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Abstract
Let i : L ↪−→ X be a compact Kähler Lagrangian in a holomorphic symplectic variety
X/C. We use deformation quantisation to show that the endomorphism differential
graded algebra RHom

(
i∗K1/2

L , i∗K1/2
L

)
is formal. We prove a generalisation to pairs

of Lagrangians, along with auxiliary results on the behaviour of formality in families
of A∞-modules.

Mathematics Subject Classification: 16E45 ·14J42 ·53D12 ·53D55 (Primary)18G40 ·
14F40 (Secondary)

0.1 Introduction

Degeneration of the spectral sequenceLet i : Z ⊂ Xbe a locally complete intersection
subvariety and choose a line bundle L on Z. The standard isomorphism of functors
Hom ∼= � ◦ Hom gives RHom ∼= R� ◦ RHom , so we get a Grothendieck spectral
sequence, in this case the local-to-global Ext spectral sequence

Ep,q
2 = Hp(X,Ext q

OX
(i∗L , i∗L )) ⇒ Ext p+q

OX
(i∗L , i∗L ).

We can rewrite this spectral sequence in more familiar terms. First, we observe that
the Ext -sheaves are independent ofL .

Lemma 0.1.1 There are natural isomorphisms

Ext q
OX

(i∗L , i∗L ) ∼= Ext q
OX

(i∗OZ, i∗OZ) ⊗OZ L ⊗OZ L
∨ ∼= Ext q

OX
(i∗OZ, i∗OZ).
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Proof Indeed, the composition defines a natural map

Hom OX(i∗OZ, i∗OZ) ⊗OZ L ⊗OZ L
∨ → Hom OX(i∗L , i∗L )

which we see is an isomorphism working locally on Z. The q > 0 cases follow from
δ-effaceability. ��
Now, we are ready to calculate the Ext -sheaves:

Proposition 0.1.2 There are natural isomorphisms Ext q
OX

(i∗L , i∗L ) ∼= i∗ ∧q NZ/X.

Proof Since the question is local, we may assume L = OZ and that Z is the zero
locus of a regular section s ∈ H0(X,Oc

X) where c = codim(Z,X). Then we have a
Koszul resolution

· · · → O
(c
2)

X → Oc
X

s∨→ OX → i∗OZ → 0.

Taking Hom OX(−, i∗OZ) gives a complex

i∗OZ → i∗Oc
Z → i∗O

(c
2)

Z → · · ·

with all arrows zero. Hence, Ext q
OX

(i∗OZ, i∗OZ) ∼= i∗O
(c

q)
Z and since s yields a regular

sequence, the natural map Oc
X → IZ induces an isomorphism Oc

Z
∼= IZ/I 2

Z . ��
So the spectral sequence takes a simpler form:

Ep,q
2 = Hp(Z,∧qNZ/X) ⇒ Ext p+q

OX
(i∗L , i∗L )

and the differentials on E2 come from classes in

Ext2OX
(∧qNZ/X,∧q−1NZ/X).

Let KS be the Kodaira-Spencer class, i.e. the extension class of

0 → TZ → i∗TX → NZ/X → 0.

Example 0.1.3 For q = 1, we have an explicit description of the differential, showing
it’s often non-zero in general.

The differential acts viaNZ/X → OZ[2] which is (the adjoint of) the class

αL : L → L ⊗ N ∨
Z/X[2],

measuring the obstruction to extending L from Z to 2Z.1

1 2Z is the first infinitesimal neighbourhood of Z in X given by the ideal I 2
Z .
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This is purely Hodge-theoretic, i.e. c1(L ) extends topologically and its (0, 2)
part is the obstruction to it being of type (1, 1), so a holomorphic line bundle. The
differential is a map Hp(Z,NZ/X) → Hp+2(Z,OZ) which is the contraction with
the class αL ∈ H2(Z,N ∨

Z/X) given by contracting c1(L ) ∈ H1(Z,�Z) with KS ∈
H1(Z,N ∨

Z/X ⊗ TZ).

Let i : L ↪−→ X be a smooth complex Lagrangian in a (compact) holomorphic
symplectic variety X. Denote the holomorphic symplectic form by σ and fix a line
bundle L ∈ Pic(L). We are interested in the self-Ext groups of i∗L . These are
naturally computed using the local-to-global spectral sequence just introduced:

Ep,q
2 = Hp(L,∧qNL/X) ⇒ Ext p+q

OX
(i∗L , i∗L ).

We see that the holomorphic symplectic form σ gives an isomorphism NL � �L by
considering the diagram:

0 TL i∗TX NL/X 0

0 N ∨
L/X i∗�1

X �1
L 0

i∗σ

Hence, in the symplectic setting, the spectral sequence takes the form

Ep,q
2 = Hp(L,�

q
L) ⇒ Ext p+q

OX
(i∗L , i∗L ).

Remark 0.1.4 We record a few observations from the discussion above:

• E2 is de Rham cohomology H(L/C) of L.
• The second page is independent of the line bundle.
• The differential d2, however, isn’t, e.g. the class αL mentioned earlier clearly
depends on L .

Our first main result is on the degeneration of this spectral sequence for certain class
of line bundles L .

Theorem 0.1.5 Let i : L ↪−→ X be a smooth complex Lagrangian in a compact hyper-
kähler variety X/C, and let L be a quantisable line bundle on L, such as K1/2

L . Then
the local-to-global Ext spectral sequence

Ep,q
2 = Hp(L,�

q
L) ⇒ Ext p+q

OX
(i∗L , i∗L )

degenerates on the second page.

Remark 0.1.6 • Recall that in the holomorphic case the existence of a line bundle
K1/2
L is equivalent to the existence of a spin structure on L. A choice of spin

structure corresponds to a choice of a square root K1/2
L , see [2].
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• In fact, as wewill explain later, the quantisable line bundles are precisely the twists
of K1/2

L by 2-torsion line bundles.

Remark 0.1.7 The proof is, unsurprisingly, via deformation quantisation. This doesn’t
require X compact Kähler and, in fact, the proof shows we don’t even need L Kähler -
it is enough it be smooth, compact with Hodge-to-de Rham spectral sequence degen-
erating on E1. Examples of such manifolds are given by any manifold satisfying the
∂∂-lemma, e.g. non-projective Moishezon manifolds.

Formality results Recall that a differential graded algebra A is formal if A � HA as
differential graded algebras. ByKadeishvili’s theorem the cohomology of a differential
graded algebra is naturally an A∞-algebra. The homotopy class of the A∞-structure
on HA measures failure of formality for A. Kähler formality of Deligne et al. (see [9])
says that �∗(L,C) is a formal differential graded algebra, hence H∗(L/C) is formal
as an A∞-algebra. In light of Hk(L/C) = ⊕p,qHp(L,�

q
L) = Extk(i∗L , i∗L ), it is

natural to ask whether the same goes for Ext(i∗L , i∗L ), i.e. if the differential graded
algebra RHom(i∗L , i∗L ) is formal. We confirm this in the case whereL is a square
root of the canonical bundle of L.

Theorem 0.1.8 Let X/C be holomorphic symplectic and let i : L ↪−→ X be a smooth
compact Kähler Lagrangian submanifold whose canonical bundle admits a square
root. Then the differential graded algebra RHom

(
i∗K1/2

L , i∗K1/2
L

)
is formal, in fact,

quasi-isomorphic to the de Rham algebra H(L/C).

Results on pairs of Lagrangians Consider two smooth Lagrangians i : L ↪−→ X,
j : M ↪−→ X such that L ∩ M is smooth. For any choice of line bundles L ∈ Pic(L)

and M ∈ Pic(M), we have a local-to-global Ext spectral sequence

Ep,q
2 = Hp(L ∩ M,�

q−c
L∩M ⊗ K ) ⇒ Ext p+q(i∗L , j∗M ),

where K := detNL∩M/M ⊗ L ∨∣∣
L∩M ⊗ M |L∩M.

Theorem 0.1.9 Let X/C be a holomorphic symplectic variety. Suppose that i :
L ↪−→ X, j : M ↪−→ X are smooth Lagrangians with a compact Kähler inter-
section L ∩ M of codimension c in L. Assume that K1/2

L and K1/2
M exist and let

Kor :=
(
K1/2
L

∣∣
∣
L∩M ⊗ K1/2

M

∣∣
∣
L∩M

)∨ ⊗ KL∩M. Then the Ext local-to-global spectral
sequence

Ep,q
2 = Hp(L ∩ M,�

q−c
L∩M ⊗ Kor) ⇒ Ext p+q(

i∗K1/2
L , j∗K1/2

M

)

degenerates on the second page. In particular,

Extk
(
i∗K1/2

L , j∗K1/2
M

) = ⊕p,qH
p(L ∩ M,�

q−c
L∩M ⊗ Kor) = Hk−c(L ∩ M,Kor),

where Kor is the local system corresponding to the 2-torsion line bundle Kor.
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Remark 0.1.10 As above, we remark that the proof shows it is enough to assume the
intersection L∩Msmooth, compact such that its Hodge-to-de Rham spectral sequence
for the local system Kor degenerates on E1.

Example 0.1.11 Notice that Ext
(
i∗K1/2

L , j∗K1/2
M

)
is a graded module over

Ext
(
i∗K1/2

L , i∗K1/2
L

)
. A theorem of Deligne (see [12, 27]) asserts that �∗(L∩M,Kor)

is a formal dg module over �∗(L ∩ M,C). Let �∗̄
∂
be the complex of ∂̄-closed forms

with differential ∂ . The diagram

�∗(L,C) �∗̄
∂
(L,C) H(L/C)

�∗(L ∩ M,C) �∗̄
∂
(L ∩ M,C) H(L ∩ M/C)

shows �∗(L ∩M,Kor) is also formal over �∗(L,C). Hence H(L ∩M,Kor) is formal
as an A∞-module over H(L/C).

We prove the same goes for the Ext modules:

Theorem 0.1.12 Let X/C be holomorphic symplectic. Suppose that i : L ↪−→ X,
j : M ↪−→ X are compact Kähler Lagrangians with a smooth intersection. Assume
that their canonical bundles admit square roots. Then RHom

(
i∗K1/2

L , j∗K1/2
M

)
is

a formal differential graded module over the (formal) differential graded algebra
RHom

(
i∗K1/2

L , i∗K1/2
L

)
. Moreover, we have a quasi-isomorphism of pairs

(
RHom

(
i∗K1/2

L , i∗K1/2
L

)
,RHom

(
i∗K1/2

L , j∗K1/2
M

)) � (
H(L/C),H∗−c(L ∩ M,Kor)

)
,

where c is the codimension of L ∩ M in L.

Remark 0.1.13 A few observations regarding Theorem 0.1.12:

1. The proof shows that it is enough to assume L compact Kähler and M smooth such
that L ∩ M is smooth.

2. A variant for the dg module structure over RHom
(

j∗K1/2
M , j∗K1/2

M

)
can be formu-

lated, reversing the assumptions on L and M in the part 1. of the remark.

0.2 Method of proof

The proof of Theorem 0.1.8 involves twomain ingredients.We first observe that the dg
algebra RHom

(
i∗K1/2

L , i∗K1/2
L

)
can be deformed over C[[�]] to the de Rham complex

- this involves results of Schapira et al. on deformation quantisation [10, 22], hence
the square root of the canonical bundle. The deformation is the de Rham complex
�∗(L,C) over the generic point, therefore it is generically formal by Kähler formality
of [9]. Applying semicontinuity yields degeneration of the spectral sequence, proving
the degeneration for K1/2

L . The formality requires a second ingredient - it is a theorem
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of Kaledin that generically formal dg algebras are formal (under certain conditions
which our family satisfies).

The proofs of Theorem 0.1.9 and Theorem 0.1.12 follow the same lines, however,
to prove the formality, we need Proposition 1.8.4 - the analogue to the result of Kaledin
for A∞-modules.

Kaledin [16] treats formality of dg algebras as triviality of the normal cone deforma-
tion. Our approach to formality of A∞-modules is also motivated by the deformation
to the normal cone as we now explain, although we phrase our results without refer-
ence to deformation theory, opting to use the language of An-algebras and modules
instead.

