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Abstract
We study when the heart of a t-structure in a triangulated categoryD with coproducts
is AB5 or a Grothendieck category. IfD satisfies Brown representability, a t-structure
has an AB5 heart with an injective cogenerator and coproduct-preserving associated
homological functor if, and only if, the coaisle has a pure-injective t-cogenerating
object. If D is standard well generated, such a heart is automatically a Grothendieck
category. For compactly generated t-structures (in any ambient triangulated category
with coproducts), we prove that the heart is a locally finitely presented Grothendieck
category. We use functor categories and the proofs rely on two main ingredients.
Firstly, we express the heart of any t-structure in any triangulated category as a Serre
quotient of the category of finitely presented additive functors for suitable choices
of subcategories of the aisle or the co-aisle that we, respectively, call t-generating or
t-cogenerating subcategories. Secondly, we study coproduct-preserving homological
functors from D to complete AB5 abelian categories with injective cogenerators and
classify them, up to a so-called computational equivalence, in terms of pure-injective
objects in D. This allows us to show that any standard well generated triangulated
category D possesses a universal such coproduct-preserving homological functor, to
develop a purity theory and to prove that pure-injective objects always cogenerate
t-structures in such triangulated categories.
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1 Introduction

Themain motivation of this paper is the study of t-structures in triangulated categories
with coproducts whose hearts are AB5 abelian or Grothendieck categories. Along the
way,we initiate a theory of purity (which is a concept from themodel theory ofmodules
over a ring) for not necessarily compactly generated triangulated categories. In this
context, purity is very closely related to the study of covariant coproduct-preserving
homological functors and representability theorems for them and, at the end of the
day, we apply these results to the (co)homological functors induced by t-structures.
Our results are mostly independent of any particular model or enhancement for the
triangulated categories.

The problem of identifying the t-structures whose heart is a Grothendieck category
has deserved a lot of attention since it first arose for the Happel–Reiten–Smalø t-
structure associated to a torsion pair in aGrothendieck ormodule category [18, 19]. For
the general question, several strategies have been used to tackle the problem, including
ad hoc arguments [8, 60], functor categories [13, 14] and suitable enhancements of
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the ambient triangulated category, such as stable ∞-categories [45, 46] or derivators
[41, 69].

When the ambient triangulated category is compactly generated, the well-devel-
oped theory of purity in this type of categories, initiated in [32], has been also used
[1, 41, 71]. One of the most common strategies here consisted in expressing the
heart of a well-behaved t-structure (e.g. compactly generated or smashing) as Gabriel
quotient of the categoryMod-Dc of additive functors (Dc)op −→ Ab, whereDc is the
subcategory of compact objects. A key limitation of this approach so far, which we
aim to overcome here, is that it is in contrast to enhancement-based arguments fully
dependent on the existence of compact objects—an assumption which may easily fail
even for derived categories of sheaves [50]. Albeit a higher-cardinal generalization
of the purity theory has been developed in connection with Verdier quotients and
semiorthogonal decompositions of triangulated categories [39, 51], it is not suitable
for us (with the exception of Proposition 6.9) for the following reasons:

(1) the higher-cardinal version of purity seems not to be well-suited for studying
exactness of all direct limits and

(2) various arguments about localizations of triangulated categories do not seem to
directly generalize to t-structures.

Although we do follow the trend of using functor categories in this paper, we
do so in a different (and initially much more general) way. We start working in an
arbitrary triangulated category D with a t-structure t = (U ,V) and we replace the
no longer suitable or even well-defined category Mod-Dc by the category mod-X (or
mod-X op) of finitely presented functors X op −→ Ab (or X −→ Ab), for a suitable
subcategory X of D that is linked to t. Normally X will be the aisle or the co-aisle
of t or a suitable subcategory of them. If D is a triangulated category with products,
we can very abstractly define pure-injective objects in D, choose X to be a class
of pure-injective objects, and use this approach together with a recent criterion for
the AB5 condition given by Positselski and the second-named author [61] in terms
of pure-injectivity. This turns out to be a very efficient strategy to study the AB5
and Grothendieck property of the heart of t. The advantage is that one gets rid of any
model enhancing the ambient triangulated category, thus obtaining completely general
results.

Let us now describe the contents of the paper, in the course of which themain results
will be explained. In Sect. 2 we introduce most of the concepts and terminology to be
used in the paper. Already there we take some care of the results which are crucial for
the paper. In particular, we show how to reconstruct an abelian category with enough
projectives from its subcategory of projectives, we revisit the notions of localization
and Serre quotient functors and we recall criteria for the property of being locally
finitely presented to be inherited via Gabriel localization of a Grothendieck category.

In Sect. 3 we show how the heart of a t-structure appears as Serre quotient of the
category mod-U of finitely presented functors Uop −→ Ab, where U is the aisle of the
t-structure, and give some ideas on how to get rid of degeneracies of t-structures. In
Sect. 4 we go one step further and show that ifP is a suitable precovering subcategory
of U , then the Serre quotient functor mod-U −→ H, where H is the heart of the

t-structure, factors as mod-U res−→ mod-P F−→ H, where F is again a Serre quotient
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functor. This gives the following first main result of the paper (see Theorem 4.5 for
an extended version), that together with its dual give one of our most powerful tools
to study the AB5 condition of the heart of a t-structure in a triangulated category with
coproducts, although the result is valid for all t-structures in any triangulated category:

Theorem 1.1 Let D be a triangulated category and t = (U ,V) be a t-structure with
heartH and the associated cohomological functor H0

t : D −→ H. Let furtherP ⊆ U
be a precovering subcategory and denote by yP the generalized Yoneda functor

yP : U −→ mod-P,

U � HomU (?,U )|P .

The following assertions are equivalent:

(1) The functor H0
t : U −→ H factors as a composition U yP−→ mod-P F−→ H, for

some right exact functor F.
(2) The subcategory P ⊆ D is t-generating, i.e. for each U ∈ U there is a triangle

U ′ −→ P
f−→ U

+−→, where P ∈ P and U ′ ∈ U .
In such a case, F is a Serre quotient functor and G := (yP )|H : H −→ mod-P is its
fully faithful right adjoint.

In Sect. 5 we introduce the key notion of pure-injective object in an arbitrary addi-
tive categorywith products, which extends the corresponding existing notion in locally
finitely presented additive categories and in compactly generated triangulated cate-
gories. We then revisit a recent result by Positselski and the second-named author
from [61], stating that an AB3* abelian category A with an injective cogenerator E
is AB5 if and only if E is pure-injective. We further show that A is a Grothendieck
category precisely when Prod E = Inj(A) has a generator, i.e. if and only if there is
E ′ ∈ Inj(A) such that HomInj(A)(E ′, ?) : Inj(A) −→ Ab is a faithful functor.

In Sect. 6 we prove the following theorem for coproduct-preserving homological
functors whose targets are AB3* abelian categories with an injective cogenerator. The
reader is referred to Definition 6.1 for the precise definition of computationally equiva-
lent coproduct-preserving homological functors whose domain is a given triangulated
category with coproducts D. A fortiori, when D satisfies Brown representability the-
orem, two such functors are computationally equivalent exactly when the morphisms
in D that are killed by one of them are also killed by the other (see Corollary 6.4).

Theorem 1.2 Let D be a triangulated category which has arbitrary (set-indexed)
coproducts and satisfies Brown representability theorem. Then there is a bijective
correspondence between

(1) Computational equivalence classes of coproduct-preserving homological functors
H : D −→ A, whereA is anAB3* abelian categorywith an injective cogenerator.

(2) Product-equivalence classes of objects in D.

The bijection restricts to another one, where in (1)we only consider those homological
functors with AB5 target and in (2) we only consider product-equivalence classes of
pure-injective objects.
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Moreover, each computational equivalence class in (1) has unique initial object
H : D −→ A. If Q ∈ D represents the corresponding product equivalence class as
in (2), then one can take A = (

mod- Prod(Q)op
)op

and for any D ∈ D,

H(D) = HomD(D, ?)| Prod(Q) : Prod(Q) −→ Ab.

The main significance of the latter theorem is that it allows us to initiate a theory
of purity for non-compactly generated triangulated categories. As a consequence, it
turns out that pure-injective objects in practice always cogenerate t-structures. See
Proposition 6.9 which substantially generalizes a result of similar nature in [47].

So far, two different approaches to purity appeared in the literature in the absence
of finitely presented or compact objects:

(1) via abstractly defined pure-injective objects (as discussed above) in [20, 61] and
(2) via colimit-preserving functors with AB5 target categories in [16, §6].

Theorem 1.2 says that if we replace, in the context of triangulated categories, the func-
tors in (2) by the class of coproduct-preserving homological functors to complete AB5
abelian categories with injective cogenerators, the two approaches become equivalent.

In Sect. 7 we further develop the purity theory for standard well generated triangu-
lated categories and show that any such category D has an associated Grothendieck
category Apure(D) and a coproduct-preserving homological functor hpure : D −→
Apure(D), uniquely determined up to equivalence, that are universal. This means that
if h : D −→ A is any other coproduct-preserving homological functor with AB5 tar-
get, then there is a coproduct-preserving exact functor F : Apure(D) −→ A, unique
up to natural isomorphism, such that F ◦ hpure = h. Then we can simply define pure
triangles and identify pure-injective objects in terms of this universal functor hpure.

Section 8 is the one specifically dedicated to the study of t-structures with an AB5
or Grothendieck heart. The first general result of the section is the following (see
Theorem 8.4 for a more detailed version).

Theorem 1.3 Let D be a triangulated category with coproducts that satisfies Brown
representability theorem, and let t = (U ,V) be a t-structure with heart H. The fol-
lowing assertions are equivalent

(1) There exists a pure-injective object Q ∈ V such that HomD(?, Q) vanishes on
V[−1] and HomD(M, Q) �= 0, for all 0 �= M ∈ H.

(2) There is a pure-injective object Q̂ ∈ V such that, for each V ∈ V , there is a

triangle V −→ Q̂V −→ V ′ +−→, where Q̂V ∈ Prod(Q) and V ′ ∈ V .
(3) H is anAB5abelian categorywith an injective cogenerator and the cohomological

functor H0
t : D −→ H preserves coproducts.

When D is standard well generated, they are also equivalent to:

(4) H is a Grothendieck category and the cohomological functor H0
t : D −→ H

preserves coproducts.

Condition (2) of Theorem 1.3 is very closely related to widely studied finiteness
conditions on the co-aisle of t. When D is compactly generated, condition (2) is
satisfied for instance in the following situations (see Theorem 8.12):
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• if the co-aisle V is definable (this in particular holds if t = (U ,V) is compactly
generated as a t-structure) or

• if D has a suitable enhancement (as explained in Remarks 8.9 and 8.11) and V is
closed under taking directed homotopy colimits.

In this way, we generalize various results which appeared in the literature before—
for t-structures in presentable stable ∞-categories ([45, Remark 1.3.5.23], [46,
Remark C.1.4.6]), for homotopically smashing t-structures in nice enough stable
derivators ([69], [41, Theorem 4.6]) or for compactly generated t-structures ([14,
Theorem 0.2]).

The special case where t is a semiorthogonal decomposition was also thoroughly
studied in [32, 37] and, in particular, such decompositions t were classified in terms of
certain (so called exact) ideals of the subcategory of all compact objects inD and it was
proved that they give rise to recollements in the sense of [9, §1.4]. In Theorems 8.16
and 8.26, we establish a completely analogous classification of all t-structures with
definable co-aisle and show that they possess right adjacent co-t-structures. The latter
is an analogy of recollements in the context of t-structures (as explained e.g. in the
introduction of [67]).

Theorem 1.4 Let D be a compactly generated triangulated subcategory. Then there
is a bijective correspondence between

(1) the t-structures t = (U ,V) in D with V definable, and
(2) suspended two-sided ideals I ⊆ Dc, i.e. ideals which satisfy I[1] ⊆ I = I2 and

are saturated (see Definition 8.15).

Moreover, any t-structure as in (1) admits a right adjacent co-t-structure (V,W).

Still in Sect. 8, in the yet more special case of compactly generated t-structures, we
go one step further and prove the following result (see Theorem 8.31).

Theorem 1.5 Let D a triangulated category with coproducts, let t = (U ,V) be a
compactly generated t-structure in D, with heart H, and put U0 = U ∩ Dc. Then H
is a locally finitely presented Grothendieck category and its subcategory of finitely
presented objects is fp(H) = H0

t (U0).
When in addition t restricts to the subcategory Dc of compact objects, the heartH

is also locally coherent.

In the final Sect. 9 we show relations between t-structures with Grothendieck heart
and various versions of partial cosilting objects that recently appeared in the literature.

2 Preliminaries

Unless otherwise specified, all categories in this paper will be pre-additive and all
functors are additive. All subcategories will be full and closed under taking isomor-
phisms.Whenwe say that such a category, sayA, has (co)products wewill mean that it
has arbitrary set-indexed (co)products. WhenA is additive, for a given subcategory S,
we shall denote by addA(S) and AddA(S) the subcategories consisting of the direct
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summands, respectively, of finite and arbitrary coproducts of objects in S. Dually
ProdA(S) will stand for the subcategory of direct summands of products of objects
of S. The group of morphisms between objects X and Y will be indistinctly denoted
byA(X ,Y ) or HomA(X ,Y ). We will denote by S⊥ (resp. ⊥S) the subcategory ofA
consisting of the objects X such that HomA(S, X) = 0 (resp. HomA(X , S) = 0), for
all S ∈ S.

A morphism f : S −→ X in A is called an S-precover if S ∈ S and any mor-
phism f ′ : S′ −→ X with S′ ∈ S factors through f . The subcategory S is called
precovering if each X ∈ A admits an S-precover f : S −→ X . Dually, one defines
an S-preenvelope f : X −→ S and a preenveloping subcategory of A

We refer the reader to [56] and [70] for the basic notions concerning abelian cate-
gories, in particular for the terminology ABn and ABn∗, for n = 3, 4, 5, introduced
in [24]. Recall that an AB5 abelian category with a set of generators (equivalently, a
generator) is called a Grothendieck category.

2.1 Abelian categories with enough projective objects

We start by recalling basic and mostly well known facts about how to reconstruct
an abelian category from its subcategory of projective objects, provided we have
enough of these. All the results formally dualize to abelian categories with enough
injective objects as well. If A is an abelian category, we will denote by Proj(A) the
full subcategory of projective objects and by Inj(A) the full subcategory of injective
objects.

For any (not necessarily small) additive category P , we denote by mod-P the
category of finitely presented functors Pop −→ Ab, which are by definition functors
F with a presentation

HomP (−,Q) −→ HomP (−, P) −→ F −→ 0

given by a map f : Q −→ P in P . We will also frequently use the shorthand nota-
tion P̂ := mod-P . Observe that, thanks to the Yoneda lemma, the collection of
natural transformations between any pair of finitely presented functors forms a set.
For the following well known lemma (see e.g. [22, Corollary 1.5] or [31, §2]), we
need the notion of weak kernel of a morphism f : X −→ Y in an additive category
A. It is just a morphism u : K −→ X such that the associated sequence of func-

tors HomA(?, K )
u∗−→ HomA(?, X)

f∗−→ HomA(?,Y ) is exact. Weak cokernels are
defined dually.

Lemma 2.1 The Yoneda embedding

yP : P −→ mod-P,

P � HomP (?, P),
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has the following universal property: Any additive functor F : P −→ A, whereA is an
abelian category, extends uniquely up to natural isomorphism over yP to a right exact
functor F̂ : mod-P −→ A, and any natural transformation α : F −→ F ′ between
such additive functors uniquely extends to a natural transformation α̂ : F̂ −→ F̂ ′.

Moreover, the category mod-P is itself abelian if and only if the kernel of any map
of finitely presented functors is finitely presented if and only if the category P has
weak kernels.

Remark 2.2 Note that the previous statement says that the precomposition functor

y∗
P : [P̂,A]rex �−→ [P,A]add induces an equivalence, which is in this case even
surjective on objects, between the category of right exact functors P̂ −→ A and the
category of additive functors P −→ A. In particular, the lifting of F to F̂ is, as is
well known, unique up to a canonical natural isomorphism.

Given an additive categoryP , we also denote byMor(P) the category ofmorphisms
in P (see [3, Section I.2]) and we denote by Mor(P) the quotient of Mor(P) by the
ideal of projectively trivial morphisms, in the terminology of [op.cit]. More in detail,
we factor out the two-sided ideal of Mor(P) of all maps which factor through a split
epimorphism in P , when viewed as an object of Mor(P) (what we denote Mor(P) is
denoted by Mod-P in [3]). The following result is standard and provides two ways to
reconstruct an abelian category from the subcategory of projective objects.

Proposition 2.3 Let B be an abelian category with enough projective objects and
denote by P the full subcategory of projective objects. Then

Mor(P) � B � mod-P,

where the left hand side equivalence sends ( f : Q −→ P) ∈ Mor(P) to Coker( f )
and the second equivalence sends B ∈ B to HomB(?, B)|P .

Proof The first equivalence was proved in [3, Section I.2], while the second one essen-
tially follows from [31, Proposition 2.3] as the assignment B � HomB(?, B)|P
restricts by the Yoneda lemma to an equivalence between the projective objects in
mod-P and B, respectively. 
�

We will also need a perhaps less well known version of this result involving AB3
categories B with a projective generator. This has been worked out in [62, §6] in
the language of monads, but we will use a more direct formulation which will be
convenient for us. It in fact instantiates B as the category of models of an algebraic
theory in the sense of [72].

For this purpose, suppose thatA is an additive category with arbitrary (set-indexed)
products with the property that A = ProdA(A) for some A ∈ A. We denote by
Cont(A,Ab) the category of all product-preserving additive functors A −→ Ab.
Note that again, there is only a set of natural transformations between any pair of
functors in Cont(A,Ab), as any transformation is determined by its value on A ∈ A.
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Lemma 2.4 Let P be an additive category with coproducts and P ∈ P such that
P = AddP (P). Then P has weak kernels, and mod-P = Cont(Pop,Ab). In partic-
ular, Cont(Pop,Ab) is an abelian category with coproducts and HomP (−, P) is a
projective generator.

Proof Suppose that f : P1 −→ P0 is a morphism in P . If we consider the set Z of all
morphism g : P −→ P1 such that f g = 0, then the canonical morphism P(Z) −→ P1
is easily seen to be a weak kernel of f . Hence mod-P is abelian. Moreover, since P
has coproducts, so have them both Mor(P) and Mor(P) � mod-P .

It remains to establish the equality mod-P = Cont(Pop,Ab). Clearly, any finitely
presented functorPop −→ Ab preserves products as all representable functors do and
products are exact in Ab.

For the converse, choose F ∈ Cont(Pop,Ab) and denote by X the underlying
set of F(P). Then F(P(X)) ∼= F(P)X = XX by the assumption and, hence, we
can consider the canonical element c ∈ F(P(X)) whose x-th component under
the latter identification equals x . By the Yoneda lemma, c determines a morphism
φ : HomP (?, P(X)) −→ F . Observe that φP : HomP (P, P(X)) −→ F(P) is sur-
jective as the x-th coproduct inclusion P � P(X) maps to x for each x ∈ X . Since
both HomP (?, P(X)) and F commute with products, φ(Q) is in fact surjective for
any Q ∈ P and, hence, F is a quotient of HomP (?, P(X)). Iterating the argument one
more time with K = Ker(φ) ∈ Cont(Pop,Ab), we obtain the required presentation
for F . 
�

By combining Proposition 2.3 and Lemma 2.4, we obtain:

Corollary 2.5 Let B be an AB3 category with a projective generator P, and denote
P = Add(P) the full subcategory of projective objects. Then B � Cont(Pop,Ab) via
the restricted Yoneda functor B � HomB(?, B)|P .

2.2 Localization of categories

Next we recall basic facts about a key concept in this paper—localization of categories.
A functor F : C −→ C′ is a localization functor at a class of morphism S of C if for
any category E , the precompostion functor

F∗ : [C′, E] −→ [C, E]

between the categories of functors is fully faithful and the essential image consists of
those functors G : C −→ E which send all morphisms in S to isomorphisms in E .

Remark 2.6 Of course, having written that, we need to explain how to interpret this
statement in the context of the usual set-theoretic foundation of mathematics. We have
three possibilities:

(1) Assume that all our categories are small. In that situation, no problems arise as
for any category C and any set of morphisms S, the corresponding localization
functor between small categories always exists and is essentially unique by [25,
§1.1].
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(2) If the categories in question are not small—a situation which we encounter in this
paper—we can assume that we can enlarge the universe and apply the results in
the larger universe, whence making our categories efficiently small and reducing
to case (1). The conclusions are then valid in the original universe as well, up to
one aspect where one has to be cautious: Localizations of locally small categories
still exist by [25] and do not enlarge the class of objects, but a localization of a
locally small category may possess pairs of objects which admit a proper class of
morphisms among them. As long as we can prove in some way that this problem
does not arise for the categories which we work with (one usually uses Lemma 2.7
below), we can apply the results of this section even for categories which are not
small. This is our preferred variant since it provides a good trade off between
clarity and rigor.

(3) Many arguments whichmay seem dubious from the set-theoretic point of view at a
first glance can be actually salvaged with some effort because they are completely
constructive. We will not follow this path, however, because this additional effort
often comes at the cost of clarity of exposition.

The following lemmaprovides a practicalmethod of detecting localization functors,
see [25, 1.3 Proposition].

Lemma 2.7 Suppose that F : C −→ C′ is a functor which admits a left or right adjoint
G : C′ −→ C. Then F is a localization functor (at the class of all morphisms f such
that F( f ) is invertible) if and only if G is fully faithful.

In general, it is not obvious whether a composition of two localization functors is
a localization functor again. For functors with adjoints (on any side), the situation is,
however, easy. We provide the lemma with a (completely elementary) proof.

Lemma 2.8 Let F : C −→ C′ and G : C′ −→ C′′ be functors. Then the following hold:

(1) If F and G are localization functors and F has a left or right adjoint, then
G ◦ F : C −→ C′′ is a localization functor,

(2) If F and G ◦ F are localization functors, so is G : C′ −→ C′′.

Proof In both statements, F is assumed to be a localization functor and we pick a class
S of morphisms of C such that F is a localization at S.

(1) We denote by ι : C′ −→ C the (left or right) fully faithful adjoint to F . Suppose
that G is a localization at a class S ′ of morphisms of C′. It is clear that the functor
(GF)∗ = F∗G∗ : [C′′, E] −→ [C, E] is fully faithful for each category E . Since each
morphism f ∈ Mor(C′) is isomorphic to F(ι( f )) by [25, Proposition 1.3], one directly
identifies the essential image of (GF)∗. It consists precisely of those functors which
send the morphisms in S ∪ ι(S ′) to isomorphisms.

(2) Suppose that GF is a localization at S ′′ ⊆ Mor(C) and, without loss of gen-
erality, S ′′ ⊇ S. Since both (GF)∗ and F∗ are fully faithful for any category E , so
must be the functor G∗ : [C′′, E] −→ [C′, E]. One again checks in a straightforward
manner that the essential image of G∗ consists of the functors which send F(S ′′) to
isomorphisms. 
�
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IfA and B are abelian categories and F : A −→ B is an exact localization functor,
it is called a Serre quotient functor. In this case, a morphism F( f ) is an isomorphism
if and only if F(Ker f ) = 0 = F(Coker f ). The full subcategory

Ker F = {X ∈ A | F(X) = 0}

is closed under subobjects, factor-objects and extensions. A subcategory of an abelian
category with these properties is called a Serre subcategory. Serre quotient functors
originating inA are (up to equivalence) precisely classified by Serre subcategories of
A.

