2, ∂D2
) → (�, ∂�) such that the compositions

ξ± ◦ r induce maps of degree 1 from ∂D2 to ∂D±. This description determines r up
to homotopy, but for convenience we will make a more specific choice of r later.

Corollary 5.11 There is an isomorphism of bundle pairs r∗F from

r∗ξ∗−ev∗−
(
T M, T v L̃ψ1

)
⊕ r∗ξ∗+ev∗+

(
T M, T v L̃ψ1

)

to

r∗C∗ (
T M, T v L̃ψ1

)
⊕ r∗ξ∗+π∗ (

T M, T v L̃ψ1

)

5.5 Gluing and orientations of themoduli spaces

The proof of gluing in [13] shows that there is a diffeomorphism Q ∼= Pl+1 for
sufficiently large l, so W can be viewed as a bordism from L to Q. Here we take
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Pl+1 and W as in Sect. 4. [13] uses in an important way the fact that there is no disc
bubbling (which follows from relative exactness of L).

The vertical tangent bundle of this cobordism restricted to Q is then naturally
isomorphic to

Ind r∗C∗ (
T M, T v L̃ψ1

)

Remark 5.12 Ind r∗C∗
(
T M, T v L̃ψ1

)
is isomorphic to the index bundle Ind con-

structed in Sect. 4.2. For the purposes of brevity we will therefore refer to it as Ind for
the rest of Sect. 5.

Therefore an R-orientation of Ind induces an R-orientation of TQ.
By construction, TM and TN are naturally stably isomorphic to

Ind r∗ξ∗∓ev∗∓
(
T M, T v L̃ψ1

)

respectively. Therefore R-orientations on both of these as well as T L induce one on
TQ, since Q = N ×L M implies that

TQ = TN + TM − π∗T L

Assumption 5.13 There are R-orientations of TN , TM, Ind and L , such that the two
induced R-orientations on TQ above agree under the isomorphism r∗F constructed
in Lemma 5.10. Furthermore the restriction of the R-orientation of Ind to the space of
constant maps L is the given R-orientation of L .

Lemma 5.14 Under Assumption 5.13, the cobordism W admits an R-orientation,
restricting to the given ones on L and Q.

Proof The cobordismW has tangent bundle stably isomorphic to Ind⊕ R, and there-
fore the R-orientation on Ind induces an R-orientation on W . By the last part of
Assumption 5.13, this R-orientation restricts on the space of constant maps L to the
given R-orientation of L .

Q now admits two R-orientations: one coming from the R-orientation onW , which
has Q as a boundary component (by identifying Pl+1 with Q via the Ekholm-Smith
diffeomorphism), and the one coming from the R-orientations on TM, TN and T L
under the identification

TQ = TN + TM − π∗T L

It will therefore suffice to check that the natural bundle isomorphism which comes
from gluing

Ind ∼= TQ ∼= TN + TM − π∗T L
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from above agrees with the one induced by the isomorphism F from Lemma 5.10,
up to homotopy of bundle isomorphisms. Assumption 5.13 then tells us that the R-
orientations on both sides agree. To carry this out we need to open up both of these
isomorphisms.

We will recall a sketch of how Ekholm and Smith, in [13], construct a diffeomor-
phism fromQ toPl+1 (wherePl+1 is defined as in Sect. 4). Fix some very large l > 0.
We define D±,l to be the subset of D± given by

D± ∩ {±Re ≥ −(l − 1)}

which we view as subsets of Gl = Cl+1 (Gl , Cl+1 defined as in Sect. 4) by translating
by ±l. We let H be the closure of the complement in Gl of the union of these two
regions:

H := [−1, 1] + i[0, 1]

Ekholm and Smith construct a pre-gluing embedding

PG : Q ↪→ D fl+1,Cl+1

sending (v, u) to a map (u#cv) : Cl+1 → M which agrees with u and v on D±,l

respectively, and is C1-small when restricted to H . Roughly, this is constructed by
picking a metric on M , picking l large enough so that outside D±,l the images of both
u and v lie inside a single geodesically convex neighbourhood of M , and cutting them
off with a bump function.

