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Abstract

In this paper we give a general construction of symmetric monoidal categories that
generalizes Deligne’s interpolated categories, the categories introduced by Knop, and
the recent TQFT construction of Khovanov, Ostrik, and Kononov. The categories we
will consider are generated by an algebraic structure. In a previous work by the author a
universal ring of invariants 4l for algebraic structures of a specific type was constructed.
It was shown that any algebraic structure of this type in Vecg gives rise to a character
x 4 — K. In this paper we consider algebraic structure in general symmetric
monoidal categories, not only in Vec g, and general characters on (. From any character
x Y — K we construct a symmetric monoidal category C,, analogous to the
universal construction from TQFT. We then give necessary and sufficient conditions for
a given character to arise from a structure in an abelian category with finite dimensional
hom-spaces. We call such characters good characters. We show that if x is good
then C, is abelian and semisimple, and that the set of good characters forms a K-
algebra. We also show that the categories C,, contain all categories of the form Rep(G),
where G is reductive. The construction of C, gives a way to interpolate algebraic
structures, and also symmetric monoidal categories, in a way that generalizes Deligne’s
categories Rep(S;), Rep(GL; (K)), and Rep(O;). We also explain how one can recover
the recent construction of 2 dimensional TQFT of Khovanov, Ostrik, and Kononov, by
the methods presented here. We give new examples, of interpolations of the categories
Rep(Auty (M)) where O is a discrete valuation ring with a finite residue field, and M
is a finite module over it. We also generalize the construction of wreath products with
S;, which was introduced by Knop.
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1 Introduction

In [7] Deligne interpolated the categories Rep(S,,) and introduced the celebrated family
of categories Rep(S;) where ¢t € K is any element in a characteristic zero field K.
He also presented several other families of symmetric monoidal categories, such as
Rep(GL;), Rep(O;) and Rep(Sp,). These categories were studied and generalized by
many different authors. See for example [4, 8, 10, 12] for a study of algebras inside
Rep(S;); and [11, 13] for the relation to topological quantum field theories.

In this paper we present a generalization of Deligne’s construction, which general-
izes the families presented by Deligne, Knop, and Khovanov, Ostrik, and Kononov, in
[7, 12, 13] respectively. All the categories in this paper can be seen as generalizations
of categories of the form Rep(Aut(W)), where W is some algebraic structure. We con-
struct interpolations of symmetric monoidal categories by interpolating the algebraic
structure W, which we shall do by interpolating the scalar invariants of the structure,
following [16]. In this setting, the categories Rep(S,) can be understood as Rep(K"),
where K" has the canonical commutative separable algebra structure (see Sect. 8)

We recall here the definitions. Fix ((p;, ¢i)) € (N®). An algebraic structure of
type ((pi, gi)) on a finite dimensional vector space W is given by specifying structure
tensors x; € WPidi = W®Pi @ (W*)®4 fori = 1,...,r. These can specify, for
example, multiplication, comultiplication, counit, endomorphisms of W et cetera. For
example, a unital algebra has type ((1, 2), (1, 0)), where the first tensor specifies the
multiplication and the second tensor specifies the unit. We assume throughout the
paper that the type of the algebraic structure is fixed. In Sect. 8 we give examples of
algebraic structures of various types.

Fixing the vector space W = K 4 the set of structure tensors (x;) can be considered
as a point in the affine space Uy = €; W9 . However, this point is not uniquely
defined by the isomorphism type of the structure (W, (x;)). The group GL;(K) acts
on Uy, and two points in Uy define isomorphic structures if and only if they are in
the same GL4 (K )-orbit. The ring of invariants K [Uy;]%X) arises naturally in this
context, as the characters K [Uy]%(X) — K are in one to one correspondence with
closed GL;4(K)-orbits in Uy. In [16] a universal ring of invariants 4 was introduced.
This ring captures simultaneously algebraic structures for different values of d in the
sense that for every d there is anideal I; C { such that4l/I; = K[Uy]%%X) Thering
$L was also shown to be a Hopf algebra with some additional structure (see Section 8 of
[16]). It is a polynomial algebra generated by the set P of closed connected diagrams
arising from the structure tensors.