Inspired by the results in [23, Chapitre III] and the Gabriel-Popescu theorem (e.g.
[70, §X.4]), we call a Serre quotient functor F : A −→ B with a (fully faithful) right
adjoint functor ι : B −→ A a Gabriel localization functor. The right adjoint ι is then
called a section functor. When in additionA is AB3 (i.e. has set-indexed coproducts),
then F preserves coproducts and Ker F is closed under subobjects, factor-objects,
extensions and arbitrary coproducts (see Sect. 2.3 for a more detailed discussion of
this situation).

We conclude the subsection with a technical but rather useful statement which says
that under certain conditions, an exact functor with a fully faithful left adjoint is a
Gabriel localization functor.

Proposition 2.9 Let F : A −→ B be an exact functor between abelian categories,
where A is complete AB5 and has an injective cogenerator. If F has a fully faithful
left adjoint, then it also has a fully faithful right adjoint. In this case, F is a Gabriel
localization functor and B is also AB5 with an injective cogenerator. Moreover, if A
is a Grothendieck category, so is B.

Proof By exactness and Lemma 2.7 we know that F is a Serre quotient functor and
T = Ker(F) is the corresponding Serre subcategory. If F has a left adjoint, it pre-
serves products, and consequently T is closed under products in A. However, the
exactness of direct limits implies that the canonical map

∐
i∈I Ai −→ ∏

i∈I Ai is a
monomorphism, for each family of objects (Ai )i∈I in A, as it is a direct limit of the
split monomorphisms

∐
i∈J Ai = ∏

i∈J Ai −→ ∏
i∈I Ai , where J ranges over finite

subsets of I (cf. [70, Exercise 1, p. 133]). Therefore, T is closed under taking coprod-
ucts and, hence, also under arbitrary colimits. It follows that each object A ∈ A has
a unique maximal subobject in T , which is simply the direct union of all subobjects
of A which belong to T . The fact that F has a fully faithful right adjoint then follows
from [23, Corollaire III.3.1], since any object of A has an injective envelope by [70,
Proposition V.2.5]. Consequently, F preserves all limits and colimits and, as it is also
essentially surjective, it takes (co)generators to (co)generators as well (cf. [23, Lemme
III.2.4]). Finally, B has an injective cogenerator by [23, Corollaire III.3.2]. 
�

2.3 A generalized Gabriel-Popescu Theorem

When G a Grothendieck category, an object X is called finitely presented if the functor
HomG(X , ?) : G −→ Ab preserves direct limits. We denote by fp(G) the subcategory
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of finitely presented objects.We say thatG is locally finitely presented when it has a set
S of finitely presented generators. This is equivalent to saying that fp(G) is skeletally
small and each object of G is a direct limit of objects in fp(G) (see [17] and [58]).
Indeed fp(G) then consists precisely of those objects X ∈ G which admit an exact
sequence

∐m
i=1 Si −→ ∐n

j=1 S
′
j −→ X −→ 0, for some finite families (Si ) and (S′

j )

of objects of S. We say that G is locally coherent when it is locally finitely presented
and fp(G) is an abelian exact subcategory or, equivalently, closed under taking kernels
in G.

Suppose that G is a Grothendieck category in the rest of this subsection. A torsion
pair in G is a pair τ = (T ,F) of subcategories such that F = T ⊥ and T = ⊥F . In
such case T is called the torsion class and F the torsionfree class. Such a torsion pair
(or the torsion class T ) is called hereditary when T is closed under taking subobjects
in G. The pair τ is called a torsion pair of finite type when F is closed under taking
direct limits in G.

When G is a Grothendieck category and T is a hereditary torsion class, the local-
ization G/T := G[�−1

T ] with respect to the class �T of morphisms s : X −→ X ′ in
G such that Ker(s),Coker(s) ∈ T has Hom sets. We call G/T the quotient category
of G by T and the corresponding localization functor q : G −→ G/T is a Gabriel
localization functor in the sense of Sect. 2.2. It is well known (see [23, 70]) that G/T
is again a Grothendieck category and that Ker(q) = T . If ι : G/T −→ G is the (fully
faithful) right adjoint to q, then we callY := Im(ι) the associatedGiraud subcategory.
It consists of the objects Y ∈ G such that HomG(T ,Y ) = 0 = Ext1G(T ,Y ), for all
T ∈ T .

A prototypical example of Grothendieck category is the one given as follows. Take
any (skeletally) small pre-additive category A. A (right) A-module is any additive
functor M : Aop −→ Ab. The category with theA-modules as objects and the natural
transformations between themasmorphisms,will be denoted byMod-A. Any category
equivalent to Mod-A, for some small pre-additive categoryA, will be called amodule
category. The Yoneda functor y : A −→ Mod-A takes a � y(a) = A(?, a) and
is fully faithful. It is well known that Mod-A is a Grothendieck category, where
Im(y) = {y(a) | a ∈ Ob(A)} is a set of finitely generated projective (whence finitely
presented) generators (see, e.g., [48, Theorem 3.1] and [56, Theorem 3.4.2]). We
will put mod-A := fp(Mod-A) to denote the subcategory of finitely presented A-
modules. It consists of theA-modulesM that admit an exact sequence

∐m
i=1 y(ai ) −→∐n

j=1 y(b j ) −→ M −→ 0, for some finite families (ai ) and (b j ) of objects of A, so
the terminology is consistent with Sect. 2.1.

The following generalized version of Gabriel-Popescu theorem (see, e.g., [49] or
[42, Theorems 1.1 and 1.2]) tells us that all Grothendieck categories appear as local-
izations of module categories:

Proposition 2.10 (Gabriel-Popescu Theorem) Let G be any category. The following
assertions are equivalent:

(1) G is a Grothendieck category.
(2) There is a small pre-additive category A and a hereditary torsion class T in

Mod-A such that G is equivalent to (Mod-A)/T .
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(3) G is abelian and there is a fully faithful functor ι : G −→ Mod-A, for some small
pre-additive category A, such that ι has an exact left adjoint.

In the situation of assertion (3) the exact left adjoint q induces an equivalence of

categories (Mod-A)/T
∼=−→ G, where T = Ker(q).

For our purposes in this paper, it will be useful to have sufficient conditions for
(Mod-A)/T to be locally finitely presented. The following result gives such condi-
tions, even in a more general situation.

Proposition 2.11 Let H be a locally finitely presented Grothendieck category and fix
any set S of finitely presented generators. Let τ = (T ,F) be a hereditary torsion pair
inH, q : H −→ H/T be the corresponding Gabriel localization functor and let G be
the associated Giraud subcategory ofH. The following assertions are equivalent:

(1) G is closed under taking direct limits inH.
(2) The section functor ι : H/T −→ H preserves direct limits.
(3) The functor q preserves finitely presented objects.
(4) q(S) consists of finitely presented objects inH/T

When these equivalent conditions hold, the torsion pair τ is of finite type and the
category H/T is locally finitely presented, with fp(H/T ) = add(q(fp(H))).

Proof Without loss of generality, we assume that q : H −→ G is a functor with G as
codomain whose right adjoint ι : G −→ H is the inclusion functor.

(1) ⇐⇒ (2) This is clear.
(3) ⇐⇒ (4) This follows immediately since the objects in fp(H) are just cokernels

of morphisms in add(S).
(2) ⇐⇒ (4) This is an instance of a general fact that a left adjoint originating

in a locally finitely presented category preserves finite presentation if and only if the
corresponding right adjoint preserves direct limits.

Indeed, consider X ∈ S and a direct system (Gi )i∈I in G. Assertion (4) precisely
says that the canonical morphism

lim−→HomG(q(X),Gi ) −→ HomG(q(X), lim−→Gi )

is an isomorphism for every choice of X and (Gi )i∈I . Here, the direct limit on the
right hand side is computed in G. Taking the adjoint form, we obtain morphisms

lim−→HomH(X , ι(Gi )) −→ HomH(X , ι(lim−→Gi )).

Since X is finitely presented inH, the latter morphism is further bijective if and only
if the canonical map

HomH(X , lim−→ ι(Gi )) −→ HomH(X , ι(lim−→Gi )). (2.1)

is an isomorphism. Now, since X runs over a generating set, the morphisms (2.1) are
bijective, for all X ∈ S and all direct systems (Gi )i∈I in G if, and only if

lim−→ ι(Gi ) −→ ι(lim−→Gi )
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is bijective for every (Gi )i∈I , which is precisely assertion (2).
Suppose now that the equivalent assertions (1)–(4) hold. Since each direct system

(Fi )i∈I in F gives a direct system of short exact sequences

(0 −→ Fi
ηFi−→ (ι ◦ q)(Fi ) −→ Ti −→ 0)i∈I ,

it follows that lim−→ Fi is a subobject of lim−→(ι ◦ q)(Fi ), and this one is an object in G by
assertion (1). Therefore lim−→ Fi ∈ F , so that τ is a torsion pair of finite type.

On the other handq(S) is a set of finitely presented generators ofH/T , thus showing
that this latter category is locally finitely presented. Moreover if Y ∈ fp(H/T ) and
we express ι(Y ) as a direct limit ι(Y ) = lim−→ Xλ, for some direct system (Xλ)λ∈	 in
fp(H), we get that Y ∼= (q ◦ ι)(Y ) ∼= lim−→ q(Xλ). Since Y is finitely presented, it is
isomorphic to a direct summand of q(Xλ), for some λ ∈ 	. This gives the inclusion
fp(H/T ) ⊆ add(q(fp(H))), the reverse inclusion being clear by assertion (3). 
�

At the end of Sect. 6, we will also use a higher-cardinal analogue of finite pre-
sentability. Given a regular cardinal κ , we say that X ∈ G is < κ-presented if
HomG(X , ?) : G −→ Ab preserves κ-direct limits, i.e. colimits indexed by partially
ordered sets whose each collection of < κ elements has an upper bound. It is a
well-known consequence of the Gabriel-Popescu Theorem that every X ∈ G is < κ-
presented for some regular cardinal κ and that G is locally < κ-presented for some
regular cardinal κ . The latter means that G has a set S of < κ-presented generators
and, as in the finite case, the condition is equivalent to saying that the full subcate-
gory κ-pres(G) of < κ-presented objects is skeletally small and each object of G is a
κ-direct limit of objects in κ-pres(G).

If G is locally < κ-presented and λ is any regular cardinal, then the class of < λ-
presented objects is always closed under cokernels by [4, Proposition 1.16]. On the
other hand, the full subcategoryλ-pres(G)of< λ-presentedobjects is also closedunder
kernels and extensions and so it is an exact abelian subcategory of G for arbitrarily
large cardinals λ. Concretely, this is true if κ is sharply smaller than λ in the sense of [4,
Definition 2.12] and if a skeleton of κ-pres(G) has< λmorphisms (there are arbitrarily
large such cardinals by [4, Example 2.13(6)]). To see this, we remind the reader that
the condition of being sharply smaller means that given any κ-directed poset I , each
subset J ⊆ I of cardinality < λ is contained in a κ-directed subset Ĵ of cardinality
< λ. In this situation, an object X of G is < λ-presented if, and only if, it is a direct
summand of a direct limit lim−→I

Ci , where theCi are< κ-presented and I is κ-directed
set with |I | < λ (see [4, Remark 2.15]). Now, by the proof of [4, Theorem 1.46], the
generalized Yoneda functor y : G −→ [κ-pres(G),Set], X �−→ Hom(?, X)|κ-pres(G)

is fully faithful and the essential image is closed under κ-direct limits in the target
functor category. Thus, thanks to [4, Example 1.31] and the description of < λ-
presented objects given above, an object X ∈ G is < λ-presented if, and only if, yX
is < λ-presented in [κ-pres(G),Set] if, and only if, the sum of the cardinalities of
HomG(C, X), where C runs over the objects of a skeleton of κ-pres(G), is < λ. The
closure of λ-pres(G) under extensions and kernels in G then follows immediately.
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2.4 Triangulated categories—general notions

We refer the reader to [51] for the precise definition of triangulated category and the
basic facts about them (many of these, albeit with different terminology, can be found
also in [28]). Here, we will denote the suspension functor by ?[1] : D −→ D. We
will then put ?[0] = 1D and ?[k] will denote the k-th power of ?[1], for each integer
k. (Distinguished) triangles in D will be denoted X

u−→ Y
v−→ Z

w−→ X [1] or by
X

u−→ Y
v−→ Z

+−→. It is well known that any morphism in the triangle determines
the other vertex up to non-unique isomorphism. We will call Z the cone of u, written
cone(u), and X the cocone of v, written cocone(v).

A triangulated functor between triangulated categories is one that preserves tri-
angles. The definition is in fact a little subtle in that the datum of a triangulated
functor consists not only of a functor F : D −→ D′, but also of a natural equivalence
F(?[1]) ∼= F(?)[1]. The latter is, however, usually obvious from the context.

All through the rest of Sect. 2, D will be a triangulated category. When I ⊆ Z

is a subset and S ⊆ D is a subcategory, we will denote by S⊥I (resp. ⊥IS) the
subcategory of D consisting of the objects Y such that HomD(S,Y [k]) = 0 (resp.
HomD(Y , S[k]) = 0), for all S ∈ S and all integers k ∈ I . In this vein we have
subcategories S⊥>n , S⊥≥n , S⊥Z and their symmetric counterparts.

Unlike the terminology used for abelian categories, a class (resp. set) S ⊆ Ob(D) is
called a class (resp. set) of generators of D when S⊥Z = 0. In caseD has coproducts,
an object X ∈ D is called compact when the functor HomD(X , ?) : D −→ Ab
preserves coproducts. We denote by Dc the subcategory of compact objects. We will
say that D is compactly generated when it has a set of compact generators, in which
case the subcategory Dc is skeletally small.

Recall that ifD andA are a triangulated and an abelian category, respectively, then
an additive functor H : D −→ A is a cohomological functor when, given any triangle

X −→ Y −→ Z
+−→, one gets an induced long exact sequence in A:

· · · −→ Hn−1(Z) −→ Hn(X) −→ Hn(Y ) −→ Hn(Z) −→ Hn+1(X) −→ · · · ,

where Hn := H ◦ (?[n]), for each n ∈ Z. Such functors are also often called homo-
logical functors and in that case one requires that triangles yield long exact sequences

· · · −→ Hn+1(Z) −→ Hn(X) −→ Hn(Y ) −→ Hn(Z) −→ Hn−1(X) −→ · · · ,

where Hn := H ◦ (?[−n]). We will use both variants, depending on what will appear
more natural or customary in the given context. Obviously, one has the identification
H−n = Hn .

Each representable functor HomD(?, X) : Dop −→ Ab is cohomological. We will
say that D satisfies Brown representability theorem when D has coproducts and each
cohomological functor H : Dop −→ Ab that preserves products (i.e. that, as a con-
travariant functor D −→ Ab, takes coproducts to products) is representable. Each
compactly generated triangulated category satisfies Brown representability theorem
([51, Theorem 8.3.3]).
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Given a triangulated categoryD, a subcategory E will be called a suspended subcat-
egory when it is closed under taking extensions and E[1] ⊆ E , and cosuspended when
it is closed under taking extensions and E[−1] ⊆ E . If, in addition, we have E = E[1],
we will say that E is a triangulated subcategory. A triangulated subcategory closed
under taking direct summands is called a thick subcategory. When the ambient tri-
angulated category D has coproducts, a triangulated subcategory closed under taking
arbitrary coproducts is called a localizing subcategory. Note that such a subcategory
is always thick (see [28, Lemma 1.4.9] or the proof of [51, Proposition 1.6.8], which
also shows that idempotents split in any triangulated category with coproducts). In
such case, given any class S of objects ofD, we will denote by LocD(S) the smallest
localizing subcategory containing S.

Recall that when E is a triangulated subcategory of the triangulated category D,
the localization of D with respect to the class of morphism s in D with cone(s) ∈ E
(see Sect. 2.2) is called the Verdier quotient D/E and the associated localization
functor q : D −→ D/E is the Verdier quotient functor. The category D/E has a
natural triangulated structure and q is naturally a triangulated functor.

2.5 t-structures in triangulated categories

A t-structure inD (see [9, Section 1]) is a pair t = (U ,V) of full subcategories which
satisfy the following properties:

(i) HomD(U , V [−1]) = 0, for all U ∈ U and V ∈ V;
(ii) U[1] ⊆ U (or V[−1] ⊆ V);
(iii) For each X ∈ Ob(D), there is a triangle U −→ X −→ W

+−→ in D, where
U ∈ U and W ∈ V[−1].

It is easy to see, using basic properties of triangulated categories, that the objectsU and
W in the above triangle are uniquely determined by X , up to a unique isomorphism,
and thus define functors τ

≤0
t : D −→ U and τ>0

t : D −→ V[−1] which are right
and left adjoints to the respective inclusion functors. We call them the left and right
truncation functors with respect to the given t-structure. It immediately follows that
V = U⊥[1] and U = ⊥(V[−1]) = ⊥(U⊥), that U is a suspended subcategory and
V is cosuspended, and that U ,V are both closed under summands in D. We will call
U and V the aisle and the co-aisle of the t-structure. Note that, for each n ∈ Z, the
pair (U[n],V[n]) is also a t-structure, and the corresponding left and right truncation
functors are denoted by τ

≤−n
t and τ>−n

t =: τ
≥−n+1
t . IfD′ is a triangulated subcategory

of D, we will say that the t-structure t restricts to D′ when t′ = (U ∩ D′,V ∩ D′)
is a t-structure in D′. This is equivalent to say that τ

≤0
t X (or τ>0

t X ) is in D′, for all
X ∈ D′.

The full subcategory H = U ∩ V is called the heart of the t-structure and it is
an abelian category, where the short exact sequences ‘are’ the triangles in D with
the first three terms in H. Moreover, with the obvious abuse of notation, the assign-
ments X � (τ

≤0
t ◦ τ

≥0
t )(X) and X � (τ

≥0
t ◦ τ

≤0
t )(X) define naturally isomorphic

functors D −→ H which are cohomological (see [9]). We fix all through the paper
a functor H0

t : D −→ H naturally isomorphic to those two functors. The t-structure
t = (U ,V) will be called left (resp. right) non-degenerate when

⋂
k∈Z U[k] = 0
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(resp.
⋂

k∈Z V[k] = 0). It will be called non-degenerate when it is left and right non-
degenerate. A t-structure t = (U ,V) such that U[1] = U , or equivalently V = V[−1],
will be called a semiorthogonal decomposition.

Suppose now thatD has coproducts. If the co-aisleV is closed under taking coprod-
ucts, which is equivalent to say that the truncation functor τ

≤0
t : D −→ U preserves

coproducts, then t is called a smashing t-structure. If S ⊆ U is any class of objects,
we shall say that the t-structure t is generated by S or that S is a class of generators
of t when V = S⊥<0 . We shall say that t is compactly generated when it is generated
by a set (i.e. not a proper class) of compact objects. Note that such a t-structure is
always smashing.

We now shortly discuss the question of when a suspended subcategory is an aisle.
Fix a suspended subcategory S of D. By [40, §1], S is the aisle of a t-structure in D
if, and only if, the inclusion functor S −→ D has a right adjoint. If D has coproducts
and satisfies the Brown representability theorem (e.g. if D is well generated in the
sense of Sect. 2.6 below) and S is closed under coproducts, Neeman [52] has recently
provided the following sufficient condition for the existence of the adjunction. For
any X ,Y ∈ D, we consider the slice category X/S/Y whose objects are pairs of

composable morphisms (X
f→ S

g→ Y ) with S ∈ S and a morphism from (X
f→

S
g→ Y ) to (X

f ′
→ S′ g′

→ Y ) is given by h : S −→ S′ such that f ′ = h f and g = g′h. If
we denote by HS(X ,Y ) the class of connected components of X/S/Y (which are the
smallest subclasses of objects pairwise connected by zigzags of morphisms; a similar
construction also appeared in [15, §2.1] in a different context), then it is proved in
[52, Proposition 1.15 and Discussion 1.16] that S −→ D has a right adjoint if,
and only if, HS(X , Y ) is a set (and not a proper class) for each pair X ,Y ∈ D. In
particular, we can easily derive the following criterion which we later use in the proof
of Proposition 6.9:

Proposition 2.12 Let D be a triangulated category with coproducts satisfying Brown
representability theorem and let S ⊆ D be a suspended subcategory closed under
coproducts. Suppose that for each X ∈ D, there is set SX ⊆ S such that each
morphism X −→ S, with S ∈ S, factors through an object of SX . Then S is an aisle
in D.

Proof The cardinality of each HS(X ,Y ) is clearly bounded by the sum of the cardi-
nalities of HomD(X , S) × HomD(S,Y ), where S runs over SX . 
�

2.6 Standard well generated triangulated categories

Next we recall some known generalizations of compactly generated triangulated cat-
egories and define a new convenient one. Let D be triangulated with coproducts. A
perfect class of objects in D is a class S such that, for any family ( fi : Xi −→ Yi )i∈I
of morphisms,

HomD(S,
∐

i∈I
fi ) : HomD(S,

∐

i∈I
Xi ) −→ HomD(S,

∐

i∈I
Xi )
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is an epimorphism for all S ∈ S whenever the morphisms

HomD(S, fi ) : HomD(S, Xi ) −→ HomD(S, Xi )

are such, for all i ∈ I and S ∈ S. An object X is perfect when {X} is a perfect set of
objects.We say thatD is perfectly generated by S whenS is a perfect set of generators.
On the other hand, given a regular cardinal κ , we say that an object X is κ-small if any
morphism in D of the form X −→ ∐

i∈I Yi factors through a subcoproduct
∐

i∈J Yi
for some subset J ⊆ I of cardinality < κ .

For any triangulated categoryD with coproducts, there exists a largest perfect class
of κ-small objects which can be obtained as the union of all such classes.We denote the
full subcategory ofD given by this class of objects byDκ and call the objects contained
in it κ-compact objects. Observe thatDℵ0 = Dc, and also that for any family of objects
(Xi )i∈I inDκ such that I is of cardinality< κ , we also have

∐
i∈I Xi ∈ Dκ . Thus, our

definition agrees with that in [33] thanks to [33, Lemma 4]. This leads to the following
important definition:

Definition 2.13 ([51]) A triangulated categoryDwith coproducts is κ-well generated,
where κ is a regular cardinal, when it is perfectly generated by a set of κ-small objects.
The categoryD is called well generated when it is κ-well generated, for some regular
cardinal κ .

In a well generated triangulated categoryD, the subcategoryDκ is essentially small
for each κ and D = ⋃

κ Dκ , where κ runs through the class of regular cardinals (see
[33, Lemma 5 andCorollary]). Furthermore, eachwell generated triangulated category
satisfies Brown representability theorem ([51, Theorem 8.3.3]).

Several results in this paper will be, however, stated for a hypothetically narrower
class of triangulated categories:

Definition 2.14 A triangulated category D is called standard well generated if it is
equivalent to the Verdier quotient C/LocC(S), where C is compactly generated trian-
gulated and S ⊆ Ob(C) is a set of objects.

As the terminology suggests, all standard well generated triangulated categories
are well generated (see [51, Theorem 1.14 and Remark 1.16]), and no example of a
well generated triangulated category which is not standard well generated is currently
known. This class of triangulated categories should be seen as a suitable triangulated
analogue of locally presentable categories [4] in ordinary category theory on one hand
and of locally presentable stable ∞-categories [45] in higher category theory on the
other hand.