We view TQ as lying inside

�
(
r∗ξ∗+ev∗+

(
T M, T v L̃ψ1

)
⊕ r∗ξ∗−ev∗−

(
T M, T v L̃ψ1)

))

and TPl+1 as lying inside

�
(
r∗C∗ (

T M, T v L̃ψ1

))

Note that we can do this without introducing stabilisations because our moduli spaces
are cut out transversely, and so our choices of almost complex structure induce sur-
jective Cauchy–Riemann operators.

Using a Newton-Picard iteration, Ekholm and Smith show that there is a diffeo-
morphism ρ : PG(Q) → Pl+1, such that PG and ρ ◦ PG are C1- close. Therefore
the derivative d(ρ ◦ PG) sends a pair of sections (s+, s−) lying in TQ, to a section s
lying in TPl+1, such that s is C0-small on H and C0-close to u and v when restricted
to D±,l .

We make some choice of “pinch” map r : Cl+1 → � which sends ∂Cl+1 to ∂�,
and which restricts to the identity on D±,l . Note that ev � C ◦ r on Cl+1.

By construction, we see that the map induced by r∗F on sections of these bundle
pairs sends a pair of sections (s±), whose evaluations at ∓∞ agree, to a section s,
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whose restrictions to D±,l agree with s± respectively. Consider the composition A:

TQ

�
(
r∗ξ∗−ev∗−

(
T M, T v L̃ψ1

)
⊕ r∗ξ∗+ev∗+

(
T M, T v L̃ψ1

))

�
(
r∗C∗

(
T M, T v L̃ψ1

)
⊕ r∗ξ∗+π∗

(
T M, T v L̃ψ1

))

�
(
r∗C∗

(
T M, T v L̃ψ1

))

TPl+1

r∗F

Projection to the first factor

Orthogonal projection

where we weight the metric on the bundle pair to be small on H . Note that since
r∗F respects the direct sum decomposition away from H , if the weight is sufficiently
small on H , any Cauchy–Riemann operator on the bundle pair in either the second or
third term which respects the direct sum decomposition is of distance less than 1 to a
Cauchy–Riemann operator on the other which respects the direct sum. Therefore the
map TQ → TPl+1 coming from Lemma 3.5 agrees up to homotopy with A, and so
under Assumption 5.13, A respects the R- orientations.

A is C0-close to d(ρ ◦ PG) and so the two maps are homotopic isomorphisms of
vector bundles, which is what we wanted. 	

Lemma 5.15 If T v L̃ψ1 admits a stable trivialisation over an (i + 1)-skeleton of L̃ψ1 ,
then the induced stable trivialisations over an i-skeleton Qi of Q of the bundle pairs
appearing in Corollary 5.11 agree up to homotopy, under r∗F.

Proof Homotoping our maps if necessary, we can assume that our maps

(
D2, ∂D2

)
× Q →

(
C × M, L̃ψ1

)

send ∂D2 × Qi to an (i + 1)-skeleton of L̃ψ1 .
Then the two stable trivialisations are related by a map η : ∂D2 ×Qi → O , where

O is the infinite orthogonal group. We will use the choice of r from the proof of
Lemma 5.14 for convenience, noting that this is unique up to homotopy.

From the construction of F , for any y inQ and x in r |−1
∂D2∂D−, η(x, y) is given by

the identity matrix. For x in r |−1
∂D2∂D+, η(x, y) is given by (the stabilisation of) the

block matrix
(

0 1
−1 0

)
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Then along the top part of ∂D2, η(·, y) is given by some homotopy between these two
matrices, and travelling in the opposite direction along the bottom produces the reverse
of this homotopy. Therefore for a fixed y, η(·, y) is a contractible loop. However these
loops are independent of y, so the contractions can be chosen to be independent of y
too, and so η is nullhomotopic. 	

Then from Proposition 3.15 along with the fact that π3BO = 0, it follows that

Corollary 5.16 1. If T vLψ1 admits a stable trivialisation over a 2-skeleton of Lψ1 ,
then Assumption 5.13 holds for R = HZ.

2. If T vLψ1 admits a stable trivialisation over a 2-skeleton of Lψ1 , then Assump-
tion 5.13 holds for R = KU.

3. If T vLψ1 admits a stable trivialisation, then Assumption 5.13 holds when R is any
complex-oriented cohomology theory.