Let A be a graded algebra over R. Consider a minimal A∞-module M over A.
Assume A,M projective over R. Let Ã = A[h] be the trivial deformation of A over
R[h]. Consider the graded R[h]-module M[h]. Then (mM

2 , mM
3 h, mM

4 h2, · · · ) turns
M[h] into an A∞-module over A[h] since the defining relations (∗′

m) for A∞-modules
are homogeneous. Letting M̃ be the so defined A∞-module, observe that the general
fibre is M. We write M(2) for the minimal (formal) A∞-module (M, (mM

2 , 0, 0, · · · ),
so the central fibre of M̃ is M̃/h = M(2). In light of this, the following definition
seems natural.

Definition 0.2.1 The A∞-module M̃ is the deformation of M to the normal cone.

One should think of M̃ as an A∞-deformation of M(2) to M. Notice that the for-
mality of the A∞-module M̃ is the same as triviality of M̃ as a deformation, i.e. in
either case we are asking for a quasi-isomorphism M̃ � M(2)[h]. Reducing modulo
h − 1, we see that this implies that M is formal. The converse is also true. Hence for-
mality of M is equivalent to triviality of the deformation M̃, so we can use obstruction
theory and cohomology, standard deformation theory tools, to find formality criteria
for A∞-modules.

0.3 Context

The work of Solomon and Verbitsky In [30] the authors study the Fukaya category
of I-holomorphic graded spin Lagrangians in a hyperkähler variety (X, I, J,K, g),
equipped with the symplectic form ωJ = g(J·, ·). Recall that spin is needed to set up
Floer theory and is equivalent to choosing square roots of the canonical bundles in the
complex case. When L ∩ M is smooth, they show that the Floer coboundary operator
μ1 on CF(L,M) coincides with the de Rham differential, hence HF(L,M) is the de
Rham cohomology of L∩M, up toMaslov index shifts and tensoring by
. Moreover,
for CF(L,L), μ2 is the wedge product of differential forms up to sign, while μk = 0
for k ≥ 3. Thus, in the compact case, they recover a formality result of Ivan Smith:
the proof of Kähler formality as in [9] shows that the Floer A∞-algebra CF(L,L) is
formal. We note that their results might be thought of as mirror to ours.

More generally, Solomon and Verbitsky consider a collection of I-holomorphic
graded spin compact Lagrangians L and define a Fukaya A∞-category ÂL. In light
of the formality of CF(L,L), the following conjecture of Ivan Smith is natural.
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Conjecture 0.3.1 ÂL is a formal A∞-category.

The category ÂL is known to be intrinsically formal in the case of the Ak-Milnor
fibre by [1, 29] shows formality of ÂL in the case of a transverse nilpotent slice
of the adjoint quotient sl2k(C) → C2k−1 and a distinguished (finite) collection of
Lagrangians defined in [28]. We answer a similar question in the setting of virtual de
Rham cohomology - see Proposition 0.3.5 below.

Kapustin’s Seiberg-Witten duality and deformation quantisaion Another source of
motivation for us comes from Kapustin’s conjectural Seiberg-Witten duality [18]
between type A and B-branes on hyperkähler manifolds which pairs well with the
results of [30]. One way to make the conjectural duality of Kapustin precise is via
deformation quantisaion modules of Kashiwara-Schapira [23], cf. Conjecture 0.3.2.
We exploit this idea, using the deformation quantisation for complex Lagrangians
[10], to show that the analogue of the Solomon-Verbitsky degeneration holds for the
B-model. As explained, this should be regarded as a Seiberg-Witten duality between
commutative and non-commutative spaces. In particular, everything happens on the
same manifold and no T-duality is involved.

In earlier work [17] Kapustin conjectures that the Fukaya category of a hyper-
kähler variety (X, I, J,K) with symplectic form ωJ should be equivalent to a
non-commutative deformation of the derived category on the holomorphic symplectic
manifold (X, I, σI = ωJ + iωK). We suggest a precise deformation:

Conjecture 0.3.2 The Fukaya category of a hyperkähler variety (X, I, J,K)with sym-
plectic form ωJ is quasi-equivalent to the differential graded category of DQ modules
on the holomorphic symplectic manifold (X, I, σI = ωJ + iωK).

Following [30] and Conjecture 0.3.2, one can speculate that the category ÂL should
be quasi-equivalent to the full subcategory DL of the category of DQ modules on X
whose objects are a choice of a simple holonomic moduleDL along L for each L ∈ L.
Our results show that DL is well-defined up to quasi-equivalence. In fact, we can
strengthen Theorem 0.1.8:

Theorem 0.3.3 Let X/C be holomorphic symplectic and let i : L ↪−→ X be a smooth
compact Kähler spin Lagrangian submanifold. Then, for L = {L}, the differential
graded category DL is formal.

In light of the results above, Conjecture 0.3.1 and the Seiberg-Witten duality Conjec-
ture 0.3.2, we expect:

Conjecture 0.3.4 Let L be a Solomon-Verbitsky collection of Lagrangians in X. The
differential graded category DL is formal.

Thus, Theorem0.3.3 provesConjecture 0.3.4 in the case of oneLagrangian.Our results
Theorem0.1.9 andTheorem0.1.12 on pairs of cleanly intersecting Lagrangians are the
first step towards Conjecture 0.3.4.We are not able to show formality of the differential
graded category in general but our weaker results concerning A∞-modules show that
it is well-defined up to quasi-equivalence.
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Behrend and Fantechi The construction of a differential graded category C of
Lagrangians in a holomorphic symplectic variety X is sketched in [4]. This
construction depends on their constructible virtual de Rham complex(
EBF := E xt OX

(
i∗K1/2

L , j∗K1/2
M

)
, d

)
. Locally X is the cotangent bundle of M and

L is given by the graph of d f for some f ∈ �(M,OM), hence L ∩ M is the critical
locus crit f . Then the sheaves EBF are the cohomology sheaves of (�M, d f ∧). Since
d f ∧ anticommutes with the de Rham differential d, we see that d descends to a dif-
ferential on EBF, still denoted d. The main result of [4] is that these locally defined
differentials glue. The cohomology of the morphism complexes HomC(L,M) is given
by the virtual de Rham cohomology R�(EBF, d) of the intersection L ∩M. There is a
spectral sequence computing R�(EBF, d):

Ep,q
1 = Hq(X,E

p
BF) ⇒ Rp+q�(EBF, d). (1)

When L ∩ M is compact Kähler, it degenerates by Hodge theory, hence our results
prove a corrected version of [4, Conjecture 5.8]:

Proposition 0.3.5 Let X/C be a holomorphic symplectic variety and suppose that
i : L ↪−→ X and j : M ↪−→ X are smooth Lagrangians such that K1/2

L and K1/2
M exist

and L ∩ M is smooth compact. Assuming that the spectral sequence (1) degenerates
on E1, e.g. if L ∩ M is furthermore Kähler, we have

Rk�(EBF, d) = ExtkOX

(
i∗K1/2

L , j∗K1/2
M

)
.

Remark 0.3.6 This conjecture is the analogue of the formality of ÂL in the virtual
setting.

0.4 Plan of paper

In Sect. 1 we start by A∞-algebras and conclude with the formality theorems of
Kaledin [16]. In the next paragraph we define A∞-modules and recall standard results
such as Kadeishvili’s theorem on minimal models. Then we have a paragraph on (bi-
graded) Hochschild cohomology of modules over graded algebras. It culminates in
some results on base-change forHochschild cohomology,mirroring statements in [25].
After that, we develop obstruction theory for extending An-modules to An+1-modules
as well as An-morphisms to An+1-morphisms between modules - this is motivated
by similar ideas in [19] for L∞-algebras and [24] dealing with A∞-algebras. The last
paragraph contains our results on formality of A∞-modules.

In the next Sect. 2, we recall results of [3] on perverse sheaves on d-critical loci - a
structure that exists on the intersection of two Lagrangians. Then we have a reminder
on deformation quantisation modules, following [10, 23]. In particular, we compare
the compatibility of [10] to the results by Ginzburg et al. [5]. We conclude by relating
perverse sheaves on Lagrangian intersections and simple holonomic DQ modules.

In Sect. 3 we start by applying deformation quantisation to prove the degeneration
of the local-to-global Ext spectral sequence, for square roots of the canonical bundle,
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in both cases of single Lagrangian and a pair of cleanly intersecting Lagrangians. We
conclude with our main results on formality.

0.5 Conventions

We work with A∞-algebras and modules over a (unital) ring R and we shall assume
that R is a commutative algebra over a field k of characteristic 0.

1 A∞-algebras

Agoodgeneral reference forA∞-algebras is [24].We recallA∞-algebras over a ringR,
their bar construction, Kadeishvili’s theorem on minimal models and formality results
of Kaledin-Lunts. Then we review definitions and standard results on A∞-modules.
Thefinal paragraphs of the section containHochschild cohomology, obstruction theory
and our results on formality of A∞-modules.

1.1 A∞-algebras

Definition 1.1.1 Let n ∈ N ∪ {∞}. An An-algebra is a graded R-module A equipped
with a family of R-linear morphisms

mi : A⊗i → A

of degree 2 − i for 1 ≤ i ≤ n such that for all m ≤ n we have

∑

j+k+l=m

(−1) jk+lm j+1+l(id
⊗ j ⊗ mk ⊗ id⊗l) = 0. (∗m)

Remark 1.1.2 1. If mi = 0 for all i �= 2, then A is a graded algebra.
2. If mi = 0 for all i �= 1, 2, A is a differential graded algebra.

Example 1.1.3 Let A be an A∞-algebra. Then the first relation is

(∗1) m1m1 = 0,

i.e. m1 is a differential. The second relation is

(∗2) m1m2 = m2(m1 ⊗ id + id ⊗ m1),

meaning that m1 is a derivation for the multiplication m2. The third equation shows
m2 is associative up to the homotopy m3:

(∗3) m2(m2 ⊗ id − id ⊗ m2) = m1m3 + m3(m1 ⊗ id⊗2 + id ⊗ m1 ⊗ id + id⊗2 ⊗ m1).
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In particular, anyminimalAn-algebra is associative. The cohomology of anAn-algebra
is a graded associative algebra.

Definition 1.1.4 Let n ∈ N∪{∞}. Let A,B be An-algebras over R. An An-morphism
f : A → B between An-algebras is a family of R-linear morphisms

fi : A⊗i → B

of degree 1 − i for 1 ≤ i ≤ n such that for all m ≤ n we have

∑

j+k+l=m

(−1) jk+l f j+1+l(id
⊗ j ⊗ mk ⊗ id⊗l) =

∑

i1+···+ir =m

(−1)smr ( fi1 ⊗ · · · ⊗ fir ),

(∗∗m)

where we set

s =
∑

2≤u≤r

(
(1 − iu)

∑

1≤v≤u

iv
)
.

The composition of f : A → B and g : B → C is defined by

(g ◦ f )n =
∑

r

∑

i1+···+ir =n

(−1)s gr ( fi1 ⊗ · · · ⊗ fir ).

Example 1.1.5 Let f : A → B be an A∞-morphism. Then

(∗∗1) f1m1 = m1 f1,

that is, f1 is a morphism of complexes, i.e. A1-morphisms are just morphisms of
complexes. The second relation is

(∗∗2) f1m2 = m2( f1 ⊗ f1) + m1 f2 + f2(m1 ⊗ id + id ⊗ m1),

measuring the compatibility of f1 with the multiplications of A and B.

Remark 1.1.6 We denote the category of An-algebras and An-morphisms by Algn and
the category of A∞-algebras by Alg∞. The category of differential graded algebras is
a non-full subcategory of Alg∞.

Definition 1.1.7 Let n be a positive integer or ∞.

1. A morphism f = ( f1, f2, · · · , fn) : A → B of An-algebras is a quasi-
isomorphism if f1 is a quasi-isomorphism of the underlying complexes.

2. A and B are said to be quasi-isomorphic if there exist An-algebras C1, · · ·Cm and
quasi-isomorphisms A ← C1 → · · · ← Cm → B.

Definition 1.1.8 Let n be a positive integer or ∞.



Formality of differential... Page 11 of 42 8

1. An An-algebra A is called minimal if m1 = 0.
2. A minimal model for A is a minimal An-algebra B together with a quasi-

isomorphism B → A.