Note that every compactly generated category is standard well generated, as is
the unbounded derived category of any Grothendieck category (cf. [6]). Much more
generally, any well generated algebraic [38, §7.5] or topological [65] triangulated
categoryD is automatically standard well generated thanks to the main results of [26,
57].
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2.7 Purity andMilnor colimits in triangulated categories

WhenD is a triangulated categorywith coproducts, wewill use the termMilnor colimit

of a sequence of morphisms X0
x1−→ X1

x2−→ · · · xn−→ Xn
xn+1−→ · · · for what in [51]

is called homotopy colimit. It will be denoted Mcolim(Xn), without reference to the
xn , and it is defined as the third term in the triangle

∐

n≥0

Xn
1−x−→

∐

n≥0

Xn −→ Mcolim(Xn)
+−→ . (2.2)

The components fi : Xi −→ Mcolim(Xn) of the second map in the triangle define a
cocone in D,

X0
x1

f0

X1
x2

f1

X2

f2

x3
. . .

Mcolim(Xn),

(2.3)

which is a weak colimit of the sequence by [28, Proposition 2.2.4] (i.e. for any
other cocone (gi : Xi −→ Y )i≥0 there is a not necessarily unique morphism
g : Mcolim(Xn) −→ Y such that gi = g fi for each i ≥ 0).

In Sect. 7 we will outline a more general purity theory, valid on all standard well
generated triangulated categories. But, for the moment, we remind the reader of the
classical theory initiated in [32]. A pure triangle in a compactly generated triangulated
categoryD is a triangle X

u−→ Y
v−→ Z

w−→ X [1] that satisfies any of the following
equivalent conditions

(1) u∗ := HomD(C, u) : HomD(C, X) −→ HomD(C,Y ) is a monomorphism, for
all C ∈ Dc, where Dc is the subcategory of compact objects;

(2) v∗ := HomD(C, v) : HomD(C,Y ) −→ HomD(C, Z) is an epimorphism, for
all C ∈ Dc;

(3) w∗ := HomD(C, w) : HomD(C, Z) −→ HomD(C, X [1]) is the zero map, for
all C ∈ Dc.

Any morphism u (resp. v) appearing in such a triangle is called a pure monomor-
phism (resp. pure epimorphism). A pure-injective object ofD is an object Y such that
the functor HomD(?,Y ) : D −→ Ab takes pure monomorphisms to epimorphisms or,
equivalently, pure epimorphisms to monomorphisms.

A typical example of pure triangles appears when X0
x1−→ X1

x2−→ · · · xn−→
Xn

xn+1−→ · · · is a sequence of morphisms in D. Then the triangle (2.2) which defines
Mcolim(Xn) is pure. A useful immediate consequence of the fact is that if C ∈ Dc,
then HomD

(
C,Mcolim(Xn)

) ∼= lim−→HomD(C, Xn).
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3 t-structures and localization of categories

In this section we establish basic general facts about the interaction of t-structures,
Serre quotients of abelian categories and Verdier quotients of triangulated categories.
We in particular discussmethods how to turn degenerate t-structures to non-degenerate
ones. For the entire section, we denote byD a triangulated category with a t-structure
t = (U ,V), whose heart we denote by H. We start with an easy observation.

Lemma 3.1 The homological functor H0
t : D −→ H associated with the t-structure t

is a localization functor.

Proof The functor H0
t is obtained as the composition

D
τ

≤0
t−→ U

τ
≥0
t |U−→ H,

where the first functor has a fully faithful left adjoint U ⊆ D and the second functor
a fully faithful right adjoint, so both are localization functors. Thanks to Lemma 2.8,
H0
t is a localization functor as well. 
�
Recall that if P is an additive category, we use the notation P̂ := mod-P . As

all of H, U and D have weak kernels, the corresponding categories Ĥ, Û and D̂ are
abelian by Lemma 2.1 (in the case of U , we construct a weak kernel of f : U −→ U ′

by completing it to triangle Z
u−→ U

f−→ U ′ +−→ in D and composing u with the
truncationmap τ

≤0
t Z −→ Z ).Moreover, it is alsowell known that theYoneda functor

yD : D −→ D̂

is a universal homological functor in the sense that any other homological functor
H : D −→ A with A abelian uniquely lifts to an exact functor Ĥ : D̂ −→ A, [32,
Lemma2.1].Wemay apply this in particular to the homological functor H0

t : D −→ H
to obtain a commutative diagram

D yD

H0
t

D̂

Ĥ0
t

H.

(3.1)

Wewill focus on the exact functor Ĥ0
t now. For the context, we record the following

straightforward observation which will be illuminating also later.

Lemma 3.2 Every exact functor F : A −→ B of abelian categories factors as F =
J ◦ Q, where Q : A −→ B′ is a Serre quotient functor and J : B′ −→ B is an exact
faithful functor. This factorization is essentially unique in the sense that any other such
factorization F = J ′ ◦ Q′ induces a commutative diagram
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B′
J

�A
Q

Q′
B,

B′′
J ′

where the vertical arrow is an equivalence.

Proof Regarding the existence, we simply put B′ = A/Ker(F) and denote by Q the
localization functor and by J : B′ −→ B the induced exact functor. Any morphism
f : X −→ Y inB′ is represented by amorphism f ′ : X ′ −→ Y ′ inA such that X ′ ⊂ X
is a subobject with X/X ′ ∈ Ker(F) and Y ′ is a factor of Y modulo a subobject in
Ker(F). If J ( f ) vanishes, so does clearly J Q( f ′) = F( f ′). Since F is exact, this
implies that Im( f ′) ∈ Ker(F) and that Q( f ′) = 0. Since f and Q( f ′) are isomorphic
in B′, we infer that f = 0 and J is faithful.

Finally, observe that if F = J ◦ Q is any factorization with Q a Serre quotient and
J faithful, we must have Ker(Q) = Ker(F). The uniqueness of the factorization then
follows from the universal property of the Serre quotient. 
�

The point with Ĥ0
t is that the second part in the factorization from Lemma 3.2 is

trivial—Ĥ0
t itself is a localization functor.

Proposition 3.3 The exact functor Ĥ0
t : D̂ −→ H is a Serre quotient functor.

Proof We factorize Ĥ0
t : D̂ −→ H into a composition of three localization functors

with fully faithful adjoints as follows:

D̂ −→ Û −→ Ĥ C−→ H. (3.2)

The fact that the composition is a localization functor follows by Lemma 2.8, and
since Ĥ0

t is exact, it is a Serre quotient functor.
Let us explain what functors we compose. The first two are obtained from

τ
≤0
t : D −→ U and τ

≥0
t |U : U −→ H, respectively, using Lemma 2.1. The

corresponding inclusions H ⊆ U ⊆ D lift to fully faithful functors, which
we will by abuse of notation consider as inclusions Ĥ ⊆ Û ⊆ D̂. As we
can also lift natural transformations and, in particular, the adjunction units and
counits, the inclusions will be the correspoding adjoints of the first two functors
in (3.2).

Finally, the functor C : Ĥ −→ H is left adjoint to the fully faithful Yoneda
embedding yH : H −→ Ĥ. Given any f : X −→ Y in H, C sends the cokernel
of

y( f ) : y(X) −→ y(Y )

in Ĥ to Coker f ∈ H (see also [7, §3], C is known to be exact and C = 1̂H in the
notation of Lemma 2.1). 
�
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The latter proposition has a drawback, however—Ĥ0
t need not be an adjoint functor

and thus is out of the scope of Lemma 2.7. This can be often remedied if we focus our
attention only on the aisle or the co-aisle.

Proposition 3.4 The unique extension H̃0
t : Û −→ H of H0

t |U : U −→ H, in the sense

of Lemma 2.1, is a Serre quotient functor left adjoint to the restriction yU |H : H −→ Û
of the Yoneda functor yU . In particular, the following square commutes up to natural
equivalence for both the left and the right adjoints:

U
yU

H0
t |U
⊥ H
inc

Û
H̃0
t

⊥ H.
yU |H

Proof Consider the adjunctions

Û
Ĥ0
t

⊥ Ĥ
C

⊥
înc

H.
yH

studied in the proof of Proposition 3.3. The right adjoints are both fully faithful and
clearly compose to yU |H. Just by unraveling the definitions, one also checks that

C ◦ Ĥ0
t ◦ yU ∼= H0

t . Since C ◦ Ĥ0
t is also right exact, it follows that it coincides with

the essentially unique functor H̃0
t given by Lemma 2.1 and it is a localization functor

by Lemma 2.7.
It remains to prove that H̃0

t is exact. Suppose that M ∈ Û and g : U −→ U ′′ is a
map in U such that HomU (?,U ) −→ HomU (?,U ′′) −→ M −→ 0 is exact. We may
complete g to a triangle

X
f−→ U

g−→ U ′′ +−→

and consider the truncation morphism ε : τ
≤0
t X −→ X . Then

HomU (?, τ≤0
t X)

f∗ε∗−→ HomU (?,U )
g∗−→ HomU (?,U ′′) −→ M −→ 0

is a projective presentation of M in Û and if we apply H̃0
t , we obtain the sequence

H0
t (τ

≤0
t X)

H0
t ( f ε)−→ H0

t (U )
H0
t (g)−→ H0

t (U ′′) −→ H̃0
t (M) −→ 0

in H, which is exact since H0
t is homological and H0

t (ε) is an isomorphism. The

exactness of H̃0
t then follows by the next lemma. 
�
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Lemma 3.5 Let F : A −→ B be a right exact functor between abelian categories and
suppose thatA has enough projective objects. The following assertions are equivalent:

(1) F is exact.

(2) For each exact sequence P ′ f−→ P
g−→ P ′′ in A whose all terms are projective,

the sequence F(P ′) F( f )−→ F(P)
F(g)−→ F(P ′′) is exact in B.

(3) Each object A ∈ A admits a projective presentation P ′ f−→ P
g−→ P ′′ π−→

A → 0 such that the sequence F(P ′) F( f )−→ F(P)
F(g)−→ F(P ′′) is exact in B.

Proof Condition (2) (resp. (3)) holds if, and only if, the first left derived functor L1F
vanishes, which is tantamount to say that F is exact. 
�

Finally, we discuss another natural question, which is important later. We can ask
to which extent the homological functor H0

t : D −→ H determines the t-structure t =
(U ,V). In general, theremay be several t-structureswith the same homological functor
(e.g. any semiorthogonal decomposition of D has the same and trivial homological
functor). However, the t-structure is clearly determined by H0

t if it is non-degenerate
as then

U = {U ∈ D | Hi
t (U ) = 0 for all i > 0},

V = {V ∈ D | Hi
t (V ) = 0 for all i < 0}.

Indeed, clearly U ⊆ {U ∈ D | Hi
t (U ) = 0 for all i > 0} and, on the other hand,

if Hi
t (U ) = 0 for all i > 0, then τ>0

t U ∈ ⋂
k∈Z V[k] = 0 by [54, Lemma 3.3], so

U ∼= τ
≤0
t U ∈ U . The other equality is dual.

Here we will show how to reduce a t-structure to a non-degenerate one. We call the
full subcategory

Nt = {X ∈ D | Hi
t (X) = 0 for all i ∈ Z}

the degeneracy class of t. Clearly Nt is a thick subcategory of D. Moreover, the
homological functor H0

t lifts as

D q

H0
t

D/Nt

H0
t

H.

We will show that actually
(
q(U), q(V)

)
is a (non-degenerate) t-structure in D/Nt

and the functor H0
t is the corresponding homological functor.

Lemma 3.6 We have equalities U ∩ Nt = ⋂
n∈Z U[n], V ∩ Nt = ⋂

n∈Z V[n] and the
pair (U ∩ Nt,V ∩ Nt) is a semiorthogonal decomposition of Nt.
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Proof The equalities follow from [54, Lemma 3.3]. For the last statement, note that
for any X ∈ Nt, we have τ

≤0
t (X), τ

≥1
t (X) ∈ Nt. Hence, t restricts to a t-structure

in Nt. Since both U ∩ Nt and V ∩ Nt are thick subcategories by the first part, the
restricted t-structure is in fact a semiorthogonal decomposition. 
�
Remark 3.7 The objects in U ∩ Nt = ⋂

n∈Z U[n] are called ∞-connective in [46,
Definition C.1.2.12].

Now we can prove an even more general version of the degeneracy reduction result
for t-structures.

Proposition 3.8 Let D be a triangulated category with a t-structure t = (U ,V) and

Nt = {X ∈ D | Hi
t (X) = 0 for all i ∈ Z}.

If N ′ ⊆ Nt is a triangulated subcategory such that t restricts to a semiorthogonal
decomposition ofN ′ (this in particular applies toN ′ chosen as one ofNt,

⋂
n∈Z U[n]

or
⋂

n∈Z V[n]) and if we denote by q : D −→ D/N ′ the Verdier quotient functor,
then t = (

q(U), q(V)
)
is a t-structure in D/N ′ whose homological functor is, up to

postcomposition with an equivalence, the unique one which fits into the commutative
diagram

D q

H0
t

D/N ′

H0
t

H.

Proof To prove that t = (
q(U), q(V)

)
is a t-structure, we only need to show that

HomD/N ′(U , V [−1]) = 0 for each U ∈ U and V ∈ V . The closure properties of
q(U) and q(V) and the truncation triangles are inherited from t in D.

To this end, suppose that f s−1 : U −→ V [−1] is a fraction representing a mor-
phism in D/N ′ as in [51, §2.1], where s : X −→ U is a map in D whose cocone N
belongs to N ′. Then we truncate N using the semiorthogonal decomposition of N ′
induced by t and, by the octahedral axiom, we obtain a commutative diagram in D

U∞ U∞

N X
s

g

U N [1]

V∞ Y
s′

U V∞[1]

U∞[1] U∞[1]
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with triangles in rows and columns, U∞ ∈ ⋂
n∈Z U[n] and V∞ ∈ ⋂

n∈Z V[n]. As
HomD(U∞, V [−1]) = 0, the morphism f : X −→ V [−1] factors through g and
f s−1 = f ′(s′)−1 in D/N ′ for some morphism f ′ : Y −→ V [−1] in D. On the other
hand, we have HomD(U , V∞[1]) = 0, so s′ splits and and if t : U −→ Y is a section,
then f ′(s′)−1 = f ′t(s′t)−1 = f ′t . However, the latter is a morphism from U to
V [−1] in D and it vanishes since (U ,V) is a t-structure in D.

Let us denote the heart of t byH := q(U)∩ q(V). The above argument also shows
that q|H : H −→ H is a full functor. If f : H1 −→ H2 is a morphism in H such that
q( f ) = 0, then f factors through some N ∈ N ′ and, since H1 ∈ U , also through
τ

≤0
t (N ) ∈ ⋂

n∈Z U[n]. SinceHomD(U[1], H2) = 0, it follows that f vanishes already
inH and that q|H is faithful. Finally, since the truncation triangles for t coincide with
those for t inD, we have H0

t (X) ∼= X inD/N ′ for each X ∈ H. Thus, q|H : H −→ H
is essentially surjective as well and the last diagram from the statement commutes. 
�

Remark 3.9 A different method of getting rid of the degeneracy of a t-structure was
developed by Lurie, but he needed to work in the context of stable ∞-categories (in
particular, he needed a full model for the triangulated category D).

If t = (U ,V) is a t-structure, he takes instead of q : D −→ D/
⋂

U[n] the so called
left completion λ : D −→ D′ of D at U . There is an induced t-structure t′ = (U ′,V ′)
inD′ and λ induces an equivalence V � V ′. The advantages over the Verdier quotient
are that

(1) D′ is always locally small provided that D is such (for the Verdier quotient extra
assumptions seem necessary, cf. [46, Proposition C.3.6.1]),

(2) D′ can be recovered from the triangulated subcategoryD+ ⊆ D of objects which
are left bounded with respect to t.

Similarly, one can perform a right completion. We refer to [45, §1.2.1].

4 Homological functors from t-generating classes

In the last sectionwe studied the interaction of a t-structure t = (U ,V)with theYoneda
functor yU : U −→ Û (Proposition3.4). In the sequel, it will be much more efficient
to study homological functors of the form hP : U −→ P̂ obtained by composing yU
with the restriction to a suitable full subcategory P ⊆ U . A similar approach played
a prominent role in the study of localization theory for triangulated categories [32,
39, 51], but it is in fact also an important technique in representation theory of finite
dimensional algebras. Here, we establish basic facts about the interaction of restricted
Yoneda functors with t-structures.

First of all, however, we note a basic lemmawhich is of use throughout the rest of the
paper. It among others illustrates why precovering classes were called contravariantly
finite in [5].
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Lemma 4.1 LetD be an additive categorywithweak kernels andP ⊆ D a precovering
full subcategory. Then

res : D̂ −→ P̂,

(F : D → Ab) � F|P

is a well-defined Serre quotient functor and it has a fully faithful left adjoint.

Proof This is essentially [31, Theorem 3.4]. First of all, P has weak kernels—if
f : P1 −→ P0 is a map in P , we can take a weak kernel k : K −→ P1 in D and
precompose it with aP-precover. Hence, both D̂ and P̂ are abelian byLemma2.1. Sec-
ondly, if M : Dop −→ Ab is a finitely presented functor, M|P : Pop −→ Ab is as well
by [31, Lemma 3.2]. Finally, thanks to Proposition 2.3 (see also [31, Lemma 2.6(1)]),
the inclusion P ⊆ D induces a fully faithful functor

ι : P̂ � Mor(P) −→ Mor(D) � D̂

and that it is left adjoint to res is shown by the following computation for each map
f : P1 −→ P0 in P and each M ∈ D̂:

[
ι(Coker HomP (?, f )), M

] ∼= [
Coker HomD(?, f ), M

]

∼= Ker
[
HomD(?, f ), M

]

∼= Ker M( f )
∼= Ker

[
HomP (?, f ), res(M)

]

∼= [
Coker HomP (?, f ), res(M)

]
. (4.1)

Here, the square brackets denote Hom-functors in D̂ and P̂ . Hence res is a localization
functor by Lemma 2.7 and, since it is clearly exact, it is even a Serre quotient functor.


�
Next we define the class of full subcategories which satisfy appropriate compati-

bility conditions with aisles or co-aisles of t-structures.

Definition 4.2 Let U be a suspended subcategory of a triangulated category D. Then
a full subcategory P ⊆ U is called t-generating in U if it is precovering and each
U ∈ U admits a triangle of the form

U ′ −→ P
p−→ U

+−→, (4.2)

with U ′ ∈ U and P ∈ P .
If V ⊆ D is a cosuspended subcategory, t-cogenerating subcategories of V are

defined dually.

The terminology is motivated by [46, Definition C.2.1.1], where a notion of gener-
ator is defined in the context of prestable ∞-categories. By [46, Proposition C.1.2.9],



t-Structures with Grothendieck hearts... Page 27 of 73 77

prestable ∞-categories with finite limits are precisely enhancements of aisles of t-
structures in the world of ∞-categories, and the reader may use the following lemma
(see also [14, Proposition 1.2.3(6)]) to match our Definition 4.2 with the one of Lurie.

Lemma 4.3 Let t = (U ,V) be a t-structure in a triangulated category D and

U2 −→ U1
p−→ U0

+−→,

a triangle in D with U0,U1 ∈ U . Then U2 ∈ U if and only if H0
t (p) : H0

t (U1) −→
H0
t (U0) is an epimorphism in the heart of t.

Proof We always haveU2[1] ∈ U , since U is closed under taking mapping cones, and
also the following exact sequence in the heart

H0
t (U1)

H0
t (p)−→ H0

t (U0) −→ H0
t (U2[1]) −→ H0

t (U1[1]) = 0.

Now clearlyU2 ∈ U if and only if H0
t (U2[1]) ∼= τ

≥1
t (U2)[1] = 0 if and only if H0

t (p)
is an epimorphism in the heart. 
�

The latter lemma also has a more direct consequence which relates the two condi-
tions imposed on P in Definition 4.2 (i.e. the existence of precovers and the existence
of triangles (4.2)).

Lemma 4.4 Let P ⊆ U be a t-generating subcategory and suppose that U ′ −→
P

p−→ U
+−→ is a triangle in the ambient triangulated category such that U ∈ U

and p is a P-precover. Then U ′ ∈ U (so the triangle is as in (4.2)).

Proof Since P is t-generating in U , there exists for the chosen U some triangle

U ′′ −→ P ′ p′
−→ U

+−→

with U ′′ ∈ U and P ′ ∈ P (but p′ may not be a P-precover). Since p is a P-precover,
we have a factorization p′ = p ◦ f for some f : P ′ −→ P , and hence also H0

t (p′) =
H0
t (p) ◦ H0

t ( f ). Now H0
t (p′) is an epimorphism in the heart by Lemma 4.3 and so

must be H0
t (p) by the factorization. It remains to apply Lemma 4.3 again. 
�

The main result of the section is the following extension of Proposition 3.4. The
added degree of freedom—the possibility to choose the class P—is very important as
we shall see later. It often happens that P̂ for suitable P is a much smaller and a more
tractable category than Û .
Theorem 4.5 Let t = (U ,V) be a t-structure in the triangulated categoryD, letP ⊆ U
be a precovering additive subcategory and denote by yP the restricted Yoneda functor

yP : U −→ P̂,

U � HomU (?,U )|P .

The following assertions are equivalent:
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(1) The functor H0
t : U −→ H factors as a composition U yP−→ P̂ F−→ H, for some

right exact functor F.
(2) P is a t-generating subcategory of U

In such case F is a Serre quotient functor and G = yP |H : H −→ P̂ is its fully
faithful right adjoint. In other words, we have the following square which commutes
up to natural equivalence for both the left and the right adjoints:

U
yP

H0
t

⊥ H
inc

P̂
F

⊥ H.

G

Proof Note that yP can be factored as the composition U y−→ Û res−→ P̂ . Let
H̃0
t : Û −→ H be the Serre quotient functor given by Proposition 3.4.

If we have a factorization as in assertion (1), then H̃0
t is naturally isomorphic to

F ◦ res by Lemma 2.1. Hence, condition (1) is equivalent to saying that H̃0
t factors

through res : Û −→ P̂ , something that happens exactly when Ker(res) ⊆ Ker(H̃0
t ).

Note that in that case the induced functor F : P̂ −→ H is a Serre quotient functor.
Indeed it is a a localization functor by Lemma 2.8(2) since res and H̃0

t are such.
Moreover, since res is a Serre quotient functor with a fully faithful left adjoint, any
exact sequence ε : 0 −→ L −→ M −→ N −→ 0 in P̂ lifts to an exact sequence
ε′ : 0 −→ L ′ −→ M ′ −→ N ′ −→ 0, and the exactness of F(ε) follows from that
of H̃0

t (ε′).
Suppose now that P is t-generating and take any morphism f : U1 −→ U0 in U

such that M := Coker(y( f )) ∈ Ker(res). Recall that any object of Û is of the form
Coker(y( f )) for some f : U1 −→ U0, and note that M ∈ Ker(res) if and only if
(yU1)|P = HomU (?,U1)|P −→ HomU (?,U0)|P = (yU0)|P is an epimorphism.
Hence, any chosen P-precover p : P −→ U0 factors thorough f . Consequently,
H0
t (p) factors through H0

t ( f ) and, since H0
t (p) is an epimorphism in the heart of t

by Lemmas 4.3 and 4.4, so is H0
t ( f ). It follows that H̃0

t (M) = Coker(H0
t ( f )) = 0.

This proves that Ker(res) ⊆ Ker(H̃0
t ) and, by the above discussion, also assertion (1).