Proof Assume T v L̃ψ1 admits a stable trivialisation over an (i +1)-skeleton. Note that
since π3BO = 0, if this holds for i = 2, it holds for i = 3 too.

Weuse that TQ is naturally stably isomorphic to Ind, and TM and TN are naturally
stably isomorphic to

Ind r∗ξ∗∓ev∗∓
(
T M, T v L̃ψ1

)

respectively. Since these all are index bundles of bundle pairs pulled back via somemap
to (M × C, L̃ψ1), these maps can be homotoped to send an i-skeleton of the moduli

space times ∂D2 to an (i + 1)-skeleton of L̃ψ1 . Therefore this stable trivialisation
induces a stable complex structure on each an i-skeleton of these moduli spaces, by
Proposition 3.15. We then use the fact that a complex structure over a 1-skeleton
induces an orientation and a complex structure over a 2-skeleton induces a KU -
orientation.

We then apply Proposition 5.15 to see that these induced stable complex structures
agree under the isomorphism r∗F .

Finally, use the fact that a stable complex structure over a 1-skeleton induces an
orientation, and one over a 2-skeleton induces a KU -orientation. 	

Proof of Proposition 1.19 We will show that if T L admits a homotopy class of stable
trivialisations over an i-skeleton Li of L which is preserved byψ1 and can be extended
to an (i+1)-skeleton Li+1, then T vLψ1 admits a stable trivialisation over an i-skeleton
of Lψ1 . Then Corollary 5.16 will imply the result.

Let ψ̃1 : L → L be a map homotopic to ψ1|L which sends Li to itself. Then Lψ1

is homotopy equivalent to

L × [0, 1]/(0, x) ∼ (1, ψ̃1(x))

and an (i + 1)-skeleton of this is given by

(Li × [0, 1]) ∪ Li+1
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Then by assumption, T vLψ1 admits a stable trivialisation over this (i + 1)-skeleton.
	


5.6 Composition of themoduli spaces

We now assume Assumption 5.13 holds throughout the rest of Sect. 5.
Fix some diffeomorphism L̃ψ1 ∼= Lψ1 covering some orientation-reversing diffeo-

morphism ∂D2 ∼= S1 sending 1 ∈ ∂D2 to 0 ∈ S1 = R/Z. There are natural evaluation
maps

S1 × R±
exp(−2π i ·)−−−−−−→ ∂D2 × R±

φ±(∓·)−−−−→ ∂D± × R±
ev±−−→ L̃ψ1

∼=−→ Lψ1

whose adjoints define maps

σ± : R± → L∓1

Therefore Q admits a natural evaluation map

σ : Q → L0

sending (v, u) to the concatenation c(σ−(v), σ+(u)). Then choices of R-orientations
of L and all the moduli spaces allow us to use σ± and σ to define fundamental classes

[M], [N ] and [Q] in ⊕
j
R j

(
L−T L

±1

)
and

⊕
j
R j

(
L−T L
0

)
respectively, as in Sect. 2.5.

Our goal in this subsection is to prove the following two lemmas.

Lemma 5.17

[N ] · [M] = [Q]

in
⊕
j
R j

(
L−T L
0

)
.

Lemma 5.18

[Q] = [L]

in
⊕
j
R j

(
L−T L
0

)
.

From these, we deduce

Lemma 5.19 The composition

�∞+ L0 ∧ R
∨
j

�
∞+ j
+ L1 ∧ R

∨
j

�
∞+ j
+ L0 ∧ R �∞+ L0 ∧ R

[M]· [N ]· p
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is an equivalence, where p : ∨
j

�
∞+ j
+ L0 → �∞+ L0 is the natural projection map.

Proof of Lemma 5.17 Consider the following diagram.

S

N−TN ∧ R ∧ M−TM ∧ R Q−(TN+TM−π∗T L) ∧ R

∨
j

� jN−π∗T L ∧ R ∧ M−π∗T L ∧ R
∨
j

� jQ−π∗T L ∧ R

∨
j

� jL−T L
−1 ∧ R ∧ L−T L

+1 ∧ R
∨
j

� jL−T L
0 ∧ R

[N ]∧[M]
[Q]

Thom

i!

Thom

σ−∧σ+

i ′!