Theorem 1.1.9 (Kadeishvili [15]) Let A be an A∞-algebra over R such that HA is
a projective R-module. For any choice of a quasi-isomorphism f1 : HA → A of
complexes of R-modules, there exists a minimal A∞-structure on HA, with mHA

2 being
induced by m2, and an A∞-quasi-isomorphism f : HA → A lifting f1.

Definition 1.1.10 Let A be an A∞-algebra.

1. A is called An-formal if it is An-quasi-isomorphic to the An-algebra (HA, mHA),
where mHA

2 induced by m2 and mHA
i = 0 for i �= 2.

2. A is called formal if it is A∞-quasi-isomorphic to the graded associative algebra
HA, viewed as an A∞-algebra.

We have the following two important results due to Kaledin and Lunts.

Theorem 1.1.11 (Lunts [25]) Let A be a minimal A∞-algebra over R which is projec-
tive as an R-module. Then A is formal iff it is An-formal for all n.

Furthermore, Kaledin [16], shows that An-formality is measured by a cohomology
class, called the Kaledin class, which gives the next result.

Theorem 1.1.12 (Kaledin-Lunts [16, 25]) Let R be an integral domain with field of
fractions k(η). Consider a minimal A∞-algebra A over R which is a finite projective
R-module. Assume that the Hochschild cohomology group with compact supports
HH2

c(A(2)) is torsion-free. IfAη = k(η)⊗RA is formal, thenA is formal. In particular,
Ap is formal for all p ∈ SpecR.

1.2 The bar construction

Let A be a graded R-module endowed with morphisms

mi : A⊗i → A.

For i ≥ 1 we have a bijection

Hom(A⊗i ,A) → Hom((A[1])⊗i ,A[1])
mi �→ di = (−1)i−1+degmi s ◦ mi ◦ (s−1)⊗i ,

where s : A → A[1] is the canonical degree −1 morphism. Remark that in our case
mi are of degree 2 − i , so the corresponding di have degree 1. The morphisms di

define a unique morphism

T(A[1]) → A[1],
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which by the universal property of the reduced tensor coalgebra corresponds to a
unique degree 1 coderivation

d : T(A[1]) → T(A[1]).

Lemma 1.2.1 (Lefèvre-Hasegawa [24]) The morphisms mi define an A∞-algebra
structure on A iff d is a differential, i.e. d2 = 0.

Definition 1.2.2 The bar construction of an A∞-algebra A is the differential graded
coalgebra B(A) := (T(A[1]), d).

Let A,B be graded objects. For i ≥ 1 we have a bijection

Hom(A⊗i ,B) → Hom((A[1])⊗i ,B[1])
fi �→ Fi = (−1)i−1+deg fi sB ◦ fi ◦ (s−1

A )⊗i .

If fi are of degree 1 − i , the maps Fi define a degree 0 morphism of coalgebras

F : B(A) → B(B).

Lemma 1.2.3 (Lefèvre-Hasegawa [24]) Let A,B be A∞-algebras and let fi ∈
Hom(A⊗i ,B) be of degree 1 − i . The morphisms fi define an A∞ morphism iff F is
compatible with the differentials, i.e. we have a bijection

HomAlg∞(A,B)
∼−→ Hom(B(A),B(B)).

1.3 A∞-modules

Definition 1.3.1 Let n ∈ N ∪ {∞} and let A be an An-algebra over R. An An-module
over A is a graded R-module M together with a family of morphisms

mM
i : M ⊗ A⊗i−1 → M

of degree 2 − i for all 1 ≤ i ≤ n such that for all 1 ≤ m ≤ n

∑

j+k+l=m, j≥1

(−1) jk+lmM
j+1+l(id

⊗ j ⊗ mk ⊗ id⊗l) +
∑

k+l=m

(−1)lmM
1+l(m

M
k ⊗ id⊗l)

(∗′
m)

= 0.

Definition 1.3.2 Let n ∈ N ∪ {∞} and let A be an An-algebra and suppose M,N are
An-modules over A. A morphism of An-modules is a family of R-linear morphisms

fi : M ⊗ A⊗i−1 → N
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of degree 1 − i for 1 ≤ i ≤ n such that for all 1 ≤ m ≤ n

∑

j+k+l=m,k≥1

(−1) jk+l f j+1+l(id
⊗ j ⊗ mk ⊗ id⊗l) =

∑

r+s=m,r≥1,s≥0

ms+1( fr ⊗ id⊗s).

(∗∗′
m)

The composition of f : L → M and g : M → N is defined by

(g ◦ f )n =
∑

k+l=n

gl+1( fk ⊗ 1⊗l).

Remark 1.3.3 Let A be an A∞-algebra and M be an A∞-module over A. Then

1. (M, mM
1 ) is a complex;

2. If f : M → N is a morphism of A∞-modules, f1 is a morphism of complexes

f1 : (M, mM
1 ) → (N, mN

1 ).

Example 1.3.4 If A is an A∞-algebra, then the morphisms mi : A⊗i → A define an
A∞-module structure on A over A.

Remark 1.3.5 If A is a differential graded algebra regarded as A∞-algebra, then any
differential graded module over A is canonically A∞-modules and the category of
differential graded modules over A is a non-full subcategory of the category of A∞-
modules over A.

Definition 1.3.6 Let n be a positive integer or∞. Let A be an An-algebra and suppose
M and N are An-modules over A.

1. An An-morphism f = ( f1, f2, · · · , fn) : M → N is a quasi-isomorphism if f1 is
a quasi-isomorphism of complexes.

2. M and N are said to be quasi-isomorphic if there exist An-modules M1, · · ·Mm

and quasi-isomorphisms M ← M1 → · · · ← Mm → N.

Definition 1.3.7 Let n be a positive integer or∞. Let A be an An-algebra and consider
an An-module M over A.

1. M is called minimal if mM
1 = 0.

2. Aminimalmodel forM is a pair (A′,M′), consistingof aminimalAn-algebraA′ and
a minimal An-module M′ over it, together with quasi-isomorphisms f : A′ → A
and g : M′ → f ∗M, where f ∗M is the restriction of M along f .

Remark 1.3.8 We shall say that ( f , g) is a morphism of pairs (A′,M′) → (A,M).

Theorem 1.3.9 (Kadeishvili [15]) Let A be an A∞-algebra and consider an A∞-
module M over A. Assume that HA and HM are projective R-modules. Then, for
any choice of quasi-isomorphisms

f1 : HA → A, g1 : HM → M
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of complexes of R-modules, inducing the identity in cohomology, there exists a minimal
A∞-module structure on HM over the A∞-algebra HA, with mHM

2 induced by mM
2 ,

such that there exists a quasi-isomorphism of pairs

( f , g) : (HA, HM) → (A, M),

lifting ( f1, g1), i.e. a minimal model for M. It is unique up to A∞-isomorphism.

1.4 The bar construction forA∞-modules

Let A and M be graded R-modules. For i ≥ 1 we have a bijection

Hom(M ⊗ A⊗i−1,M) → Hom(M[1] ⊗ (A[1])⊗i−1,M[1])
mM

i �→ dMi = (−1)i−1+degmM
i s ◦ mi ◦ (s−1)⊗i .

Let A be an A∞-algebra and let (B(A))+ be its coaugmented bar construction. Then
the dMi define a unique comodule coderivation

dM : M[1] ⊗ (B(A))+ → M[1] ⊗ (B(A))+.

Lemma 1.4.1 (Lefèvre-Hasegawa [24]) The morphisms mM
i define an A∞-module

structure of M over A iff the coderivation dM is a differential.

Let A,M,N be graded R-modules. For all i ≥ 1 we have a bijection

Hom(M ⊗ A⊗i−1,N) → Hom(M[1] ⊗ (A[1])⊗i−1,N[1])
fi �→ Fi = (−1)i−1+deg fi sB ◦ fi ◦ (s−1

A )⊗i .

and, if A is an A∞-algebra, the Fi induce a morphism of (B(A))+-comodules

F : M ⊗ (B(A))+ → N ⊗ (B(A))+.

Lemma 1.4.2 (Lefèvre-Hasegawa [24]) Let A be an A∞-algebra and suppose given
graded objects M,N. For all i ≥ 1 there is a bijection

Hom1−i+n(M ⊗ A⊗i−1,N)
∼−→ Homn

B(A)(M ⊗ (B(A))+,N ⊗ (B(A))+).

Furthermore, if M and N are A∞-modules, then we get an induced bijection between
morphisms M → N of A∞-modules and degree 0 morphisms of differential graded
(B(A))+-comodules.
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1.5 Differential graded pairs

Definition 1.5.1 Let A,B be differential graded algebras over R and let M (resp. N)
be a differential graded module over A (resp. B).

1. If f : A → B is a morphism of differential graded algebras and g : M → f ∗N is
a morphism of differential graded modules, where f ∗ denotes restriction along f ,
we say that the pair ( f , g) : (A,M) → (B,N) is a differential graded morphism
of pairs.

2. The pairs (A,M) and (B,N) are differential graded quasi-isomorphic, denoted
(A,M) � (B,N), if there exist pairs (A1,M1), · · · , (Am,Mm) and quasi-
isomorphisms of pairs

(A,M) ← (A1,M1) → · · · ← (Am,Mm) → (B,N).

3. If A is a formal differential graded algebra, we say that M is differential graded
formal if the pairs (A,M) and (HA,HM) are differential graded quasi-isomorphic.

Let A,B be differential graded algebras over R such that HA and HB are projective
R-modules, equppedwith their minimal A∞-algebra structures. Given two differential
graded modules M and N over A and B, respectively, assume that HM and HN are
projective over R, so can be given minimal A∞-module structures over HA and HB.

Proposition 1.5.2 (Lefèvre-Hasegawa [24]) The pairs (A,M) and (B,N) are differ-
ential graded quasi-isomorphic if and only if the pairs (HA,HM) and (HB,HN) are
A∞-quasi-isomorphic.

1.6 Hochschild cohomology

Let A be a graded algebra.We are going to defineHochschild cohomology for a graded
module M over A.
Let Cp,q(A,M) = Homq(M ⊗ A⊗p,M). The module structure of M over A is a
graded morphism of degree 0, denoted by mM

2 : M ⊗ A → M. We can endow the
modules Cp,q(A,M) with a differential, called the Hochschild differential:

d : Cp,q(A,M) → Cp+1,q(A,M)

f �→
∑

(−1)l f (id⊗ j⊗mA
2 ⊗ id⊗l) − mM

2 ( f ⊗ id) + (−1)p f (mM
2 ⊗ idp).

A calculation shows that d2 = 0, so we indeed have a differential, the associated
complex is called the Hochschild complex.

Definition 1.6.1 The Hochschild cohomology HHp,q(A,M) of a graded module
M over a graded algebra A is the pth cohomology of the Hochschild complex
(C∗,q(A,M), d).
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Example 1.6.2 Suppose f : M[ε] → M[ε] is an A[ε]-automorphism lifting the iden-
tity. Then, writing

f = f 0 + f 1ε,

we have by assumption f 0 = idM, and A-linearity implies

f 1(ma) = f 1(m)a

which is to say that f 1 is a (0, 0)-cocycle.

Definition 1.6.3 An infinitesimal A∞-deformation of an A-module M is an A∞-
module structure on M[ε] over A[ε] extending the A-module structure on M.

Example 1.6.4 The (1, 0)-cocycles are precisely the A[ε]-module structures on M[ε],
i.e. they correspond to infinitesimal deformations. Indeed, if

m : M[ε] ⊗ A[ε] → M[ε]

is the multiplication, we decompose it as

m = m0 + m1ε,

where m0 is the A-module multiplication on M. As m defines a module structure, we
get

m1(m, a)a′ + m1(ma, a′) = m1(m, aa′),

i.e. m1 is a (1, 0)-cocycle. Notice that there is a canonical A[ε]-module structure on
M[ε].
Definition 1.6.5 We call an infinitesimal A∞-deformation of M trivial if it is quasi-
isomorphic to this canonical one.

Example 1.6.6 We note that (1, 0)-coboundaries correspond to trivial deformations
by a similar calculation, hence infinitesimal deformations of M are classified by
HH1,0(A,M).