Suppose, conversely, that (1) holds, or equivalently Ker(res) ⊆ Ker(H̃0
t ). Let

p : P ′ −→ U be any P-precover, where U ∈ U . We then have that N :=
Coker(y(p)) ∈ Ker(res) ⊆ Ker(H̃0

t ). That is, we have 0 = H̃0
t (N ) = Coker(H0

t (p)),
so that H0

t (p) is an epimorphism inH. Then P is t-generating by Lemma 4.3.
It remains to prove the final assertion. The adjunction (F,G) : P̂ � H simply

arises as a composition of the two adjunctions

P̂
ι

⊥ Û
H̃0
t

⊥
res

H.
yU |H
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given by Lemma 4.1 and Proposition 3.4, respectively. Finally, the fact that G is fully
faithful follows by Lemma 4.6 below. 
�
Lemma 4.6 Let t = (U ,V) be a t-structure in a triangulated category D and let
P ⊆ U be a t-generating subcategory. The map

ηU ,X : HomU (U , X) −→ HomP̂ (yPU , yP X),

induced by the functor yP : U −→ P̂ , is bijective whenever U ∈ U and X ∈ H.

Proof Let us fix X ∈ H all through the proof. By Yoneda’s lemma ηP,X is bijective
whenever P ∈ P . Let U ∈ U be arbitrary and, using that P is t-generating, choose a

triangle U ′ u−→ P0
p−→ U

+−→, where p is a P-precover and U ′ ∈ U . Similarly we

choose a P-precover P1
q−→ U ′ with cone in U[1]. Note that then H0

t (p) and H0
t (q)

are epimorphisms in H while yP (p) and yP (q) are epimorphisms in P̂ = mod-P .
Using that H0

t : D −→ H and y : D −→ D̂ are cohomological and that the restriction

functor res : D̂ −→ P̂ is exact, we get exact sequences H0
t (P1)

H0
t (uq)−→ H0

t (P0)
H0
t (p)−→

H0
t (U ) −→ 0 and yP P1

yP (uq)−→ yP P0
yP (p)−→ yPU −→ 0 inH and P̂ , respectively.

Applying the functor HomH(?, X) to the first sequence, we get an exact sequence

0 −→ HomH(H0
t (U ), X)

p∗
−→ HomH(H0

t (P0), X)
(uq)∗−→ HomH(H0

t (P1), X)

in Ab. But the adjunction (H0
t , ι) : U � H, where ι : H −→ U is the inclusion, gives

a corresponding exact sequence

0 −→ HomU (U , X)
p∗

−→ HomU (P0, X)
(uq)∗−→ HomU (P1, X). (4.3)

On the other hand, applying the functor HomP̂ (?, yP X) to the second of the exact
sequences in the previous paragraph, we get another exact sequence

0 −→ HomP̂ (yPU , yP X)
p∗

−→ HomP̂ (yP P0, yP X)
(uq)∗−→ HomP̂ (yP P1, yP X)

(4.4)
in Ab. The two exact sequences (4.3) and (4.4) can be clearly inserted as rows of a
commutative diagram with ηU ,X , ηP0,X and ηP1,X as vertical arrows connecting the
two rows. Then ηU ,X is an isomorphism since so are ηP0,X and ηP1,X . 
�

We conclude the section by extracting a concrete description of the Serre subcate-
gory Ker(F) ⊆ P̂ from Theorem 4.5, which will be of use later.

Lemma 4.7 In the situation of Theorem 4.5, we have that an object M ∈ P̂ lies in

Ker(F) if, and only if, there exists a triangle U ′ f−→ U
g−→ U ′′ h−→ U ′[1] in D,

with the first three terms in U , such that M is isomorphic to Coker yP (g).
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Proof The ‘if’ part: If the mentioned triangle exists, the exactness of F gives an exact
sequence

F(yPU )
F(yP (g))−→ F(yPU

′′) −→ F(M) −→ 0

in H. Thanks to the natural isomorphism F ◦ yP ∼= (H0
t )|U , this last sequence is

isomorphic

H0
t (U )

H0
t (g)−→ H0

t (U ′′) −→ F(M) −→ 0.

Since H0
t : D −→ H is cohomological, we also have an exact sequence

H0
t (U )

H0
t (g)−→ H0

t (U ′′)
H0
t (h)−→ H0

t (U ′[1]) = 0.

It follows that F(M) = 0.
The ‘only if’ part: Suppose now that F(M) = 0 and choose a morphism g : U −→

U ′′ in U (even in P , if we want) such that M ∼= Coker yP (g). It then follows that
F(yP (g)) is an epimorphism since F is exact and F(M) = 0, and then in turn H0

t (g)
is an epimorphism since F ◦ yP ∼= (H0

t )|U . If we now complete g to a triangle

U ′ f−→ U
g−→ U ′′ −→ U ′[1],

it follows from Lemma 4.3 that U ′ ∈ U . 
�

5 Pure-injective objects and exact direct limits

In the previous section we have constructed, for an aisle U in a triangulated category
D and a nice enough subcategory P ⊆ U , a Serre quotient functor F : P̂ −→ H
onto the heart of the t-structure whose aisle is U . The construction dualizes easily and
we also obtain a similar Serre quotient functor F ′ : qQ −→ H for a nice enough full
subcategory Q ⊆ V of a co-aisle, where

qQ := (̂Qop)op = (mod-(Qop))op.

One of our main concerns is when H is AB5 or a Grothendieck category, and we
will address the question via first checking whether P̂ or qQ is AB5 or a Grothendieck
category. In other words, we wish to obtain practical criteria onP andQ ensuring that
P̂ and qQ possess the required exactness properties, respectively.

In the first case, we restrict ourselves to the case of module categories, i.e. to the
situation where P has coproducts and there exists a set S ⊆ P such that P = Add(S)

and each S ∈ S is small in P (in the sense that HomP (S, ?) : P −→ Ab preserves
coproducts). It is well known that then we have an equivalence
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P̂ �−→ Mod-S,

(F : Pop → Ab) � F|Sop .

Although there exist Grothendieck categories with enough projective objects which
are not module categories (see [11]), they seem to be quite difficult to construct and
we do not use them here.

Herewe focusmore on the dual questionwhen qQ isAB5or aGrothendieck category.
A main argument, which we extend and apply here, was given in [61]. The key notion
is that of pure-injectivity, which is defined in the spirit of [20] and which coincides
with the classical one when A is either

• a locally finitely presented additive category with products (see [17]; beware that
following [4], one would dub such categories finitely accessible with products) or

• a compactly generated triangulated category (see [32, Theorem 1.8]).

Definition 5.1 Let A be any additive category with (set-indexed) products.

(1) An object Y ofAwill be called pure-injective if, for each set I , there is amorphism
f : Y I −→ Y such that f ◦λi = 1Y , whereλi : Y −→ Y I is the canonical section,
for each i ∈ I .

(2) A pure-injective object Y ∈ A is accessible if the category ProdA(Y )

has a generator (that is, there is Y ′ ∈ ProdA(Y ) such that the functor
Hom(Y ′, ?) : ProdA(Y ) −→ Ab is faithful).

Let us collect first some easy consequences of the definition.

Lemma 5.2 Any product of pure-injective objects in A is pure-injective. A summand
of a pure-injective object is pure-injective.

Proof Suppose that (Y j ) j∈J is a collection of pure-injective objects, I is a set and
f j : Y I

j −→ Y j is a map as in Definition 5.1. Then
∏

j∈J f j : (
∏

j∈J Y j )
I −→∏

j∈J Y j yields the identity when composed with any canonical section of the product.
Hence

∏
j∈J Y j is pure-injective.

Similarly, if Y = Y ′ ⊕Y ′′ is pure-injective, I is a set and we have a map f : Y I −→
Y as in the definition, then the composition

(Y ′)I � Y I f−→ Y � Y ′

with the section of the splitting of Y I and the retraction of the splitting of Y gives the
desired map for Y ′. 
�
Lemma 5.3 Let A be an additive category with products. Then Y is pure-injective
(resp. accessible pure-injective) in A if and only if Y is such in ProdA(Y ). If B is
another additive category with products, F : A −→ B is a product-preserving functor
and Y a pure-injective object of A, then F(Y ) is pure-injective in B.

Proof The first claim is obvious from the definition. Regarding the second claim, let
Y ∈ A be pure-injective and I be a set. Fix a morphism f : Y I −→ Y in A such that
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f ◦ λi = 1Y , where λi : Q −→ QI is the canonical i-th section, for all i ∈ I . Then
F( f ) : F(Y I ) −→ F(Y ) is a morphism from the product of I copies of F(Y ) in B
such that F( f ) ◦ F(λi ) = 1F(Y ), for all i ∈ I . Therefore F(Y ) is pure-injective in B.

�

In the context of Lemma 5.2, one is often interested not in individual pure-injective
objects Q ∈ A, but rather in the classes of the formProd(Y ). This leads to the following
definition.

Definition 5.4 We call two pure-injective objects Y ,Y ′ ∈ A product-equivalent if
Prod(Y ) = Prod(Y ′) in A.

Note that, in the situation of Definition 5.1, even when in additionA is abelian with
coproducts, an injective object of A need not be pure-injective. The reason for this is
that the canonical morphism Y (I ) −→ Y I need not be a monomorphism, e.g. when
A = Abop and Y = Z. In fact the following extension of the dual of [61, Theorem 3.3]
is themain result of the subsection. Note that AB3* abelian categories with an injective
cogenerator are automatically AB3 by the adjoint functor theorem [21, Proposition
6.4], and hence satisfy AB4.

Proposition 5.5 Let A be an AB3* abelian category with an injective cogenerator E
(i.e. A � qQ for Q = ProdA(E) by the dual of Proposition 2.3). Then the following
assertions are equivalent:

(1) A is AB5.
(2) A has an injective cogenerator which is pure-injective.
(3) All injective objects of A are pure-injective.

Moreover, if the equivalent conditions above hold, thenA is a Grothendieck category
if and only if some (or any) injective cogenerator of A is accessible pure-injective.

Proof As mentioned, the first part is formally dual to [61, Theorem 3.3].
Regarding the moreover part, let us denote byQ ⊆ A the class of injective objects

and suppose first that A is a Grothendieck category with a generator G. Consider
j : G � E an embedding ofG into an injective object. Then the j induces a surjective
natural transformation

j∗ : HomQ(E, ?) −→ HomA(G, ?)|Q.

Since HomA(G, ?) is faithful, so is HomQ(E, ?) and, hence, E is a generator of Q.
Suppose conversely that A is complete and AB5 and E is a generator for Q. We

first observe that the canonical map f : E (I ) −→ F , where I = HomA(E, F), is
an epimorphism in A for any F ∈ Q. Indeed, if it were not, we could consider a
composition

g : F −→ Coker( f ) � F ′,

where the second map is an inclusion into an injective object F ′. Then g is non-zero,
but the composition g ◦ f ′ vanishes for any f ′ ∈ HomA(E, F) by the choice of g.
This contradicts the fact that E is a generator of Q.
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Now we claim that the set S of all subquotients of finite direct sums of copies of E
generatesA. Indeed, given any X ∈ A, we first embed it into an injective object F and
then we again consider the canonical map f : E (I ) −→ F , where I = HomA(E, F).
This map is an epimorphism in A by the previous paragraph. If we denote for any

finite subset J ⊆ I by Z J the image of the composition E (J ) � E (I ) f−→ F , then
clearly F is the direct union of the subobjects Z J . By the AB5 condition, we have
equalities

X = F ∩ X =
( ⋃

J finite

Z J

)
∩ X =

⋃

J finite

(Z J ∩ X)

in the lattice of subobjects of F , and hence we obtain an epimorphism

∐

J finite

Z J ∩ X −→ X

in A. This proves the claim and the proposition. 
�
Finally, we touch the question of accessibility of pure-injective objects. It is a purely

technical condition, which is very often satisfied for categories arising in practice. For
our purposes, we record the following lemma.

Lemma 5.6 Let Q be a pure-injective object in a standard well generated triangulated
category D. Then Q is accessible pure-injective.

Proof Assume first that D is compactly generated. By [32, Theorem 1.8], we know
that yQ is an injective object of Mod-Dc, where y : D −→ Mod-Dc is the generalized
Yoneda functor that takes D � yD = HomD(?, D)|Dc . Note that y preserves products

and induces an equivalence of categories ProdD(Q)
�−→ ProdMod-Dc(yQ). If now T

denotes the hereditary torsion class in Mod-Dc consisting of the Dc-modules T such
that HomMod-Dc(T , yQ) = 0, we have that the quotient functor q : Mod-Dc −→
(Mod-Dc)/T =: G induces an equivalence ProdMod-Dc (yQ)

�−→ Inj(G). As G is a
Grothendieck category and we have proved that ProdD(Q) � Inj(G), the conclusion
follows by Proposition 5.5.

Suppose now thatD = C/LocC(S) is general, where C is compactly generated and
S is a set of objects of C. Then the localization functor q : C −→ D has a fully faithful
right adjoint ι : D −→ C by [51, Proposition 1.21 and Lemma 9.1.7]. If Q ∈ D is
pure injective, so is ι(Q) ∈ C by Lemma 5.3. Moreover, ι induces an equivalence of
categories ProdD(Q) � ProdC

(
ι(Q)

)
. As the latter category has a generator by the

previous paragraph (see Definition 5.1), the same is true for the former category and
the lemma follows. 
�

6 Representability for coproduct-preserving homological functors

In several treatments of compactly or well generated triangulated categories (see [32,
39, 51]), coproduct-preserving homological functors played an important role. Here
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wewish to explain how such functors can be in great generality represented by objects
of the triangulated category.

Throughout, we will denote by D a triangulated category with coproducts, and
consider homological functors H : D −→ A to an AB3* abelian category A that has
an injective cogenerator. As said before, such categories are also AB4.

In fact,wewill study homological functors as above only up to a certain equivalence.
The rationale is that given a homological functor H : D −→ A, one is for a large part
only interested in the long exact sequences from triangles andwhether terms ormaps in
these sequences vanish. If we compose H with a faithful and exact functor F : A −→
A′ of abelian categories, these properties do not change and computations with H
using only these properties could be equally performed with F ◦ H : D −→ A′. If H
preserves coproducts,we typicallywish that F preserves coproducts aswell. This leads
us to the following definition, where we consider an even more restrictive condition
on functors F : A −→ A′ (which is, however, equivalent if A is a Grothendieck
category).

Definition 6.1 Let D be a triangulated category with coproducts and H : D −→ A
and H ′ : D −→ A′ be coproduct-preserving homological functors, where A, A′ are
AB3* abelian categories with injective cogenerators.

We say that H ′ is a faithfully exact reduction of H is there exists a faithful exact
left adjoint functor F : A −→ A′ such that H ′ ∼= F ◦ H .

We call H and H ′ computationally equivalent if they are related by afinite zig-zag of
faithfully exact reductions. In other words, computational equivalence is the smallest
equivalence relation extending the relation ’being a faithfully exact reduction’.

The next theorem among others says that for nice enough triangulated cate-
gories D, computational equivalence classes of coproduct-preserving functors from
D to an AB3* abelian category with an injective cogenerator are in bijection with
product-equivalence classes of objects in D. The theorem in fact gives more precise
information—it says that each computation equivalence class of homological func-
tors contains one such functor which is initial (this can be viewed as an analogue
of Lemma 3.2 for homological functors). To state that precisely, we will use a very
small piece of 2-category theory.

We define the 2-category HFun(D) of coproduct-preserving homological functors
originating in D as follows. The objects will be all coproduct-preserving homologi-
cal functors H : D −→ A, where A is an AB3* abelian category with an injective
cogenerator. The morphisms between H : D −→ A and H ′ : D −→ A′ will be the
faithful exact left adjoint functors F : A −→ A′ making the triangle

D
H H ′

A
F

A′
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strictly commutative.The collectionof natural transformations between themorphisms
F, F ′ : H −→ H ′ consists all natural transformation between the underlying functors
A −→ A′ in the usual sense.

In that language, the computational equivalence classes precisely correspond to the
connected components of HFun(D) (i.e. the smallest subclasses of objects which
are pairwise connected by zigzags of morphisms). This is because any two nat-
urally isomorphic homological functors H0, H1 : D −→ A which are objects of
HFun(D) are in the same connected component. Indeed, the full subcategory Iso(A) of
Mor(A) given by the isomorphisms is equivalent to A via equivalences of categories
π0, π1 : Iso(A) −→ A that take any isomorphism A0 −→ A1 to A0 and A1, respec-
tively. A quasi-inverse for each πi is the functor A −→ Iso(A) that takes any object

to its identity morphism. If α : H0
∼=−→ H1 is natural isomorphism, then we have an

obvious homological functor H : D −→ Iso(A) which sends X ∈ D to αX ∈ Iso(A).
Since we clearly have that πi ◦ H = Hi , for i = 0, 1, we conclude that all of H0,H
and H1 are in the same connected component of HFun(D).

We will consider each component of HFun(D) as a full sub-2-category; then
HFun(D) is a disjoint union of these. Finally, we define an initial object in a 2-category
C as an object X ∈ C such that each Y ∈ C admits a unique morphism from X up
to natural equivalence. Such an X is necessarily unique in C up to equivalence (and,
in fact, is the initial object of the ordinary category which we obtain from C when
we identify naturally equivalent morphisms, so that equivalences in C are turned to
isomorphisms).

Theorem 6.2 Let D be a triangulated category which has arbitrary (set-indexed)
coproducts and satisfies Brown representability theorem. Then there is a bijective
correspondence between

(1) the connected components of HFun(D) and
(2) product-equivalence classes of objects in D.

Moreover, each connected component of HFun(D) has an (up to equivalence) unique
initial object H : D −→ A, which is characterized by the fact that it induces an

equivalence H| Prod(Q) : Prod(Q)
�−→ Inj(A), where Q is an object representing the

product-equivalence class as in (2) corresponding to H.

In order to prove the theorem, we first establish the following characterization of
exact and faithful left adjoints.

Lemma 6.3 Let (F,G) : A � B be an adjoint pair of functors between abelian cate-
gories and suppose that B is AB3* with an injective cogenerator E. Then

(i) F is exact if and only if G(E) is injective in A, and
(ii) F is faithful if and only if G(E) is a cogenerator in A.

Proof (i) Let f : X � Y be a monomorphism inA. Then F( f ) is a monomorphism if
and only if HomB(F( f ), E) is surjective if and only if HomA( f ,G(E)) is surjective.
Thus, G(E) is injective in A if and only if F preserves monomorphisms. Since F is
right exact, the conclusion follows.
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(ii) Let f : X −→ Y be any morphism in A. Then F( f ) vanishes if and only
if HomA( f ,G(E)) vanishes. Hence G(E) is a cogenerator if and only if F is
faithful. 
�
Proof of Theorem 6.2 Note that D has products, which we obtain by applying Brown
representability to products of functors

∏
i∈I HomD(−, Di ) : Dop −→ Ab.

Let us describe the correspondence between (1) and (2). First fix an object
(H : D −→ A) of HFun(D). Given an injective object E ∈ A, we choose G(E) ∈ D
representing HomA(H(?), E) : Dop −→ Ab. By the Yoneda lemma, we in fact obtain
a product-preserving functor G : Inj(A) −→ D and a natural isomorphism

HomA
(
H(?), ?

) ∼= HomD
(
?,G(?)

) : Dop × Inj(A) −→ Ab. (6.1)

We assign to H the object G(E) ∈ D, where E ∈ A is an injective cogenerator. In
order to see that this is well-defined, first note that any two injective cogenerators are
product-equivalent, and so are their images under G. Furthermore, if F : A −→ A′
is a faithful exact left adjoint functor and G ′ : A′ −→ A is the corresponding right
adjoint, then

HomA′
(
F(H(?)), ?

) ∼= HomA
(
H(?),G ′(?)

) ∼= HomD
(
?,G(G ′(?))

)
.

If E ′ is an injective cogenerator of A′, then G ′(E) is an injective cogenerator of
A thanks to Lemma 6.3. This implies that both H and F ◦ H are assigned to the
product-equivalence class of the object G(G ′(E)) ∈ D.

Conversely, let us start with the class ProdD(Q) obtained from Q ∈ D. Then
AQ := Cont(Prod(Q),Ab)op = ­Prod(Q) is anAB3* abelian category and the functor
EQ := HomProd(Q)(Q, ?) is its injective cogenerator by Lemma 2.4. We assign the
product-equivalence class of Q to the restricted Yoneda functor

HQ : D −→ AQ,

D � HomD(D, ?)| Prod(Q).
(6.2)

This is obviously a homological functor and it preserves coproducts since

HomD
( ∐

i

Di , ?
)

| Prod(Q)

∼=
∏

i

HomD(Di , ?)| Prod(Q) : ProdD(Q) −→ Ab

is a product in Cont(Prod(Q),Ab) and, thus, a coproduct in AQ .
Now we prove that the assignments provide mutually inverse bijections. If we start

with Q ∈ D, we have for any D ∈ D that

HomAQ

(
HQ(D), EQ

)

∼= HomCont(Prod(Q),Ab)
(
HomProd(Q)(Q, ?),HomD(D, ?)| Prod(Q)

)

∼= HomD(D, Q)
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by theYoneda lemma.Comparing thiswith (6.1),we see that the corresponding functor
GQ : Inj(AQ) −→ D sends EQ to Q. It follows that the assignment (1) −→ (2)
recovers Q back from AQ .

Let us conversely start with (H : D −→ A) ∈ HFun(D) and consider the functor
G : Inj(A) −→ D defined by (6.1), an injective cogenerator E ∈ A and the object
Q = G(E) ∈ D. To see that H and HQ as in (6.2) are computationally equivalent, it
suffices to prove that there is a faithful exact left adjoint functor F : AQ −→ A such
that F ◦ HQ ∼= H . To this end, observe that the precomposition with G : Inj(A) −→
ProdD(Q) induces a functor

F : AQ = Cont
(
ProdD(Q),Ab

)op −→ Cont
(
Inj(A),Ab

)op � A.

The functor F ◦ HQ : D −→ A takes D to HomD(D,G(?))|Inj(A). Since
Inj(A) = Prod(E) we get by (6.1) that (F ◦ HQ)(D) ∼= HomA(H(D), ?)|Inj(A),
which is precisely the object that corresponds to H(D) by the canonical equivalence
A ∼= Cont(Inj(A),Ab)op. That is, we have an isomorphism (F ◦ HQ)(D) ∼= H(D),
for all D ∈ D, which easily leads to a natural isomorphism F ◦ HQ ∼= H .

There is also a natural functor in the opposite direction. Namely, the dual version
of Lemma 2.3 provides and equivalence

Mor
(
Inj(A)

) −→ A, ( f : Q0 −→ Q1) � Ker( f ),

where Mor(Inj(A)) is the quotient of Mor(Inj(A)) by the ideal of all maps factoring
through a split monomorphism. Similarly, we have Mor(ProdD(Q)) � AQ given by
f ′ � Coker HomProd(Q)( f ′, ?) (the cokernel is taken in Cont(ProdD(Q)) = Aop

Q ).
NowG : Inj(A) −→ ProdD(Q) induces a functorMor(Inj(A)) −→ Mor(ProdD(Q))

and hence also a functor

G ′ : A � Mor(Inj(A)) −→ Mor
(
ProdD(Q)

) � AQ .

That F is left adjoint to G follows by a computation analogous to (4.1) in the proof of
Lemma 4.1. Finally, F is faithful and exact sinceG sends by construction the injective
cogenerator E ∈ A to the injective cogenerator HomProd(Q)(Q, ?) ∈ AQ .

To prove themoreover part, note that given Q ∈ D, HQ as in (6.2) induces an equiv-

alence (HQ)| Prod(Q) : Prod(Q)
�−→ Inj(AQ) by the Yoneda lemma. Furthermore, we

have just proved that any computational equivalent homological functor H : D −→ A
admits a morphism HQ −→ H in HFun(D). On the other hand, if H ′ : D −→ A′ in
HFun(D) induces an equivalence

H ′
| Prod(Q) : Prod(Q)

�−→ Inj(A′)

and F : A′ −→ A′′ is an exact functor to an abelian category A′′, then F ◦ H ′
determines F up to natural isomorphism. Indeed, F ◦ H ′ determines F|Inj(A′) and,
since A′ has enough injectives and F is left exact, F|Inj(A′) determines F . It follows
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that H ′ is a (necessarily unique up to equivalence) initial object of the connected
component of HFun(D) in which it is contained. 
�

Once Theorem 6.2 is at hand, we have a clean criterion to determine when two
functors as in its statement are computationally equivalent.