An algebraic structure (W, (x;)) of dimension d induces a character K[Uy] — K
and by restriction also a character K [Uy]X) — K. By pulling back we get a
character x(w, () : 4 — K. We call this character the character of invariants of
(W, (x1)). If the GL;(K)-orbit of (W, (x;)) in Uy is closed then the isomorphism
class of (W, (x;)) can be reconstructed from its character of invariants (see Sect.5).

This raises the question: what about all the other characters of 4{, which do not split
via one of the quotients £f — $1/1;? We answer this question by studying algebraic
structures in general symmetric monoidal categories, and not only in Vecg.

If D is a rigid K-linear symmetric monoidal category we can consider algebraic
structures of type ((pi, gi)) inside D. Similarly to the case of structures in Vecg,
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such a structure (A, (y;)) will induce a character { — Endp(1). In particular, if
Endp (1) = K we get a character x : 4 — K. We will say that (A, (y;)) affords the
character .

For any character x : { — K we will construct in Sect.4 a symmetric monoidal
category C, thatis tensor-generated by a structure that affords the character x, and its
dual. This category will be K -linear, rigid, additive, Karoubi closed, but not necessarily
abelian. It holds that Ende, (1) = K.

To construct the category €, we will first constructin Sect. 3 a category C,,;y, which
is the universal category freely generated by a structure (W, (x;)) of type ((pi, ¢i)). In
Section 5 of [16] we constructed for every p, g € N a vector space Con? 9 of formal
linear combinations of formal compositions of the structure tensors. We will use these
spaces to construct the hom-spaces in C,;y-

The endomorphism ring Ende,;, (1) is 4f. The trace pairing in C,,;, gives a pairing
pair?”? : ConP1 @ Con?? — il (see Definition 7.5. in [16]). We can compose this
pairing with the character x to get a pairing pairgz’q : ConP4 @ Cont? — 4 5 K.
We then form the category C, by dividing out by the negligible morphisms with respect
to this pairing, and taking the Karoubian envelope. We call a morphism 7 in C,;y
x -negligible if it is negligible under the pairing induced by .

We thus see that every character x : 31 — K is the character of invariants of some
algebraic structure in some K-linear rigid symmetric monoidal category. However,
the symmetric monoidal categories one encounters when studying algebraic structures
are often not only K-linear and rigid but also abelian with finite dimensional vector
spaces as hom-spaces. We will call D a K -good category if it is a symmetric monoidal
K -linear abelian rigid category in which the hom-spaces are finite dimensional and
Endp(1) =K.

The first main theorem of this paper is the following:

Theorem 1.1 Let x : 31 — K be a character. The following conditions are equivalent:

(1) The category C, is a semisimple K -good category.
(2) The character y is afforded by an algebraic structure in some K-good category.
(3) The following two conditions are satisfied:

e The radical radfz’q C ConP1 ofpairg()’q has finite codimension.
e I[fAeCuiyand T : A — A satisfies that T" is x-negligible for some r > 0,
then x (Tr(T)) = 0.

If x satisfies the equivalent conditions of the theorem we will say that x is a
good character. If x is the character of invariants of a structure (Y, (y;)) in Vecg,
we will show in Sect.5 that there is a unique symmetric fiber functor F : €, —
Vecg . Using Tannaka reconstruction we will show that we get an equivalence C, =
Repy (Aut(Z, (z;))), where (Z, (z;)) is the unique structure with closed orbit in the
closure of the orbitof (¥, (y;)) in Ugim(y). We summarize this in the following theorem:

Theorem 1.2 Let (Y, (y;)) be an algebraic structure of dimension d in Vecy. Assume
that the GLg-orbit of this structure is closed in Uy. Then there is an equiva-
lence C,, = Rep(Aut(Y,y;)), and for every p,q € N the linear span of linear
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maps Y®4 — Y®P which are constructible from the structure tensors is equal to
Hompu(y () (Y®, YP),

This theorem raises the question of what representation categories are equivalent
to G, for some y. If (Y, (y;)) has a closed orbit, this orbit will be isomorphic to
GL,;/Aut(Y, (¥;)). In particular, the quotient GL;/Aut(Y, (y;)) is affine, and by Mat-
sushima’s criterion (see [2] and references therein) the group Aut(Y, (y;)) is reductive.
Another way to see that the group Aut(Y, (y;)) is reductive in the above case is that it
is equivalent to €, , which is semisimple. We will prove the following in Sect. 5:

Theorem 1.3 Let G be a reductive affine algebraic group. Then Rep(G) = C, for
some character x.