More generally, assumewe are given an infinitesimal A∞-deformation ofM.Write

m = m0 + m1ε,

wherem0 is theA-module structure onMandm1 = (m1
2, m1

3, · · · ). Notice the relations
(∗′

m) are homogeneous in ε, so as ε2 = 0 we see that each m1
i is a cocycle in the

Hochschild complex of M and, conversely, any collection of cocycles satisfies (∗′
m)

for all m. Similarly, we see coboundaries correspond to trivial A∞-deformations,
hence

∏

n≥1

HHn,1−n(A,M)
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classifies infinitesimal A∞-deformations.

Remark 1.6.7 Remark that here we assume the deformation parameter is in degree 0
with respect to the internal grading of our objects. If we consider derived deforma-
tions, i.e. allow the deformation parameter to have a non-zero degree with respect to
the internal grading, then we get different cohomology group, e.g. if it is in degree
1, the cohomology group classifying derived infinitesimal deformations becomes
HH1,−1(A,M).

Remark 1.6.8 Given two graded modules M and N over A, let Cp,q(A,M,N) =
Homq(M⊗A⊗p,N). It carries a Hochschild differential and we define the Hochschild
cohomology of the pair (M,N), denoted HHp,q(A,M,N), to be the cohomology of
the resulting complex.

Proposition 1.6.9 Let A be a graded algebra over R and let M be a graded module
over A. Assume that A and M are finite projective over R. Suppose that R → Q is a
morphism of commutative rings. Write AQ := A ⊗R Q and similarly for MQ. Then
we have

1. Cp,q(AQ,MQ) = Cp,q(A,M) ⊗R Q.
2. Assuming Q flat over R, HHp,q(AQ,MQ) = HHp,q(A,M) ⊗R Q.

Proof Clearly it is enough to prove the first assertion. Since A and M are finite pro-
jective over R, so are M⊗A⊗p for all p, hence we have isomorphisms of Q-modules

HomQ(MQ ⊗Q A⊗p
Q ,M) ∼= HomR(M ⊗R A⊗p,MQ)

∼= HomR(M ⊗R A⊗p,M) ⊗R Q.

��
Proposition 1.6.10 Suppose that R is Noetherian. Consider a graded algebra A over
R and a graded module M over A. Assume that A, M are finite projective and that
for all p, q ∈ Z the R-module HHp,q(A,M) is projective. Then, for any morphism of
commutative rings R → Q, we have

HHp,q(AQ,MQ) = HHp,q(A,M) ⊗R Q.

Proof This follows immediately from the next lemma. ��
Lemma 1.6.11 (Lunts [25])LetR be Noetherian and assume (K, d) is a bounded below
complex of finite projective R-modules such that each R-module Hp(K) is projective.
Then, for each p, Im(dp) is projective over R and hence K is homotopy equivalent to
its cohomology ⊕pHp(K)[−p].

1.7 Obstruction theory

In this paragraph we formulate obstruction theory for An-modules. Our goal is to
apply it to a problem where we are extending an An-morphism f and we only care
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for keeping f1 fixed. In particular, a theory for obstructions where the last component
is allowed to vary is good enough for us and that’s what we develop here. There
are more general versions where one allows the last r components to vary for some
r < n. Compared to the case where we keep all components fixed, our approach has
the advantage that the corresponding obstructions are cohomology classes rather than
equations in the space Hochschild cochains.

We show how the Hochschild cohomology defined in the previous section con-
trols the obstructions to extending An-modules to An+1-modules by allowing the last
multiplication to vary as well as An-morphisms to An+1-morphisms, varying the last
component. We focus on modules, analogous versions for algebras can be found in
[24].

Proposition 1.7.1 (Lefèvre-Hasegawa [24]) Let A be a minimal An-algebra. Let M be
a graded R-module and suppose

mM
i : M ⊗ Ai−1 → M, 2 ≤ i ≤ n + 1,

are graded morphisms of degree 2 − i . Assume that for 1 ≤ i ≤ n the mM
i define an

An-structure on M. Then the subexpression of (∗′
n+1) given by

∑

j+1+l,k �=1,2

(−1) jk+lm j+1+l(id
⊗ j ⊗ mk ⊗ id⊗l)

defines a cocycle in (C(A(2),M(2)); d) which we denote by c(mM
3 , · · · , mM

n ) and
equation (∗′

n+1) becomes

c(mM
3 , · · · , mM

n−1) + d(mM
n ) = 0.

Proposition 1.7.2 (Lefèvre-Hasegawa [24]) Let A be a minimal A∞-algebra. Let M
and N be two minimal A∞-modules over A. Suppose given

fi : M ⊗ A⊗i−1 → N, 1 ≤ i ≤ n + 1,

of degree 1 − i such that the morphisms fi , for 1 ≤ i ≤ n, define an An-morphism.
The subexpression of (∗∗′

n+1)

∑

k �=1,2

(−1) jk+l f j+1+l(id
⊗ j ⊗ mk ⊗ id⊗l) −

∑

s �=0,1

ms+1( fr ⊗ id⊗s)

defines a cocycle in (C(A(2),M(2),N(2)); d), denoted by c( f1, · · · , fn−1). Then
equation (∗∗′

n+1) becomes

c( f1, · · · , fn−1) + d( fn) = 0.
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1.8 Formality ofA∞modules

Definition 1.8.1 Let A be an A∞-algebra. Let n ∈ N ∪ {∞} and assume that A is
An-formal. We say that an A∞-module M over A is An-formal if there exists an
An-quasi-isomorphism of pairs (HA,HM) → (A,M), where HA (resp. HM) is the
ordinary graded associative algebra (resp. module).

Remark 1.8.2 1. In other words M is An-formal if it admits a minimal An-model with
vanishing higher multiplications.

2. Notice that our definition of An-formality for a module M over A assumes that the
A∞-algebra A is An-formal.

3. When n = ∞, we drop the A∞ and simply say that M is formal.
4. By Proposition 1.5.2, under the usual projectivity assumptions, a differential graded

module M over a formal differential graded algebra A is differential graded formal
iff itsminimalmodel HM is formal as anA∞-module over the (formal) A∞-algebra
HA.

Recall that ifA is aminimalA∞-algebra, thenA(2) stands for the underlying graded
associative algebra, so if A is just a graded associative algebra, then A = A(2).

Similarly, let M be a minimal A∞-module over a graded algebra A. Then M(2)
denotes the A∞-module on the graded space M with structure morphisms given by

mM(2)
2 = mM

2 and mM(2)
i = 0 for i �= 2,

i.e.M(2) is the underlying graded associative A-module, considered as anA∞-module
- this is possible precisely because M is minimal and A is just a graded associative
algebra, so has no higher multiplications, and the A∞-relations for M(2) reduce to
associativity. In this notation, M is a formal A∞-module if it is quasi-isomorphic to
M(2).

Remark 1.8.3 LetM be aminimal A∞-module over a graded algebra A. IfM is formal,
there exists a quasi-isomorphism f : M → M(2) lifting the identity on the underlying
complexes.

Proposition 1.8.4 Let R be an integral domain with field of fractions k(η). Let A be a
graded R-algebra and let M be a minimal A∞-module over A such that both A and
M are finite projective as R-modules. Assume that HHn,1−n(A,M(2)) is torsion-free
for all n. If Mη = k(η) ⊗R M is formal, then M is formal and there exists a quasi-
isomorphism f : M → M(2) lifting the identity on the underlying complexes. In
particular, the fibres Mp are formal for all p ∈ Spec(R).

Proof We are going to construct the quasi-isomorphism f inductively. Since M and
M(2) have the same underlying A2-modules, we set f1 = id, and for any f2, we have
a quasi-isomorphism (id, f2) : M → M(2) of A2-modules over A. Then [c(id)] =
[m3] is the Massey product which vanishes generically since Mη is formal. Since
HH2,−1(A,M(2)) is torsion-free, it follows that [c(id)] vanishes everywhere. Hence,
we can choose f2 such that

c(id) + d( f2) = 0.
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There exists an A∞-module structure M(2) = (M, m(2)) on the graded R-module
M such that

m(2)
2 = mM

2 , m(2)
3 = 0 and f̃2 := (id, f2, 0, · · · ) : M → M(2)

is a quasi-isomorphism of A∞-modules. Indeed, M(2) can be constructed inductively
as follows: we treat the multiplications m(2) of M(2) as variables and require that
(id, f2, 0, · · · ) defines a quasi-isomorphismofA∞-modules. The corresponding equa-
tions for m(2) can be uniquely solved as they are all of the form

∑

j+k+l=n,k≥2

(−1) jk+l f j+1+l(id
⊗ j ⊗ mk ⊗ id⊗l) = m(2)

n + m(2)
n−1( f2 ⊗ id⊗n−2),

where j + 1 + l = 1 or 2. For example, n = 2 implies that m(2)
2 = m2 and n = 3 is

just the equation c(id) + d( f2) = m(2)
3 , i.e. m(2)

3 = 0.
Assume by induction that we have constructed f2, · · · , fn and M(2), · · · ,M(n)

with

m(i)
2 = mM

2 and m(i)
j = 0 for all 3 ≤ j ≤ i + 1

such that, for all 2 ≤ i ≤ n, the maps

f̃i := (id, 0, · · · , 0, fi , 0, · · · ) : M(i−1) → M(i)

are quasi-isomorphisms of A∞-modules.
In order to construct the pair ( fn+1,M(n+1)), it suffices to show that there exists

fn+1 such that

(id, 0, · · · , 0, fn+1, 0) : M(n) → M(n)(2)

is an An+2-morphism, i.e. An+2-formality of M(n). We know that

(id, 0, · · · , 0, fn+1) : M(n) → M(n)(2)

is an An+1-morphism for any fn+1. The goal is to show fn+1 can be chosen so that in
fact any fn+2 would give an An+2-morphism M(n) → M(n)(2).

By Proposition 1.7.2 it suffices that the cohomology class [c(id, 0, · · · , 0)] vanish.
Notice that the function

(g2, · · · , gn) �→ c(id, g2, · · · , gn)

is constant precisely because the corresponding higher multiplications in M(n) vanish,
and the same applies for the localised version M(n)

η . Since Mη, and hence also M(n)
η ,

is formal, we see that

[c(id, 0, · · · , 0)]η = 0.
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Furthermore,HHn+1,−n(A,M(2)) is torsion-free, soweget that [c(id, 0, · · · , 0)] = 0,
hence there exists fn+1 such that

(id, 0, · · · , 0, fn+1, fn+2) : M(n) → M(n)(2)

is an An+2-morphism for any choice of fn+2.

Then, as above, the standard construction gives an A∞-module M(n+1) such that

m(n+1)
2 = mM

2 and m(n+1)
j = 0 for all 3 ≤ j ≤ n + 2

and the map f̃n+1 := (id, 0, · · · , 0, fn+1, 0, · · · ) : M(n) → M(n+1) is a quasi-
isomorphism of A∞-modules.

The infinite composition

f := · · · ◦ f̃n ◦ · · · ◦ f̃2 : M → M(2)

defines the required quasi-isomorphism and we note that it is well-defined because
composition with f̃n leaves the components in weights i < n fixed. ��
In fact the proof shows also that the following proposition holds.

Proposition 1.8.5 Let A be a graded algebra. An A∞-module M over A is formal if
and only if it is An-formal for all n ∈ N.

Corollary 1.8.6 Suppose that R is Noetherian. Let A be a graded algebra over R and
let M be a minimal A∞-module over A. Suppose that A and M are finite projective
R-modules and HHp,q(A,M(2)) is projective for all p, q ∈ Z. Then the set

F(M) = {p ∈ Spec(R) | the A∞-module Mx is formal }

is closed under specialisation.

