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Abstract
LetG be a compact and connected Lie group. The HamiltonianG-model functor maps
the category of symplectic representations of closed subgroups of G to the category
of exact Hamiltonian G-actions. Based on previous joint work with Y. Karshon, the
restriction of this functor to themomentum proper subcategory on either side induces a
bijection between the sets of isomorphismclasses. This classifies allmomentumproper
exact Hamiltonian G-actions (of arbitrary complexity). As an extreme case, we obtain
a version of the Eliashberg cotangent bundle conjecture for transitive smooth actions.
As another extreme case, themomentumproperHamiltonianG-actions on contractible
manifolds are exactly the symplectic G-representations, up to isomorphism.

List of symbols
ActtransG Category of transitive G-actions on connected closed manifolds
Ad,Ad∗ Adjoint, coadjoint G-representation
cg Conjugation by g

FG Functor from ˜SympRepG to SympRepG
Gx = Stabψ

x Stabilizer of x ∈ X under the G-action ψ on X
G/ Functor from SubclG to ActtransG
(g, T ) Pair consisting of g ∈ G and a linear symplectic map T : V → V ′
g, h Lie algebras of G, H
H Closed subgroup of G
Hamex

G Category of exact Hamiltonian G-actions
Hamex,prop

G Full subcategory of Hamex
G consisting of momentum proper objects

Hamcrit
G Full subcategory of Hamex,prop

G consisting of critical objects
Hamcontr

G Full subcategory of Hamex
G consisting of those objects (M, ω,ψ) for

which M is contractible
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Hamcontr,prop
G Full subcategory of Hamcontr

G consisting of momentum proper
objects

IρG Canonical isomorphism from ιG(ρ) = ρ toModelG(G, ρ) inHamex
G

iG Inclusion functor from ˜SympRepG to SympRep≤G

ιG Inclusion functor from SympRepG to Hamcontr
G

ιG,prop Inclusion functor from SympReppropG to Hamcontr,prop
G

ιa,ϕ Inclusion from V to T ∗G × V induced by (a, ϕ)

jG Inclusion functor from SubclG to SympRep≤G

Lx = Lψ
x Infinitesimal action at x induced by ψ

ModelG Hamiltonian G-model functor(
M, ω,ψ

)
Hamiltonian G-action

μL Momentum map for the lifted left-translation action of G on T ∗G
μρ Momentum map for ψρ

μD
H ,ρ = μD

ρ Momentum map for ψD
ρ

νρ Unique momentum map for ρ that vanishes at 0
ωQ Canonical symplectic form on T ∗Q
ωx Linear symplectic form on Vψ

x induced by ωx

pr1 Canonical projection from T ∗G × V to T ∗G
pr2 Canonical projection from T ∗G × V to V
prH Canonical projection from G to G/H
πρ Canonical projection from (μD

ρ )−1(0) to Yρ

ψD
ρ Diagonal H -action on T ∗G × V induced by right translation on G

and ρ

Rg Right translation by g ∈ G
ρψ,x Isotropy representation of ψ at x
ρψ,x Symplectic quotient representation of ψ at x
Stabψ

x = Gx Stabilizer of x ∈ X under the G-action ψ on X
SubclG Category of closed subgroups of G
SympRep≤G Category of symplectic representations of closed subgroups of G
SympRepprop≤G Full subcategory of SympRep≤G consisting of momentum proper

objects
SympRepG Category of symplectic G-representations
SympReppropG Full subcategory of SympRepG consisting of momentum proper

objects
˜SympRepG Category with objects symplecticG-representations and morphisms

(g, T )

T ∗
G G-cotangent functor

(V , σ, ρ) Symplectic H -representation
Vψ
x (imLx )

ωx /
(
imLx ∩ (imLx )

ωx
)

W σ σ -symplectic complement of W(
Yρ, ωρ, ψρ) Hamiltonian G-model associated to ρ
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1 Themain result and applications

LetG be a compact and connected Lie group.We call a HamiltonianG-actionmomen-
tum proper iff every momentum map for the action is proper. The purpose of this
article is to classify the momentum proper exact Hamiltonian G-actions in terms of
the momentum proper symplectic representations of closed subgroups of G. To this
end I provide a bijection between the sets of equivalence classes of such representations
and of such Hamiltonian actions (see Corollary 1.11 below).

The bijection is induced by the G-model functor. This is a functor between the
category of symplectic representations of closed subgroups of G and the category of
exact Hamiltonian G-actions.

In order to define these categories and the Hamiltonian G-model functor, we need
the following. For every g ∈ G we denote by

cg : G → G, cg(a) := gag−1,

the conjugation by g. We define SympRep≤G to be the following category:

• Its objects are the tuples (H , ρ) = (
H , V , σ, ρ

)
, where H is a closed subgroup of

G, (V , σ )1 is a (finite dimensional) symplectic vector space and ρ is a symplectic
H -representation on V w.r.t. σ .

• Its morphisms between two objects (H , ρ) and (H ′, ρ′) are pairs (g, T ), where
g ∈ G and T : V → V ′ is a linear symplectic map, such that

cg(H) = H ′, (1.1)

Tρh = ρ′
cg(h)T , ∀h ∈ H . (1.2)

(The dimension of V ′ may be bigger than the dimension of V . In this case T is
not surjective). The composition of two morphisms is defined by

(g′, T ′) ◦ (g, T ) := (
g′g, T ′T

)
. (1.3)

Remark A morphism (g, T ) is an isomorphism in the sense of category theory if and
only if T is surjective (and hence bijective). In this case the inverse of (g, T ) is given
by (g−1, T−1).

1 In the article [7] we used the notation ωV for the symplectic form σ on V . For simplicity I am using σ

here. To help the reader navigate through this article, I have included a list of symbols at the beginning of
this article.
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Let ψ = (
M, ω,ψ

)
be a Hamiltonian G-action.2 We call ψ exact iff there exists a

ψ-invariant primitive of ω.3 We call ψ momentum proper iff every momentum map4

for ψ is proper.
We define Hamex

G to be the following category:

• Its objects are the exact HamiltonianG-actions
(
M, ω,ψ

)
with M connected (and

without boundary5).
• Its morphisms between two objects (M, ω,ψ) and (M ′, ω′, ψ ′) are proper sym-
plectic embeddings 
 from M to M ′ that intertwine ψ with ψ ′.6 (The dimension
of M ′ may be bigger than the dimension of M). Composition is the composition
of maps.

Remark The isomorphisms between twoobjects are equivariant symplectomorphisms.

We define the Hamiltonian G-model functor

ModelG : SympRep≤G → Hamex
G

as follows:

• For every object (H , ρ) of SympRep≤G we define

ModelG(H , ρ) = (
Yρ, ωρ, ψρ)

to be the centred Hamiltonian G-model action induced by (H , ρ).7 This action is
defined as follows (for details see [7, Section 3]). We define ψD

ρ to be the diagonal
H -action on T ∗G × V induced by the right translation on G and by ρ. We denote
by g, h the Lie algebras of G, H and by