Corollary 6.4 Let D be as in Theorem 6.2 and let H , H ′ ∈ HFun(D). The following
assertions are equivalent:

(1) H and H ′ are computationally equivalent.
(2) A morphism s ∈ Mor(D) is in Ker H if, and only if, it is in Ker H ′.

Proof (1) �⇒ (2) We have factorizations

H : D HQ−→ AQ
F−→ A and H ′ : D HQ−→ AQ

F ′−→ A′,

where HQ is the initial object in the connected component of HFun(D) to which H
and H ′ belong and F and F ′ are faithful exact functors. Then, for a given s ∈ Mor(D),
one has that H(s) = 0 if and only if HQ(s) = 0, if and only if H ′(s) = 0.

(2) �⇒ (1) Let Q and Q′ be objects of D representing the initial objects of
the connected component of H and H ′ in HFun(D). By the previous paragraph we
have that, given an s ∈ Mor(D), HQ(s) = HomD(s, ?)| Prod(Q) = 0 if, and only
if, HQ′(s) = HomD(s, ?)| Prod(Q′) = 0. That is, HomD(s, Q) = 0 if, and only if,
HomD(s, Q′) = 0. We now consider the canonical map v : Q′ −→ QHomD(Q′,Q)

and complete it to a triangle K
u−→ Q′ v−→ QHomD(Q′,Q) +−→. We have that

HomD(u, Q) = 0, and hence HomD(u, Q′) : HomD(Q′, Q′) −→ HomD(K , Q′)
is also the zero map. This gives that u = 0 and so v is a section. This proves that
Prod(Q′) ⊆ Prod(Q) and the reverse inclusion follows by exchanging the roles of Q
and Q′ in the argument. 
�

A conceptual explanation of the criterion in Corollary 6.4 is given by the following
observation, which we will use in the next section.

Corollary 6.5 Let D be as in Theorem 6.2 and Q ∈ D. If HQ : D −→ AQ is initial in
the connected component ofHFun(D) corresponding to the product equivalence class
of Q, then the induced functor ĤQ : D̂ −→ AQ (given by Lemma 2.1) is a Gabriel
localization functor and

Ker ĤQ = {Im yD(s) | s ∈ Ker HQ}.

Proof By (the proof of) Theorem6.2,wemay identify HQ with the generalizedYoneda
functor

D −→ Cont
(
ProdD(Q),Ab

)op = ­ProdD(Q) = AQ,

D � HomD(D, ?)| ProdD(Q).

On the other hand, it is rather well known that D̂ is an abelian category with enough
injective objects and these coincide with the projective objects. We also know by [32,
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Lemma 2.1] that yD : D −→ D̂ is a universal homological functor and, by the last
sentence, the functor

y′
D := (yDop)op : D −→ qD = (̂Dop)op

D � HomD(D, ?).

has the same property. By comparing the universal properties, this implies that we can
canonically identify D̂ and qD in a way compatible with the Yoneda embeddings.

The functor ĤQ then identifies with the opposite of the restriction functor along
the inclusion ProdD(Q) ⊆ D, since the following diagram commutes:

D
(yDop )op

HQ

qD
resop

­ProdD(Q).

Now we just apply the dual version of Lemma 4.1 to see that resop is a Gabriel
localization functor.

In order to compute Ker ĤQ = Ker(resop) = Ker Hom
qD(−, y′

D(Q)), note first

that any M ∈ qD is of the form Im y′
D(s) for a map s : X −→ Y in D. This

holds since qD (� D̂) has enough projective and enough injective objects and both
are precisely the representable functors. Since also y′

D(Q) is injective in qD, we
have Hom

qD
(
Im y′

D(s), y′
D(Q)

) = Im Hom
qD

(
y′
D(s), y′

D(Q)
) ∼= Im HomD(s, Q).

Hence Im y′
D(s) ∈ Ker ĤQ if and only if HomD(s, Q) = 0 if and only if HQ(s) =

0. 
�
Theorem 6.2 shows that there are too many coproduct-preserving homological

functors from D, almost as many as objects of D. In order to make the theorem
practical, we restrict the class of functors of interest to those with an AB5 target. To
then end, note that AB5 descends along faithful exact left adjoints.

Lemma 6.6 Let F : A −→ B be a faithful exact left adjoint functor between AB3*
abelian categories. If B is AB5 and with an injective cogenerator, thenA has the same
properties.

Proof Let E ∈ B be an injective cogenerator, which is pure-injective by Proposi-
tion 5.5. If G is right adjoint to F , then G(E) ∈ A is a pure-injective injective
cogenerator by Lemmas 5.3 and 6.3. Finally, A is AB5 by Proposition 5.5. 
�

Then we obtain the following corollaries of Theorem 6.2. The good news is that the
class of pure-injective objects is generally considered much more tractable than that
of all objects. For instance, any compactly generated triangulated category admits a
pure-injective object Q such that Prod(Q) exhausts all pure-injectives. In the following
section we will prove the same for standard well generated triagulated categories. On
the other hand, it rarely happens that there is Q ∈ D such that Prod(Q) exhausts all
objects of D.
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Corollary 6.7 The bijection from Theorem 6.2 restricts to a bijection between

(1) the computational equivalence classes of coproduct-preserving homological func-
tors H : D −→ A, whereA is completeAB5abelianwith an injective cogenerator,

(2) product-equivalence classes of pure-injective objects in D.

Proof If (H : D −→ A) ∈ HFun(D) is such that A is AB5, so is the initial object of
the connected component of H by Lemma 6.6. 
�
Examples 6.8 (1) If C ∈ D is compact and H = HomD(C, ?), then H corre-

sponds to the product-equivalence class of the object C∗ representing the functor
HomZ

(
HomD(C, ?), R/Z

) : Dop −→ Ab.
(2) If D is compactly generated and y : D −→ Mod-Dc is the standard restricted

Yoneda functor, theny corresponds to the product-equivalence class of
∏

C∈Dc C∗.
In fact Prod{C∗ | C ∈ Dc} is the class of all pure injective objects of D.

(3) IfD = SH is the stable homotopy category of spectra and E ∈ SH, then we have
the homological theory with coefficients in E given by E∗ := π0(E∧?) : SH −→
Ab. It corresponds to the pure-injective spectrum E ′ which represents the func-
tor HomZ

(
E∗(?), R/Z

) : SHop −→ Ab. This construction was considered by
Brown and Comenetz [10].

(4) If we specifically choose the Eilenberg-MacLane spectrum E = HZ in (3), then
E∗ is the ordinary homology with coefficients in Z. In that case E ′ = HG, where
G = R/Q (considered as a discrete group). This follows from the universal
coefficient theorem for cohomology.

We conclude the section with a general existence result for t-structures (and so also
semi-orthogonal decompositions) cogenerated by a pure-injective object, generalizing
a recent result of Laking and Vitória, [47, Corollary 5.11].

Proposition 6.9 If D is a standard well generated triangulated category and Q a
pure-injective object, then D admits a t-structure (UQ,VQ) := (⊥<0Q, (⊥≤0Q)⊥).

Proof Recall that D has products and satisfies the Brown representability theo-
rem. If we put Q′ := ∏

i<0 Q[i], then Q′ is also pure-injective and we have
the usual coproduct-preserving homological functor HQ′ : D −→ AQ′ such that
AQ′ is a Grothendieck category (recall Proposition 5.5 and Lemma 5.6). Moreover,
Ker(HQ′) = ⊥<0Q. Note that this subcategory is clearly suspended and closed under
coproducts in D. So according to Proposition 2.12, it remains to show that, for any
object X ∈ D, there is a set SX ⊂ ⊥<0Q such that any morphism f : X −→ U , with
U ∈ ⊥<0Q, factors through an object of SX .

Here we rely on results on well generated triangulated categories from [39, 51]
and model the argument on the proof of [39, Theorem 7.5.1]. First of all, D is λ-well
generated for some regular cardinal λ and there exist arbitrarily large regular cardinals
μ ≥ λ such that

(1) HQ′(C) is < μ-presented in AQ′ for each C ∈ Dλ (here Dλ stands for the
essentially small subcategory of λ-compact objects as in §2.6) and

(2) the class of < μ-presented objects in AQ′ forms and exact abelian subcategory
(see Sect. 2.3).
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SinceDμ coincides by [33, Lemma 5] with the smallest triangulated subcategory con-
tainingDλ and closed under coproducts with< μ terms, and since HQ′ is homological
and preserves these coproducts, it follows that HQ′(C) is< μ-presented even for each
C ∈ Dμ.

Now let f : D0 = X −→ U be a morphism in D with U ∈ ⊥<0Q and we fix
an uncountable regular cardinal μ ≥ λ such that D0 is μ-compact and μ satisfies
conditions (1) and (2) above. If we choose a skeleton D̃μ ofDμ (and we without loss
of generality assume that D0 is contained in D̃μ), we shall see that SX = D̃μ ∩ ⊥<0Q
will satisfy the required condition from Proposition 2.12.

To see this, note that HQ′(U ) = lim−→(g : C→U )
HQ′(C) in AQ′ by [39, Theorem

6.9.1], where the colimit runs over all morphisms g : C −→ U with C ∈ D̃μ.
Although this is not a μ-direct limit, it is a so-called μ-filtered colimit by [39,
Lemma 6.5.1] and μ-filtered colimits are very close to μ-direct limits (see [4, Theo-
rem 1.5 and Remark 1.21] for a precise relation). In particular HomAQ′ (HQ′(D0), ?)
commutes with μ-filtered colimits and, since HQ′(U ) = 0, we have

lim−→
g : C→U

HomAQ′ (HQ′(D0), HQ′(C)) ∼= HomAQ′ (HQ′(D0), HQ′(U )) = 0

and so we can find a factorization D0
g1−→ D1

f1−→ U of f with D1 ∈ D̃μ and such
that HQ′(g1) = 0. However, we can obtain a similar factorization of f1 : D1 −→ U
for the same reason and repeating this procedure again and again, we construct by
induction a cocone

D0
g1

f

D1
g2

f1

D2

f2

g3
. . .

U ,

with all the Di in D̃μ and such that HQ′(gi ) = 0 for all i > 0. Finally, note that f
factors through the Milnor colimit Mcolim(Di ) of the sequence in the upper row (see
Sect. 2.7) and, since μ was chosen uncountable, we have Mcolim(Di ) ∈ D̃μ up to
isomorphism. However, putting x = g in the triangle (2.2) of the Milnor colimit, we
have that HQ′(g) = 0 and so 1 − g : ∐

i≥0 Di −→ ∐
i≥0 Di is sent to the identity

idHQ′ (
∐

i≥0 Di ) by HQ′ . Since the triangle is sent by HQ′ to a short exact sequence (see
Definition 7.2 and Example 7.3 below), we conclude that HQ′(Mcolim(Di )) = 0,
which implies that Mcolim(Di ) ∈ D̃μ ∩ ⊥<0Q. 
�
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7 Universal coproduct-preserving homological functors

A starting point for this section is a result by Krause [32, Corollary 2.4] saying that,
for a compactly generated triangulated category D, the generalized Yoneda functor

hpure : D −→ Mod-Dc ( � ̂AddD(Dc)
)
,

X � HomD(?, X)|Dc ,
(7.1)

is a universal coproduct-preserving homological functor with an AB5 target in the
following sense: any other coproduct-preserving homological functor H : D −→ A,
where A is an AB5 abelian category, factors essentially uniquely as H ∼= F ◦ hpure,
where the functor F : Mod-Dc −→ A is exact and coproduct-preserving (or equiva-
lently, F is an exact left adjoint).

In fact, the proof of [32, Proposition 2.3] shows more: Each natural transforma-
tion α : H −→ H ′ between coproduct-preserving homological functors D −→ A
uniquely extends to a natural transformation ϕ : F −→ F ′ between the corresponding
exact coproduct-preserving functors Mod-Dc −→ A. Thus, the precomposition with
hpure induces an equivalence between the corresponding functor categories

h∗
pure : [Mod-Dc,A]ex,� �−→ [D,A]h,�. (7.2)

We remind the reader of Remark 2.6 at this point—analogous considerations about
the interaction with set theory apply here as well.

This result has been further generalized to homological functors with only exact
κ-directed colimits for some cardinal κ (see [39, 51]), but here we pursue another
direction. As we are interested in methods involving purity and pure-injectivity, it
appears crucial to insist that the targets of our coproduct-preserving homological
functors areAB5. The next proposition says that such a universal functor hpure : D −→
Apure(D) exists at least for any standard (in particular, for any algebraic or topological)
well generated triangulated category D.

Proposition 7.1 LetD be a standard well generated triangulated category. Then there
exists a coproduct-preserving homological functor hpure : D −→ Apure(D) to aGroth-
endieck categoryApure(D)with the following universal property: The precomposition
with hpure induces and equivalence between the categories of coproduct-preserving
homological functors H : D −→ A and all natural transformations on one hand, and
exact coproduct-preserving functors F : Apure(D) −→ A and all natural transfor-
mations on the other hand,

h∗
pure : [Apure(D),A]ex,� �−→ [D,A]h,�.

Moreover, there is up to isomorphism a unique functor res′ : D̂ −→ Apure(D)

which is exact, has a fully faithful right adjoint (so it is a Serre quotient) and makes
the following triangle commutative:
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D yD

hpure

D̂

res′

Apure(D).

The proof requires some preparation and will be given later in the section. This
result allows us to extend the definition of pure triangles and we will see later that the
pure-injective objects in the sense of Definition 5.1 become injective with respect to
them.

Definition 7.2 Let D be a standard well generated triangulated category. A triangle

X
u−→ Y

v−→ Z
w−→ X [1]

in D is called pure if the functor hpure : D −→ Apure(D) induces an exact sequence

0 −→ hpure(X)
hpure(u)−→ hpure(Y )

hpure(v)−→ hpure(Z) −→ 0

(and this happens if and only if any coproduct-preserving homological functor with
AB5 target takes the triangle to a short exact sequence).

If D is compactly generated, we define hpure as in (7.1) and put Apure(D) :=
Mod-Dc. In general, we can express D as D = C/LocC(S), where C is compactly
generated triangulated and S ⊆ Ob(C) is a set of objects. Let T ⊆ Mod-Cc be
the smallest hereditary torsion class containing hpure

(⋃
n∈Z S[n]), put Apure(D) =

Mod-Cc/T and define hD = hpure : D −→ Apure(D) as the unique functor fitting
into the following commutative diagram (we will abuse the notation and denote both
horizontal arrows by hpure):

C
hpure

q

Mod-Cc

q ′

D
hpure

Apure(D).

(7.3)

Example 7.3 In any standard well generated triangulated category, the triangle (2.2)
that defines the Milnor colimit is pure. This is because ifD = C/LocC(S), with C and
S as above, then the triangle is the image under q : C −→ D of the triangle associated
to the same sequence, when viewed as a sequence in C using the fully faithful right
adjoint ι : D −→ C. That the functor hpure : D −→ Apure(D) maps the triangle to
a short exact sequence is then a consequence of the purity of the triangle in C, the
commutativity of the last diagram and the exactness of q ′.

Lemma 7.4 With the notation above and, without loss of generality, assume that S =
S[n] for all n ∈ Z. Then the following hold:
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(1) Y ∈ D is pure-injective if and only if Y ∼= q(Y0) for Y0 ∈ S⊥ ⊆ C which is
pure-injective. Such Y0 is, moreover, unique up to isomorphism.

(2) If X ,Y ∈ D and Y is pure injective, then hpure induces an isomorphism
HomD(X ,Y ) ∼= HomApure(D)

(
hpure(X), hpure(Y )

)
.

(3) hpure restricts to an equivalence PInj(D) � Inj(Apure(D)), where PInj(D) stands
for the full subcategory of pure-injective objects.

Proof (1) The functor q has a fully faithful right adjoint ι : D −→ C which
induces an exact equivalence D −→ S⊥ (see [51, Remark 1.16, Proposi-
tion 1.21 and Lemma 9.1.7]). Hence Y is pure-injective in D if and only if ι(Y )

is pure-injective in S⊥ if and only if ι(Y ) is pure-injective in C. It remains to note that
if we put Y0 = ι(Y ), then q(Y0) ∼= Y . The last sentence follows by the fact that q
restricts to an equivalence S⊥ � D.

(2) Since q is essentially surjective on objects, we can take X0,Y0 ∈ C such that
q(X0) ∼= X and q(Y0) ∼= Y . Moreover, we can take Y0 = ι(Y ) ∈ S⊥ which is pure-
injective in C by the previous part. Then q induces an isomorphism HomC(X0,Y0) ∼=
HomD(X ,Y ). On the other hand, [32, Lemma 1.7 and Theorem 1.8] say that
hpure induces an isomorphism HomC(X0,Y0) ∼= HomMod-Cc

(
hpure(X0), hpure(Y0)

)
.

Finally, since hpure(Y0) is injective in Mod-Cc by [32, Theorem 1.8] and it belongs to
T ⊥, the functor q ′ induces

HomMod-Cc
(
hpure(X0), hpure(Y0)

) ∼= HomApure(D)

(
q ′ ◦ hpure(X0), q

′ ◦ hpure(Y0)
)

∼= HomApure(D)

(
hpure(X), hpure(Y )

)

(3) Note that for any pure-injective object Y0 ∈ C, we have Y0 ∈ S⊥ if and only
if hpure(Y0) ∈ hpure(S)⊥ = T ⊥. If we combine this with part (1) and a classical fact
that E ∈ Apure(D) is injective if and only if E ∼= q ′(E0) for an up to isomorphism
unique injective module E0 ∈ T ⊥, we deduce that X ∈ D is pure-injective if and only
if hpure(X) is injective in Apure(D). 
�

Proof of Proposition 7.1 Let us keep the notation of (7.3) and suppose that we are given
an AB5 abelian categoryA. For simplicity and without loss of generality, assume that
S = S[n], for all n ∈ Z. Then the equivalence

h∗
pure : [Mod-Cc,A]ex,� �−→ [C,A]h,�

as in (7.2) restricts to an equivalence between the full subcategories of

(i) exact coproduct-preserving functors Mod-Cc −→ A vanishing on hpure(S) and
(ii) coproduct-preserving homological functors C −→ A vanishing on S.

Now q ′ from (7.3) is a coproduct-preserving Serre quotient functor, so (q ′)∗ is fully
faithful and, in fact, restricts to a fully faithtul functor

(q ′)∗ : [Apure(D),A]ex,� −→ [Mod-Cc,A]ex,�
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whose essential image is precisely the class of functors described in (i) above. Simi-
larly, q from (7.3) is also a localization functor (recall [51, §2.1]) and q∗ restricts to a
fully faithful functor

q∗ : [D,A]h,� −→ [C,A]h,�

whose essential image is precisely the class of functors as in (ii) above. This implies
that h∗

pure : [Apure(D),A]ex,� −→ [D,A]h,� is an equivalence, as desired.
To prove the moreover part, note that hpure : D −→ Apure(D) restricts to an equiv-

alence PInj(D) � Inj(Apure(D)) by Lemma 7.4. Since Apure(D) has an injective
cogenerator, there exists Q ∈ PInj(D) such that PInj(D) = ProdD(Q). It follows from
Theorem 6.2 that hpure is an initial object in the connected component of HFun(D)

corresponding to the product equivalence class of Q and the conclusion follows from
Corollary 6.5. 
�
Remark 7.5 If D is compactly generated, then it has enough pure-projective objects
(we call X ∈ D pure-projective if HomD(X , ?) sends pure triangles to short exact
sequences) and one can dualize the final part of the last proof to show that the functor
res′ : D̂ −→ Apure(D) = Mod-Dc in Proposition 7.1 also has a fully faithful left
adjoint (see [39, Proposition 6.7.1]).

An immediate consequence of the arguments is the following observation. We shall
call u as below the pure-injective envelope of D in D.

Corollary 7.6 Let D be a standard well generated triangulated category. For each
object D ∈ D there is a pure monomorphism u : D −→ QD, uniquely determined up
to isomorphism, such that QD is pure-injective and hpure(u) : hpure(D) � hpure(QD)

is an injective envelope in Apure(D).

Remark 7.7 Anote of caution is apropos concerning last corollary.WhenD is standard
well generated, one immediately gets from assertions (2) and (3) of Lemma 7.4 that an
object D is in the kernel of hpure : D −→ Apure(D) if and only if HomD(D, Q) = 0,
for all Q ∈ PInj(D). In such case the pure-injective envelope of D is just themorphism
D −→ 0. This pathology will be possible only when PInj(D) does not cogenerate
D. It then excludes the cases when D is compactly generated or when D = D(G) is
the derived category of a Grothendieck category. By contrast, if R is any (associative
unital) ring and S ⊆ D(R) is a set of objects such that S⊥Z is not of the form ⊥Q,
for a class Q of pure-injective objects, then the standard well generated triangulated
categoryD(R)/LocD(R)(S) shows the pathology above.Although it seems very likely
that such examples do exist, we unfortunately do not know any actual instance.

If we combine Theorem 6.2 with Proposition 7.1, we obtain the following structure
result for coproduct-preserving homological functors to AB5 abelian categories.

Corollary 7.8 Let H : D −→ A be a coproduct-preserving homological functor with
D standard well generated andA satisfying AB5. Then H essentially uniquely factors
as

D
hpure−→ Apure(D)

q̃−→ Ainit
F−→ A,
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where q̃ is a Gabriel localization functor and F is a faithful exact left adjoint functor.

Proof Wefirst use the universal property of hpure : D −→ Apure(D) and then factorize
the resulting functor Apure(D) −→ A according to Lemma 3.2. This ensures the
uniqueness. Since q̃ is an exact coproduct-preserving localization functor, it is a Serre
quotient functor and the corresponding Serre subcategory is closed under coproducts.
Since furtherApure(D) is a Grothendieck category, q̃ is actually a Gabriel localization
functor, and hence Ainit is also a Grothendieck category.

It is clear that the exact faithful functor F preserves coproducts, and hence all
colimits. This together with the Grothendieck condition of Ainit imply that F has a
right adjoint functor, due to Freyd’s Adjoint Theorem [21, Corollary 5.52]. 
�

The situation of primary interest in this paper is the one where H0
t : D −→ H

is a coproduct-preserving homological functor which is associated with a t-structure
t = (U ,V) whose heart is AB5. In analogy with Propotision 3.3, we prove that the
last step in its factorization according to Corollary 7.8 is trivial. As a consequence, we
obtain a counterpart of [69, Theorem C] for abstract triangulated categories without
using their models.

Corollary 7.9 Let D be a standard well generated triangulated category with the uni-
versal coproduct-preserving homological functor hpure : D −→ Apure(D) and let
t = (U ,V) be a t-structure such that the heartH is AB5 and H0

t : D −→ H preserves
coproducts.

Then H is a Grothendieck category and the induced exact coproduct-preserving
functor q̃ : Apure(D) −→ H satisfying H0

t = q̃ ◦ hpure is a Gabriel localization
functor.