We will show that even though algebraic structures in Vecg might be scarce, good
characters are abundant. In fact, as we will see in the theorem below, they form a
K-algebra that can be calculated explicitly in many cases. The diversity of good
characters will also enable us to interpolate the categories of representations of auto-
morphism groups of algebraic structure to more general categories, which generalize
the categories Rep(S;) of Deligne.

It was shown in Section 5 of [16] that the ring il is a polynomial algebra on the
set P of closed connected diagrams constructed from the structure tensors. There is
therefore a natural bijection between characters on L and functions P — K. We will
consider this bijection as an identification in what follows. The set of characters K *
is a K-algebra under pointwise addition and multiplication. It follows from Section
6 of [16] that taking direct sums and tensor products corresponds to taking sums and
products of characters in K ¥ respectively. We will prove the following result in Sect. 6:

Theorem 1.4 The set of good characters in K* forms a K -subalgebra.

In Sect. 7 we will show that if ();) is a one-parameter family of characters such that
X: 1s good for countably many values of ¢, then under some mild conditions it holds
that x; is good for every value of 7.

In Sect. 8 we will give examples. We will show how we can recover the construc-
tions of Deligne for Rep(S;), Rep(GL;), Rep(O;) and Rep(Sp,) from [7]. Knop has
generalized the construction of Deligne in [12] by using degree functions. The val-
ues of his degree functions correspond to some values of the character y we have
here. Knop constructed categories such as Rep(S; : G) where G is a finite group,
and Rep(GL;(0/(x"))) where O is a discrete valuation ring with a uniformizer
and a finite residue field. We will give examples that generalize his constructions. If
X is a good character, we will show how to construct a family of categories C;.3
such that if €, = Rep(G) then C,5 = Rep(S, 1 G) for n € N. Here G can
be a reductive group, and not necessarily a finite one. We will generalize the cate-
gories Rep(GL;(O/(x"))) in the following way: every finite O/(xx")-module has the
form My, ... 4 = (O/(@)* & ((“)/(712))“2 @D (O/("))%. We will construct
a family of good characters x (71, ..., t), which depend on r non-zero parameters
t;, such that C, a1 . 4ary = Rep(Auty(My,,...q,)), Where ¢ = |0/(r)|. By con-
sidering the family of categories C, ,,....,,) We get an interpolation of the categories
Rep(Autg (My,,....q,))-

.....
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The construction of Deligne was also generalized recently by Khovanov et al. [13].
They constructed a family of K -good categories which are generated by a commutative
Frobenius algebra, and used these to construct new examples of 2 dimensional TQFTs.
Their construction depends on an infinite sequence («, o1, . ..) of scalars. In Sect. 8
we will show how we can recover this construction, and that the numbers «; arise
as some character values. Khovanov, Ostrik, and Kononov also gave a criterion that
characterizes the sequences («;) which arise from K-good categories. We will show
how their criterion relates to the criterion for good characters we have in Theorem 1.1.
The examples we have are summarized in the following table:

Type of algebraic Resulting category Good characters See also
structure

Empty structure Rep(GL;) K [7]

Single endomorphism Il Rep(GLy;) Monoid algebra of (K, x)

Non-degenerate Rep(Oy) K [7]
symmetric pairing

Non-degenerate Rep(Sp;) K [7]
skew-symmetric pairing

Separable commutative Rep(Sy) K [7]
algebra

Commutative Frobenius ~ DCoby Described in Sect. 8.6 [13]
algebra

Wreath products with S;, Rep(S;: G) K Described in some
for general structures cases in [12].