νρ : V → h∗ (1.4)

the unique momentum map for ρ that vanishes at 0.8 For a ∈ G and ϕ ∈ g∗ we
denote by aϕ ∈ T ∗

a G the image of ϕ under the derivative of the left translation by

2 By this we mean that (M, ω) is a symplectic manifold and ψ is a Hamiltonian G-action on M .
3 By this we mean a ψ-invariant one-form whose exterior derivative equals ω. The action ψ is exact if ω is
exact, because we assume that G is compact. (We obtain aψ-invariant primitive from an arbitrary primitive
by averaging w.r.t. the Haar measure on G).
4 By definition, every momentum map μ for a Hamiltonian G-action ψ on a symplectic manifold
(M, ω) is equivariant w.r.t. ψ and the coadjoint G-action Ad∗ on Lie(G)∗. This means that μ(ψg(x)) =
Ad∗(g)(μ(x)), for every g ∈ G and x ∈ M , where ψg := ψ(g, ·).
5 In this article every manifold is assumed to have empty boundary.
6 This means that ψ ′

g ◦ 
 = 
 ◦ ψg for every g ∈ G.
7 In the article [7] we used the notation (Y , ωY ) instead of (Yρ, ωρ). To make the dependence on ρ explicit,
I am using (Yρ, ωρ) here. To help the reader navigate through this article, I have included a list of symbols
at the beginning of this article.
8 Viewing the symplectic vector space (V , σ ) as a symplectic manifold, the representation ρ is a Hamilto-
nian G-action on V . Hence it admits a momentum map. In the article [7] we used the notation μV instead
of νρ . To make the dependence on ρ explicit, I am using νρ here.
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a. We define9

μD
H ,ρ := μD

ρ : T ∗G × V → h∗, μD
ρ

(
a, aϕ, v

) := −ϕ|h + νρ(v). (1.5)

This is a momentummap forψD
ρ . The pair (Yρ, ωρ) is defined to be the symplectic

quotient of ψD
ρ at 0 w.r.t. μD

ρ . This means that

YH ,ρ := Yρ = (μD
ρ )−1(0)/ψD

ρ . (1.6)

(The subgroup H is compact, since it is closed and G is compact. Therefore,
the restriction of ψD

ρ to (μD
ρ )−1(0) is proper. Since it is also free, the sym-

plectic quotient is well-defined). The left translation by G on G induces a
G-action on T ∗G and hence on T ∗G × V . Since left and right translation com-
mute, this action preserves (μD

ρ )−1(0) and descends to a G-action ψρ on Yρ ,
the symplectic quotient of T ∗G × V by the diagonal H -action.10 This defines
ModelG(H , ρ) = (

Yρ, ωρ, ψρ).
• For every g ∈ G we denote by Rg : G → G, Rg(a) := ag, the right translation
by g, and by Rg∗ : T ∗G → T ∗G the induced map. The map ModelG assigns
to every morphism (g, T ) : (H , ρ) → (H ′, ρ′) of SympRep≤G the morphism
ModelG(g, T ) of Hamex

G given by

ModelG(g, T )(y) := [
Rg−1

∗ (a, aϕ), T v
]
, (1.7)

where (a, aϕ, v) is an arbitrary representative of y. (Here on the right hand side
we denote by

[
a′, a′ϕ′, v′] the equivalence class of

(
a′, a′ϕ′, v′)).

The main result is the following. (As always, we assume that G is compact and
connected).

Theorem 1.8 (Hamiltonian G-model functor)

(i) (well-definedness on objects) The map ModelG is well-defined on objects, i.e.,
ψρ is indeed an exact Hamiltonian G-action.

(ii) (well-definedness onmorphisms) ThemapModelG iswell-defined onmorphisms,
i.e., (

Rg−1

∗ × T
) (

(μD
ρ )−1(0)

)
⊆ (μD

ρ′)−1(0), (1.9)

the right hand side of (1.7) does not depend on the choice of a representative
(a, aϕ, v), and ModelG(g, T ) is a morphism of Hamex

G .
(iii) (functoriality) The map ModelG is a covariant functor.
(iv) (essential injectivity) The map between the sets of isomorphism classes induced

by ModelG is injective.

9 In the article [7] we used the notation μ̃D for this map. For simplicity I have dropped the tilde here.
10 This can be seen as part of symplectic reduction in stages.
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(v) (morphisms)Let (H , ρ)and (H ′, ρ′)beobjects ofSympRep≤G, and (g, T ), (ĝ, T̂ )

be morphisms between these objects.ModelG maps these morphisms to the same
morphism if and only if

h′ := ĝg−1 ∈ H ′, T̂ = ρ′
h′T . (1.10)

(vi) (momentum properness and morphisms) Let A and A′ be objects of SympRep≤G

or let them be objects of Hamex
G , such that A′ is momentum proper11 and there

exists a morphism from A to A′. Then A is momentum proper.
(vii) (momentum properness and model functor) An object of SympRep≤G is momen-

tum proper if and only if its image under ModelG is momentum proper.
(viii) (essential surjectivity) Every momentum proper object of Hamex

G is isomorphic
to an object in the image of ModelG.

Remark Theorem 1.8(v) characterizes the extent to which the functorModelG is faith-
ful.

Theorem 1.8 puts previous joint work [7] with Y. Karshon into a categorical frame-
work. Namely, part (viii) of this theorem (essential surjectivity ofModelG) was proved
in [7, 1.5. Theorem], without introducing the categorical setup used in the present arti-
cle.

The other parts of Theorem 1.8 will be proved in the next section. The proof of (iv)
(essential injectivity) is based on Lemma 2.19, which provides criteria under which
the symplectic quotient representation of the model action ModelG(H , ρ) at a given
point is isomorphic to (H , ρ). We also use the fact that if two compact subgroups of
a Lie group are conjugate to subgroups of each other then they are conjugate to each
other. (This follows from Lemma 2.8 below).

Remark Naively, in the definition of a morphism of SympRep≤G , one could try to
weaken the condition (1.1) to either the condition cg(H) ⊆ H ′ or cg(H) ⊇ H ′. With
this modification the model functor would no longer be well-defined on morphisms.
(“⊇” is needed in order for (1.9) to hold and “⊆” is needed for the right hand side of
(1.7) not to depend on the choice of a representative. See the proof of Theorem 1.8(ii)
below).

We denote by

SympRepprop≤G , Hamex,prop
G

the full subcategories of SympRep≤G and Hamex
G consisting of momentum proper

objects. Theorem 1.8 has the following application.

11 Recall that an object A of SympRep≤G is a tuple
(
H , V , σ, ρ

)
, where H is a closed subgroup of G and

(V , σ, ρ) is a symplectic H -representation. Viewing (V , σ ) as a symplectic manifold, ρ is a Hamiltonian
H -action. We call A momentum proper iff this action is momentum proper, i.e., if every momentum map
for ρ is proper.
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Corollary 1.11 (classification of momentum proper exact Hamiltonian actions) The
functor ModelG induces a bijection

{
isomorphism class of SympRepprop≤G

} → {
isomorphism class of Hamex,prop

G

}
.

(1.12)

We call this bijection the classifying map (for momentum proper exact Hamiltonian
G-actions).

Remarks • It follows from Theorem 1.8(vi) that the isomorphism class of any object
of SympRepprop≤G is its isomorphism class in the bigger category SympRep≤G . A

similar remark applies to Hamex,prop
G .

• Corollary 1.11 classifies all momentum proper exact Hamiltonian G-actions up to
isomorphism.

• Surjectivity of the classifying map (1.12) follows from Theorem 1.8(viii), which
was proved in joint work with Y. Karshon [7, 1.5. Theorem].

• The inverse of the classifying map (1.12) is induced by assigning to a Hamiltonian
action its symplectic quotient representation at any suitable point, see Proposition
4.1 below.

• In contrast with Corollary 1.11 the map induced by ModelG between the sets of
isomorphism classes of SympRep≤G and Hamex

G is not surjective. To see this, let
Q be a connected compact manifold of positive dimension, without boundary.
We define ω to be the canonical symplectic form on T ∗Q and ψ to be the trivial
G-action on T ∗Q.
We claim that the isomorphism class of (T ∗Q, ω,ψ) does not lie in the image
of ModelG . To see this, assume that

(
H , V , σ, ρ

)
is an object of SympRep≤G for

which ψρ is trivial. Then H = G and therefore, Yρ is canonically diffeomorphic
to V . If

(
Yρ, ωρ, ψρ

)
is isomorphic to

(
T ∗Q, ω,ψ

)
then it follows that Q is a

singleton. This proves the claim.
• Many classification results are known for Hamiltonian group actions whose com-
plexity is low. (By definition, the complexity is half the dimension of a generic
non-empty reduced space. For references see [7]). What makes Corollary 1.11
special is that it classifies Hamiltonian actions of arbitrary complexity.