Proof Assume F(M) is non-empty. Let p ∈ F(M) and consider its closure p̄ =
Spec(Q) ⊂ Spec(R). The ring Q is an integral domain and the base-changes
AQ = A ⊗R Q and MQ = M ⊗R Q are finite projective over Q. Furthermore, by
Proposition 1.6.10 we have

HHn,1−n(AQ,M(2)Q) = HHn,1−n(A,M(2)) ⊗R Q,

so HHn,1−n(AQ,M(2)Q) is projective over Q, in particular torsion-free. Hence MQ is
formal by Proposition 1.8.4. ��
Proposition 1.8.7 Suppose that R is Noetherian and I ⊂ R is an ideal such that
∩l Il = 0. Let A be a graded algebra over R and let M be a minimal A∞-module over
A. Suppose that A and M are finite projective R-modules and that HHp,q(A,M(2))
is projective for all p, q ∈ Z. If M/Il is a formal A∞-module over the graded algebra
A/Il for all l ∈ N, then M is formal.
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Proof Since M is projective over R and minimal, it is A2-formal. Then, as in the proof
of Proposition 1.8.4, to show it is A3-formal, it is enough to prove that the Massey
class [m3] vanishes in HH2,−1(A,M(2)). Using Proposition 1.6.10 we have

HHp,q(A/Il ,M(2)/Il) = HHp,q(A,M(2)) ⊗R R/Il for all p, q ∈ Z.

By assumption [m3] ⊗ 1 = 0 in HH2,−1(A/Il ,M(2)/Il) for all l ≥ 1. There is an
exact sequence 0 → ∩l Il → R → ∏

l R/Il , since ∩l Il = 0 and HHp,q(A,M(2)) is
projective over R, we conclude that [m3] = 0. By induction M is An-formal for all
n ∈ N, done. ��
Proposition 1.8.8 Suppose that R is Noetherian with trivial Jacobson radical J(R).
LetA be a graded associative algebra overR, and letM be a minimal A∞-module over
A. Suppose that A and M are finite projective R-modules and that HHp,q(A,M(2))
is projective for all p, q ∈ Z. If Mm is formal for all closed points m ∈ Spec(R), then
M is formal. In particular, Mp is formal for all p ∈ Spec(R).

Proof As in the previous proposition, we prove that M is An-formal for all n ∈ N. The
proof is exactly the same using the exact sequence 0 → J(R) → R → ∏

m R/m,
Proposition 1.6.10 and projectivity of HHp,q(A,M(2)). ��

2 Perverse sheaves and DQmodules

In this section we shall briefly review some results on DQ-modules and perverse
sheaves on Lagrangian intersections we need for applications. This is mainly to fix
notation, in particular we refer the reader to the original papers for proofs. Thematerial
on perverse sheaves on Lagrangian intersections and, more generally, on d-critical loci
is due to Joyce et al. and we refer to [3, 14]. A good general reference for DQ-modules,
which we also closely follow, is Kashiwara and Schapira [23].

2.1 Perverse sheaves on dcritical loci

The local setting, we are interested in, is as follows: for a complex manifold X and a
function f on X, we consider the intersection crit f := X ∩ �d f , where �d f ⊂ �X
is the Lagrangian, given by the graph of d f ∈ �(X,�X). In particular, if X is the
cotangent bundle of a complex manifold M, then for any function f on M, we can
consider the Lagrangian L = �d f , so crit f = L ∩M, i.e. in this case the intersection
of the Lagrangians can bewritten as the critical locus of f . It turns out that this remains
true locally in the general case where X is a holomorphic symplectic and L, M are two
Lagrangians.

On crit f ⊂ X , we have a naturally defined perverse sheaf of vanishing cycles
PX, f which is the image of CX[dimX] under the vanishing cycles functor over the
critical values of f .

We are going to consider the global versions of the constructions discussed above.
Let X/C be a complex analytic space. Suppose we are given an embedding of X into a
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complex manifold S with ideal sheafI , then we define the complex of derived 1-jets

J1X := OS/I
2 → �S|X,

in degrees −1 and 0. It can be shown that it is independent of the embedding and is
naturally quasi-isomorphic to the cone of the de Rham differential OX → LX, where
LX := I /I 2 → �S|X is the truncated cotangent complex. We are interested in the
sheaf

SX = H −1(J1X).

Definition 2.1.1 (Joyce [14]) A structure of a d-critical locus on a complex analytic
space X is a choice of s ∈ �(X,SX) such that for any x ∈ X there exists an open U,
containing x , and a closed embedding of U into a smooth S together with a function
f on S such that s|U = f in �(U,OS/I 2) and U = crit f ⊂ S. The triple (U,S, f )

is a chart for the d-critical locus X.

Remark 2.1.2 Similarly, one can define a structure of an algebraic d-critical locus on
a scheme X, as explained in [14].

Let (X, s) be a d-critical locus. Then, given a chart (U,S, f ), we can consider the
canonical bundle KS|Ured and askwhether we can glue these line bundles for a covering
by critical charts. The answer is no, but we can glue their squares K⊗2

S |Ured to get a
line bundle on Xred. Suppose that X is of the form crit f , then the obstruction is a
±1-cocycle, hence we can glue the squares to get a line bundle on Xred.

Proposition 2.1.3 (Joyce [14]) Let (X, s) be a d-critical locus. There exists a unique
line bundle K(X,s) on Xred such that for any chart (U,S, f ) we have an isomorphism

λ(U,S, f ) : K(X,s)|Ured
∼= K⊗2

S |Ured

such that for any étale morphism ϕ : (U,S, f ) → (V,T, g) of charts, i.e. ϕ : S → T
is étale, ϕ|U : U ↪−→ V is the canonical inclusion and f = g ◦ ϕ, we have

λ(U,S, f ) = det(dϕ)⊗2|Ured ◦ λ(V,T,g)|Ured .

Example 2.1.4 If X is smooth, then K(X,0) = K⊗2
X . We get an extra KX factor because,

as a derived scheme, the critical locus crit(0 : X → C) is the shifted cotangent bundle
�X[1].
Theorem 2.1.5 (Brav et al. [3]) Let (X, s) be a d-critical locus. Assume that its canon-
ical bundle K(X,s) admits a square root, called orientation of (X, s). Then there exists
a perverse sheaf P(X,s) on X such that if (U,S, f ) is a chart, then we have a natural
isomorphism

P(X,s)|U � PS, f ⊗C Kor,

where Kor is the local system associated to K−1/2
(X,s)|Ured ⊗ KS|Ured .
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Proposition 2.1.6 (Bussi [7]) Let X be a holomorphic symplectic variety. Suppose
given two LagrangiansL andM inX. Then then intersectionL∩M admits a structure of
a d-critical locus (L∩M, s) with canonical bundle K(L∩M,s) = KL|L∩Mred ⊗KM|L∩Mred .

Corollary 2.1.7 Consider the d-critical locus (L ∩ M, s) and assume that the bundle
KL|L∩Mred ⊗ KM|L∩Mred admits a square root. Then there exists a perverse sheaf

PL,M � PM,L

on L ∩ M with the properties described in Theorem 2.1.5.

Lemma 2.1.8 Let L,M be two Lagrangians intersecting cleanly, then there is an iso-
morphism

KL∩M ⊗ KL∩M ∼= KL|L∩M ⊗ KM|L∩M.

Proof Let ELM → LL∩M be the symmetric obstruction theory on the intersection.
Recall that

ELM =
[
�X|L∩M

−res,res−−−−→ �L|L∩M ⊕ �M|L∩M
]
,

the map ELM → LL∩M is defined via the quasi-isomorphism

ELM �
[
ILX/I 2

LX|L∩M → �M|L∩M
]
,

and the symmetry comes from the holomorphic form onX. Then, we shall compute the
determinant of ELM in two ways. On the one hand, using that X has trivial canonical
bundle, we get:

detELM = (det�X|L∩M)∨ ⊗ det(�L|L∩M ⊕ �M|L∩M) ∼= KL|L∩M ⊗ KM|L∩M .

Now, we can also calculate the determinant using the cohomology sheaves of the
complex ELM and obtain

detELM = (
detH −1(ELM)

)∨ ⊗ detH 0(ELM) ∼= KL∩M ⊗ KL∩M.

��
Corollary 2.1.9 Let L ∩M be smooth. Then (L ∩M, s) is oriented and for any choice
of K1/2

(L∩M,s) we have PL,M = Kor[dimX], where Kor is the local system associated

to K−1/2
(L∩M,s) ⊗ KL∩M.

Proof Indeed, our assumption means that (L∩M, 0) is the unique d-critical structure
on the intersection. Hence,

PL,M ∼= PL∩M,0 ⊗C Kor = CL∩M [dim(L ∩ M)] ⊗C Kor = Kor [dim(L ∩ M)] .

��
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2.2 DQ-algebras

We let X be a complex manifold. Let C[[�]] be the ring of formal power series in �,
and C((�)) its field of fractions, i.e. the field of formal Laurent series. Define a sheaf
of C[[�]]-algebras:

OX[[�]] = lim←−OX ⊗C C[[�]]/�
n .

Definition 2.2.1 Astar product onOX[[�]] is aC[[�]]-bilinear associativemultiplication
� such that

f �g =
∑

i≥0

Pi ( f , g)�i , where f , g ∈ OX,

such that Pi are holomorphic bidifferential operators with P0( f , g) = f g and
Pi ( f , 1) = Pi (1, f ) = 0 for all i ≥ 1. The pair (OX[[�]], �) is called a star alge-
bra.

Definition 2.2.2 Adeformation quantisation algebra (DQ-algebra) on a complexman-
ifold X is a sheaf of C[[�]]-algebras AX locally isomorphic to a star algebra as a
C[[�]]-algebra.
Example 2.2.3 Let AX be a DQ-algebra on X. Let π : AX → AX/�AX ∼= OX. For
any f , g ∈ OX, choose lifts f̃ , g̃ such that π( f̃ ) = f and π(g̃) = g. Then define a
bracket

{ f , g} = π(�−1( f̃ g̃ − g̃ f̃ )).

This is independent of the choices made and defines a Poisson structure on X.

Example 2.2.4 Let X be a complex manifold. The cotangent bundle �X sup-
ports a filtered sheaf of C-algebras Ê�X of formal microdifferential operators.
We start by recalling its definition. Fix (x1, · · · , xn) coordinates on X, and write
(x1, · · · , xn, ξ1, · · · , ξn) for the induced coordinates on�X. LetO�X(m) be the sheaf
of homogeneous functions in the fibre coordinates on �X of degree m, i.e.

(∑
ξ j∂/∂ξ j − m

)
f (x, ξ) = 0.

We define the sheaf of formal microdifferential operators of order ≤ m by

Ê�X(m) =
∏

j∈N
O�X(m − j).

In order to get a sheaf globally on �X, we glue these sheaves on overlaps using the
transformation rule for total symbols of differential operators. Taking the limit over
m ∈ Z, we get the sheaf of formal microdifferential operators on �X:
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Ê�X = lim−→
m∈Z

Ê�X(m).

Note that there are products Ê�X(l) ⊗C Ê�X(m) → Ê�X(l + m), given by

( f �g)l(x, ξ) =
∑

l=i+ j−|α|
α∈N

1

α! (∂/∂ξ1)
α1 · · · (∂/∂ξn)

αn fi (x, ξ)

·(∂/∂x1)
α1 · · · (∂/∂xn)αn g j (x, ξ).

In particular Ê�X and Ê�X(0) are sheaves of (non-commutative) C-algebras. Notice
that the total symbol of a differential operator is a polynomial in ξ1, · · · , ξn , so essen-
tially we are just allowing symbols which are general holomorphic functions rather
than just polynomials.

Let t be the coordinate on C and (t; τ) - the symplectic coordinates on �C. Let
�X×C,τ �=0 be the open subset of �X×C where τ �= 0. We have a map

ρ : �X×C,τ �=0 → �X, (x, t; ξ, τ ) �→ (x, τ−1ξ).

Define the subsheaf of operators independent of t :

Ê�X×C,t̂ (0) = {P ∈ Ê�X×C(0) such that [P, ∂t ] = 0}.

Then, letting � act as τ−1, we define the canonical DQ-algebra on �X by

ŴX(0) = ρ∗Ê�X×C,t̂ (0).

The �-localisation of ŴX(0) is denoted by ŴX.

Definition 2.2.5 LetX be a topological space.AnR-algebroid onX is anR-linear stack
A which is locally non-empty and any two objects in A (U) are locally isomorphic
for any open U ⊂ X.

Example 2.2.6 Fix a topological space X. Let A be a sheaf of R-algebras on X. We
consider the prestack U → A (U)+, where A (U)+ is the R-linear category with one
object whose endomorphisms are given byA (U). The associated stack is denoted by
A +. It’s an R-algebroid.