Group algebra with Rep(Aut(Mq, ,....q,)) (K *yr The case a; = ap =
operators of a finite and their e=a,_1 =0
module My, ... q, over interpolations, appears in [12].
aDVR O

The construction of the category C, is strongly related to the universal construction
of TQFTs from [3]. We replace the cobordism by the constructible morphisms and
invariants of closed manifold are replaced by values of the character x. I believe that
the methods presented in this paper can be further used to the study and construction
of other TQFTs as well.

2 Preliminaries and notations
2.1 Algebraic structures in symmetric monoidal categories

Throughout this paper K will be an algebraically closed field of characteristic zero,
and all categories will be K -linear rigid symmetric monoidal categories. Recall that a
symmetric monoidal category D is called rigid if for every X € D there is an object X*
together with maps evy : X* ® X — 1and coevy : 1 — X ® X*, such that evy and
coevy induce an adjunction isomorphism Homp (X*®Y, Z) = Homp (Y, X® Z) for
every Y, Z € D. The object 1 here is the tensor unit of D. Since we will only consider
symmetric monoidal categories in this paper, we will not distinguish between left
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and right duals. In particular, we also get natural isomorphisms Homp(X ® ¥, Z) =
Homop (Y, X* ® Z) induced by evy and coevy, together with the symmetry of the
category.

If D is a symmetric monoidal category and X € D is some object, then we get
an action of the symmetric group S, on X®". To be more precise, we have a group
homomorphism ¢ : S, — Autp(X®") given by permuting the tensor factors. We
will write ¢ (o) = L((,") (X), or just Lf,") if the object X is clear.

If f: X — X is an endomorphism in D, we define the trace of f, Tr(f), to be

coevy Cx evy

(/) 1Y xex B xex 9 xox Wt

Thus, Tr(f) € Endp(1). Of particular importance is the trace of the identity mor-
phism, which we shall denote by dim(X) = Tr(Idx). If Endp (1) = K, the trace is
just a scalar. If F : D — D’ is a symmetric monoidal functor, then the definition of
trace immediately implies that Tr(F(f)) = F(Tr(f)), where we consider here the
ring homomorphism Endp (1) — Endp- (1) induced by F.

Given a symmetric monoidal category D and atuple ((p;, g;)) € (N?)", an algebraic
structure of type ((p;, ¢;)) in D is a pair (A, (y;)) where A is an object of D and for
every i = 1,...,r the structure tensor y; is an element of Homp (A®% | A®Pi) =
Homq (1, APi+4i), where AP9 := A®P @ (A*)®4. For general algebraic structure we
do not require the structure tensors y; to satisfy any particular set of axioms, but in
most practical cases they do. We fix the type ((pi, gi)). For p, g > 1 we will write
ev : AP4 — AP~1.471 for the map which applies evaluation on the last tensor copy
of A with the last tensor copy of A*.

If (A, (y;)) is a structure of type ((p;, ¢i)) in D, we can use evaluation, tensor
products and composition with Lf,") to form morphisms in Homp (A®9, A®P) for
different values of p and g. All such morphisms can be described pictorially using
strings diagrams (see Section 4 of [16]). In Section 5 of [16] we constructed a graded
associative algebra Con = @p’qu ConP4 (here N = {0, 1, 2, ...}). Note that this
algebra depends on the type ((p;, gi)) of the structure. The vector space Con?-? is
freely spanned by equivalence classes of diagrams representing morphisms from A®¢
to A®?. For example, if (p1, ¢q1) = (1,2) and (p2, q2) = (2, 1), then the following
diagram in Con?? represents the morphism ev(Lg)B) (1 ® »)):

i y2

The permutation (123) is needed here to make sure that the output string of x; enters
the is connected with the input string of x;. The multiplication on Con is given by
taking tensor products of maps. The constructible morphisms in Con make sense in
any rigid symmetric monoidal category. Thus, for every p, ¢ € N we have arealization
map Re/y? : Con”4 — Homq (A®4, A®P), given by sending every basis element of
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Con?-1 to the morphism it represents (see also Definition 7.2. in [16]). In particular,
we get an algebra homomorphism Con®? — Homp (1, 1). We write 4 = Con®0.
This algebra, which is in fact a commutative Hopf algebra, was the main object of
study of the paper [16]. This algebra was named K[X],,, in [16]. We rename it
here, for the sake of simplicity. If D’ is another K -linear rigid symmetric monoidal
category, and F : D — D’ is a symmetric monoidal functor, then (F(A), (F(y;))
is an algebraic structure of type ((p;, g;)) in D’. For every p,q € N we have the
following commutative diagram:

eZ’q
ConP4 ——— Homp (A%, A®P)

m\ lF
F(A)