Proof of Corollary 1.11 By Theorem 1.8(i, ii, vii “⇒”, iii) the map (1.12) is well-
defined. By Theorem 1.8(iv, viii ,vii “⇐”) the map (1.12) is bijective. This proves
Corollary 1.11. ��

By considering the extreme case of the full subgroup H = G, this corollary
implies that the momentum proper Hamiltonian G-actions on contractible manifolds
are exactly the momentum proper symplectic G-representations, up to isomorphism.
See Corollary 1.17 below. On the other hand, by considering the extreme case in
which the vector space V is trivial, using Corollary 1.11, we can classify the critical
momentum proper exact Hamiltonian G-actions in terms of transitive G-actions on
manifolds.
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To explain the latter application, we call an object (M, ω,ψ) of Hamex,prop
G crit-

ical iff M is homotopy equivalent to some closed12 manifold of dimension equal to
dim(M)/2.

Remark 1.13 (Criticality) By Corollary 1.11 there exists an object (H , ρ) =(
H , V , σ, ρ

)
of SympRepprop≤G , such that ModelG(H , ρ) is isomorphic to (M, ω,ψ).

The manifold part of ModelG(H , ρ) is homotopy equivalent to the closed manifold
G/H and has dimension 2(dimG − dim H) + dim V ≥ 2 dim(G/H). It follows
that M is not homotopy equivalent to any closed manifold of dimension bigger than
dim(M)/2. This justifies the terminology critical.

We denote

Hamcrit
G := full subcategory of Hamex,prop

G consisting of critical objects.

For every manifold Q we denote by ωQ the canonical symplectic form on T ∗Q.
We define the G-cotangent functor T ∗

G to be the canonical functor from the category
of G-actions on manifolds and G-equivariant diffeomorphisms to the category of
Hamiltonian G-actions and G-equivariant symplectomorphisms. It takes an object
(Q, θ) to (T ∗Q, ωQ) together with lifted G-action θ∗, and a morphism f : Q → Q′
to the lifted map f∗ : T ∗Q → T ∗Q′.

We define ActtransG to be the category whose objects are the transitive smooth G-
actions on connected closed manifolds and whose morphisms are the G-equivariant
diffeomorphisms.

Corollary 1.14 (Classificationof criticalmomentumproper exactHamiltonian actions)
The functor T ∗

G induces a bijection

{
isomorphism class of ActtransG

} → {
isomorphism class of Hamcrit

G

}
. (1.15)

Remarks (Classification of critical actions, Eliashberg cotangent bundle conjec-
ture)

• Part of the statement is that T ∗
G maps ActtransG to Hamcrit

G .
• The isomorphism class of any object of Hamcrit

G in Hamcrit
G is its isomorphism class

in the bigger category Hamex,prop
G (or in Hamex

G ).
• Corollary 1.14 classifies the critical momentum proper exact Hamiltonian G-
actions in terms of transitive G-actions on manifolds.

• The cotangent functor T ∗ is the canonical functor from the category of connected
closed smooth manifolds and diffeomorphisms to the category of symplectic man-
ifolds and symplectomorphisms. It agrees with T ∗{e}. The Eliashberg cotangent
bundle conjecture states that T ∗ is essentially injective, i.e., it induces an injective
map between the sets of isomorphism classes. See [8, Problem 31, p. 561]. Very
little is known about this conjecture. See [1, 3, 4] for some results.

12 This means compact and without boundary.
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• By Corollary 1.14 the restriction of the functor T ∗
G to the category ActtransG of

transitive G-actions is essentially injective. This proves an equivariant version of
the Eliashberg cotangent bundle conjecture. In fact, Corollary 1.14 provides more
information, namely it also specifies the image of the class of objects of ActtransG
under T ∗

G , up to isomorphism.
• The philosophy behind this application is that symmetry makes problems more
accessible. In the present situation it allows for a classification of the structures
at hand (transitive G-actions and critical Hamiltonian G-actions). The same phi-
losophy was for example used recently in [5], where the authors used Delzant’s
classification of symplectic toric manifolds to prove that certain equivariant sym-
plectic capacities are (dis-)continuous. (Without symmetry the question whether
a given symplectic capacity is continuous is hard in general.)

We will prove Corollary 1.14 in Sect. 3.
As another application of Corollary 1.11, we now classify the momentum proper

Hamiltonian G-actions on contractible manifolds. Here we consider another extreme
case, in which the subgroup H equalsG.We denote by SympRepG the categorywhose
objects are symplectic G-representations and whose morphisms are G-equivariant
linear symplectic maps (possibly not surjective), and by

SympReppropG

the full subcategory consisting of momentum proper objects. We denote by Hamcontr
G

the full subcategory of Hamex
G consisting of those objects (M, ω,ψ) for which M is

contractible, and by

Hamcontr,prop
G

the full subcategory of Hamcontr
G consisting of momentum proper objects. We denote

by

ιG : SympRepG → Hamcontr
G , ιG,prop : SympReppropG → Hamcontr,prop

G

the inclusion functor and its restriction to the momentum proper subcategories. We
denote by ιG∗ , ι

G,prop∗ the maps between the sets of isomorphism classes induced by
ιG, ιG,prop.

Remarks 1.16 (i) The isomorphism class of any object in SympReppropG is its isomor-
phismclass in the bigger category SympRepG . This follows fromRemark 2.18(ii)
below. Similar remarks apply to the subcategory Hamcontr,prop

G of Hamcontr
G and

the subcategory Hamcontr
G of Hamex

G .

(ii) The map ιG∗ extends the map ι
G,prop
∗ . By (i) this statement makes sense.

Corollary 1.17 (classification of momentum proper Hamiltonian actions on con-
tractible manifolds)

(i) The map ιG∗ is injective.
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(ii) The map ι
G,prop∗ is surjective.

Remarks • It follows from part (i) of this corollary and Remark 1.16(ii) that ιG,prop∗
is injective. Using (ii), this map is bijective.

• Part (ii) means that every momentum proper Hamiltonian G-action on a con-
tractible symplectic manifold is symplectically linearizable.13

• The statement of Corollary 1.17 means that the momentum proper Hamiltonian
G-actions on contractible symplectic manifolds agree with the momentum proper
symplectic G-representations, up to isomorphism. This classifies these actions.

• Assume thatG is non-abelian. In contrast with part (ii) themap ιG∗ is not surjective.
This follows from [7, Corollary 8.4].

For the proof of Corollary 1.17(ii) we need the following.

Remark 1.18 For every symplectic G-representation (V , σ, ρ) the map

IρG : V → Yρ, IρG(v) := [e, 0, v], (1.19)

is a G-equivariant symplectomorphism, i.e., an isomorphism from ιG(ρ) = ρ to
ModelG(G, ρ) in Hamex

G . This follows from a straightforward argument.

Proof of Corollary 1.17 (i):Let R and R′ be isomorphism classes of SympRepG that are
mapped to the same class under ιG∗ . We choose representatives (V , σ, ρ), (V ′, σ ′, ρ′)
of R, R′ and an isomorphism 
 in Hamcontr

G from ιG(ρ) to ιG(ρ′). The differential
d
(0) : T0V → T
(0)V ′ is an isomorphism from dρ(0) to dρ′(
(0)) in SympRepG .
Since ρ is linear, the canonical identification between V and T0V is an isomorphism
from ρ to dρ(0) in SympRepG . Similarly, ρ′ is isomorphic to dρ′(
(0)). Combining
these three isomorphisms, it follows that ρ and ρ′ are isomorphic in SympRepG , i.e.,
R = R′. Hence the map ιG∗ is injective. This proves (i).