Conversely, suppose that A is an algebroid. If A (X) is non-empty, choose any
τ ∈ A (X). We have an equivalence A � Hom (τ, τ )+ of R-algebroids.

Given an R-algebroid A over X, let MR be the stack of sheaves of R-modules on
X, we define the R-linear abelian category of modules over A by

Mod(A ) = Fct(A ,MR).
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Definition 2.2.7 Adeformationquantisation algebroid (DQ-algebroid) onX is aC[[�]]-
algebroid A such that, for any open U ⊂ X and τ ∈ A (U), the C[[�]]-algebra
H om(τ, τ ) is a DQ-algebra on U.

Remark 2.2.8 If X is a holomorphic symplectic variety, then the holomorphic Darboux
theorem implies that locally we have canonical DQ-algebras associated with X, but
they won’t generally glue to a global DQ-algebra. In general, one has to twist them by
"half forms", i.e. by the twisted sheaf of half top forms and its dual. It is a theorem of
Polesello and Schapira [26] that the corresponding twisted DQ-algebras glue and we
obtain a DQ-algebroid still denoted ŴX(0).

Any other DQ-algebroidAX on X will be equivalent to ŴX(0) ⊗C[[�]] L for some
invertible C[[�]]-algebroidL . Hence DQ-algebroids are classified by H2

(
X,C[[�]]∗).

Example 2.2.9 Example 2.2.3 shows that any DQ-algebroid on X induces a Pois-
son structure on X. Conversely, it is a theorem of Kontsevich [20] that in the C∞
setting (locally for algebraic varieties) any Poisson structure is induced by some DQ-
algebroid. The global algebraic quantisation is due toYekutieli [32] andVan denBergh
[31], and by Calaque et al. [8] for complex manifolds.

Remark 2.2.10 IfAX is a DQ-algebroid, the local notions of being locally free, coher-
ent, flat, etc. make sense for an AX-module D .

Definition 2.2.11 Let R be a sheaf of commutative C-algebras.

• An R-algebroid is a C-algebroid A together with a morphism of sheaves of C-
algebras R → E nd(idA ).

• An R-algebroid A is called invertible if R|U → E nd(τ ) is an isomorphism for
every open U ⊂ X and any τ ∈ A (U).

Let ι : C → C[[�]] be the canonical inclusion, define aC-algebroid ι∗AX by taking
the stack associated with the prestack B given by

B(U) = AX(U) and HomB(U)(σ, τ ) = HomAX(U)(σ, τ )/�HomAX(U)(σ, τ ).

The so defined C-algebroid is an ivertible OX-algebroid. There are functors of C-
algebroids

AX → ι∗AX → OX

and an equivalence of C-algebroids ι∗AX � AX/�AX � OX. In particular, we get a
functor preversing boundedness and coherence

ι∗ : D(AX) → D(ι∗AX) ι∗ : D �→ C ⊗C[[�]] D .

The �-localisation of a DQ-algebroid AX is A loc
X = C((�)) ⊗C[[�]] AX. More gen-

erally, we have a functor

loc : Db(AX) → Db(A loc
X ).
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Lemma 2.2.12 (Kashiwara-Schapira [23]) If D ∈ Db
coh(AX), then Supp(D) =

Supp(ι∗D). In particular, Supp(D) is a closed analytic subset of X.
If E ∈ Db

coh(A
loc
X ), then Supp(E ) is a closed analytic subset of X, coisotropic for

the Poisson structure defined by AX.

Remark 2.2.13 Note that we do not have a global equivalence ι∗AX � OX of invertible
OX-algebroids. This is generally only true locally. In the algebraic case, the vanishing
of H2(X,O∗

X) in the Zariski topology implies that ι∗AX � OX as OX-algebroids
globally.

The second statement in the lemma is known as Gabber’s theorem and doesn’t hold
for coherentAX-modules - note that any closed analytic subset of X can be the support
of such a module since any coherent OX-module is a coherent AX-module.

Theorem 2.2.14 (Kashiwara-Schapira [23]) Let X be a complex manifold endowed
with a DQ-algebroid AX. Let

D,E ∈ Db
coh(AX)

and suppose that Supp(D) ∩ Supp(E ) is compact. Then RHomAX(D,E ) is a perfect
complex of C[[�]]-modules.

Definition 2.2.15 Let X be complex manifold endowed with a DQ-algebroid AX,
and let Y be a smooth submanifold of X. A coherent AX-module D supported on
Y is called simple if ι∗D is concentrated in degree 0 and H0(ι∗D) is an invertible
OY ⊗OX ι∗AX-module.

Definition 2.2.16 Let X be a holomorphic symplectic variety equipped with a DQ-
algebroid AX.

1. AnA loc
X -module is called holonomic if it is coherent and its support is a Lagrangian

subvariety of X.
2. An AX-module is called holonomic if it is coherent, �-torsion free and its �-

localisation is holonomic.
3. Let L be a smooth Lagrangian. An A loc

X -module D is called simple holonomic
if there exists locally an AX-module D0, simple along L, which generates it, i.e.
(D0)loc � D .

Theorem 2.2.17 (Kashiwara-Schapira [22]) Let X be a holomorphic symplectic vari-
ety of dimension 2n, equipped with a DQ-algebroid AX. Suppose that D and E are
two holonomic A loc

X -modules. Then the complex RHom A loc
X

(D,E )[n] is a perverse
sheaf.

Theorem 2.2.18 (D’Agnolo-Schapira [10])LetX be a holomorphic symplectic variety
and let i : L ↪−→ X be a smooth Lagrangian. Assume that the canonical bundle KL

of L admits a square root. Then, for any choice of a square root K1/2
L , there exists a

simple ŴX(0)-module DL, supported on L, which quantises K1/2
L .
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Remark 2.2.19 Notation as in the previous theorem, consider the short exact sequence

1 → C∗ → O∗
L

dlog−−→ dOL → 0.

It induces a long exact sequence in cohomology, and we are interested in the folloing
part of it:

H1(L,C∗) → H1(L,O∗
L)

α−→ H1(L, dOL)
δ−→ H2(L,C∗).

LetC
K1/2
L

be theC-algebroid associated to the class δ( 12α(c1(KL))). Then a general

version of the above theorem asserts that there exists a simple ŴX(0)⊗C
K1/2
L

-module

along L, i.e. in general we only get a twisted ŴX(0)-module.
Notice that C

K1/2
L

is trivial iff there exists a line bundle L such that KL ⊗ L ⊗2

admits a flat connection, henceL can be quantised. In particular, this agrees with the
results of [5] since ŴX(0) � ŴX(0)op implies that the Atiyah class At(ŴX(0),L) = 0.
Indeed, ŴX(0) is canonical in the sense of [6], that is, its non-commutative period in
H2(X)C[[�]] is the constant power series. Note that this is always possible to achieve
by allowing stacky deformations. If we instead require that it be a deformation as a
sheaf, it may happen that no canonical deformation quantisations exist.

Remark 2.2.20 In fact, the first Rozansky-Witten class RW1(X) of X is an obstruction
for the canonical deformation quantisation algebroid to be a sheaf of algebras.

Theorem 2.2.21 (Gunningham-Safronov [13], Brav et al. [3]) Let X be a holomorphic
symplectic variety of dimension 2n, equipped with the canonical DQ-algebroid ŴX(0).
Suppose that L and M are smooth Lagrangians and assume that K1/2

L and K1/2
M exist.

Let D0
L and D0

M be two simple holonomic ŴX(0)-modules, supported on L and M,
respectively, as in Theorem 2.2.18. Then we have an isomorphism of perverse sheaves

RHom ŴX

(
DL,DM

)[n] ∼−→ C((�)) ⊗C PL,M,

where DL is the �-localisation C((�)) ⊗C[[�]] D0
L and similarly for DM.

Remark 2.2.22 For our applications, we only need the special case when the intersec-
tion is smooth. See Proposition 3.4.2 for a (stronger) statement in the case of a single
smooth Lagrangian L = M.

3 Applications

We begin with a few standard results on calculations of local Ext sheaves and their
multiplicative structure on locally complete intersections. In the second and third
paragraphs we prove degeneration of the spectral sequences for a single Lagrangian
and a pair of cleanly intersecting Lagrangians, respectively. We conclude with the
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formality of the endomorphism dg algebra RHom
(
i∗K1/2

L , i∗K1/2
L

)
and the dg module

RHom
(
i∗K1/2

L , j∗K1/2
M

)
over it.

3.1 Sheaves on locally complete intersections

Proposition 3.1.1 Let i : Z ↪−→ X be a locally complete intersection. Suppose c =
codim(Z,X), and let F be a coherent sheaf on Z. Then

H −i (i∗i∗F ) ∼=
{
F ⊗ ∧iN ∨

Z/X, 0 ≤ i ≤ c

0, otherwise.

Proof Since i is a closed embedding, it suffices to show the claimed isomorphisms
after pushing forward along i , i.e.

i∗H −k(i∗i∗F ) ∼= i∗(F ⊗OZ ∧kN ∨
Z/X) for 0 ≤ k ≤ c

and i∗H −k(i∗i∗F ) ∼= 0 for k > c. Using the projection formula,

i∗H −k(i∗i∗F ) ∼= Tor OX
k (i∗F , i∗OZ).

In order to compute theTor -sheaves, we may work locally and the proof goes exactly
as in Proposition 0.1.2. ��
Proposition 3.1.2 Let i : Z ↪−→ X be a locally complete intersection of codimension
c. Let F and G be coherent sheaves on Z.

1. Assume F locally free, then we have

E xt i (i∗F , i∗G ) ∼=
{

i∗(∧iNZ/X ⊗ F∨ ⊗ G ), 0 ≤ i ≤ c
0, otherwise.

2. The Yoneda product coincides with the usual cup product. More precisely, let F ,
G be locally free sheaves, H any coherent sheaf, then the Yoneda multiplication

Ext i (i∗G , i∗H ) ⊗ Ext j (i∗F , i∗G ) → Ext i+ j (i∗F , i∗H )

corresponds under the above isomorphisms to

i∗(∧iNZ/X ⊗ G ∨ ⊗ H ) ⊗ i∗(∧ jNZ/X ⊗ F∨ ⊗ G )

→ i∗(∧i+ jNZ/X ⊗ F∨ ⊗ H ),

given by exterior product and the natural map G ⊗ G ∨ → OZ.

Proof 1. For the first assertion, note that

RHom OX(i∗F , i∗G ) ∼= i∗RHom OZ(i
∗i∗F ,G )

and apply Proposition 3.1.1, noting that the cohomology of i∗i∗F is locally free.
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2. The second part is a local statement, so we shall assume Z is the zero locus of
a regular section s of a rank c vector bundle E on X, and that F ,G and H are
restrictions to Z of F̃ , G̃ and H̃ on X.
Tensoring the Koszul resolution for i∗OZ with F̃ and G̃ we get resolutions for i∗F
and i∗G which allow us to compute the RHom s. Then the RHom multiplication is
induced by the wedge product ∧kE ⊗ ∧lE → ∧k+lE followed by the contraction
G̃ ⊗ G̃ → OX. Taking cohomology, we get the claim on the level of Ext s.

��

3.2 Degeneration of the spectral sequence

Let (X, σ ) be a holomorphic symplectic variety. Recall that a subvariety L is called
Lagrangian if σ |L = 0 and dimL = 1

2dimX. If i : L ↪−→ X is a smooth Lagrangian we
haveTX ∼= �1

X via the symplectic form, hence i∗TX ∼= i∗�1
X . There is a commutative

diagram:

0 TL i∗TX NL/X 0

0 N ∨
L/X i∗�1

X �1
L 0

which shows we have isomorphisms �
q
L

∼= ∧qNL/X. Hence the second page of the
local-to-global Ext spectral sequence, in the Lagrangian case, is Ep,q

2 = Hp(L,�
q
L).

Theorem 3.2.1 Let X/C be holomorphic symplectic, and consider a compact Kähler
Lagrangian i : L ↪−→ X whose canonical bundle admits a square root. Then the local-
to-global Ext spectral sequence

Ep,q
2 = Hp(L,�

q
L) ⇒ Ext p+q(

i∗K1/2
L , i∗K1/2

L

)

degenerates on the second page. Hence

Hk(L/C) = ⊕p,qHp(L,�
q
L)

= Extk
(
i∗K1/2

L , i∗K1/2
L

)
.