Homqp (F(A)®4, F(A)®P)

If the structure (A, (y;)) is clear from the context we will also write Re”*4 for Reﬁ’q.
Since elements in Con?-4 represent morphisms A®? — A®P we have a pairing
pair”? : ConP? ® Con?? — 3l given by pair”9(T) ® To) = Tr(T| o Tp). The
following diagram is then commutative (see also Diagram 7.1. in [16]):

P.q q.P
Con?1 ® Con?P RePIORTT Homp (A®9, A®P) @ Homqp (A®P, A®T)

pair?4 \L

RCO’O

U Endp (1),

where the map Homp (A®9, A®P) ® Homp (A®P, A®9) — Endp(1) is given by
S ®gr>Tr(f og).

If Homp (1, 1) = K then the structure (A, (y;)) gives a character {{ — K. We will
refer to this character as the character of invariants of (A, (y;)), and we will often
write it as x(a, (y;))- We will also say that (A, (y;)) affords the character x4, (y;))-

Definition 2.1 A K-good category is a K -linear symmetric monoidal category D that
satisfies the following conditions:

(1) The hom-spaces in D are finite dimensional.
(2) It holds that Endp(1) = K.
(3) The category D is abelian and rigid.

The following lemma is Proposition 4.7.5. in [9] and Lemme 3.5 in [7]. We will
use it in this paper to calculate traces.

Lemma 2.2 LetD be a K-good category. Assume that we have a commutative diagram

i p
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where the two rows are the same short exact sequence. Then Tr(g) = Tr(f) + Tr(h).
The above lemma has the following corollary:

Corollary 2.3 (See also Corollaire 3.6 in [7]). Let D be a K-good category, and let
T € Endp (B) for some object B € D. Then Zizo Tr(THX' € K[[X]] is a rational

function of the form % where deg(P) < deg(Q), Q has no multiple roots, and

Q(0) # 0. In particular, if T is nilpotent, then Tr(T) = 0.

Proof Notice first that the set of rational functions that satisfy the condition stated in
the corollary is the same as the linear span of functions of the form ﬁ for some
A € K. In particular, it is a linear subspace of K[[X]].

Since the hom-spaces in D are finite dimensional, the set {Idg, T, T2, .. .}islinearly
dependent, and T solves some non-zero polynomial. Let f(¢) be the minimal polyno-
mial of 7. We shall proceed by induction on deg(f). If deg(f) = 1then T = Aldg
for some A € K. This implies that ), Tr(TH X! = dim(B) > MXE = %, and
we get a rational function of the desired form. If deg(f) > 1, then since K is alge-
braically closed the polynomial f splits into linear terms. In particular, T — Aldp is
not invertible for some A € K. Write A = Ker(T — Aldg) and C = Im(T — Aldp).
We thus have a short exact sequence 0 - A — B — C — 0. Moreover, T induces
a morphism from this short exact sequence to itself. The lemma now implies that
Tr(T?) = Tr(T'[4) + Tr(T)) = dim(A)A" + Tr(T)) where Tc : C — C is the
endomorphism induced by 7. Since the minimal polynomial of T¢ is f(¢)/(t —A) we
get that

dim(A)
1— X

> T (rHX = + Y TH(THX,

and by induction we are done. In particular, if 7 is nilpotent then 7" = 0 for big
enough r. This implies that the resulting rational function is a polynomial, and this
can only happen if Tr(7") = 0 for every i > O. O

Definition 2.4 A good rational function Z(X) € K[[X]] is a rational function that can
be written as a quotient % such that Q has no multiple roots, deg(P) < deg(Q),

and Q(0) # 0.