(ii): Let � be an isomorphism class of objects of Hamcontr,prop
G . We choose a rep-

resentative (M, ω,ψ) of �. By Theorem 1.8(viii) there exists an object (H , ρ) of
SympRep≤G , such that ψρ := ModelG(H , ρ) is isomorphic to ψ in Hamex

G . By
Theorem 1.8(vi) ψρ is momentum proper. Hence by Theorem 1.8(vii)“⇐” (H , ρ) is
momentum proper. Therefore, ιG,prop(ρ) := ιG(ρ) is well-defined.

Since M is contractible, the same holds for Yρ . Therefore, by the proof of [7, 7.6
Lemma] we have H = G. Hence by Remark 1.18 ιG,prop(ρ) and ψρ are isomorphic
in Hamex

G and hence in Hamcontr,prop
G . It follows that ιG,prop(ρ) and ψ are isomorphic

in Hamcontr,prop
G . Hence ι

G,prop∗ ([ρ]) = �. Thus ι
G,prop∗ is surjective. This proves (ii)

and completes the proof of Corollary 1.17. ��
Remarks • (This remarkwill be used in the next one).Wedefine ˜SympRepG to be the

category with objects the symplectic G-representations and morphisms between
ρ, ρ′ given by pairs (g, T ), where g ∈ G and T : V → V ′ is a linear symplectic

13 We call a symplectic G-action ψ on a symplectic manifold (M, ω) symplectically linearizable iff there
exist a symplectic G-representation (V , σ, ρ) and a symplectomorphism between V and M that intertwines
ρ and ψ .



Classification of momentum proper exact Hamiltonian group… Page 11 of 26 72

map, such that (1.2) holds. The composition is defined by (1.3). We define the
functor

iG : ˜SympRepG → SympRep≤G , iG(ρ) := (G, ρ), iG = identity on morphisms.

We may view ˜SympRepG as a full subcategory of SympRep≤G via this functor.
We define the map

FG : ˜SympRepG → SympRepG , FG = identity on objects, FG(g, T ) := ρ′
g−1T .

A straightforward argument shows that this map is a covariant functor.
• Part (i) of Corollary 1.17 can alternatively be deduced from Theorem 1.8(iv) as
follows. Let R, R′ be isomorphism classes of SympRepG that are mapped to the
same class under ιG∗ . We choose representatives ρ, ρ′ of R, R′. Then ιG(ρ) and
ιG(ρ′) are isomorphic. Using Remark 1.18, it follows that ModelG ◦iG(ρ) and
ModelG ◦iG(ρ′) are isomorphic. Hence by Theorem 1.8(iv) there exists an iso-
morphism (g, T ) in SympRep≤G from iG(ρ) = (G, ρ) to iG(ρ′) = (G, ρ′).
It follows that (g, T ) is an isomorphism in ˜SympRepG from ρ to ρ′. There-
fore, FG(g, T ) = ρ′

g−1T is an isomorphism in SympRepG from FG(ρ) = ρ

to FG(ρ′) = ρ′. It follows that R = [ρ] = [ρ′] = R′. This shows that ιG∗ is
injective, i.e., part (i) of Corollary 1.17.

• A straightforward argument shows that the map IG : ρ �→ IρG is a natural isomor-
phism between the functors ιG ◦ FG and ModelG ◦iG ,

ιG ◦ FG
IG−→� ModelG ◦iG .

This means that for every morphism (g, T ) : ρ → ρ′ of ˜SympRepG the diagram

ιG ◦ FG(ρ)
ιG◦FG (g,T )−−−−−−−→ ιG ◦ FG(ρ′)

IρG

⏐⏐


⏐⏐
Iρ

′
G

ModelG ◦iG(ρ)
ModelG ◦iG (g,T )−−−−−−−−−−→ ModelG ◦iG(ρ′).

commutes, and that IρG is an isomorphism for every object ρ of ˜SympRepG . In
other words the map ModelG(g, T ) is given by

ModelG(g, T ) = FG(g, T ) = ρ′
g−1T : Yρ → Yρ′

via the natural identifications IρG : V ∼=→ Yρ and Iρ
′

G : V ′ ∼=→ Yρ′ .
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2 Proof of Theorem 1.8(i–vii) (HamiltonianG-model functor)

For the proof of Theorem 1.8(i) we need the following. We denote by Ad and Ad∗ the
adjoint and coadjoint representations of G. We define the map

μL : T ∗G → g∗, μL(a, aϕ) = Ad∗(a)ϕ.

This is a momentummap for the lifted left-translation action of G on T ∗G. We denote
by pr1 : T ∗G × V → T ∗G the canonical projection. Since left and right translations
commute, μL is preserved by the lifted right translation action of H on T ∗G. Hence
the map μL ◦ pr1 descends to a map14

μρ : Yρ → g∗.

Proof of Theorem 1.8(i) Themapμρ is a momentummap forψρ . Henceψρ is a Hamil-
tonian action, and therefore ModelG is well-defined on objects, as claimed. ��

For the proof of Theorem 1.8(ii) we need the following.

Remark 2.1 (product of proper maps) Let X ,Y , X ′,Y ′ be topological spaces, with
Y and Y ′ Hausdorff. Let f : X → Y and f ′ : X ′ → Y ′ be proper continuous maps.
Then the Cartesian product map f × f ′ : X × X ′ → Y × Y ′ is proper. This follows
from an elementary argument. (Hausdorffness ensures that every compact subset of
Y × Y ′ is closed.)

Proof of Theorem 1.8(ii) Let
(
H , V , σ, ρ

)
and

(
H ′, V ′, σ ′, ρ′)beobjects ofSympRep≤G

and (g, T ) a morphism between them. We denote by h and h′ the Lie algebras of H
and H ′. By (1.1) we have cg−1(H ′) = H . It follows that Adg−1(h′) = h. Hence
Ad∗(g) = Ad∗

g−1 induces a map from h∗ to h′∗, which we again denote by Ad∗(g).
We have

Ad∗(g)(ϕ)|h′ = Ad∗(g)(ϕ|h), ∀(a, aϕ) ∈ T ∗G. (2.2)

The map

ρ′ ◦ cg : H → {
isomorphisms of (V ′, σ ′)

}

is a Hamiltonian action with momentum map

c∗
g ◦ νρ′ = Ad∗

g ◦νρ′ : V ′ → h∗,

where νρ′ is as in (1.4). By (1.2) ρ′ leaves the image T (V ) invariant and T is a
symplectic embedding that is equivariant w.r.t. ρ and ρ′ ◦ cg . It follows that

Ad∗
g ◦νρ′ ◦ T = νρ. (2.3)

14 In the article [7] we used the notation μY instead of μρ . I am using μρ here to make the dependence on
ρ explicit and to stay in line with the notation Yρ, ωρ .
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(Here we use that both sides vanish at v = 0 ∈ V .) For every (a, aϕ, v) ∈ T ∗G × V
we have

μD
ρ′ ◦

(
Rg−1

∗ × T
)

(a, aϕ, v) = μD
ρ′

(
ag−1, ag−1 Ad∗(g)(ϕ), T v

)

= −Ad∗(g)(ϕ)|h′ + νρ′(T v)

= Ad∗(g)
( − ϕ|h + νρ(v)

)
(using (2.2, 2.3))

= Ad∗(g) ◦ μD
ρ (a, aϕ, v).

The claimed inclusion (1.9) follows. We define


̃ := Rg−1

∗ × T : (μD
ρ )−1(0) → (μD

ρ′)−1(0).