σ

μ

The two arrows labelled Thom are the isomorphisms from the Thom isomorphism
theorem for our choices of R-orientations on TM − π∗T L and TN − π∗T L fol-
lowed by inclusion into this wedge product, and i! and i ′! are obtained by applying
Definition 2.28 to the embedding

Q ↪→ N × M

using the virtual vector bundles −TN �−TM and −π∗T L �−π∗T L respectively.
The top triangle commutes by Lemma 2.30, the middle square commutes by natu-

rality of the Thom isomorphism, and the bottom square commutes by construction of
the product map μ. Therefore the entire diagram commutes.

The composition down along the left and across is given by:

μ ◦ (σ− ∧ σ+) ◦ Thom ◦ [N ] ∧ [M] = [N ] · [M]

whereas composition down along the right is given by

σ ◦ Thom ◦ [Q] = [Q]

so the result follows. 	


Proof of Lemma 5.18 By Lemma 5.14, there exists an R-orientable cobordismW from
Q to L , with respect to the given R-orientations on both ends. Furthermore, evaluating
along the boundary allows us to extend the maps σ : Q → L0 and L ↪→ L0 to the
entirety of W . Therefore the result follows from Lemma 2.31.
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5.7 Proof of Theorem 1.17

Proof of Theorem 1.17 Lemma 5.4 implies that the following diagram commutes up to
homotopy:

�∞+ L0 ∧ R
∨
j

�
∞+ j
+ L1 ∧ R

∨
j

�
∞+ j
+ L0 ∧ R �∞+ L0 ∧ R

�∞+ L0 ∧ R
∨
j

�
∞+ j
+ L1 ∧ R

∨
j

�
∞+ j
+ L0 ∧ R �∞+ L0 ∧ R

[M]·

�1

[N ]·

�1 �1

p

�1

�1∗ [M]· �1∗ [N ]· p

By Lemma 5.2, the second vertical arrow is homotopic to the identity, and the hori-
zontal arrows along the top are all homotopic to the corresponding horizontal arrows
along the bottom. Furthermore Lemma 5.19 tells us that the composition along the
top (and similarly along the bottom) is an equivalence. It follows that the map

�1 : �∞+ L0 ∧ R → �∞+ L0 ∧ R

is homotopic to the identity. Note that all maps and homotopies we used here were
R-linear. 	


6 Families over other bases

Our goal in this section will be to prove Theorem 1.22. In this section, we only
consider mod-2 singular homology.We assume all spaces in this section are homotopy
equivalent to CW complexes. We will use the following pair of purely topological
lemmas:

Lemma 6.1 ([21, Lemma 4.3]) Fix fibre bundles A ↪→ B � C and F ↪→ E � B.
Assume that the fibre bundles

E |A ↪→ E � C

and

F ↪→ E |A � A

both c-split. Then the fibre bundle F ↪→ E � B c-splits.

Proof The inclusion of a fibre F ↪→ E is the composition F ↪→ E |A and E |A ↪→ E .
The hypothesis of the lemma is that both these maps induce injections on mod-2
singular homology. 	

Lemma 6.2 ([21, Lemma 4.1(ii)]) Let E � B be a fibre bundle, and f : B ′ → B a
map which is surjective on mod-2 singular homology. Assume that the pullback bundle
f ∗E � B ′ c-splits. Then E � B c-splits.
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Proof of Theorem 1.22 We first assume that X = (S1)i .
The case i = 0 is trivial and the case i = 1 follows from Theorem 1.4 along with

an application of the Mayer-Vietoris sequence. We proceed by induction, and assume
we know the result for i − 1, for all M and L as in the statement of Theorem 1.4.

We let E = γ ∗E . Then we have two fibre bundles

L ↪→ E � (S1)i

and

S1 ↪→ (S1)i � (S1)i−1

where the inclusion map is inclusion to the first factor and the projection map is
projection to all the other factors.

The fibre bundle E |S1 � S1 c-splits by Theorem 1.4. So by Lemma 6.1, it suffices
to show the fibre bundle given by the composition

E � (S1)i � (S1)i−1

c-splits.
For τ in (S1)i−1, we let γτ be the map S1 → LagL given by γτ (t) = γ (t, τ ).
We perturb the map γ : S1× (S1)i−1 so that for each τ in (S1)i−1, γτ (t) is constant

in t in a neighbourhood of 0.