Proof Using Proposition 7.1 and the universal property of yD : D −→ D̂, we obtain
a factorization of H0

t of the form

D yD−→ D̂ res′−→ Apure(D)
q̃−→ H,

Now res′ is a Serre quotient functor by Proposition 7.1 and q̃ ◦ res′ is a Serre quotient
by Proposition 3.3. Hence q̃ is a localization functor by Lemma 2.8. Since q̃ is also
exact and coproduct-preserving by the universal property of hpure = res′ ◦yD, it is
a Gabriel localization functor and H is a Grothendieck category by the discussion
in §2.3. 
�

8 t-structures with Grothendieck hearts

8.1 The AB5 condition for hearts of t-structures via injective cogenerators

In this subsection we study t-structures whose homological functors are coproduct-
preserving and whose hearts are AB3* with an injective cogenerator. In particular,
we analyze the objects which represent these homological functors in view of Theo-
rem 6.2.
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We first characterize the situation where the cohomological functor associated with
a t-structure preserves coproducts.

Lemma 8.1 Let D be a triangulated category with coproducts and t = (U ,V) be a
t-structure in D, with heartH. The following assertions are equivalent:

(1) The cohomological functor H0
t : D −→ H preserves coproducts.

(2) For each family (Vi )i∈I of objects in V , one has that τ≤0
t (

∐
i∈I Vi [−1]) ∈ U[1].

(3) For each family (Vi )i∈I of objects in V , one has that τ
≤0
t (

∐
i∈I Vi [−1]) ∈⋂

n∈Z U[n].
Remark 8.2 Note that if t is left non-degenerate, condition (3) above precisely means
that t is a smashing t-structure.

Proof of Lemma 8.1 (1) �⇒ (3) If (Vi )i∈I is a family of objects of V , then Vi [−1 +
j] ∈ V[−1], for all j ≤ 0. We then have H j

t (
∐

i∈I Vi [−1]) ∼= ∐
i∈I H

j
t (Vi [−1]) =∐

i∈I H0
t (Vi [−1 + j]) = 0, for all j ≤ 0. Now apply [54, Lemma 3.3] to complete

the proof of the implication.
(3) �⇒ (2) is clear.
(2) �⇒ (1) Let (Di )i∈I be a family of objects in D. For each i ∈ I , we have

an induced triangle τ>0
t Di [−1] −→ τ

≤0
t Di −→ Di −→ τ>0

t Di , where τ>0
t Di

and τ>0
t Di [−1] are in V[−1]. By applying the cohomological functor H0

t , we get
an isomorphism H0

t (τ
≤0
t Di ) ∼= H0

t (Di ), for all i ∈ I , and hence an isomorphism
∐

i∈I H0
t (τ

≤0
t Di )

∼=−→ ∐
i∈I H0

t (Di ). However, the restriction H0
t |U : U −→ H pre-

serves coproducts (see [59, Lemma 3.1 and Proposition 3.2]), and so the canonical
morphism

∐
i∈I H0

t (τ
≤0
t Di ) −→ H0

t (
∐

i∈I τ
≤0
t Di ) is an isomorphism.

On the other hand, coproducts of triangles are triangles (see the dual of [51, Propo-
sition 1.2.1]), so that we have another triangle

∐

i∈I
τ>0
t Di [−1] −→

∐

i∈I
τ

≤0
t Di −→

∐

i∈I
Di −→

∐

i

τ>0
t Di

inD and, by hypothesis, we know that H0
t

∼= τ
≥0
t ◦τ

≤0
t vanishes on

∐
i∈I τ>0

t Di [−1]
and

∐
i τ

>0
t Di . We then get the following commutative diagram, where the vertical

arrows are the canonical morphisms:

∐
i∈I H0

t (τ
≤0
t Di )

∼=

∼=

∐
i∈I H0

t (Di )

H0
t (

∐
i∈I τ

≤0
t Di )

∼=
H0
t (

∐
i∈I Di ).

By the above comments, the two horizontal and the left vertical arrows of this
diagram are isomorphisms. Then also the right vertical arrow is an isomorphism. 
�

The main subject of our study will be the Ext-injective objects in the co-aisle V of
a t-structure. We will call the collection of all such objects the right co-heart of the
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t-structure (the terminology is explained in Sect. 8.4 below; some authors call these
objects simply injective in their contexts, see [46, Appendix C.5.7] or [66]). Dually,
the left co-heart is the class of all Ext-projective objects in the aisle. In the case of
right nondegenerate t-structures, parts (1) and (2) of the following proposition can be
also found in [46, Proposition C.5.7.3].

Proposition 8.3 Let D be a triangulated category with products, let t = (U ,V) be
a t-structure in D, with heart H = U ∩ V , and let Q ∈ V be an object such that
HomD(?, Q) vanishes on V[−1]. The following assertions hold:

(1) H0
t (Q) is an injective object ofH and the assignment f � H0

t ( f ) gives a natural

isomorphism HomD(?, Q)
∼=−→ HomH(H0

t (?), H0
t (Q)) of functors Dop −→

Ab.
(2) H0

t (Q) is a cogenerator ofH if and only ifHomD(M, Q) �= 0, for all0 �= M ∈ H.
(3) Q is pure-injective (resp. accessible pure-injective) in D if and only if H0

t (Q) is
such inH.

Proof Note that, by [59, Proposition 3.2], the category H has products, so that asser-
tion (3) makes sense. Furthermore, the proof of that proposition shows that the
restriction H0

t |V : V −→ H preserves products.
(1) The pair top = (Vop,Uop) is a t-structure in Dop with heart Hop. Its

left co-heart C∗ (see [54, Section 3]) consists of the objects V ∈ Vop such that
HomDop(V , V ′[−1]) = 0, for all V ′ ∈ Vop, since the shift functor ofDop is ?[−1]. By
[54, Lemma 3.2(1)], we know that H0

t : C∗ −→ Hop is a fully faithful functor whose
essential image consists of projective objects in Hop. Furthermore, the proof of [54,
Lemma 3.2(1)] also gives an isomorphism HomDop(C, M) ∼= HomHop(H0

t (C), M),
functorial on both variables, for all C ∈ C∗ and M ∈ Hop. It is actually given by the
assignment f � H0

t ( f )with the obvious identification M = H0
t (M). Particularizing

toC = Q, we get that H0
t (Q) is injective inH and the mentioned assignment gives an

isomorphism, functorial on both variables, HomD(M, Q)
∼=−→ HomH(M, H0

t (Q)).
Let now D ∈ D arbitrary. We have a functorial isomorphism HomD(D, Q) ∼=

HomD(τ
≥0
t D, Q) since Q ∈ V . On the other hand, we have H0

t (D) ∼= τ
≤0
t τ

≥0
t D,

so that we have a triangle W [−1] −→ H0
t (D) −→ τ

≥0
t D −→ W , where W =

τ>0
t (τ

≥0
t D) ∈ V[−1]. We then get a functorial isomorphism HomD(τ

≥0
t D, Q)

∼=−→
HomD(H0

t (D), Q) since HomD(?, Q) vanishes onW [−1] andW , because these two
objects are in V[−1]. There are then isomorphisms, natural on D:

HomD(D, Q) HomD(τ
≥0
t D, Q)

∼=

∼=

HomD(H0
t (D), Q)

∼= HomH(H0
t (D), H0

t (Q)).

It is routine, and left to the reader, to check that the isomorphism from the first to
the fourth abelian group in the list is given by the assignment f � H0

t ( f ).
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(2) From assertion (1) we get that, for M ∈ H, one has HomH(M, H0
t (Q)) �= 0 if

and only if HomD(M, Q) �= 0. Assertion (2) then immediately follows.
(3) By assertion (1) and using the fact that H0

t |V : V −→ H preserves products,

there is an equivalence of categories H0
t : ProdD(Q)

�−→ ProdH(H0
t (Q)). The con-

clusion follows immediately from the first claim in Lemma 5.3 applied to both Q ∈ D
and H0

t (Q) ∈ H. 
�
Now we can combine the above observations with the results of Sect. 6, which we

apply to the cohomological functor associated with our t-structure.

Theorem 8.4 Let D be a triangulated category with products and coproducts, and let
t = (U ,V) be a t-structure with heart H. Consider the following assertions:

(1) There exists an object Q ∈ V that satisfies the following conditions:

(a) HomD(?, Q) vanishes on V[−1];
(b) HomD(M, Q) �= 0, for all 0 �= M ∈ H;
(c) Q is pure-injective in D.

(2) There is a pure-injective object Q̂ ∈ V such that, for each V ∈ V , there is a

triangle V −→ Q̂V −→ V ′ +−→, with V ′ ∈ V and Q̂V ∈ Prod(Q̂).
(3) H is an AB5 abelian category with an injective cogenerator and, for each family

(Vi )i∈I of objects in V , one has that τ≤0
t (

∐
i∈I Vi [−1]) ∈ U[1].

(4) H is an AB5 abelian category with an injective cogenerator and the cohomological
functor H0

t : D −→ H preserves coproducts (cf. Theorem 6.2).
(5) H is a Grothendieck category and the cohomological functor H0

t : D −→ H
preserves coproducts.

The implications (1) �⇒ (2) �⇒ (3) ⇐⇒ (4) ⇐� (5) hold true.WhenD satisfies
Brown representability theorem, the implication (3) �⇒ (1) also holds. When D is
standard well generated, all assertions are equivalent.

Proof Note that, by [59, Proposition 3.2], the category H is complete.
(3) ⇐⇒ (4) is a straightforward consequence of Lemma 8.1.
(5) �⇒ (4) is clear.
(1) �⇒ (2) We put Q̂ = Q and will prove that, for each V ∈ V , the canonical

morphism u : V −→ QHomD(V ,Q) has its cone in V .
Thanks to the natural isomorphism HomH(H0

t (?), H0
t (Q)) ∼= HomD(?, Q) and

the fact that H0
t : V −→ H preserves products (see [59, Lemma 3.1]) it immediately

follows that the map H0
t (u) gets identified with the canonical morphism H0

t (V ) −→
H0
t (Q)HomH(H0

t (V ),H0
t (Q)), where the product in the codomain is taken inH. This last

morphism is a monomorphism since H0
t (Q) is a cogenerator ofH by Proposition 8.3

and the conclusion follows fromLemma4.3 applied to the t-structure top = (Vop,Uop)

in Dop.
(2) �⇒ (4) SinceQ := ProdD(Q̂) is a preenveloping subcategory, it follows from

assertion (2) that Prod(Q̂) is t-cogenerating in V (see Definition 4.2). Hence we can
apply Theorem 4.5 to the t-structure top = (Vop,Uop) in Dop and the t-generating
subcategoryQop. Upon taking the opposite categories again and in view of Lemma 2.4,
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we obtain the following diagram, which commutes up to natural equivalence both for
the left and for the right adjoints, F is a Serre quotient functor and G its fully faithful
left adjoint:

V
HQ̂ :=(yQop )op H0

t

⊥ H
inc

Cont(Q,Ab)op

F

⊥ H.

G

Here, HQ̂ is the restricted Yoneda functor taking V � HomD(V , ?)|Q and,
in particular, it coincides with the coproduct-preserving initial functor constructed
in (the proof of) Theorem 6.2 for the product equivalence class of Q̂. Moreover,
Cont(Q,Ab)op is an AB3* abelian category with enough injectives and its subcat-
egory of injective objects is equivalent to Prod(Q̂) (see Lemma 2.4). Since Q̂ is
pure-injective, we know by Proposition 5.5 that it is also AB5.

Finally, we conclude by Proposition 2.9. It follows that F is a Gabriel localization
functor and H is also AB5 with an injective cogenerator. Furthermore, F is a left
adjoint, so that H0

t
∼= F ◦ HQ̂ preserves coproducts.

(4) �⇒ (1) (whenD satisfiesBrown representability theorem)Let E be an injective
cogenerator of H that, by Proposition 5.5, is pure-injective in H. The contravariant
functor HomD(H0

t (?), E) : D −→ Ab takes coproducts to products and, hence, it is
representable. Let Q ∈ D be the object that represents this functor. Since H0

t vanishes
on V[−1] and we have H0

t (M) ∼= M , for all M ∈ H, it immediately follows that Q
satisfies conditions (1)(a) and (1)(b). On the other hand, H0

t also vanishes on U[1],
which then implies that HomD(?, Q) vanishes in U[1]. This is equivalent to say that
Q ∈ U⊥[1] = V . Moreover, we have natural isomorphisms of functorsDop −→ Ab,

HomD(H0
t (?), E) ∼= HomD(?, Q) ∼= HomH(H0

t (?), H0
t (Q))

by the definition of Q and Proposition 8.3. By Yoneda’s lemma, we conclude that
H0
t (Q) ∼= E , and Q is pure-injective again by Proposition 8.3.
(4) �⇒ (5) (assuming that D is standard well generated) is a direct consequence

of Corollary 7.9. 
�
We conclude with a slightly more general version of Corollary 7.9.

Corollary 8.5 Suppose that D is triangulated with coproducts and satisfies Brown
representability theorem. Then the functor H0

t : D −→ H in the situation of Theo-
rem8.4(4) is initial in its connected component ofHFun(D) in the sense of Theorem6.2.

Proof This immediately follows from Theorem 6.2 and Proposition 8.3(1). 
�

8.2 t-structures with definable co-aisle

Now we focus on t-structures in compactly generated triangulated categories whose
co-aisles are definable. Recall from [36] that, when D is such a triangulated category,
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a functor F : D −→ Ab is called a coherent functor on D when there is a morphism

α : C −→ C ′ inDc and an exact sequence HomD(C ′, ?) HomD(α,?)−→ HomD(C, ?) −→
F −→ 0 in mod-Dop. The contents of the following result can be gathered from the
papers [32, 36, 41]. At the request of the referee we include a short proof:

Proposition 8.6 LetD be a compactly generated triangulated category. For a subcat-
egory Y of D the following conditions are equivalent:

(1) There is a set S ⊆ Mor(Dc) such that Y consists of the objects Y ∈ D such that
the map f ∗ := HomD( f ,Y ) is surjective, for all f ∈ S.

(2) There is a set � ⊆ Mor(Dc) such that Y consists of the objects Y ∈ D such that
g∗ := HomD(g,Y ) is the zero map, for all g ∈ �

(3) There is a set F of coherent functors on D such that Y consists of the objects Y
such that F(Y ) = 0, for all F ∈ F .

A subcategory satisfying these equivalent conditions is closed under pure monomor-
phisms, products, pure epimorphisms and pure-injective envelopes.

Proof To ease the notation, we denote by y := yDop : Dop −→ mod-Dop, D �
y(D) = HomD(D, ?) the Yoneda embedding. All through the proof we use that
HomD(?,Y ) : Dop −→ Ab is a cohomological functor for each Y ∈ D.

(1) ⇐⇒ (3) Given S as in condition (1), take F = {Coker(y( f )) | f ∈ S}. Given
F as in condition (3), choose for each F ∈ F a morphism gF : CF −→ C ′

F in Dc

such that F ∼= Coker(y(gF )). Then take S = {gF | F ∈ F}.
(1) ⇐⇒ (2) Given S as in condition (1), complete each f : C −→ C ′ in S to

a triangle C ′′ α f−→ C
f−→ C ′ +−→. Then take � = {α f | f ∈ S}. Given � as in

condition (2), complete each σ : C ′′ −→ C in� to a triangleC ′′ σ−→ C
fσ−→ C ′ +−→.

Then take S = { fσ | σ ∈ �}.
For the final statements, suppose that X −→ Y −→ Z

+−→ is a pure triangle inD.
Then we have the following commutative diagram of abelian groups with exact rows,
for each morphism σ : C −→ C ′ in Dc,

0 y(C ′)(X)

y(σ )X

y(C ′)(Y )

y(σ )Y

y(C ′)(Z)

y(σ )Z

0

0 y(C)(X) y(C)(Y ) y(C)(Z) 0

If now� ⊆ Mor(Dc) is any set andY is defined as in condition (2), it is clear that if
Y ∈ Y , i.e. the central vertical arrow of the last diagram is zero for all σ ∈ �, then the
same is true for X and Z . That is, the classY is closed under pure monomorphisms and
pure epimorphisms. It is clearly closed under products. Finally, by the Fundamental
Correspondence Theorem of [Kra02b], we know that, for Y satisfying condition (3),
one has that the skeletally small class PInj(Y) of pure-injective objects inY is a closed
subset of the Ziegler spectrumofD, andY consists of the objectsY ∈ D such that there
is a pure monomorphism α : Y −→ ∏

i∈I Qi , for some family (Qi )i∈I in PInj(Y).
Suppose now that Y ∈ Y , fix such a pure monomorphism α and let u : Y −→ QY
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be the pure-injective envelope. If we consider, as in Sect. 7, the generalized Yoneda
embedding hpure : D −→ Mod-Dc, D � HomD(?, D)|Dc , we have that hpure(α)

is a monomorphism into an injective object of Mod-Dc and hpure(u) is the injective
envelope inMod-Dc. This together with [32, Theorem 1.8] gives a section s : QY −→∏

i∈I Qi such that s ◦ u = α. Since Y is clearly closed under direct summands, we
conclude that QY ∈ Y . 
�
Definition 8.7 A subcategoryY of a compactly generated triangulated category is said
to be definable when it satisfies any of conditions (1)–(3) of last proposition.

Remark 8.8 If a compactly generated triangulated category D has an enhancement
which allows for a good calculus of homotopy colimits (in the formof a stable derivator
as in [41] or a stable ∞-category), then some of the closure properties from Proposi-
tion 8.6 in fact characterize definable classes. The following statements are equivalent
for Y ⊆ D in that case:

(1) Y is definable,
(2) Y is closed under products, puremonomorphisms and directed homotopy colimits,
(3) Y is closed under products, pure monomorphism and pure epimorphism.

The equivalence between (1) and (2) is a part of [41, Theorem 3.11]. The implication
(1) ⇒ (3) is an elementary consequence of the definition of a definable subcategory
and does not require any enhancement. For (3) ⇒ (2), one can follow the strategy
from [47, Theorem 4.7] and prove that for any coherent directed diagram X , the
colimit morphism

∐
i∈I Xi −→ hocolim X is a pure epimorphism inD. This follows

essentially from [69, Definition 5.1 and Proposition 5.4].

Remark 8.9 The previous remark immediately implies that ifD is compactly generated
triangulated and has a suitable enhancement (a stable derivator or a stable∞-category)
and if t = (U ,V) is a t-structure, then the following are equivalent:

(1) V is closed under pure epimorphisms,
(2) V is closed under directed homotopy colimits and pure monomorphisms,
(3) V is definable.

The main point is that if V is closed under pure epimorphisms, it is also closed under
pure monomorphisms since V[−1] ⊆ V and V is closed under extensions.

Under certain additional assumptions, the conditions above are also known to be
equivalent to the apparently weaker condition

(2’) V is closed under directed homotopy colimits.

This holds by [41, Theorem 4.6] if t is left non-degenerate. It also holds whenever
D is an algebraic compactly generated triangulated category. We will only sketch the
argument in this case and discuss the details elsewhere later. The point is that D is
the derived category D(A) of a small dg category A and V turns out to be a class
of dg-A-modules which is the right hand side class of a cotorsion pair and closed
under direct limits (see e.g. [67, §2.2 and Lemma 3.4]). Such a class, however, must
be definable in the category of dg-A-modules by [64, Theorem 6.1], and one routinely
checks that it is then also definable in D = D(A).

Unfortunately, we do not know whether (2) is equivalent to (2’) in general.
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An important feature of t-structures with definable co-aisle in compactly generated
triangulated categories is that the class of pure-injective objects in the co-aisle is t-
cogenerating (recall Definition 4.2). In fact, we can state that fact more generally. If V
is a class of objects in a triangulated categorywith products, we denote by PInj(V) ⊆ V
the class of all pure-injective objects in V .

Lemma 8.10 LetD be a standardwell generated triangulated category and t = (U ,V)

be a t-structurewhose co-aisleV is closed under pure epimorphisms and pure-injective
envelopes (see Definition 7.2 and Corollary 7.6 ). Then:

(a) PInj(V) is t-cogenerating in V ,
(b) there exists an object Q̂ ∈ V such that PInj(V) = ProdD(Q̂).

Proof If V ∈ V and u : V −→ QV is a pure injective envelope, then QV ∈ PInj(V)

and the third term in a triangle V
u−→ QV

p−→ V ′ +−→ is again in V since p is a pure
epimorphism. This proves assertion (a).

We consider T = ⊥hpure(PInj(V)) ⊆ Apure(D). Then T is a hereditary torsion
class in the Grothendieck category Apure(D) and, as a consequence, we have an
injective object E in this latter category such that the associated torsionfree class
F = T ⊥ consists of the subobjects of objects in Prod(E). But then E = hpure(Q̂),
for some pure-injective object Q̂ which is necessarily in V . Indeed we have a section
E = hpure(Q̂) �

∏
i∈I hpure(Qi ) in Apure(D), for some family (Qi )i∈I in PInj(V),

that is the image under hpure : D −→ Apure(D) of a section s : Q̂ �
∏

i∈I Qi , by
Lemma 7.4. This proves assertion (b). 
�
Remark 8.11 Suppose again that we are in the situation of Remark 8.9. The last lemma
says that PInj(V) is t-cogenerating if condition (2) holds. The subtle point is that the
conclusion of Lemma 8.10 can be derived already from the a priori weaker condition
(2’) (which, however, can be stated only using an enhancement ofD) and, thus, holds
for any homotopically smashing t-structure in the language of [41, 69].

To see this, one can use essentially the same argument as in [41, Proposition 3.7].
If V ∈ V , then there is a set I and an ultrafilter F on I such that the coherent
ultrapower V S/F is pure-injective and the diagonal morphism V −→ V S/F is a

pure monomorphism. In fact, the triangle V −→ V S/F −→ V ′ +−→ is by definition
of the coherent ultrapower [41, §2.2] a directed homotopy colimit of split triangles

V
dJ−→ V J −→ V ′

J
+−→,

where J ⊆ I runs over the elements of F and dJ are the diagonal embeddings. If V
is closed under directed homotopy colimits, then V S/F ∈ PInj(V) and V ′ ∈ V .

The main result of this subsection is now an easy consequence of the results in
previous (sub)sections.

Theorem 8.12 Let D be a standard well generated triangulated category and t =
(U ,V) be a t-structure such that the class PInj(V) of all pure-injective objects in V is
t-cogenerating in V—these assumptions are satisfied e.g. ifD is compactly generated
and either
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(1) V is definable or
(2) D has a suitable enhancement (see Remarks 8.9 and 8.11) and V is closed under

taking directed homotopy colimits.

Then the heart H = U ∩ V is a Grothendieck category and H0
t : D −→ H preserves

coproducts.
Moreover, if we fix a Verdier quotient functor q : C −→ D such that C is a com-

pactly generated triangulated category and Ker(q) is the localizing subcategory of C
generated by a set of objects, then H0

t (q(Cc)) is a skeletally small class of generators
of H.

Proof By the same argument as for Lemma 8.10(b), we find a pure-injective object
Q̂ ∈ V such that PInj(V) = ProdD(Q̂). Then such an object Q̂ satisfies the assumption
of Theorem 8.4(2) and H is a Grothendieck category by Theorem 8.4(5).

As for the class of generators, note that, by Proposition 7.1 and its proof, we know
thatApure(D) is a Gabriel quotient of Mod-Cc and if q ′ : Mod-Cc −→ Apure(D) is the
corresponding Gabriel localization functor, then q ′ ◦yC ∼= hpure ◦q, where yC : C −→
Mod-Cc is the Yoneda functor. Since y(Cc) is a skeletally small class of generators
of Mod-Cc, we conclude that hpure(q(Cc)) is a skeletally small class of generators of
Apure(D). Applying now Corollary 7.9 we conclude that if q̃ : Apure(D) −→ H is the
(uniquely determined up to natural isomorphism) Gabriel localization functor such
that q̃ ◦ hpure ∼= H0

t , then q̃(hpure(q(Cc))) = H0
t (q(Cc)) is a skeletally small class of

generators of H. 
�
As immediate consequences, we get:

Corollary 8.13 LetD be a compactly generated triangulated category and t = (U ,V)

be a t-structure inD with definable co-aisle. The heartH = U ∩V is a Grothendieck
category for which H0

t (Dc) is a skeletally small class of generators.