The categories we will construct in this paper will use the notion of tensor ideals,
which we recall here.

Definition 2.5 Let D be a K -linear rigid symmetric monoidal category. A tensor ideal
N <D is a collection of subspaces N(A, B) € Homq (A, B) forevery A, B € D that
satisfies the following conditions:

e IfA,B,C,D € D, f € N(A, B), g € Homp (B, C), and h € Homp (D, A),
then gfh € N(D, C).
e If feN(A,B)andC € Dthen f R 1lc e NNARC,B R C).

Remark 2.6 By using the symmetry isomorphisms and the first part of the definition
one can show that a tensor ideal is also closed under taking tensor product from the
left with the identity morphism.
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Definition 2.7 If D is a rigid symmetric monoidal category and N is a tensor ideal in
D, we define the quotient category D /N to be the category with objects Ob(D/N) =
Ob(D) and hom-spaces Homp (A, B) = Homp (A, B)/N(A, B). This category
is again a rigid symmetric monoidal category, and there is a canonical functor D —

D/N.

2.2 Geometric invariant theory

Fix a type ((pi, gi)) of algebraic structures and a dimension d € N. In [16] it was
shown that there is an affine variety U, equipped with a GL4(K)-action such that
isomorphism classes of structures of type ((p;, g;)) of dimension d in Vecg are in
one-to-one correspondence with GL;(K)-orbits in Uy. We summarize in the next
proposition some results about this action:

Proposition 2.8

(1) If Wy and W3 are two closed GL;(K)-stable subsets of Uy then there is f €
K[U419%4 %K) such that f(Wy) = 0 and f(W,) = 1.

(2) The ring of invariants K [Ug]% X is finitely generated and therefore its maximal
spectrum Z = Spec,, (K[Uy1%4 %)Y is an affine variety.

(3) The map w : U; — Z induced by the inclusion K[U;16LE) s KU, is
surjective.

(4) The points in Z are in one to one correspondence with the closed GL4(K)-orbits
inUy.

(5) Foreveryz € Z, the preimage w ~1(2) is a union of GL4(K)-orbits, and it contains
exactly one closed orbit. This closed orbit lies in the closure of all other orbits in
7 1(2).

Proof The first four parts of the proposition were proven in [16], Section 2. They follow
from Lemma 3.3, Theorem 3.4, and Theorem 3.5 in [17]. The last part follows from the
fact that if there are two closed orbits O1 and 5 in 7 ~!(z) then we cannot distinguish
them using invariant polynomials, contradicting the first part of the proposition. O

2.3 Finite dimensional algebras

Let R be a finite dimensional K -algebra. For r € R we define L, : R — R to be the
linear map x > r - x. We write Tr,.,(r) = Tr(L,), and we define the trace pairing
R® R — K byri ®rp > Trpeg(r172). We claim the following:

Lemma 2.9 The trace pairing is non-degenerate if and only if R is semisimple.

Proof Assume first that R is semisimple. By Wedderburn’s Theorem, and since K is
algebraically closed, R splits as the direct sum of matrix algebras, R = @t M,, (K).
The trace pairing is non-degenerate on every matrix algebra M,,(K), where a dual
basis of {e;;} is given by {%ej i }. It follows that the trace pairing is non-degenerate also
on R.

In the other direction, assume that the trace pairing is non-degenerate. We will show
that the Jacobson radical J of R is zero, which will imply that R is semisimple. Let
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r € J. Then rx € J is nilpotent for every x € R,and as aresult L,y : R — R is
nilpotent. This implies that Tr,.¢ (rx) = O for every x € R. Since the trace pairing is
non-degenerate, we get that r = 0, and therefore J = 0. O

3 Construction of the universal category
Fix atype ((pi, ¢i)). We begin by constructing the universal category C,,,,;, and explain
its universal property. We will start with an auxiliary category Cp. The objects in this

category are symbols W% for a, b € N which we shall think of as W®¢ ® (W*)®?.
The duality adjunction implies that we should have

HOmGO(W®a ® (W*)®b, W®C ® (W*)®d) o~ HomeO(W®d ® W®a, W®C ® W®b)
= Home, (W®Ite, wocth),