Claim 6.3 There exists a smooth map H : S1 × (S1)i−1 → R such that for τ in
(S1)i−1, the Hamiltonian Hτ : M × S1 → R generates the Hamiltonian isotopy of
Lagrangians γτ .

More explicitly, this means that the Hamiltonian flow of Hτ applied to the
Lagrangian γτ (0) is γτ .

Proof of Claim 6.3 For each (t0, τ ) in S1 × (S1)i−1, let Vt0,τ be the space of compactly
supported smooth maps f : M → R such that the Hamiltonian flow of f applied to
γτ (t0) agrees with γτ (t0 + ·) to first order.

Together these determine a fibre bundle over S1 × (S1)i−1. Each Vt0,τ is convex
and hence contractible, so we can choose some smooth section of this fibre bundle.
This gives us the map H × S1 × (S1)i−1 → R that we require.

	

We now use this family of Hamiltonians Hτ to construct a suspension of each
Lagrangian isotopy γτ , as follows. We define a map

f : E ↪→ M × T ∗S1 × (S1)i−1

by

f (x) = (x, t, Hτ (x, t), τ )
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where x lies in the fibre over (t, τ ) in S1 × (S1)i−1, and we identify T ∗S1 with S1 ×R

in the usual way. Note that E → (S1)i−1 is a fibre bundle.
A direct computation shows that for each τ , this gives a relatively exact Lagrangian

in M × T ∗S1, therefore this realises E � (S1)i−1 as a family of relatively exact
Lagrangians in M × T ∗S1, and therefore by the induction hypothesis it c-splits.

Therefore by Lemma 6.1, the fibre bundle E � (S1)i c-splits.

For the general case, we consider the composition (S1)i
f−→ X

γ−→ LagL . Since
( f ◦ γ )∗E � (S1)i c-splits, by Lemma 6.2, γ ∗E � X also c-splits. 	
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A An example in complex K -Theory

Our goal in this section is to prove the following.

Proposition A.1 In all sufficiently high dimensions n, there exists a closed n-
dimensional manifold V such that:

1. V is stably parallelisable (and hence spin).
2. V admits a self-diffeomorphism θ : V → V , which acts as the identity on integral

cohomology H∗(V ), but does not act as the identity on K ∗(V ), where K ∗ denotes
complex K -theory.

3. If n is odd, we can take V to be a simply-connected rational homology sphere.

Corollary A.2 If L is diffeomorphic to V , then θ does not lie in GL .

The rest of the section will be dedicated to a proof of Proposition A.1, following
a suggestion of Randal-Williams ([26]). We will construct these in sufficiently high
odd dimensions and then observe that taking a product with S1 provides the desired
examples in all sufficiently high even dimensions.

Let q be a positive integer, and p an odd prime. Let Y be the homotopy mapping
cone of the map S2q → S2q of degree p.

Lemma A.3 We have the following:

http://creativecommons.org/licenses/by/4.0/
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1.

K̃ i (Y ) ∼=
{
0 i even

Z/p i odd

2. When i is odd,

Ki (Y ) ∼= 0

3.

H̃ i (Y ) ∼=
{

Z/p i = 2q + 1

0 otherwise

4.

H̃i (Y ) ∼=
{

Z/p i = 2q

0 otherwise

5. For all i ,

H̃ i (Y ; Q) = 0

Proof Follows from the long exact sequence of a cone. (2) also uses the decomposition

Ki (Y ) ∼= K̃i (Y ) ⊕ Ki (point)

	

By [1, Theorem 1.7], for sufficiently large q, there is a map

g : �2(p−1)Y → Y

which induces an isomorphism on K̃ ∗, but must be 0 on H̃∗ and H̃∗ for degree reasons.
Furthermore we can choose q to be sufficiently large that Y is simply connected.

Let Z = �2(p−1)Y ∨ Y , and we define f : Z → Z to be the composition

Z = �2(p−1)Y ∨ Y
Pinch∨I d−−−−−→ �2(p−1)Y ∨ �2(p−1)Y ∨ Y

Id∨g∨I d−−−−−→ �2(p−1)Y ∨ Y = Z

where the first map is the pinching map, which uses the fact that

�2(p−1)Y = �
(
�2(p−1)−1Y

)

and the second map sends the first copy of �2(p−1)Y to itself, the second copy of
�2(p−1)Y to Y (using g), and sends Y to itself.
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Lemma A.4 Let E be a generalised homology or cohomology theory. Let A be a
connected finite CW complex, and h : A → A some map.