Let h ∈ H . By (1.1) we have h′ := cg(h) ∈ H ′. By (1.2) the map 
̃ intertwines the
diagonal action of h on T ∗G×V with the diagonal action of h′ on T ∗G×V ′. It follows
that the right hand side of (1.7) does not depend on the choice of the representative
(a, aϕ, v), as claimed. We denote by


 := ModelG(g, T ) : Yρ → Yρ′ ,

themap induced by 
̃.We show that
 is amorphism ofHamex
G . Themap 
̃ is smooth,

presymplectic, and equivariant w.r.t. the G-actions induced by the left translations on
G. It follows that 
 is smooth, symplectic, and equivariant w.r.t. to the G-actions ψρ

and ψρ′ .

Claim 2.4 The maps T and 
 are proper.

Proof of Claim 2.4 The map T : V → V ′ is linear symplectic and hence injective.
Since V is finite-dimensional, it follows that

sup
0 �=v∈V

‖v‖
‖T v‖′ < ∞,

where ‖·‖, ‖·‖′ are arbitrary norms on V , V ′. This implies that T is proper, as claimed.
We denote by

πρ : (μD
ρ )−1(0) → Yρ = (μD

ρ )−1(0)/ψD
ρ (2.5)

the canonical projection. Let K ′ ⊆ Yρ′ be a compact subset. Since 
 ◦ πρ = πρ′ ◦ 
̃,
we have

π−1
ρ ◦ 
−1(K ′) = 
̃−1 ◦ π−1

ρ′ (K ′). (2.6)

The projection πρ′ is proper, since H ′ is compact. It follows that π−1
ρ′ (K ′) is compact.

The map Rg−1

∗ : T ∗G → T ∗G is proper, since it is invertible with continuous inverse.
Using Remark 2.1 and properness of T , it follows that the Cartesian product map

Rg−1

∗ × T : T ∗G × V → T ∗G × V ′ is proper. Since this map restricts to 
̃ on
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(μD
ρ )−1(0), it follows that 
̃ is proper. Since π−1

ρ′ (K ′) is compact, it follows that the
right hand side of (2.6) is compact, hence also the left hand side. Since πρ maps this
set to 
−1(K ′), it follows that 
−1(K ′) is compact. This proves Claim 2.4. ��

Using Claim 2.4, it follows that
 is aG-equivariant proper symplectic embedding,
i.e., a morphism of Hamex

G . This proves that the map ModelG is well-defined on
morphisms. This completes the proof of Theorem 1.8(ii). ��
Proof of Theorem 1.8(iii) It follows froma straightforward argument thatModelG maps
the unit morphisms to unit morphisms and intertwines the compositions. Hence it is a
covariant functor. This proves Theorem 1.8(iii). ��

For the proof of Theorem 1.8(iv) we need the following. Let G be a group, X a set,
ψ an action of G on X , and x ∈ X . We denote by

Gx := Stabψ
x := {

g ∈ G
∣∣ ψg(x) = x

}

the stabilizer of x under ψ .

Remark 2.7 Let G be a Lie group, (ρ, H) an object of SympRep≤G , and y =
[a, aϕ, v] ∈ Yρ . Then

Gy = {
ca(h)

∣∣ h ∈ H : ρhv = v
}
.

Lemma 2.8 Let G be a topological (finite-dimensional) manifold with a continuous
group structure, N , N ′ compact submanifolds of G, and g ∈ G, such that

cg(N ) ⊆ N ′, (2.9)

and N ′ is conjugate to some subset of N . Then we have

cg(N ) = N ′.

In the proof of this lemma we will use the following.

Remark 2.10 (invariance of domain) Let M and N be topological manifolds of the
same finite dimension, without boundary. Then every continuous injective map from
M to N is open. In the case M = N = R

n this is the statement of the Invariance of
Domain Theorem, see [6, Theorem 2B.3, p. 172]. The general situation can be reduced
to this case.

Proof of Lemma 2.8 We choose g′ ∈ G, such that

cg′(N ′) ⊆ N , (2.11)

and define ψ := cg′g : G → G. We have

ψ(N ) = cg′ ◦ cg(N ) ⊆ N .
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Let A be a connected component of N . Since N is a submanifold ofG, the set A is open
in N . The map ψ is bijective and continuous. Hence by Remark 2.10 the restriction
ψ : N → N is open. Thus ψ(A) is open in N .

Since A is a connected component of N , it is closed in N . Since N is compact, it
follows that A is compact. Therefore, ψ(A) is compact and hence a closed subset of
N . It follows that ψ(A) is a connected component of N . Hence the map

{
connected component of N

} � A �→ ψ(A) ∈ {
connected component of N

}

(2.12)
is well-defined. This map is injective. Since N is compact, the number of its connected
components is finite. It follows that the map (2.12) is surjective. It follows that N ⊆
ψ(N ), and therefore, c−1

g′ (N ) ⊆ cg(N ). By (2.11) we have N ′ ⊆ c−1
g′ (N ). It follows

that N ′ ⊆ cg(N ). Combining this with (2.9), it follows that cg(N ) = N ′. This proves
Lemma 2.8. ��

Let G be a Lie group, (M, ω,ψ) a symplectic G-action, and x ∈ M .

Remark The isotropy representation of ψ at x is by definition the map

ρψ,x : Stabψ
x ×TxM → TxM, (g, v) �→ dψg(x)v.

This is a symplectic representation of the isotropy group Stabψ
x .

In order to define the symplectic quotient representation of ψ at x , we need the
following remarks.

Remarks 2.13 (symplectic quotient representation)

(i) Let G be a Lie group, (M, ψ) a G-action on a manifold, and x ∈ M . We denote
by g the Lie algebra of G and by

Lx := Lψ
x : g → TxM (2.14)

the infinitesimal action at x . The equality

dψg(x)(imLx ) = imLψg(x)

holds.
(ii) Let (V , σ ) be a symplectic vector space and W ⊆ V a linear space. We denote

by

W σ := {
v ∈ V

∣∣ σ(v,w) = 0, ∀w ∈ W
}

the symplectic complement of W . Let (M, ω,ψ) be a symplectic G-action and
x ∈ M . The form ωx induces a linear symplectic form ωx on the quotient space

Vψ
x := (imLx )

ωx /
(
imLx ∩ (imLx )

ωx
)
. (2.15)
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It follows from (i) that dψg(x) ((imLx )
ωx ) = (imLψg(x))

ωψg (x) . Therefore, using
(i) again, dψg(x) induces a map

Vψ
x → Vψ

ψg(x)
. (2.16)

This map is a linear symplectic isomorphism w.r.t. ωx and ωψg(x).

We define the symplectic quotient representation of ψ at x to be the map

ρψ,x : Stabψ
x ×Vψ

x → Vψ
x , (2.17)

where ρψ,x (g, ·) is given by the map (2.16). By Remark 2.13(ii) this is a well-
defined symplectic representation of Stabψ

x on the linear symplectic quotient Vψ
x of

(imLx )
ωx .15

Remarks 2.18 (equivariant symplectomorphism, symplectic quotient representations)
Let G be a Lie group, (M, ω,ψ), (M ′, ω′, ψ ′) symplectic G-actions, 
 : M → M ′
a G-equivariant symplectomorphism, x ∈ M , and x ′ := 
(x).

(i) Since 
 is G-equivariant and injective, we have

Stabψ
x = Stabψ ′

x ′ .

Furthermore,wehaved
(x)Lψ
x = Lψ ′

x ′ , and therefore,d
(x)
(
imLψ

x
) = imLψ ′

x ′ .
Since 
 is symplectic, it follows that d
(x) induces a map

Vψ
x → Vψ ′

x ′ .

This map is a linear symplectic isomorphism that intertwines ρψ,x and ρψ ′,x ′
.

(ii) If ψ ′ is Hamiltonian with momentum map μ′ then μ′ ◦ 
 is a momentum map
for ψ .