We define
HOmeO(Wa'b, Wc,d) — ConC+b,d+a
If f: Wo — W is represented by a diagram Dir and g : WS¢ — W is

represented by a diagram Diy, then the composition gf : W*? — W is given
pictorially by the following diagram:

d c
—— ——
e b
—_— —_
Diy Dij
N——— S——
h a
——— S——
c d

The identity morphism in Home,(W?, W4?) is given by

a b
—— ——
Idyea Idyes
| |
—— —
b a

We used here single strings to represent bundles of a strings and of b strings. If
msz : Web — wed iy Wed 5 weS andm; : WeS — WS are morphisms

W Birkhauser
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represented by the diagrams Dij, Diy and Dij3 respectively, then the associativity
axiom (mymo)ms = mj(mym3) follows from showing that both compositions are
represented by the diagram:

f d ¢
—_—— ¢ —_—— —_——
s - b
—_— —_——
Di Diy Diy
~—— ——
t _— a
—_—— 7 —— ——
e c d

The identity axiom follows from Definition 4.1. in [16].
The category Cy is also a symmetric monoidal category. The tensor product functor
is given on objects by

Wa,b ® WC,d — Wd+C,b+d

Ifmy : Wbt — W02 and my : W9 — W29 are morphisms represented by
diagrams Di| and Di», then the tensor product m| ® my is represented by the diagram

az (&) by dy
—— ——~— ——~— ——
Di; Diy
—— —— —— ——
by d ai C1

We have
(W(l,b ® WL‘,d) ® We,f — Wll+c+e,b+d+f — Wa,b ® (WL‘,d ® We,f)'

The associativity isomorphism is given simply by the identity. The tensor unit is
1 := W0, The unit isomorphism W0 @ w4 = W — WP and Wb @ w0 =
Wb — WP are just the identity morphisms as well, and € is thus a strict monoidal
category.

The symmetric structure on Cy is given by the collection of morphisms W*? ®
wed » weod @ Wab or weteb+d _ yweta.d+b given diagrammatically by

) Birkhauser



58 Page 120f 37 E. Meir

c a b d
—— ——— —~— —
Idyea Idyes Idyea Idyec
—— —_— N ——
d b a ¢

(In this diagram, as in the diagram representing the identity morphism, a single string
represents a bundle of strings for simplification). The category Cy is also rigid. That
is, every object has a dual object, the dual of W*? being W»¢. It will be enough to
describe the evaluation and coevaluation for W := W%! since W and W* tensor-
generate the category Cy. The evaluation W* ® W — 1 is given by Idy € Con'!.
Similarly, the coevaluation 1 — W ® W* is given by the same element /dy € Con'-!
(notice that we realize here Con'! as the hom-space between objects in the category
in two different ways). A direct calculation with diagrams now reveals the fact that
the compositions W - W Q@ W*Q W — Wand W* - W*Q W ®Q W* — W* are
indeed the identity morphisms.

Finally, we define C,,;, to be the additive envelope of Cy. Its objects are finite direct
sums of objects of Cp, and the morphisms are given by

Home,,,, (®iAi, ®;B;) = @) Home, (4;, B)),
i,Jj

where A; and B; are objects of Co. We can thus consider W = W0 as an object of
Cuniv- Moreover, since x; € ConPi-9  we get the structure (W, (x;)) of type ((pi, gi))
in Cy,iv, which we call the rautological structure. We claim the following:

Proposition 3.1 Let D be a K-linear symmetric monoidal category. Isomorphism
classes of symmetric monoidal K-linear functors F : Cuuiv — D are in one to
one correspondence with isomorphism classes of dualizable algebraic structures of

type ((pi, gi)) in D.

Proof Given such a functor F we can consider the D-object A := F(W). Since x;
can be considered as a morphism in Home,,, (W®%, W®Pi), its image y; := F(x;)
will be a morphism in Homp (A®9, A®Pi), where we use here the monoidality of F
to identify F (W®") with F(W)®". We thus get the algebraic structure (A, (y;)) in D.
The object A is dualizable with dual F(W*) (we use here again the monoidality of
F).