Then h acts as the identity on E(A) if and only if h acts as the identity on Ẽ(A).

Proof There is a canonical splitting

E(A) ∼= Ẽ(A) ⊕ E(point)

h acts diagonally with respect to this splitting and always acts as the identity on
E(point). 	

Lemma A.5 Let f : Z → Z be the map constructed above.

1. f does not act as the identity on K ∗(Z).
2. f acts as the identity on H∗(Z) and H∗(Z). Therefore by Whitehead’s and

Hurewicz’ theorems, since Z is simply connected, f is a homotopy equivalence.

Proof With respect to the decomposition

K̃ ∗(Z) ∼= K̃ ∗ (
�2(p−1)Y

)
⊕ K̃ ∗(Y )

we see that f ∗ is given by the block matrix

(
I d 0
g∗ I d

)

and so f does not act as the identity on K̃ ∗(Z), and hence not on K ∗(Z) either, by
Lemma A.5. A similar argument shows the analogous results for H∗(Z) and H∗(Z).

	

Now if Z were a closed manifold with the right properties and f were a diffeomor-
phism, we would be done, but unfortunately this is not the case.

Pick an embedding Z ↪→ R
N for some large even N > 4(p + q). Let W be a

regular neighbourhood of Z with smooth boundary such that W deformation retracts
to Z . Then W is a compact N -dimensional manifold with boundary, has one handle
for each cell of Z , is simply connected, and for sufficiently large N , its boundary ∂W
is also simply connected. The tangent bundle TW is trivial since W is a codimension
0 submanifold of R

N , and so T ∂W is also stably trivial.
Since Z � W , f induces a map f : W → W , well-defined up to homotopy. If N

was chosen to be sufficiently large, f can be homotoped to an orientation-preserving
embedding e : W ↪→ W , which we can assume has image which does not touch ∂W .

Lemma A.6 e is homotopic to an orientation-preserving diffeomorphismφ : W → W.

Proof The complement C := W \ e (W \ ∂W ) is a cobordism from e(∂W ) to ∂W .
All three of C , e(∂W ) and ∂W are simply connected, and since e is a homotopy
equivalence, by excision (applied to the interior of e(W )) the inclusion e(∂W ) ↪→ C
is a homology equivalence.
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By Poincaré-Lefschetz duality, the inclusion ∂W ↪→ C is also a homology equiv-
alence, and so by the h-cobordism theorem C is a trivial cobordism.

We fix a trivialisation of C , meaning a diffeomorphism C ∼= ∂W × [0, 1]s sending
∂W to ∂W × {1}, where s is the co-ordinate on [0, 1]. Extend ∂s to a vector field P
on the whole of W , and let ρ be its time-1 flow.

Then ρ ◦ e is isotopic to e as an embedding, but is itself a diffeomorphism. Since
e was orientation-preserving, ρ ◦ e also is. 	

Now we let V = ∂W and θ = φ|∂W .

Lemma A.7 V is a rational homology sphere.

Proof By Lemma A.3, Y and hence Z and W are rationally homology equivalent to
a point. Then the result follows from the exact sequence of a pair (using Poincaré
duality):

Hi (W ; Q) → HN−i (W ; Q) → Hi−1(V ; Q) → Hi−1(W ; Q) → HN−i+1(W ; Q)

	

The following two lemmas complete the proof of Proposition A.1.

Lemma A.8 θ acts as the identity on H∗(V ).

Proof Note that since φ acts as the identity on H∗(W ) (by Lemma A.5), by Poincaré
duality, φ also acts as the identity on H∗(W , ∂W ).