Lemma 2.19 (symplectic quotient representation formodel action)Let G be a compact
Lie group and (H , V , σ, ρ) an object of SympRep≤G. We denote

(
Yρ, ωρ, ψρ

) := ModelG(H , ρ).

Let y ∈ Yρ be a point for which μρ(y) is central and Stab
ψρ
y = ca(H), for some

representative (a, aϕ, v) of y. Then ρ = (H , ρ) is isomorphic to ρψρ,y .

Remark The subgroup ca(H) does not depend on the choice of the representative
(a, aϕ, v) of y.

In the proof of this lemma we will use the following.

15 In the literature ρψ,x is called “symplectic slice representation”. This terminology seems misleading,
since ρψ,x does not involve any choice of a local slice.
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Remark 2.20 (momentum map) Let (M, ω,ψ) be a Hamiltonian G-action, μ a
momentum map for ψ , and x ∈ M . Then

ker dμ(x) = (imLψ
x )ωx .

Proof of Lemma 2.19 We choose a representative ỹ := (a, aϕ, v) of y. We define

ιa,ϕ : V → T ∗G × V , ιa,ϕ(w) := (a, aϕ,w).

Claim 2.21
im

(
dιa,ϕ(v)

) ⊆ ker dμD
ρ (ỹ). (2.22)

Proof of Claim 2.21 By our hypothesis μρ(y) = μL(ỹ) = Ad∗(a)ϕ is a central ele-
ment of g∗. Hence, for every g ∈ G, we have

Ad∗(a)ϕ = Ad∗(ca(g))Ad∗(a)ϕ = Ad∗(a)Ad∗(g)ϕ,

and therefore ϕ = Ad∗(g)ϕ. Hence ϕ is a central element of g∗. For every h ∈ H , we
have

[a, aϕ, v] = y

= ψρ(ca(h), y) (since Stab
ψρ
y = ca(H))

= [
ca(h)a, ca(h)aϕ, v

]

= [
ah, aϕh, v

]
(using thatϕ is central)

= [
a, aϕ, ρhv

]
,

and therefore ρhv = v. Hence v is a fixed point of ρ. It follows that dνρ(v) = 0. Since
μD

ρ (a, aϕ,w) = −ϕ|h + νρ(w), it follows that

d(μD
ρ ◦ ιa,ϕ)(v) = dνρ(v) = 0.

The inclusion (2.22) follows. This proves Claim 2.21. ��
We define πρ as in (2.5), and

Aρ
ỹ := dπρ(ỹ)dιa,ϕ(v) : V → TyYρ.

By Claim 2.21 this map is well-defined.

Claim 2.23 Thepair
(
a, Aρ

ỹ

)
is amorphism fromρ toρψρ,y (the isotropy representation

of ψρ at y).
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Proof of Claim 2.23 The map ιa,ϕ is a symplectic embedding. It follows that Aρ
ỹ is

linear symplectic. We denote by ψ L : G × T ∗G ×V → T ∗G ×V the action induced
by the left-translation on G. Let h ∈ H . For all w ∈ V , we have

ιa,ϕ ◦ ρh(w) = (
a, aϕ, ρhw

)

= (
ah, aϕh, w

)

= (ψ L
ρ )ca(h) ◦ ιa,ϕ(w) (using thatϕ is central)

Using that ρh is linear, it follows that

dιa,ϕ(v)ρh = dιa,ϕ(v)dρh(v)

= d
(
(ψ L

ρ )ca(h)

)
(ỹ)dιa,ϕ(v).

Since πρ ◦ (ψ L
ρ )g = (ψρ)g ◦ πρ , it follows that

Aρ
ỹρh = dπρ(ỹ)dιa,ϕ(v)ρh

= d(ψρ)ca(h)(y)dπρ(ỹ)dιa,ϕ(v)

= d(ψρ)ca(h)(y)A
ρ
ỹ .

The statement of Claim 2.23 follows. ��

Let y ∈ Yρ . Recall that

Ly = L
ψρ
y : g → TyYρ

denotes the infinitesimal ψρ-action.

Claim 2.24

imLy is isotropic, (2.25)

imAρ
ỹ ⊆ (

imLy
)(ωρ)y . (2.26)

Proof of Claim 2.24 Proof of (2.25): Our hypothesis that μρ(y) is central implies that

imLy ⊆ ker dμρ(y).

By Remark 2.20 we have

ker dμρ(y) = (imLy)
(ωρ)y . (2.27)

Statement (2.25) follows.
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Proof of (2.26): Since μρ ◦ πρ = μL ◦ pr1, we have

dμρ(y)Aρ
ỹ = dμρ(y)dπρ(ỹ)dιa,ϕ(v)

= d
(
μρ ◦ πρ ◦ ιa,ϕ

)
(v)

= d
(
μL ◦ pr1 ◦ιa,ϕ

)
(v)

= 0.

Here in the last step we used that the map pr1 ◦ιa,ϕ is constantly equal to (a, aϕ). It
follows that

imAρ
ỹ ⊆ ker dμρ(y).

Using (2.27), the claimed inclusion (2.26) follows. This completes the proof of Claim
2.24. ��

By part (2.25) of this claim there is a canonical projection

prρy : (
imLy

)(ωρ)y → V
ψρ
y = (

imLy
)(ωρ)y/imLy .

By part (2.26) the restriction

prρy
∣∣imAρ

ỹ

is well-defined. It follows from Claim 2.23 and the equality Stab
ψρ
y = ca(H) that

imAρ
ỹ is invariant under ρψρ,y .

Claim 2.28 The pair
(
e, prρy

∣∣imAρ
ỹ

)
is an isomorphism between the restriction of

ρψρ,y to imAρ
ỹ and ρψρ,y .

Proof of Claim 2.28 The projection prρy is presymplectic. Since imAρ
ỹ is symplectic,

the restriction prρy
∣∣imAρ

ỹ is linear symplectic and therefore injective. We have

dim
(
V

ψρ
y = (

imLy
)(ωρ)y/imLy

)

= dim(Yρ) − 2 dim imLy

= dim(T ∗G × V ) − 2 dim H − 2 dim imLy

= 2 dimG + dim V − 2 dim H − 2 dimG + 2 dim Stab
ψρ
y

= dim V (since Stab
ψρ
y = ca(H))

= dim imAρ
ỹ (since Aρ

ỹ is linear symplectic, hence injective)

= dim
(
prρy

(
imAρ

ỹ

))
(since prρy

∣∣imAρ
ỹ is injective).
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It follows that V
ψρ
y = prρy

(
imAρ

ỹ

)
, hence prρy

∣∣imAρ
ỹ is surjective. Hence this map

is a linear symplectic isomorphism. It is Stab
ψρ
y -equivariant. The statement of Claim

2.28 follows. ��
It follows from Claims 2.23 and 2.28 that ρ and ρψρ,y are isomorphic. This proves

Lemma 2.19. ��
Proof of Theorem 1.8(iv) Let (H , ρ) and (H ′, ρ′) be two objects of SympRep≤G whose
images under ModelG are isomorphic. We choose an isomorphism 
 between these
images. We define

y := [e, 0, 0] ∈ Yρ, [a′, a′ϕ′, v′] := y′ := 
(y).

By Remark 2.7 we have

Stab
ψρ
y = H ,

Stab
ψρ′
y′ ⊆ ca′(H ′). (2.29)

Since 
 is G-equivariant, we have

Stab
ψρ
y = Stab

ψρ′
y′ . (2.30)

It follows that H ⊆ ca′(H ′). By considering 
−1, an analogous argument shows that
H ′ is conjugate to a subgroup of H . Since G is compact and H and H ′ are closed,
these subgroups are compact. Therefore, applying Lemma 2.8, it follows that

H = ca′(H ′). (2.31)

Since μρ(y) = μL
ρ (e, 0, 0) = 0 and Stab

ψρ
y = H , the hypotheses of Lemma 2.19 are

satisfied. Applying this lemma, it follows that ρ is isomorphic to ρψρ,y .
By Remark 2.18(i) ρψρ,y is isomorphic to ρψρ′ ,y′

.