Corollary 8.14 Let G be a Grothendieck category with generator X, and let t = (U ,V)

be a t-structure in the derived category D(G) such that V is closed under taking pure
epimorphisms and pure-injective envelopes. The heartH = U ∩ V is a Grothendieck
category on which H0

t (thickD(G)(X)) is a skeletally small class of generators. Here
thickD(G)(X) is the smallest thick subcategory of D(G) containing X.

Proof By the usual Gabriel-Popescu’s theorem, if R = EndG(X) we have a Gabriel
localization functor q : Mod-R −→ G that takes R to X . The induced triangulated
functor q : D(Mod-R) −→ D(G) satisfies that

q
(
D(Mod-R)c

) = q
(
thickD(Mod-R)(R)

) ⊆ thickD(G)(X).

The result then follows since, by Theorem 8.12, H0
t

(
q(D(Mod-R)c)

)
is a skeletally

small class of generators of H. 
�

8.3 Suspended ideals of the category of compact objects

In this subsection, we assume that D is a compactly generated triangulated category
we denote by yD : D −→ Mod-Dc theYoneda functor. In [37, Corollary 12.5], Krause
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classified smashing localizations of D in terms of so-called exact ideals of Dc. Here
we establish an analogous classification of t-structures with definable co-aisle in D.

Definition 8.15 Let D0 be a triangulated category and I a two-sided ideal of D0. The
ideal is called saturated (see [37, Definition 8.3]) if whenever we have a triangle
X2

u−→ X1
v−→ X0 −→ X2[1] and a morphism f : X1 −→ Y in D0, then

f ◦ u, v ∈ I �⇒ f ∈ I.

The ideal I is called suspended if it satisfies the following three conditions:

(1) I is idempotent, i.e. I2 = I,
(2) I is saturated, and
(3) I[1] ⊆ I.

Theorem 8.16 Let D be a compactly generated triangulated subcategory. Then there
is a bijective correspondence between

(1) the t-structures t = (U ,V) in D with V definable, and
(2) suspended ideals I ⊆ Dc,

which is given by the assignments

V � I = { f : C −→ D in Dc | HomD( f ,V) = 0} and

I � V = {V ∈ D | HomD(I, V ) = 0}.

At the first step, we combine existing results from the literature in order to relate
saturated ideals to definable subcategories and other already discussed notions.

Proposition 8.17 There are bijective correspondences between

(1) definable subcategories V ⊆ D,
(2) saturated ideals I ⊆ Dc,
(3) Serre subcategories S ⊆ mod-Dc, and
(4) hereditary torsion pairs (T ,F) of finite type in Mod-Dc.

The bijection between (1) and (2) is given by the same rule as in Theorem 8.16, the
map from (2) to (3) is given by

I � S = {Im yD( f ) | f ∈ I},

and the correspodence between (3) and (4) is given by

S � (lim−→S,S⊥) and (T ,F) � T ∩ mod-Dc,

where lim−→S is the class of direct limits of objects from S.
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Proof The bijections between (1), (2) and (3) are essentially the contents of the Fun-
damental Correspondence in [36]. The only thing we need to add is a reference to
[37, Lemma 8.4], where one proves that the cohomological ideals as in the Funda-
mental Correspondence are precisely the saturated ideals. Finally, the correspondence
between (3) and (4) has been obtained in [30, Lemma 2.3] or [27, Theorem 2.8]. 
�

Next we recall the following result, which was first proved in [32, Proposition
3.11] and also appears in [1, Proposition 4.5] with exactly the same terminology as
we use. A closely related result can be also found in [2, Theorem 4.3]. For the special
case of algebraic triangulated categories, a considerably stronger version was recently
obtained as a part of the main theorem of [47].

Proposition 8.18 A definable subcategory V of a compactly generated triangulated
category D is preenveloping.

Corollary 8.19 Let I be a suspended ideal ofDc. ThenV = {V ∈ D | HomD(I, V ) =
0} is a definable co-aisle of a t-structure in D.

Proof We already know that V is definable, preenveloping and V[−1] ⊆ V . Once
we prove that V is closed under extensions (hence cosuspended and closed under
summands), the conclusion will follow from the dual of [68, Proposition 3.11] or [1,

Proposition 4.5]. To that end, suppose that we have a triangle V ′ u−→ V
v−→ V ′′ +−→

with V ′, V ′′ ∈ V and suppose that g ∈ I. Since I = I2, we can express g : C −→ D
as g1g2 with g1, g2 ∈ I (a priori, the elements of I2 are finite sums

∑n
i=1 g1,i g2,i

with all g1,i : Ei −→ D and g2,i : C −→ Ei belonging to I, but asDc is additive, we
combine these to g1 : ⊕n

i=1 Ei −→ D and g2 : C −→ ⊕n
i=1 Ei ). Then, given any

morphism h : D −→ V , we have that vhg1 = 0 as V ′′ ∈ V , so that hg1 = uh′ for
some morphism h′. Thus, hg = uh′g2 = 0 since V ′ ∈ V . 
�

To finish the proof of Theorem 8.16 we also need the following useful result.

Proposition 8.20 Let t = (U ,V) be a t-structure in D with V definable, and suppose
that (T ,F) is the hereditary torsion pair of finite type in Mod-Dc which corresponds
to V in the sense of Proposition 8.17. Then

V = y−1
D (F) and U[1] = y−1

D (T ).

Proof The equality V = y−1
D (F) is in fact true for any definable class in D. Indeed,

given any morphism g in Dc and V ∈ D, we use the Yoneda lemma and the fp-
injectivity of yD(V ) ([32, Lemma 1.6]) to see that HomD(g, V ) = 0 if and only if
HomMod-Dc (yD(g), yD(V )) = 0 if and only if HomMod-Dc (Im yD(g), yD(V )) = 0.
SinceF = {Im yD(g) | g ∈ I}⊥ in Mod-Dc by Proposition 8.17, we infer that V ∈ V
if and only if yD(V ) ∈ F .

Regarding the other equality, we first prove the inclusion U[1] ⊆ y−1
D (T ). So

suppose that U ∈ U . Then Lemma 7.4 yields that the injective Dc-modules in F are
up to isomorphism of the form yD(V ) for V ∈ PInj(V), and that

HomMod-Dc
(
yD(U [1]), yD(V )

) ∼= HomD(U [1], V ) = 0
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for each V ∈ PInj(V). Since F is closed in Mod-Dc under injective envelopes by [70,
Proposition VI.3.2], we have yD(U [1]) ∈ T , as desired.

To prove the remaining inclusion, suppose that X ∈ D is such that yD(X [1]) ∈ T
and consider a triangle U [1] −→ X [1] −→ V −→ U [2] with U ∈ U and V ∈ V .
Then we get an exact sequence

yD(X [1]) −→ yD(V ) −→ yD(U [2]).

Since U [2] ∈ U[1], the outer terms are in the hereditary torsion class T by the above
and we have yD(V ) ∈ T ∩F = 0. Thus, V = 0 since yD reflects isomorphisms and,
consequently, X ∈ U . 
�

We complement the proposition with some consequences, which will be used either
here or later in Sect. 8.5.

Corollary 8.21 Let t = (U ,V) be a t-structure inD with V definable. Then U is closed
under pure monomorphisms and pure epimorphisms.

Proof If X −→ U −→ Y
+−→ is a pure triangle with U ∈ U , then

0 −→ yD(X [1]) −→ yD(U [1]) −→ yD(Y [1]) −→ 0

is a short exact sequence with the middle term in T . Since T is a hereditary torsion
class, we have that yD(X [1]), yD(Y [1]) ∈ T , and conclude by Proposition 8.20. 
�
Corollary 8.22 Let t = (U ,V) be a t-structure in D with heart H and suppose that
V is definable. If p : U −→ U ′ is a pure epimorphism in D with U, U ′ ∈ U , then
H0
t (p) : H0

t (U ) −→ H0
t (U ′) is an epimorphism inH.

Proof This is a direct consequence of Corollary 8.21 and Lemma 4.3. 
�
Corollary 8.23 Let t = (U ,V) be a t-structure in D with V definable and let X ∈ D.
Then X ∈ U if and only if each morphism f : C −→ X [1] with C compact factors as
f = f ′ ◦ g with g ∈ I.

Proof We have proved that X ∈ U if and only if yD(X [1]) ∈ T if and only if for
each f : C −→ X [1] with C ∈ Dc, the map yD( f ) : yD(C) −→ yD(X [1]) factors
through S = T ∩ mod-Dc.

By Proposition 8.17, objects of S are of the form Im yD(g) for some g : C ′ −→
D′ from I. Thus, if yD( f ) factors through Im yD(g), we have the solid part of the
following diagram

yD(C)

h

Im yD( f ) yD(X [1])

yD(C ′) Im yD(g) yD(D′),
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and dotted arrows exist since yD(C) is projective and yD(X [1]) is fp-injective in
Mod-Dc ([32, Lemma 1.6]). Hence, f factors through gh ∈ I. If, conversely, f
factors through g ∈ I, then clearly yD( f ) factors through Im yD(g) ∈ S. 
�

Now we can finish the proof of the theorem.

Proof of Theorem 8.16 Suppose that t = (U ,V) is a t-structure in a compactly gener-
ated triangulated category D such that V is definable, and put

I = { f : C −→ D in Dc | HomD( f ,V) = 0}.

Then clearly I[1] ⊆ I is a saturated ideal of Dc. Suppose now that g : C −→ D
belongs to I; in particular HomD(g, τ≥0

t D) = 0. Then g factors through g′ : C −→
τ

≤−1
t D, which in turn factors through (g′′ : C −→ D′) ∈ I thanks to Corollary 8.23.
Since both g′′ and the composition D′ −→ τ

≤−1
t D −→ D belong to I, we have

g ∈ I2. It follows that I is a suspended ideal.
Conversely, given a suspended ideal, the class V = {V ∈ D | HomD(I, V ) = 0}

is a definable co-aisle by Corollary 8.19.
The bijective correspondence then clearly comes up as the corresponding restriction

of the bijective correspondence between (1) and (2) in Proposition 8.17. 
�

8.4 t-structures with right adjacent co-t-structure

A co-t-structure (also called aweight structure; see [12, 55]) in a triangulated category
D is a pair c = (V,W) of subcategories which are closed under direct summands and
satisfy the following conditions:

(i) HomD(V ,W [1]) = 0, for all V ∈ V and W ∈ W;
(ii) V[−1] ⊆ V (or W[1] ⊆ W);

(iii) For each X ∈ Ob(D), there is a triangle V −→ X −→ Y
+−→ in D, where

V ∈ V and Y ∈ W[1].
Then one has that V⊥ = W[1] and V = ⊥W[1]. The intersection C = V ∩ W

is called the co-heart of c. Given a t-structure t = (U ,V), we say that t has a right
adjacent co-t-structure when the pair (V,W) = (V,V⊥[−1]) is a co-t-structure in
D. Note that the intersection V ∩ V⊥[−1] makes sense even if (V,V⊥[−1]) is not a
co-t-structure. It is sometimes called the right co-heart of t.

In this subsectionwewill give a criterion for the heart of a t-structurewith right adja-
cent co-t-structure to be a Grothendieck category. We will show also that t-structures
with definable co-aisle in a compactly generated triangulated category always have a
right adjacent co-t-structure. We will show also that the t-structure cogenerated by a
pure-injective object in a standard well generated triangulated category (see Proposi-
tion 6.9) has a right adjacent co-t-structure. We need the following elementary result
of Category Theory whose proof is left to the reader.

Lemma 8.24 Let A be an AB3* abelian category with a cogenerator and enough
injectives. Then it has an injective cogenerator.
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We can now give the first main result of this subsection.

Proposition 8.25 Let D be a triangulated category with products, let t = (U ,V) be a
t-structure with right adjacent co-t-structure c = (V,W). Denote byH = U ∩V and
C = V ∩W , respectively, the heart of t and the co-heart of c. The following assertions
hold:

(1) H is an AB3* abelian category with enough injectives and the functor H0
t : D −→

H restricts to a category equivalence C �−→ Inj(H).
(2) H has an injective cogenerator (and is AB5, resp. is a Grothendieck category)

if, and only if, there is an object Q ∈ C (that is pure-injective, resp. accessible
pure-injective) such that C = Prod(Q).

(3) Suppose that there is a pure-injective object E such that PInj(D) = ProdD(E).
Then H is AB5 with an injective cogenerator (resp. a Grothendieck category) if,
and only if, C consists of pure-injective (resp. accessible pure-injective) objects.

(4) When D is standard well generated,H is a Grothendieck category if, and only if,
C consists of pure-injective objects.

Proof (1) The heart of any t-structure in D is AB3* (see [59, Proposition 3.2]). That
H0
t restricts to a fully faithful functor C −→ Inj(H) follows from Proposition 8.3(1)

(see also [13] and the dual of [54, Lemma 3.2]).
By definition of co-t-structure, we have for each X ∈ V a triangle V [−1] −→

X
α−→ W −→ V , with V ∈ V and W ∈ W . Consequently W ∈ V ∩ W = C since

X , V ∈ V , and hence C is t-cogenerating in V (Definition 4.2). Hence, whenever
X ∈ H, the morphism H0

t (α) : X −→ H0
t (W ) is a monomorphism in H by the dual

of Lemma 4.3. This shows that H0
t (C) ⊆ Inj(H) is a cogenerating class and that H

has enough injectives.
It remains to show that H0

t : C −→ Inj(H) is essentially surjective. To that end, let
E ∈ Inj(H). By the above paragraph, we have a split embedding of E into H0

t (W )

for some W ∈ C. The corresponding idempotent morphism e : H0
t (W ) −→ H0

t (W )

whose image is E uniquely lifts to an idempotent endomorphism e′ : W −→ W since
H0
t : C −→ Inj(H) is fully faithul. Since D has split idempotents by Sect. 2.4, W has

a direct summand W ′ ∈ C whose image under H0
t is clearly E .

(2)Note that bothV = U[1]⊥ andW = V[−1]⊥ are closedunder products inD, and
consequently so is C. It is clear now thatH has an injective cogenerator (which is pure-
injective, resp. accessible pure-injective) if, and only if, there is E ∈ Inj(H) (which is
pure-injective, resp. accessible pure-injective) such that Inj(H) = ProdH(E). This is
by (1) further equivalent to the existence of a Q (that is pure-injective, resp. accessible
pure-injective) such that C = ProdD(Q).

(3) Bearing in mind Proposition 5.5 and the equivalence of categories H0
t : C �−→

Inj(H), the ’only if’ part is clear.
As for the ’if’ part we then have a class Inj(H) = H0

t (C) of pure-injective (resp.
accessible pure-injective) injective cogenerators of H and, using Lemma 8.24, the
task is then reduced to prove that H has a cogenerator. Let us do it. By hypothesis,
for any Q ∈ C we have a section sQ : Q −→ E IQ , for some set IQ . Moreover,

from the definition of co-t-structure, we get a triangle VE
λ−→ E

ρ−→ WE [1] +−→,
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which in turn yields another one V
IQ
E

λ
IQ−→ E IQ

ρ
IQ−→ W

IQ
E [1] +−→, where VE ∈ V and

WE ∈ W .We then have that ρ IQ ◦sQ = 0 since Q ∈ V andW
IQ
Q [1] ∈ W[1] = V⊥. So

there is a morphism, necessarily a section, uQ : Q −→ V
IQ
E such that λIQ ◦ uQ = sQ .

But H0
t : V −→ H preserves products (see [59, Lemma 3.1]), and so we get a section

H0
t (uQ) : H0

t (Q) −→ H0
t (VE )IQ , where the product in the codomain is taken in H.

It immediately follows that H0
t (VE ) is a cogenerator ofH.

(4) It follows from Lemma 7.4 and the proof of Proposition 7.1 that there is an
E ∈ PInj(D) such that PInj(D) = Prod(E). The result is then a direct consequence
of assertion (2) and Lemma 5.6. 
�

The final result of this subsection shows that t-structures with a definable co-aisle
have a right adjacent co-t-structure.

Theorem 8.26 LetD be a compactly generated triangulated category and t = (U ,V)

be a t-structure. Consider the following assertions:

(1) The co-aisle V is definable.
(2) t has a right adjacent co-t-structure c = (V,W) such that V = ⊥PInj(W)[1].

The implication (1) �⇒ (2) holds true. Moreover, when D is the base of a sta-
ble derivator or the homotopy category of a stable ∞-category, both assertions are
equivalent and they are also equivalent to

(3) The co-aisle V is closed under pure epimorphisms (see Remark 8.9).

Proof (2) �⇒ (3) ⇐⇒ (1) when D has the mentioned enhancement: The equality
V = ⊥PInj(W) guarantees that V is closed under pure epimorphisms. Then use
Remark 8.9.

(1) �⇒ (2) Consider the suspended ideal I corresponding to V by the bijec-
tion of Theorem 8.16. We then consider the associated TTF triple (CI , TI ,FI) in
Mod-Dc (see [63, Subsection 4.2]). Recall from op.cit. that TI consists of the functors
T : (Dc)op −→ Ab such that T (s) = 0, for all morphisms s ∈ I. In other words, TI
is the essential image of the forgetful functor Mod-D

c

I � Mod-Dc.
If y := yD : D −→ Mod-Dc is the Yoneda functor, it follows from the Yoneda

lemma that yV ∈ TI if and only if HomD(I, V ) = 0. That is, we have an equality
V = y−1(TI) (here we warn the reader that the class TI may differ from the class F
from Proposition 8.20, despite the fact that y−1(TI) = V = y−1(F)).

On the other hand (TI ,FI) is a hereditary torsion pair in Mod-Dc, which implies
that TI = ⊥(

Inj(Mod-Dc) ∩ FI
) = ⊥Y , for some object Y such that Prod(Y ) =

Inj(Mod-Dc) ∩ FI . If we take now Q ∈ PInj(D) such that yQ ∼= Y then, by [32,
Theorem 1.8], we get that V = ⊥Q = ⋂

i≥0
⊥Q[i]. The task is then reduced to

prove that the pair
(⊥Q, (⊥Q[−1])⊥)

is a co-t-structure in D, for then if we put
W := (⊥Q[−1])⊥ and observe that Q ∈ W[1], the equality V = ⊥PInj(W)[1]
becomes obvious.

The key result here (somewhat alike Proposition 6.9) is [14, Theorem 2.3.4] which
says that

(⊥Q, (⊥Q[−1])⊥)
is a co-t-structure inD provided that Q is a perfect object
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in Dop (see Subsection 2.4). This is what we are going to verify now. If f : X −→ Z
is a morphism in D, we have the following equivalences:

HomD( f , Q) = 0 ⇐⇒ HomMod-Dc
(
y( f ),Y

) = 0

⇐⇒ HomMod-Dc
(
Im(y( f )),Y

) = 0

⇐⇒ Im
(
y( f )

) ∈ TI .

The first equivalence is again due to [32, Theorem 1.8], the second holds since Y is
injective and the last one by the choice of Y . Hence, since y respects products and TI
is closed under products (it is a torsion-free class in Mod-Dc), it follows that the class
of morphisms in D satisfying HomD( f , Q) = 0 is closed under all products in D, or
equivalently coproducts in Dop, as required. 
�

8.5 Compactly generated t-structures have a locally fp heart

Except for the final main result, where we shall work in a more general context,
we assume all through this subsection that D is a compactly generated triangulated
category and that t = (U ,V) is a compactly generated t-structure in it.

The following is the crucial result. Since V is definable, we also indirectly obtain
that the suspended ideal I corresponding to t via Theorem 8.16 consists precisely
of the maps in Dc factoring through U[1] ∩ Dc. In fact, the compactly generated t-
structures inD are known to bijectively correspond to suspended subcategories ofDc

which are closed under direct summands; see [13, Theorem 4.2.1(3)] or, under the
existence of a derivator enhancement, also [67, Theorem 4.5].

Proposition 8.27 Suppose that D and t are as above and denote U0 = U ∩ Dc. The
following assertions hold:

(1) U is the smallest subcategory ofD that containsU0 and is closed under coproducts,
extensions and Milnor colimits.

(2) For an object U ∈ D, the following assertions are equivalent:

(a) U ∈ U;
(b) Any morphism f : C −→ U, with C compact, factors through some object in

U0;
(c) There exists a pure epimorphism

∐
i∈I Ui −→ U, for some family (Ui )i∈I of

objects in U0.

(3) U is closed under pure monomorphisms in D.

In particular Add(U0) is a t-generating subcategory of U (see Definition 4.2).

Proof (1) Let U denote the smallest subcategory of D that contains U0 and is closed
under coproducts, extensions and Milnor colimits. It is clear that U ⊆ U since U
satisfies all those closure properties and contains U0. On the other hand, by [29,
Theorem 12.1], we know that U = SuspD(U0), where SuspD(S) denotes the smallest
suspended subcategory of D that contains S and is closed under coproducts, for each
subcategory S. Since we have U0[1] ⊆ U0 we immediately get that U[1] ⊆ U , which
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implies that U is a suspended subcategory closed under taking coproducts. This gives
the inclusion SuspD(U0) = U ⊆ U , which is then an equality.

(2) (c) �⇒ (b) Fix a pure epimorphism p : ∐
i∈I Ui −→ U as described in the

statement of (2)(c). Then any morphism f : C −→ U , with C compact, admits a
factorization f = p ◦ g, where g : C −→ ∐

i∈I Ui is some morphism. Due to the
compactness of C , g factors through some finite subcoproduct of the Ui and such a
subcoproduct is in U0.

(b) �⇒ (c) We can always construct a pure epimorphism q : ∐
i∈I Ci −→ U ,

for some family (Ci )i∈I of compact objects in D. For example, one can take a set C
of representatives of the isoclasses of objects in Dc and take the canonical morphism∐

C∈C C (HomD(C,U )) −→ U . If we denote by ι j : C j −→ ∐
i∈I Ci the canonical j-th

map to the coproduct, then q j := q ◦ ι j : C j −→ U is a morphism from a compact

object. By hypothesis, we have a factorization q j : C j
u j−→ Uj

q ′
j−→ U , for some

Uj ∈ U0. If now q ′ : ∐
i∈I Ui −→ U is the morphism with the q ′

j as components,
then we have a decomposition q = q ′ ◦ (

∐
ui ), which implies that q ′ is also a pure

epimorphism.
(a) ⇐⇒ (b)& (c) Let us denote by Ũ the full subcategory of D consisting of the

objects Ũ which satisfy the equivalent conditions (2)(b) and (2)(c). Since Ũ ⊆ U by
Corollary 8.21, we just need to prove that U ⊆ Ũ .

Using (2)(b), we clearly see that Ũ is closed under taking coproducts. On the other
hand, if Ũ1 −→ Ũ2 −→ · · · −→ Ũn −→ · · · is a sequence in Ũ , then the canonical
morphism q : ∐

n∈N Ũn −→ Mcolim Ũn is a pure epimorphism. If, for each n ∈ N,
using (2)(c), we fix a pure epimorphism pn : ∐

i∈In Ui −→ Ũn , where In is some

set and all Ui are in U0, then
∐

pn : ∐
n∈N(

∐
i∈In Ui ) −→ ∐

n∈N Ũn is also a pure
epimorphism. It follows that q ◦ (

∐
pn) is a pure epimorphism, which, by (2)(c),

implies that Mcolim Ũn ∈ Ũ . Therefore Ũ is also closed under takingMilnor colimits.
We next prove that Ũ is closed under extensions, and then assertion (1) will give

the desired inclusion U ⊆ Ũ . Let Ũ1
u−→ X

v−→ Ũ2 −→ Ũ1[1] be a triangle in D
with Ũk ∈ Ũ , for k = 1, 2, and let f : C −→ X be any morphism, where C ∈ Dc.