From Lemma A.3, we see that

H̃ i (W ) ∼=
{

Z/p i = 2q + 1 or 2(p + q − 1) + 1

0 otherwise

and since W is orientable, by Poincaré duality

Hi (W , ∂W ) ∼= HN−i (W ) ∼=

⎧
⎪⎨

⎪⎩

Z i = N

Z/p i = N − 2q or N − 2(p + q − 1)

0 otherwise

Therefore by the long exact sequence of the pair (W , ∂W ), for all i either the restric-
tion map H̃ i (W ) → H̃ i (∂W ) is an isomorphism or the boundary map H̃ i (∂W ) →
Hi+1(W , ∂W ) is an isomorphism. Both of these maps are compatible with the actions
of φ and θ , so because φ acts as the identity on H∗(W , ∂W ) and on H∗(W ), the result
follows. 	

Lemma A.9 θ does not act as the identity on K ∗(V ).

Proof We will show that the restriction map K̃ i (W ) → K̃ i (V ) is injective for all i ,
then the result follows from Lemmas A.5 and A.4.
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By the long exact sequence of a pair, the kernel of the restriction map is the image
of

Ki (W , ∂W ) → K̃ i (W )

TW is trivial and hence oriented with respect to K ∗, so by Atiyah duality

Ki (W , ∂W ) ∼= KN−i (W )

Therefore using the decomposition

K̃ ∗(W ) ∼= K̃ ∗ (
�2(p−1)Y

)
⊕ K̃ ∗(Y )

and Lemma A.3, we see that if i is even then K̃ i (W ) = 0, and if i is odd then
KN−i (W ) = 0. In either case this implies that the restriction map is injective in
degree i . 	


B An example in real K -Theory

Let U = S3 × S2. In this section we use the Hopf action of S3 on S2 to construct a
simple diffeomorphism U → U , and prove the following.

Proposition B.1 There is a self-diffeomorphism ζ : U → U which acts as the identity
on integral homology but not as the identity on (the homology theory associated to)
real K -theory K O∗.
Then Theorem 1.8 implies

Corollary B.2 If L is diffeomorphic to U and the condition of Proposition 1.14(4)
holds, then ζ does not lie in GL .

We view S3 as the unit quaternions with unit e ∈ S3, and we identify S2 with the
quotient S3/S1 of S3 by the right action of the unit complex numbers. Let

η : S3 → S3/S1 = S2

be the quotient map and let

μ : S3 × S3 → S3

be the product map. μ descends to a map

f : S3 × S2 → S2

which defines a left action of S3 on S2. We then define the diffeomorphism ζ to be
the map U → U sending (x, y) to

(x, f (x, y)).
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Proposition B.1 then follows from Lemmas B.3 and B.4.

Lemma B.3 ζ acts as the identity on the integral homology of U.

Proof We first note that by the Künneth theorem,

Hi (U ) ∼=
{

Z if i ∈ {0, 2, 3, 5}
0 otherwise.

First note that ζ acts as the identity on H0(U ) as U is path-connected.
The following diagram commutes

{e} × S2

U U

ι ι

ζ

where ι is the natural inclusion map. All maps in this diagram induce isomorphisms
on H2 so it follows that ζ acts as the identity on H2(U ).

Similarly the following diagram commutes

U U

S3

ζ

p
p

where p : U → S3 is the projection map onto the first coordinate. All maps in this
diagram induce isomorphisms on H3 so it follows that ζ acts as the identity on H3(U ).

By the universal coefficients theorem, ζ acts as the identity on H2(U ) and H3(U ).
Therefore since the cup product H2(U ) ⊗ H3(U ) → H5(U ) is surjective, ζ acts as
the identity on H5(U ) and hence also on H5(U ). 	

Lemma B.4 ζ does not act as the identity on K O3(U ).

Proof It follows from [3] that the map induced by η

η∗ : Z ∼= ˜KO3(S
3) → Z/2 ∼= ˜KO3(S

2)

is the quotient map Z → Z/2.
Stably, U is homotopy equivalent to a wedge product

U � �2
S ∨ �3

S ∨ �5
S

From this we see that

˜KO3(U ) ∼= KO3(�
2
S) ⊕ KO3(�

3
S) ⊕ KO3(�

5
S)

∼= Z ⊕ Z/2 ⊕ 0
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and with respect to this decomposition, ζ∗ is given by the matrix

(
I dZ 0
r I dZ/2

)

where r : Z → Z/2 is the quotient map. This is not the identity so ζ does not act as
the identity on ˜KO3(U ). By Lemma A.4, ζ does not act as the identity on KO3(U ).
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