Proof This proof was envisaged by Thomas, and Petit helped us make the ini-
tial sketch rigorous. It will be enough to show that dimC

(
Exti

(
i∗K1/2

L , i∗K1/2
L

)) ≥
dimC

(
Hi (L/C)

)
.

Let AX be the canonical quantisation ŴX(0) of X. We fix a square root K1/2
L of

the canonical bundle. There exists a simpleAX-moduleD0
L on L quantising K1/2

L . Let
A loc

X be the localisation C((�)) ⊗C[[�]] AX. Then D0
L localises to a simple holonomic

DQ-module DL over A loc
X .
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Theorem 2.2.21 implies that

RHom
(
DL,DL

) � C((�))L,

sowe get Exti
A loc

X

(
DL,DL

) = Hi
(
L,C((�))

)
. Hence the universal coefficients theorem

implies that

dimC((�))

(
Exti

A loc
X

(
DL,DL

)) = dimC
(
Hi (L/C)

)
.

Furthermore Theorem 2.2.14, which requires L compact, states that

RHomAX

(
D0

L,D0
L

) ∈ Perf
(
Spec

(
C[[�]])).

Then we can apply the semicontinuity theorem on C[[�]] to get that

dimC
(
Hi (C ⊗C[[�]] RHomAX

(
D0

L,D0
L

)))

≥ dimC((�))

(
Hi (C((�)) ⊗C[[�]] RHomAX

(
D0

L,D0
L

)))
.

It’s enough to observe that there is a quasi-isomorphism

C ⊗C[[�]] RHomAX

(
D0

L,D0
L

) � RHom
(
i∗K1/2

L , i∗K1/2
L

)

and the projection formula implies that

C((�)) ⊗C[[�]] RHomAX

(
D0

L,D0
L

) � RHomA loc
X

(
DL,DL

)
.

Thus
dimC

(
Exti

(
i∗K1/2

L , i∗K1/2
L

)) ≥ dimC((�))

(
Exti

A loc
X

(
DL,DL

))

= dimC
(
Hi (L/C)

) . ��

3.3 Degeneration in case of pairs of Lagrangians

Having dealt with the case of one Lagrangian, we now turn to pairs of Lagrangians.
Let i : L ↪−→ X and j : M ↪−→ X be smooth submanifolds. We need a few standard
results computingE xt sheaves on smooth intersections. The argument in Lemma 0.1.1
extends readily to the following generalisation:

Proposition 3.3.1 Let F be locally free on L and G be coherent on M. Then, we have
a natural isomorphism for all p ≥ 0:

Ext p
OX

(i∗F , j∗G ) ∼= Ext p
OX

(i∗OL, j∗OM) ⊗ G |L∩M ⊗ F∨|L∩M .
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Proposition 3.3.2 Assuming L ∩ M smooth, we have

Ext p(i∗OL, j∗OM) ∼= ∧p−cN ⊗ detNL∩M/M,

where c = rkNL∩M/M, N := TX|L∩M /(TL|L∩M + TM|L∩M) is the excess normal
bundle.

We begin by assuming L is the zero locus of a regular section s of a vector bundle
E on X. Then we have a Koszul resolution of i∗OL.

Lemma 3.3.3 Assume M ⊆ L. Then

Ext p
OX

(i∗OL, j∗OM) ∼= j∗ ∧p NL/X|M.

Proof This follows at once from the Koszul resolution since, after restricting to M, all
differentials vanish as M ⊆ L. ��
Recall that L and M intersect properly if

dimL ∩ M + dimX = dimL + dimM.

Lemma 3.3.4 Assume L and M intersect properly. Then

Ext p
OX

(i∗OL, j∗OM) ∼=
{
detNL∩M/M if p = c

0 if p �= c.

Proof Our assumption implies that s|M is regular and L ∩ M = Z(s|M). Hence the
complex computing the Ext sheaves is exact everywhere except at the right end, so
we get

Ext p
OX

(i∗OL, j∗OM) ∼= 0 for p �= 0

and

Ext c
OX

(i∗OL, j∗OM) ∼= coker(∧c−1E |M ∧s|M−−−→ ∧cE |M)

∼= ∧cE |L∩M
∼= ∧cNL∩M/M.

��
Remark 3.3.5 Wenote that Lemmas 3.3.3 and 3.3.4 remain truewithout the assumption
that L = Z(s).

Lemma 3.3.6 For any point x ∈ L ∩ M there exists an open neighbourhood U ⊂ X
and a smooth subvariety W ⊂ U containing L such that

• (L ∩ M) ∩ U = W ∩ M scheme-theoretically and
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• W and M intersect properly.

Proof Let n = dimM − dim(L ∩ M). If n = 0, then M ⊆ L and we can take W = X.
If n > 0, then TM, is not contained in TL,x since L∩M is smooth, so its tangent space
is the intersection of the tangent spaces of L and M.

Since TL,x is the intersection of all hypersurfaces through x that contain L, we can
find a hypersurface X′ which contains L and TM,x �⊂ TX′,x . Let M′ = M∩X′. Then,

L ∩ M′ = L ∩ M

and hence we can apply induction since now we have

dimM′ − dim(L ∩ M) = n − 1.

This concludes the proof. ��
Proof of Proposition 3.3.2 Working locally onX, usingLemma3.3.6,wehave a smooth
Wwith L ⊂ W and L ∩ M = W∩MwithW andM intersecting properly. The change
of rings spectral sequence for Ext sheaves

Ep,q
2 = Ext p

OW
(OL,Ext q

OX
(OW,OM)) ⇒ Ext p+q

OX
(OL,OM)

which by Lemma 3.3.4 has non-zero entries on the second page only for

q = c = codim(L ∩ M ⊂ M)

given by

Ep,c
2 = ∧pNL/W|L∩M ⊗ detNL∩M/M.

In order to conclude, we note that the natural map

NL/W|L∩M ∼= TW|L∩M/TL|L∩M ↪−→ TX|L∩M/TL|L∩M
� TX|L∩M /(TL|L∩M + TM|L∩M)

is an isomorphism for dimension reasons - checking fibrewise suffices since L ∩M is
reduced. Hence,

Ext p
OX

(i∗OL, j∗OM) ∼= ∧p−cN ⊗ detNL∩M/M.

This concludes the proof locally on X. Tracing through the identification, we see that
these do not depend on the choice of W and so the isomorphisms exist globally. ��

In the Lagrangian case, which we assume from now on, we have an exact sequence:

0 → TL∩M → TL|L∩M ⊕ TM|L∩M → TX|L∩M → �L∩M → 0,
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hence

Ext p(i∗OL, j∗OM) ∼= �
q−c
L∩M ⊗ detNL∩M/M.

The adjunction formula yields an isomorphism

detNL∩M/M ∼= K∨
M

∣∣
L∩M ⊗ KL∩M,

hence by Lemma 2.1.8 we obtain

detNL∩M/L ⊗ detNL∩M/M ∼= OL∩M.

Corollary 3.3.7 Assuming there exist squre roots K1/2
L and K1/2

M , define the orientation
bundle

Kor :=
(
K1/2
L

∣∣∣
L∩M ⊗ K1/2

M

∣∣∣
L∩M

)∨ ⊗ KL∩M

and set n = codim(L,X), so c = n − dim(L ∩ M). Then

Ext p(i∗K1/2
L , j∗K1/2

M

) ∼= �
q−c
L∩M ⊗ Kor.

Remark 3.3.8 Notice that the line bundle Kor is torsion, in fact of order 2. Hence the
monodromy representation associated to the local system Kor, arising from Kor, is
unitary - see beginning of next proof for a brief sketch.

Theorem 3.3.9 Let X/C be a holomorphic symplectic variety. Suppose that i . : L ↪−→
X, j : M ↪−→ X are smooth Lagrangians with a compact Kähler intersection L ∩ M.
Assume that K1/2

L and K1/2
M exist. Then the Ext local-to-global spectral sequence

Ep,q
2 = Hp(L ∩ M,�

q−c
L∩M ⊗ Kor) ⇒ Ext p+q(

i∗K1/2
L , j∗K1/2

M

)

degenerates on the second page. In particular,

Extk
(
i∗K1/2

L , j∗K1/2
M

) = ⊕p,qH
p(L ∩ M,�

q−c
L∩M ⊗ Kor) = Hk−c(Kor).

Proof We have that Ep,q
2 = Hp(L ∩ M,�

q−c
L∩M ⊗ Kor), where c is the codimension

of L ∩ M in L and M, and Kor is defined in Corollary 3.3.7. The line bundle Kor is
2-torsion, hence admits a flat Chern connection, so the associated representation of
π1(L ∩M, pt) is unitary. As a consequence the Hodge-to-de Rham spectral sequence
degenerates on E1, so, analogously to the case of one Lagrangian, it will be enough to
show that

dimC
(
Exti

(
i∗K1/2

L , j∗K1/2
M

)) ≥ dimC
(
Hi−c(Kor)

)
.
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LetAX be the canonical quantisation ŴX(0) ofX.We shall fix square rootsK1/2
L and

K1/2
M of the canonical bundles of L and M. LetD0

L andD0
M be the simpleAX-modules

onL andMquantisingK1/2
L andK1/2

M , respectively. Thenwe letDL = C((�))⊗C[[�]]D0
L

and DM = C((�)) ⊗C[[�]] D0
M be the corresponding �-localisations.

Since the intersection L ∩ M is smooth, Theorem 2.2.21 implies that

RHom A loc
X

(
DL,DM

) � C((�))L∩M ⊗C Kor[−c],

so we conclude that Exti
A loc

X

(
DL,DM

) = Hi−c(L ∩ M,C((�)) ⊗C Kor). Hence the

universal coefficients theorem implies that

dimC((�))

(
Exti

A loc
X

(
DL,DM

)) = dimC
(
Hi−c(L ∩ M,Kor)

)
.

Moreover Theorem 2.2.14, which requires L ∩ M compact, states that

RHomAX

(
D0

L,D0
M

) ∈ Perf
(
Spec

(
C[[�]])).

Thus, we can apply the semicontinuity theorem on C[[�]] to conclude that

dimC
(
Hi (C ⊗C[[�]] RHomAX

(
D0

L,D0
M

)))

≥ dimC((�))

(
Hi (C((�)) ⊗C[[�]] RHomAX

(
D0

L,D0
M

)))
.

Now observe that there is a quasi-isomorphism

C ⊗C[[�]] RHomAX

(
D0

L,D0
M

) � RHom
(
i∗K1/2

L , j∗K1/2
M

)

and the projection formula implies that

C((�)) ⊗C[[�]] RHomAX

(
D0

L,D0
M

) � RHomA loc
X

(
DL,DM

)
.

Hence
dimC

(
Exti

(
i∗K1/2

L , j∗K1/2
M

)) ≥ dimC((�))

(
Exti

A loc
X

(
DL,DM

))

= dimC
(
Hi−c(L ∩ M,Kor)

) . ��

3.4 Formality

Lemma 3.4.1 Let ι : C ↪−→ C[[�]] be the inclusion of the central fibre and let C ∈
Perf

(
Spec

(
C[[�]])). Suppose that for all i ∈ Z we have

dimC
(
Hi (ι∗C)

) = dimC((�))

(
Hi (C((�)) ⊗C[[�]] C)

)
.

Then the cohomology H(C) is free (of finite rank) over C[[�]].
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Proof Consider the exact triangle C
�−→ C → ι∗C −→ C[1]. It induces a long exact

sequence in cohomology

Hi (C)
�−→ Hi (C) → Hi (ι∗C) → Hi+1(C)

�−→ Hi+1(C).

Hence there are exact sequences

0 → C ⊗C[[�]] Hi (C) → Hi (ι∗C) → TorC[[�]]
1

(
C,Hi+1(C)

)
→ 0.