Claim 2.32 ρψρ′ ,y′
is isomorphic to ρ′.

Proof of Claim 2.32 By (2.30), (2.29), (2.31) we have Stab
ψρ′
y′ = ca′(H ′). By Remark

2.18(ii) the map μρ′ ◦ 
 is a momentum map for ψρ . Since G is connected, the same
holds for Yρ . It follows that μρ′ ◦ 
 − μρ is constantly equal to a central element of
g∗. At y this map attains the value

μρ′(y′) − μρ(y) = μρ′(y′) − 0,

which is thus a central element of g∗. Hence the hypotheses of Lemma 2.19 are
satisfied. Applying this lemma, the statement of Claim 2.32 follows.
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Combining this claim with what we already showed, it follows that ρ is isomorphic
to ρ′.

Hence ModelG induces an injective map between the sets of isomorphism classes.
This proves Theorem 1.8(iv). ��
Proof of Theorem 1.8(v, vi, vii) (v) follows from a straightforward argument.

(vi): Let ρ and ρ′ be objects of SympRep≤G , such that ρ
′ is momentum proper and

there exists a morphism (g, T ) from ρ to ρ′. Let Q ⊆ h be compact. Equality (2.3)
implies that

ν−1
ρ (Q) = (νρ′ ◦ T )−1 (

Ad∗(g)(Q)
)
. (2.33)

The set Ad∗(g)(Q) is compact. By hypothesis νρ′ is proper, and by Claim 2.4 the
same holds for T . It follows that νρ′ ◦ T is proper, and therefore, using (2.33), the set
ν−1
ρ (Q) is compact. Hence νρ is proper, i.e., ρ is momentum proper, as claimed.
Let now (M, ω,ψ) and (M ′, ω′, ψ ′)beobjects ofHamex

G , such thatψ ′ ismomentum
proper and there exists a morphism 
 from ψ to ψ ′. We choose a momentum map μ′
for ψ ′. By definition, 
 is a proper G-equivariant symplectic embedding. It follows
that μ′ ◦ 
 is a proper momentum map for ψ . Hence ψ is momentum proper. This
proves (vi).

(vii): We prove “⇒”: Assume that (H , ρ) is momentum proper, i.e., that νρ is
proper. Let K ⊆ g∗ be compact. We denote by i : H → G the inclusion and by
i∗ : g∗ → h∗ the induced map. We define

A := {
(a, aϕ, v) ∈ T ∗G × V

∣∣ Ad∗(a)(ϕ) ∈ K , i∗ϕ = νρ(v)
} ⊆ (μD

ρ )−1(0).
(2.34)

We denote by L∗ : G × T ∗G → T ∗G the map induced by left translation. A is a
closed subset of

B := L∗
(
G × Ad∗(G)(K )

) × ν−1
ρ

(
i∗ Ad∗(G)(K )

)
.

Since G is compact and Ad∗ is continuous, the set Ad∗(G)(K ) is compact. Since i∗
is continuous and νρ is proper, it follows that ν−1

ρ

(
i∗ Ad∗(G)(K )

)
is compact. Using

that L∗ is continuous, it follows that B is compact. It follows that A is compact, and
hence μ−1

ρ (K ) = πρ(A) is compact. Hence μρ is proper. This proves “⇒”.
“⇐”: Assume that μρ is proper. Let Q ⊆ h∗ be compact. We choose a compact

set K ⊆ g∗ such that i∗(K ) = Q. (We may e.g. choose a linear complement W ⊆ g∗
of ker i∗ and define K := (i∗)−1(Q) ∩ W ). Since H is compact, the map πρ :
(μD

ρ )−1(0) → Yρ is proper. It follows that μρ ◦ πρ is proper. Hence the set

(
μρ ◦ πρ

)−1
(K )

is compact. This set agreeswith A, defined as in (2.34).Wedenote bypr2 : T ∗G×V →
V the canonical projection. The set

C := {
(e, ϕ, v)

∣∣ ϕ ∈ K , i∗ϕ = νρ(v)
}
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is a closed subset of A, hence compact. It follows that pr2(C) is compact. Since
i∗(K ) = Q, we have pr2(C) = ν−1

ρ (Q). It follows that νρ is proper. This proves
“⇐”, and completes the proof of (vii) and therefore of Theorem 1.8 (except for (viii),
which is proved in [7, 1.5. Theorem]). ��

3 Proof of Corollary 1.14 (classification of critical Hamiltonian actions)

The well-definedness part of Corollary 1.14 follows from the next lemma.

Lemma 3.1 (i) The functor T ∗
G maps objects of ActtransG to objects of Hamcrit

G .
(ii) It maps morphisms of ActtransG to morphisms of Hamcrit

G .

Proof of Lemma 3.1 (i): Let (Q, θ) be an object of ActtransG . Then T ∗
G(Q, θ) is an object

of Hamex
G . To see that is an object of Hamex,prop

G , we denote by g the Lie algebra of
G. We choose a Finsler norm ‖ · ‖ on T ∗Q and a norm | · | on g∗. We define Lθ

q as in
(2.14) and

μ : T ∗Q → g∗, μ(q, p) := pLθ
q . (3.2)

This is a momentum map for the lifted G-action θ∗. Since θ is transitive, the map Lθ
q

is surjective. Therefore, an elementary argument using (3.2) and that Q is compact,
shows that

sup
{‖p‖ ∣∣ (q, p) ∈ T ∗Q : |μ(q, p)| ≤ C

}
< ∞, ∀C ∈ R.

It follows that μ is proper. Therefore, T ∗
G(Q, θ) is an object of Hamex,prop

G . Since Q
is closed and T ∗Q deformation retracts onto Q, it follows that T ∗

G(Q, θ) is an object
of Hamcrit

G . This proves (i).
(ii): Let f : Q → Q′ be a morphisms of ActtransG , i.e., a G-equivariant diffeomor-

phism. The induced map f∗ : T ∗Q → T ∗Q′ is a G-equivariant symplectomorphism,
hence a morphism of Hamex

G , and therefore of Hamcrit
G . This proves (ii) and therefore

Lemma 3.1. ��
By Lemma 3.1 the restriction

T ∗
G : ActtransG → Hamcrit

G

is well-defined. The Chain Rule implies that it is functorial. In order to show that the
map (1.15) is a bijection, we need the following lemma. We define SubclG to be the
category whose objects are the closed subgroups of G and whose morphisms between
H and H ′ are those elements g of G, satisfying cg(H) = H ′.16 We define the functor

G/ : SubclG → ActtransG

as follows. It maps an object H to the quotient G/H , equipped with the canonical left
G-action. Let (H , H ′, g) be a morphism of SubclG . We denote by prH : G → G/H

16 The composition of morphisms is given by the composition in G.
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the canonical projection and define G/(H , H ′, g) : G/H → G/H ′ to be the unique
map satisfying

G/(H , H ′, g) ◦ prH = prH ′ ◦Rg−1
. (3.3)

This is awell-definedmorphismofActtransG . This construction is functorial. This defines
the functor G/.

We define the functor

jG : SubclG → SympRep≤G , jG(H) := (
H , {0}, 0, 0), jG(g) := (g, 0).

Lemma 3.4 The target-restricted functor ModelG ◦ jG : SubclG → Hamcrit
G is well-

defined and naturally isomorphic to T ∗
G ◦ G/ : SubclG → Hamcrit

G .