Then v ◦ f factors as a composition C
v′−→ U2

h−→ Ũ2, where U2 ∈ U0. Completing

to a triangle we obtain a triangle in C ′ u′−→ C
v′−→ U2 −→ C ′[1] inDc together with

a morphism of triangles

C ′ u′

g

C
v′

f

U2

h

C ′[1]
g[1]

Ũ1 u X
v

Ũ2 Ũ1[1].

But the morphism g : C ′ −→ Ũ1 factors as a composition C ′ g1−→ U1
g2−→ Ũ1,

whereU1 ∈ U0. By taking now the homotopy pushout of u′ and g1, we obtain a triangle
U1 −→ U −→ U2 −→ U1[1] in D (and in Dc). Since U0 is closed under taking
extensions inD, we get thatU ∈ U0.Moreover, we have that f ◦u′ = u◦g = u◦g2◦g1
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and, by properties of homotopy pushouts (see [51, Section 1.4]), we immediately get
that f (and u ◦ g2) factor through U . It follows that X ∈ Ũ .

(3) This is a direct consequence of Corollary 8.21. 
�
The following are immediate consequences.

Proposition 8.28 Let D be a compactly generated triangulated category, t = (U ,V)

be a compactly generated t-structure with heart H, let us put U0 = Dc ∩ U and let

y = y|U : U −→ Mod-U0, U � yU = HomU (?,U )U0 ,

be the generalized Yoneda functor. Then the functor G := y|H : H −→ Mod-U0 is
fully faithful and has a left adjoint F : Mod-U0 −→ H that is a Gabriel localization
functor. Moreover, there is a natural isomorphism F ◦ y ∼= (H0

t )|U .

Proof Just apply Theorem 4.5, with the t-generating subcategory P = Add(U0),

taking into account that we have a clear equivalence of categories P̂ = mod-P
∼=−→

Mod-U0 that takes M � M|U0 . 
�
Corollary 8.29 Let D be a compactly generated triangulated category and let t =
(U ,V) be a compactly generated t-structure in D with heart H. Then H0

t (U0) is a
skeletally small class of generators of H.

Proof Using the notation from the last proof, {F(yP) = H0
t (P) | P ∈ P} is a class

of generators of H since so is {yP | P ∈ P} for P̂ . We end the proof by noting that
H0
t (P) ⊆ Add(H0

t (U0)). 
�
For any skeletally small pre-additive category A, we will denote by FP2(Mod-A)

the subcategory of Mod-A consisting of the A-modules M which admit a projective
presentation P−2 −→ P−1 −→ P0 −→ M → 0, where the P−k are finitely
generated projective A-modules. The following lemma is crucial for our purposes.

Lemma 8.30 LetT = Ker(F), for the functor F as in Proposition 8.28. The hereditary
torsion pair (T , T ⊥) in Mod-U0 is generated by modules in FP2(Mod-U0). That is,
there is a (necessarily skeletally small) class S of modules in FP2(Mod-A) ∩ T such
that Gen(S) = T .

Proof By using the associated Grothendieck topology in U0 (see [63, Section 3.2] or
[43]), it is enough to prove that ifU0 ∈ U0 and N is a submodule of the representable
U0-module y(U0) such that y(U0)/N ∈ T , then there is an epimorphism M ′ �
y(U0)/N for some M ′ ∈ FP2(Mod-A) ∩ T .

Let then U0 and N be as in last paragraph, and put M := y(U0)/N , which is an
object of T . Consider an epimorphism p : ∐

i∈I y(Ui ) � N , where the Ui are in U0.
Since y preserves coproducts,

∐
i∈I y(Ui ) ∼= y(

∐
i∈I Ui ). By the Yoneda lemma, the

composition y(
∐

i∈I Ui ) ∼= ∐
i∈I y(Ui )

p−→ N
inc
� y(U0) is necessarily of the form

y(g), for somemorphism g : ∐
i∈I Ui −→ U0 inU , and it follows that Coker(y(g)) ∼=
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M .As in the proof ofLemma4.7,weobserve that F(y(g)) ∼= H0
t (g) is an epimorphism

since F is exact and F(M) = 0. Upon completing g to a triangle

U0[−1] u−→ U ′ f−→
∐

i∈I
Ui

g−→ U0, (8.1)

we, thus, have U ′ ∈ U by Lemma 4.3. Since U0[−1] is compact, the morphism

u : U0[−1] −→ U ′ factors as U0[−1] u′−→ U ′
0

α−→ U ′ for some U ′
0 ∈ U0, by

Proposition 8.27(2), and we obtain a commutative diagram with triangles in rows,
where U ′′

0 ∈ U0 is the cone of u′ and the morphism β comes from the axioms of
triangulated categories:

U0[−1] u′
U ′
0

f ′

α

U ′′
0

g′

β

U0.

U0[−1] u U ′
f

∐
i∈I Ui g U0.

If we apply the restricted Yoneda functor to the last diagram and denote M ′ =
Coker(y(g′)), we obtain a commutative diagram in Mod-U0 with exact rows and an
epimorphism in the rightmost column:

y(U ′
0)

y( f ′)

y(α)

y(U ′′
0 )

y(g′)

y(β)

y(U0) M ′ 0

y(U ′)
y( f )

y(
∐

i∈I Ui ) y(g)
y(U0) M 0

Now it follows from Lemma 4.7 that M ′ ∈ FP2(Mod-A) ∩ T , as required. 
�
We are now ready for the main result of the section.

Theorem 8.31 Let D a triangulated category with coproducts, let t = (U ,V) be a
compactly generated t-structure in D, with heart H, and put U0 = U ∩ Dc. Then H
is a locally finitely presented Grothendieck category and its subcategory of finitely
presented objects is fp(H) = H0

t (U0).
When in addition t restricts to the subcategory Dc of compact objects, the heartH

is also locally coherent.

Proof Replacing D by the compactly generated triangulated subcategory L :=
LocD(U0) if necessary, we can and shall assume in the sequel that D is compactly
generated. This is because the restricted t-structure t′ := (U ,L ∩ V) has the same

heart as t. Note that the composition L = LocD(U0)
ι

� D
H0
t−→ H is the cohomo-

logical functor associated to the restricted t-structure t′ = (U ,V ∩ L). Therefore the
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reduction to the case when D is compactly generated is also valid when proving the
last statement of the theorem.

Let now G be the Giraud subcategory of Mod-U0 associated to the torsion pair
(T , T ⊥), where T = Ker(F) for F from Proposition 8.28. By Lemma 8.30, we
can fix a set S ⊆ FP2(Mod-U0) such that T = Gen(S). It then follows that G
consists of the U0-modules Y such that HomMod-U0(S,Y ) = 0 = Ext1Mod-U0

(S,Y ),
for all S ∈ S. This implies that G is closed under taking direct limits in Mod-U0. By
Proposition 2.11, we get that H � (Mod-U0)/T is locally finitely presented and that
fp(H) = add(F(mod-U0)).

Let us assume that X = F(M), where M is a finitely presented U0-module. There
is then a morphism f : U1 −→ U0 in U0 such that the sequence

y(U1)
y( f )−→ y(U0)

p−→ M −→ 0

is exact, for some epimorphism p. Thanks to the natural isomorphism F ◦y ∼= (H0
t )|U ,

if we apply F to the last sequence, we get an exact sequence

H0
t (U1)

H( f )−→ H0
t (U0) −→ X → 0.

However, we also have a triangle U1
f−→ U0

g−→ U ′ −→ U1[1], with its terms in
U0, which induces an exact sequence

H0
t (U1)

H0
t ( f )−→ H0

t (U0)
H0
t (g)−→ H0

t (U ′) −→ H0
t (U1[1]) = 0.

We then get that X ∼= H0
t (U ′) and so F(mod-U0) ⊆ H0

t (U0). On the other hand,
we have that H0

t (U0) ∼= F(yU0) ∈ F(mod-U0), for all U0 ∈ U0. So fp(H) =
add(H0

t (U0)).
We must still prove that every summand Y of an object X ∈ H0

t (U0) lies already
in H0

t (U0). To that end, let U0 ∈ U0 be such that X ∼= H0
t (U0) and denote by g the

compositionU0
can−→ τ

≥0
t (U0) = H0

t (U0) � Y , where the last arrow stands for a split
epimorphism. When completing g to a triangle

Y [−1] −→ W
f−→ U0

g−→ Y ,

we obtain a split exact sequence 0 −→ H0
t (W )

H0
t ( f )−→ H0

t (U0)
H0
t (g)−→ Y −→ 0

in H. In particular, Z := H0
t (W ) ∈ fp(H). As we clearly have that W ∈ U and

Add(U0) is t-generating by Proposition 8.27, there is a morphism q : ∐
i∈I Ui −→ W

with Ui ∈ U0 for all i ∈ I which induces an epimorphism H0
t (q) : H0

t (
∐

i∈I Ui ) ∼=∐
i∈I H0

t (Ui ) −→ Z inH. Thus Z = ∑
i∈I q(H0

t (Ui )) and, Z beingfinitely presented
in H, there is a finite subset J ⊆ I such that Z = ∑

i∈J q(H0
t (Ui )). All in all, if we

put h := f ◦ q| ∐i∈J Ui , we observe that Coker H0
t (h) = Coker H0

t ( f ) ∼= Y . If we
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complete h to a triangle

∐

i∈J
Ui

h−→ U0 −→ U ′ −→
∐

i∈J
Ui [1],

we obtain an object U ′ ∈ U0 with H0
t (U ′) ∼= Coker H0

t (h) ∼= Y , as desired.
For the final statement, note that when t restricts to Dc, the category U0 has weak

kernels. Indeed if f : U −→ U ′ is a morphism in U0 and we complete it to a triangle

X
g−→ U

f−→ U ′ +−→ in Dc, then the composition τ
≤0
t X

can−→ X
g−→ U is a weak

kernel of f in U0. Hence Mod-U0 is a locally coherent Grothendieck category (see
[63, Corollary 1.11]). The local coherence ofH then follows by [34, Proposition A.5].


�
Remark 8.32 In [14] the author has proved, by using different methods, that any com-
pactly generated t-structure has a Grothendieck heart with H0

t (Dc) as skeletally small
class of generators. Note that Bondarko’s result is a particular case of Theorem 8.12.

Remark 8.33 If t = (U ,V) is a compactly generated t-structure in the homotopy
category D of a compactly generated stable ∞-category, then the equality fp(H) =
H0
t (U0) from Theorem 8.31 also follows from [44, Corollary 5.5.7.4(5)] (see also the

introduction to [46, Appendix C.6]).

9 Cosilting objects and t-structures with AB5 hearts

9.1 Partial cosilting objects

Now we relate the objects Q from Theorem 8.4 to concepts which appeared in the
literature.

Definition 9.1 Suppose that D is a triangulated category with products and Q is an
object of D. We shall say that

(1) Q is AMV partial cosilting (for Angeleri-Hügel, L., Marks, F., Vitória, J) when
⊥>0Q is a co-aisle ofD that contains Q. The induced t-structure will be said to be
an AMV partial cosilting t-structure.

(2) Q is NSZ partial cosilting (for Nicolás-Saorín-Zvonareva) when (UQ,VQ) :=
(⊥<0Q, (⊥≤0Q)⊥) is a t-structure inD, called in the sequel theNSZpartial cosilting
t-structure associated with Q, and HomD(?, Q) vanishes on VQ[−1].
The object Q is called cosilting when it is (AMV or NSZ) partial cosilting and

cogenerates D. The associated t-structure, which is (⊥<0Q,⊥>0 Q), is the cosilting
t-structure associated to Q.

TheNSZpartial cosilting objects are rather generally related to right non-degenerate
t-structures with Grothendieck hearts.

Proposition 9.2 Let D be a triangulated category with products and coproducts and
let t = (U ,V) be a t-structure with heart H. Consider the following assertions:
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(1) t is the t-structure associated with a pure-injective NSZ partial cosilting object Q.
(2) t is right non-degenerate, the heart H is AB5 with an injective cogenerator and

H0
t : D −→ H preserves coproducts.

(3) t is right non-degenerate, the heartH is a Grothendieck category and the functor
H0
t : D −→ H preserves coproducts.

The implications (1) �⇒ (2) ⇐� (3) hold true. When D satisfies Brown repre-
sentability theorem, the implication (2) �⇒ (1) also holds. When D is standard well
generated, all assertions are equivalent.

Proof (3) �⇒ (2) is clear and both implications (1) �⇒ (2) and (2) �⇒ (1) are
included in the proof of [54, Corollary 4.1], bearing in mind thatH is as in (2) exactly
when the NSZ partial cosilting object Q representing the functor HomH(H0

t (?), E),
for the injective cogenerator E of H, is pure-injective (see Proposition 8.3).

(1) = (2) �⇒ (3) (when D is standard well generated) follows by the truth of
implication (1) �⇒ (4) in Theorem 8.4 in this case. 
�

If the category D is standard well generated, we can say much more.

Proposition 9.3 Let D be an standard well generated triangulated category and
t = (U ,V) be a t-structure such that the heart H is a Grothendieck category and
the functor H0

t : D −→ H preserves coproducts. Then the object Q ∈ D from Theo-
rem 8.4(1) is pure-injective NSZ partial cosilting. Moreover, ifHQ is the heart of the
NSZ partial cosilting t-structure tQ = (UQ,VQ) and (H0

t )′ : D −→ HQ is the associ-

ated cohomological functor, then there is an equivalence of categories� : H ∼=−→ HQ

such that � ◦ H0
t

∼= (H0
t )′.

Proof Suppose that Q is obtained from t via Theorem 8.4. Then tQ := (UQ,VQ) :=
(⊥<0Q, (⊥≤0Q)⊥) is a t-structure inD thanks to Proposition 6.9. Since clearlyVQ ⊆ V
and HomD(?, Q) vanishes on V[−1], it vanishes on VQ[−1]. It follows that Q is NSZ
partial cosilting. On the other hand, by the proof of Theorem 6.2 or that of Proposition
8.3, we have equivalences of categories

Inj(H) = ProdH
(
H0
t (Q)

) ∼= ProdD(Q) ∼= ProdHQ

(
(H0

t )′(Q)
) = Inj(HQ),

where (H0
t )′ : D −→ HQ is the cohomological functor associated to tQ . Then, by

the dual of Corollary 2.5, we conclude that H and HQ are equivalent via an equiv-

alence � : H ∼=−→ HQ that takes H0
t (Q) to (H0

t )′(Q). But then we have functorial
isomorphisms

HomHQ

(
(� ◦ H0

t )(?), (H0
t )′(Q)

) ∼= HomHQ

(
(� ◦ H0

t )(?), (� ◦ H0
t )(Q)

)

∼= HomH
(
H0
t (?), H0

t (Q)
)

∼= HomD(?, Q)

∼= HomHQ

(
(H0

t )′(?), (H0
t )′(Q)

)
.

By Yoneda’s lemma and the fact that (H0
t )′(Q) is an injective cogenerator ofHQ , we

get a natural isomorphism � ◦ H0
t

∼= (H0
t )′ (recall Lemma 2.4). 
�
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Remark 9.4 A word of warning is due in connection with the last proposition. A NSZ
partial cosilting t-structure is always right non-degenerate. Therefore if the t-structure
t of last proposition is right degenerate, then t �= tQ .

The final result of this subsection shows that, up to suitable localization, any smash-
ing t-structure with an AB5 heart is given by a pure-injective NSZ partial cosilting
object. If the t-structure is already left non-degenerate, the resulting t-structure will
be non-degenerate and hence given by a pure-injective cosilting object.

Proposition 9.5 Let D be a triangulated category with coproducts and t = (U ,V) be
a smashing t-structure of D with heart H. The following assertions hold:

(1) L := LocD(U) is a smashing localizing subcategory ofD, i.e. the inclusion functor
L � D has a right adjoint which preserves coproducts.

(2) If D satisfies Brown representability theorem, then so does L.
(3) If D is standard well generated, then so is L.
(4) Suppose thatD satisfies Brown representability theorem (resp.D is standard well

generated). The heart H is a complete AB5 abelian category with an injective
cogenerator (resp. H is a Grothendieck category) if, and only if, there exists a
pure-injective NSZ partial cosilting object Q of L such that t′ = (U ,V ∩L) is the
t-structure in L associated to Q.

Proof (1) We start by proving that the inclusion L � D has a right adjoint, for which
we will check that any object D ∈ D fits into a triangle L −→ D −→ Y −→ L[1],
with L ∈ L and Y ∈ L⊥. For each integer n ≥ 0, we have a triangle

�n : τ
≤n
t D −→ D −→ τ>n

t D −→ τ
≤n
t [1]

with respect to the t-structure (U[−n],V[−n]). We have an obvious functorial mor-
phism of triangles from �n to �n+1 with identity map on D. Using an argument
similar to that of [29, Theorem 12.1], we get a commutative diagram

D
1

D
1

D
1 · · · 1

D
1 · · ·

τ>0
t D

f1
τ>1
t D

f2
τ>2
t D

f3
· · · fn

τ>n
t D

fn+1
· · ·

Bearing in mind that D is isomorphic to the Milnor colimit of the upper sequence,
using Verdier’s 3 × 3 Lemma as in the argument in [op.cit], we get a triangle

L −→ D −→ Mcolim τ>n
t D

+−→,

where L fits into a triangle

∐

n≥0

τ
≤n
t D −→

∐

n≥0

τ
≤n
t D −→ L −→

∐

n≥0

τ
≤n
t D[1].
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We then clearly have that L ∈ L and the task is reduced to check that Mcolim τ>n
t D

is in L⊥ = U⊥Z . For that, note that for each r ≥ 0 we have a triangle

∐

n≥r

τ>n
t D

1− f−→
∐

n≥r

τ>n
t D −→ Mcolim τ>n

t D −→
∐

n≥r

(τ>n
t D)[1]

by [51, Lemma 1.7.1]. Consequently, we haveMcolim τ>n
t D ∈ U[−r ]⊥ for any r ≥ 0

since all the coproducts in the above triangle belong toU[−r ]⊥. Finally, asU[−r ] ⊆ U
for r ≤ 0, we have Mcolim τ>n

t D ∈ U[−r ]⊥ also in this case, as we wished to prove.
In order to see that L is smashing, it suffices to prove that L⊥ is closed under

coproducts. To that end, notice that L⊥ = U⊥Z = ⋂
n∈Z V[n] and the conclusion

follows since V is closed under coproducts.
(2) Let � : D −→ L be right adjoint to the inclusion functor ι : L � D, so that the

unit η : 1L −→ � ◦ ι is a natural isomorphism. Let H : L −→ Ab be a contravariant
cohomological functor which sends coproducts to products. Then H ◦ � : D −→ Ab
has the same property. By the Brown representabilty property of D, we get an object
DH ∈ D such that H ◦ � and HomD(?, DH ) are naturally isomorphic. We then have
natural isomorphisms

H
H(η)−→ H ◦ � ◦ ι ∼= HomD(ι(?), DH ) ∼= HomL(?,�(DH )),

the last one of them due to the adjunction (ι,�). Therefore H is representable and so
L satisfies Brown representability theorem.

(3) By [35], well generated triangulated categories have a set of perfect generators.
Then, by [53, Corollary 2.4], we have an induced TTF triple (L,L⊥,L⊥⊥) in D. But
then, by properties of TTF triples, we have triangulated equivalences L ∼= L⊥⊥ ∼=
D/L⊥. If � : D −→ L⊥ is the left adjoint to the inclusion functor L⊥ −→ D, then
L⊥ = LocD(�(X )), where X is any set of perfect generators ofD (see [53, Lemmas
2.2 and 2.3]). It is now routine to check that if D = C/LocC(S), for some compactly
generated triangulated category C and some set S ⊆ C, and we choose any set X ′
of objects of C that is mapped onto �(X ) by the quotient functor q : C −→ D, then
D/LocD(�(X )) is equivalent to C/Loc(S ∪ X ′). Therefore L � C/Loc(S ∪ X ′) is
standard well generated.

(4) When D satisfies Brown representability theorem (resp. is standard well gen-
erated), the restricted t-structure t′ = (U ,V ∩ L) in L is smashing, clearly right
non-degenerate and its heart is again H. By using Proposition 9.2 and assertions (2)
and (3), we conclude that H is complete AB5 with an injective cogenerator (resp. a
Grothendieck category) if, and only if, t′ is the t-structure associated to a pure-injective
NSZ partial cosilting object of L. 
�

9.2 Left non-degenerate t-structures

As long as we are interested only in the cohomological functor of a t-structure, NSZ
partial cosilting objects are very convenient, as was shown in Sect. 9.1. This is in
particular illustrated by Proposition 9.3 which says that for a given t-structure whose
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associated cohomological functor is nice enough, there exists a (possibly different)
NSZ partial cosilting t-structure with the same cohomological functor.

If we are concerned in how precisely the heart sits in D, however, we need more
refined tools. Here we assume that the t-structure in question is left non-degenerate,
which can be achieved in various situations (see the end of Sect. 3). We stress again
that in that case, the cohomological functor of a t-structure preserves coproducts if
and only if the t-structure is smashing (Remark 8.2).

The final result of the paper explains the role of AMV partial cosilting objects.
The following result may be seen as a derivator-free generalization of the equivalence
(1) ⇐⇒ (4) of [41, Theorem 4.6]

Proposition 9.6 LetD have coproducts and products and let t be a left non-degenerate
t-structure with heart H. Consider the following assertions:

(1) t is the t-structure associated with a pure-injective AMV partial cosilting object.
(2) t is smashing and H is an AB5 abelian category with an injective cogenerator.
(3) t is smashing and H is a Grothendieck category.

The implications (1) �⇒ (2) ⇐� (3) hold true. When D satisfies Brown repre-
sentability theorem, the implication (2) �⇒ (1) also holds. When D is standard well
generated all assertions are equivalent.

Proof (3) �⇒ (2) is clear and, assuming that D is standard well generated, the
implication (2) �⇒ (3) is a direct consequence of the implication (4) �⇒ (5) in
Theorem 8.4.

(1) �⇒ (2) The equality V = ⊥>0Q implies that

HomD(V [−1], Q) = HomD(V , Q[1]) = 0,

for all V ∈ V . Then Q satisfies conditions (1)(a) and (1)(c) of Theorem 8.4. Moreover,
if M ∈ H is an object such that HomD(M, Q) = 0, then we have HomD(M, Q[n]) =
0, for all n ≥ 0, since H ⊆ V =⊥>0Q. It then follows that HomD(M[1], Q[ j]) = 0,
for all j > 0, so that M[1] ∈ V . It follows that M ∈ H ∩ V[−1] ⊆ U ∩ V[−1] = 0.
Hence also condition (1)(b) of the mentioned theorem holds. It follows that H is
complete AB5 with an injective cogenerator. Finally, it is clear that V = ⊥>0Q is
closed under taking coproducts, so that t is smashing.

(2) �⇒ (1) (when D satisfies Brown representability theorem) Since H0
t clearly

preserves coproducts, Theorem 8.4 tells us that there exists a Q ∈ V satisfying con-
ditions (1)(a)–(c) of that theorem. In particular we have that V ⊆ ⊥>0Q. It remains
to check that the reverse inclusion also holds. For this, just apply the argument in the
proof of [41, Lemma 4.4], based on [1, Theorem 3.6]. 
�
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