In particular, we get that dimC
(
C ⊗C[[�]] Hi (C)

) ≤ dimC
(
Hi (ι∗C)

)
. Since Hi (C) is

finitely generated, we may write it as

Hi (C) = C[[�]]di ⊕ C[[�]]/�
k1 ⊕ · · · ⊕ · · · ⊕ C[[�]]/�

kri ,

where k1, · · · , kri , ri ∈ N. Notice that

dimC

(
C ⊗C[[�]] Hi (C)

)
= di + ri and dimC((�))

(
C((�)) ⊗C[[�]] Hi (C)

)
= di .

It follows by flatness of C((�)) that

dimC((�))

(
C((�)) ⊗C[[�]] Hi (C)

)
= dimC((�))

(
Hi (C((�)) ⊗C[[�]] C)

)
.

Hence, ri = 0 and Hi (C) is free. ��
Proposition 3.4.2 Let X/C be a holomorphic symplectic variety, endowed with its
canonical DQ algebroid ŴX(0). Suppose L is a smooth Lagrangian in X and let DL
be a holonomic ŴX-module onL. Then the quasi-isomorphismRHom ŴX

(
DL,DL

) �
C((�))L is compatible with the multiplicative structures, i.e. it is a quasi-isomorphism
of dg algebras.

Proof The question is local, we may assume X = �L and L is the zero section in �L.
We shall fix coordinates (z1, · · · , zn) on L. Further, since any two holonomic ŴX-
modules are locally isomorphic, we may letDL = OL((�)). Then the Koszul complex
K(OL((�)), ∂1, · · · , ∂n), associated with the coregular sequence ∂1, · · · , ∂n acting (on
the left) onOL((�)), gives a multiplicative model for RHom

ŴX

(
OL((�)),OL((�))

)
and

the natural quasi-isomorphismC((�))L → K(OL((�)), ∂1, · · · , ∂n) is multiplicative. ��
Theorem 3.4.3 Let X/C be holomorphic symplectic and let i : L ↪−→ X be a smooth
compact Kähler Lagrangian submanifold whose canonical bundle admits a square
root. Then the differential graded algebra RHom

(
i∗K1/2

L , i∗K1/2
L

)
is formal, in fact,

quasi-isomorphic to the de Rham algebra H(L/C).

Proof As before, letAX be the canonical quantisation ŴX(0) ofX.We fix a square root
K1/2
L of the canonical bundle. There exists a simple AX-module D0

L on L quantising
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K1/2
L . LetA loc

X be the localisationC((�))⊗C[[�]]AX and denoteDL = C((�))⊗C[[�]]D0
L

the �-localised simple holonomic DQ-module over A loc
X .

Consider the differential graded algebra RHomAX

(
D0

L,D0
L

)
over C[[�]]. By Theo-

rem 2.2.21, we have that

RHom A loc
X

(
DL,DL

) � C((�))L.

Degeneration of the spectral sequence on � = 0 allows us to apply Lemma 3.4.1, so
the cohomology of RHomAX

(
D0

L,D0
L

)
is free of finite rank over C[[�]]. In particular,

ExtAX

(
D0

L,D0
L

)
is a formal deformation of the graded algebra Ext

(
i∗K1/2

L , i∗K1/2
L

)
to

the de Rham algebra H(L/C)((�)). It follows that

dimC
(
HHp,q(

H(L/C)
)) ≤ dimC

(
HHp,q(

Ext
(
i∗K1/2

L , i∗K1/2
L

)))
. (2)

Furthermore, collapse of the spectral sequence on � = 0 also implies that there exists
a filtration F on the graded algebra Ext

(
i∗K1/2

L , i∗K1/2
L

)
such that

GrF
(
Ext

(
i∗K1/2

L , i∗K1/2
L

)) ∼= H(L/C),

as graded algebras, so the associated (completed) Rees algebra is a formal deformation
of the graded algebraH(L/C) to Ext

(
i∗K1/2

L , i∗K1/2
L

)⊗CC((�)).TheRees deformation
gives the opposite of (2), hence

dimC
(
HHp,q(

H(L/C)
)) = dimC

(
HHp,q(

Ext
(
i∗K1/2

L , i∗K1/2
L

)))

and by Lemma 3.4.1 the Hochschild cohomology groups HHp,q
(
ExtAX

(
D0

L,D0
L

))

are free over C[[�]] for all p, q ∈ Z. As a consequence, the Hochschild cohomology
groups with compact supports of Lunts, HHi

c

(
ExtAX

(
D0

L,D0
L

))
, are free over C[[�]].

It follows, by formality of L, that the differential graded algebra RHomA loc
X

(
DL,DL

)

is formal. Hence, RHomAX

(
D0

L,D0
L

)
is formal by Theorem 1.1.12.

In order to conclude the formality proof, we note that there is a quasi-isomorphism

RHom
(
i∗K1/2

L , i∗K1/2
L

) � C ⊗C[[�]] RHomAX

(
D0

L,D0
L

)
.

Since the cohomology of RHomAX

(
D0

L,D0
L

)
is free over C[[�]], it follows that the dg

algebra

RHom
(
i∗K1/2

L , i∗K1/2
L

)

is formal.
To prove the last statement of the theorem, note that ExtAX

(
D0

L,D0
L

)
is a generically

constant deformation which leaves the dimension of HH2,0 unchanged. The classical
results on deformations of [11] extend to the graded case, thus ExtAX

(
D0

L,D0
L

)
must
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be the trivial deformation - we give a summary of the proof, referring to [11, Section 3]
for details (in the non-graded case).

Let HH := HH
(
Ext

(
i∗K1/2

L , i∗K1/2
L

))
, HH� := HH

(
ExtAX

(
D0

L,D0
L

))
and HH(�)

is the localisation ofHH� at�. The reductionmod � gives amapHH� → HHand since
HH� is free overC[[�]], taking a section of the reduction map, we get HH�

∼= HH[[�]].
We have an isomorphism of graded algebras

ϕ� : ExtAX

(
D0

L,D0
L

) ⊗C[[�]] C((�)) ∼= H(L/C) ⊗C C((�)).

Write m� and mdR for the multiplications of ExtAX

(
D0

L,D0
L

)
and H(L/C), respec-

tively. Then by definition

m� = ϕ−1
�

mdR(ϕ�, ϕ�). (3)

Differentiating (3) with respect to � gives

m′
�

= −d�(ϕ−1
�

ϕ′
�
), (4)

where d� is the Hochschild differential of the graded algebra ExtAX

(
D0

L,D0
L

)
, i.e.

[m′
�
] = 0 in HH2,0

(�)
. Writing

m� = m + mr �
r + · · · , r ≥ 1,

we see that the left side of (4) is

rmr �
r−1 + (r + 1)mr+1�

r + · · · .

Hence we deduce that

mr + (r + 1)/r · mr+1� + (r + 2)/r · mr+2�
2 + · · ·

is a �-torsion class in HH2,0
�

, lifting the class [mr ] ∈ HH2,0, so it must vanish. Thus
[mr ] = 0 too. If mr = d(ψr ), then we can kill mr using id − ψr

�
r . By induction we

get ψ i for all i ≥ r , the infinite composition

ψ� = ((
id − ψr

�
r ) ◦ (

id − ψr+1
�

r+1) ◦ · · · )

makes sense and we have ψ−1
�

m�(ψ�, ψ�) = m, showing the triviality of m�.

Since Ext
(
i∗K1/2

L , i∗K1/2
L

)
and H (L/C) are finite dimensional over C and become

isomorphic after extending scalars to C((�)), they are already isomorphic over C. ��
Corollary 3.4.4 Let X/C be holomorphic symplectic, and consider a compact Kähler
Lagrangian i : L ↪−→ X such that K1/2

L exists. Then Ext
(
i∗K1/2

L , i∗K1/2
L

) ∼= H(L/C)

as graded algebras.
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Theorem 3.4.5 Let X/C be holomorphic symplectic. Suppose that i : L ↪−→ X,
j : M. ↪−→ X are compact Kähler Lagrangians with a smooth intersection. Asu-
ume their canonical bundles admit square roots. Then RHom

(
i∗K1/2

L , j∗K1/2
M

)
is

a formal differential graded module over the (formal) differential graded algebra
RHom

(
i∗K1/2

L , i∗K1/2
L

)
. Moreover, we have a quasi-isomorphism of pairs

(
RHom

(
i∗K1/2

L , i∗K1/2
L

)
,RHom

(
i∗K1/2

L , j∗K1/2
M

)) � (
H(L/C),H∗−c(L ∩ M,Kor)

)
,

where c is the codimension of L ∩ M in L.

Proof LetAX be the canonical quantisation ŴX(0) ofX.We shall fix square roots K1/2
L

and K1/2
M of the canonical bundles of L andM. LetD0

L andD0
M be simpleAX-modules

onL andMquantisingK1/2
L andK1/2

M , respectively. Thenwe letDL = C((�))⊗C[[�]]D0
L

and DM = C((�)) ⊗C[[�]] D0
M be the corresponding �-localisations.

The complex RHomAX

(
D0

L,D0
M

)
is a dg module over RHomAX

(
D0

L,D0
L

)
. Since

the intersection L ∩ M is smooth, Theorem 2.2.21 implies that

RHom A loc
X

(
DL,DM

) � C((�))L∩M ⊗C Kor[−c].

It follows by Theorem 3.3.9 and Lemma 3.4.1 that the cohomology of
RHomAX

(
D0

L,D0
M

)
is free over C[[�]]. In particular, we see that ExtAX

(
D0

L,D0
M

)
is a

formal deformation of the graded module Ext
(
i∗K1/2

L , j∗K1/2
M

)
to the graded module

H∗−c(L ∩ M,Kor)((�)). It follows that

dimC
(
HHp,q(

H(L/C),H∗−c(L ∩ M,Kor)
))

≤ dimC
(
HHp,q(

H(L/C),Ext
(
i∗K1/2

L , j∗K1/2
M

)))
.

As in the previous theorem, degeneration of the spectral sequence on � = 0 gives a
filtration F on Ext

(
i∗K1/2

L , j∗K1/2
M

)
such that

GrF
(
Ext

(
i∗K1/2

L , j∗K1/2
M

)) ∼= H∗−c(L ∩ M,Kor)

as graded modules over H(L/C). The Rees deformation argument then implies the
opposite the above inequality, so we conclude

dimC
(
HHp,q(

H(L/C),H∗−c(L ∩ M,Kor)
))

= dimC
(
HHp,q(

H(L/C),Ext
(
i∗K1/2

L , j∗K1/2
M

)))
.

Thus, by Lemma 3.4.1, the Hochschild cohomology groups

HHp,q(
ExtAX

(
D0

L,D0
L

)
,ExtAX

(
D0

L,D0
M

))

are free over C[[�]] for all p, q ∈ Z.
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We observed in the beginning of the proof of Theorem 3.3.9 that the local
system Kor corresponds to a unitary representation of the fundamental group of
L ∩ M. Then, as explained on page 4, by a theorem of Deligne (see [12, 27]),
we conclude that RHomA loc

X

(
DL,DM

)
is a formal dg module over the dg algebra

RHomA loc
X

(
DL,DL

)
. Hence RHomAX

(
D0

L,D0
M

)
is a formal dg module over the dg

algebra RHomAX

(
D0

L,D0
L

)
by Proposition 1.8.4.

Next we note that there is a natural quasi-isomorphism of dg modules

RHom
(
i∗K1/2

L , j∗K1/2
M

) � C ⊗C[[�]] RHomAX

(
D0

L,D0
M

)
,

associated with the quasi-isomorphism of dg algebras

RHom
(
i∗K1/2

L , i∗K1/2
L

) � C ⊗C[[�]] RHomAX

(
D0

L,D0
L

)
.

It is now enough to recall that the cohomology of RHomAX

(
D0

L,D0
M

)
is free over

C[[�]], hence RHom(
i∗K1/2

L , j∗K1/2
M

)
is formal over RHom

(
i∗K1/2

L , i∗K1/2
L

)
.

For the last assertion, we observe that ExtAX

(
D0

L,D0
M

)
is a generically constant

deformation that leaves HH1,0 constant. Such a deformation must be trivial, the proof
being similar to the one for deformations of algebras discussed in the proof of The-
orem 3.4.3. Thus, Ext

(
i∗K1/2

L , j∗K1/2
M

)
and H∗−c(L ∩ M,Kor) are isomorphic since

they are finite dimensional over C and become isomorphic upon extending scalars to
C((�)). ��
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