Proof of Lemma 3.4 By Corollary 1.11 the functor ModelG ◦ jG takes values in
Hamex,prop

G . Let H be an object of SubclG . The manifold part of ModelG ◦ jG(H) is
homotopy equivalent to the closed manifold G/H and has dimension 2(dimG −
dim H). Therefore, ModelG ◦ jG(H) is critical. Hence ModelG ◦ jG takes values in
Hamcrit

G , as claimed.
Let H ∈ SubclG . We define μD

H ,ρ,YH ,ρ as in (1.5), (1.6) and denote by πH ,ρ :
(μD

H ,ρ)−1(0) → YH ,ρ the canonical projection. We canonically identify YH ,0 with
the symplectic quotient of the Hamiltonian H -action on T ∗G induced by the right
H -action on G. We define the map


H : T ∗(G/H) → YH ,0, 
H (q, p) := πH ,0
(
q, pd prH (q)

)
, (3.5)

where q ∈ q is an arbitrary representative. This map is a symplectomorphism, see
[2, 4.3.3 Theorem]. The map 
H is G-equivariant, and therefore an isomorphism of
Hamcrit

G .

Claim 3.6 The map H �→ 
H is a natural isomorphism between the functors T ∗
G ◦G/

and ModelG ◦ jG .

Proof of Claim 3.6 Let (H , H ′, g) be a morphism of SubclG . We show that


H ′ ◦ (
(T ∗

G ◦ G/)(H , H ′, g)
) = (

ModelG ◦ jG
)
(H , H ′, g) ◦ 
H . (3.7)

Let (q, p) ∈ T ∗(G/H). We choose a representative q ∈ q and denote q ′ := Rg−1
(q),

q ′ := prH ′(q ′), and ϕ := G/(H , H ′, g). We have

(T ∗
G ◦ G/)(H , H ′, g)(q, p) = (

ϕ(q), pdϕ(q)−1),
ϕ(q) = q ′ (using (3.3)),
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and therefore,


H ′ ◦ (
(T ∗

G ◦ G/)(H , H ′, g)
)
(q, p) = πH ′,0

(
q ′, pdϕ(q)−1d prH ′(q ′)

)
(using (3.5))

= πH ′,0
(
q ′, pd prH (q)dRg−1

(q)−1) (using (3.3), Chain Rule)

= ModelG(g, 0) ◦ πH ,0
(
q, pd prH (q)

)
(using (1.7))

= (
ModelG ◦ jG

)
(H , H ′, g) ◦ 
H (q, p) (using (3.5)).

Hence equality (3.7) holds. This proves Claim 3.6 and therefore Lemma 3.4. ��
Proof of Corollary 1.14 We show that the functor ModelG ◦ jG is essentially bijective.
By Corollary 1.11 the inverse of the map (1.12) is well-defined. The image of the
set of isomorphism classes of Hamcrit

G under this inverse map is contained in the
image of the map between isomorphism classes induced by jG . This follows from
the fact that the manifold part of ModelG

(
H , V , σ, ρ

)
is homotopy equivalent to the

closed manifold G/H and has dimension 2(dimG − dim H)+ dim V . It follows that
ModelG ◦ jG : SubclG → Hamcrit

G is essentially surjective, i.e., it induces a surjective
map between the sets of isomorphism classes.

Since jG is essentially injective,Corollary1.11 implies that the functorModelG ◦ jG :
SubclG → Hamcrit

G is also essentially injective, and therefore essentially bijective, as
claimed.

Using Lemma 3.4, it follows that T ∗
G ◦ G/ : SubclG → Hamcrit

G is essentially
bijective. Therefore, T ∗

G : ActtransG → Hamcrit
G is essentially surjective. The functor

G/ : SubclG → ActtransG is essentially surjective. This follows from the orbit-stabilizer
theorem for G-actions on manifolds. Since T ∗

G ◦ G/ : SubclG → Hamcrit
G is essentially

injective, it follows that T ∗
G : ActtransG → Hamcrit

G is essentially injective, and therefore
essentially bijective. This means that the map (1.15) is bijective. This proves Corollary
1.14. ��

4 Inverse of the classifyingmap

The next result states that the inverse of the classifying map (1.12) is induced by
assigning to a Hamiltonian action its symplectic quotient representation at any suitable
point. To state the result, let G be a group, X a set, ψ a G-action on X , and x ∈ X .
Recall that Stabψ

x denotes the stabilizer of ψ at x . We call x ψ-maximal iff for every
y ∈ X , Stabψ

x contains some conjugate of Stabψ
y .

Let G be a compact and connected Lie group, (M, ω) a symplectic manifold, ψ

a symplectic G-action on M , and x ∈ M . Recall that ρψ,x denotes the symplectic
quotient representation of ψ at x , see (2.17). The latter is a symplectic representation
of Stabψ

x . Hence the pair
(
Stabψ

x , ρψ,x
)
is an object of SympRep≤G .

Assume now that ψ is Hamiltonian. We call x ψ-central iff μ(x) is a central value
of g∗ for every momentum map μ for ψ . (If M is connected then equivalently, there
exists such a μ).
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Proposition 4.1 Assume that ψ is an object of Hamex,prop
G .

(i) There exists a ψ-maximal and -central point.
(ii) Let ψ and ψ ′ be isomorphic objects of Hamex,prop

G , x be a ψ-maximal and -

central point, and x ′ be a ψ ′-maximal and -central point. Then ρψ,x and ρψ ′,x ′

are isomorphic.
(iii) The inverse map of (1.12) is given by

{
isomorphism class of Hamex,prop

G

} → {
isomorphism class of SympRepprop≤G

}
,

� �→ [ρψ,x ], (4.2)

where ψ is an arbitrary representative of �, and x is an arbitrary ψ-maximal
and -central point.

Remark It follows from (i,ii) that the map (4.2) is well-defined.

In the proof of Proposition 4.1 we will use the following.

Remark 4.3 Let ρ be an object of SympRep≤G and y ∈ Yρ aψρ-maximal and -central
point. Then ρ and ρψρ,y are isomorphic. To see this, we write y =: [a, aϕ, v]. By
Remark 2.7 we have Stab

ψρ
y ⊆ ca(H). Since y is ψρ-maximal, Stab

ψρ
y contains some

conjugate of Stab
ψρ

[e,0,0] = H . Using Lemma 2.8, it follows that

Stab
ψρ
y = ca(H).

Using that y is ψρ-central, the hypotheses of Lemma 2.19 are therefore satisfied.
Applying this lemma, it follows that ρ and ρψρ,y are isomorphic, as claimed.

Proof of Proposition 4.1 (i): Consider first the case in which there exists ρ ∈
SympRepprop≤G , such that ψ = ModelG(ρ). By Remark 2.7 the point [e, 0, 0] is
ψ-maximal. Since μρ([e, 0, 0]) = 0, this point is also ψ-central. This proves the
statement in the special case.

The general situation can be reduced to this case, by using Theorem 1.8(viii) (essen-
tial surjectivity), the fact that stabilizers are preserved under equivariant injections,
and Remark 2.18(ii). This proves (i).

(ii): Consider first the case in which there exists an isomorphism from ψ to ψ ′ that
maps x to x ′. Then it follows fromRemark 2.18(i) that ρψ,x and ρψ ′,x ′

are isomorphic.
In the general situation, using Theorem 1.8(viii) and what we just proved, we

may assume w.l.o.g. that ψ = ψ ′ = ψρ = ModelG(H , ρ) for some object ρ of
SympRep≤G . By Remark 4.3 we have ρψρ,x ∼= ρ ∼= ρψρ,x ′

. This proves (ii).
(iii): Remark 4.3 implies that (4.2) is a left-inverse for (1.12). Since (1.12) is sur-

jective, it follows that (4.2) is also a right-inverse. This proves (iii) and completes the
proof of Proposition 4.1. ��
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