Conversely, assume that (A, (y;)) is an algebraic structure of type ((p;, ¢;)) in D.
It will be enough to define the corresponding functor on the category Co, as this will
extends uniquely to a functor from C,,;, by additivity. We define F on objects by
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F(W®b)y = A%P = A®® @ (A*)®P_ The action of F on morphisms is defined using
the maps Re”9 from Sect. 2.1.
The monoidal structure on F is given by the composition

F(Wa’b) ® F(Wc’d) — A®a ® (A*)®b ® A®C ® (A*)®d
; A®a ® A®C ® (A*)®b ® (A*)®d
— A®a+c ® (A*)b+d — F(Wa+c‘b+d) — F(Wa,b ® Wc,d)

where we used here the symmetric monoidal isomorphism (A*)®’ @ A®¢ —
A% ® (A*)®P in D. Finally. an isomorphism between structures will give rise to
an isomorphism between functors and vice versa. O

Definition 3.2 The functor F : G,y — D constructed in the proposition will be
denoted by F4.

3.1 Universal categories for theories

We recall from Section 7 in [16] that a theory is a subset T C LICon” 9. The elements
of T are called axioms. Models of T are structures (A, (y;)) in some K -linear rigid
symmetric monoidal category D such that for every x € T it holds that F4(x) = 0,
where we interpret x € Con?»4 as a morphism W®¢ — W®? in @,,;,. Axioms can
describe associativity, commutativity, the Jacobi identity, and so on.

Definition 3.3 We write J7 for the tensor ideal in Cypiy generated by the elements of
T, interpreted as morphisms in C,,;, as above. We define eT = Cuniv/JI .

univ
Remark 3.4 The tensor ideal generated by a set of morphisms always exists. We can
either describe it as the intersection of all tensor ideals that contain the given set, or

as the collection of morphisms generated from the given set by taking compositions
and tensor products.

The following universal property follows immediately from the universal property
of Cyuiy (Proposition 3.1), and the universal property of the quotient category:

Proposition 3.5 Let D be a K-linear symmetric monoidal category. Isomorphism
classes of symmetric monoidal K-linear functors F : @;;Tn v — D are in one to
one correspondence with isomorphism classes of dualizable models of T in D.

Definition 3.6 We write {7 := ${/I5, where Iy = J5(1, 1)

Remark 3.7 We have Endeor (1) = /I3, where Iy is the ideal generated by

pair(x,y) € U for x € Con?”9 N T and y € Con??, for some p,q € N. This
ideal was denoted by J in Section 7 of [16]. We write here Jg for the tensor ideal in

euniv .

We shall see in Sect. 8 that theories can provide many good characters. Indeed,
in many interesting cases it will hold that the hom-spaces in ngiv are already finite
dimensional.
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4 The category C, and a proof of Theorem 1.1

The construction in this section will be based on a fixed type ((p;, g;)) of algebraic
structures. Let x : 4 — K be a character. It induces pairings

P4 P g.p PATT 0 X
pair)’? : Con”? @ Con?”? '— U > K

forevery p,q € N. Wecall f € ConP 9 x-negligible if it is in the radical of the above
pairing. We denote by N f 1 C ConP+4 the subspace of all x-negligible morphisms.
We will now construct the category C, as a quotient of the category Cy;y. For every
a, b, c,d € N we define

NX (Wa,b’ Wc,d) — N)(("i‘b,d"ra g C0n0+h,d+a — Homeuniv(Wa,h’ Wc,d).
We extend the definition of N, to all objects of Cy;y by the rule N, (®; A;, ®;B;) =
@i’j Ny (A;, Bj). We claim the following:
Lemma4.1 A morphism f € Home,,; (A1, A2) is in Ny (A1, Ap) if and only if for
every g € Home,,, (A2, A1) it holds that x (Tr(f o g)) = 0.

Proof 1t will be enough to prove the claim for the case where A = W%? and A, =
W4, We use the fact that if f is given by a diagram Di; and g is given by a diagram
Di»> then Tr(f o g) is given by the closed diagram

b a

Diy Dij

Define u; € Seqp by w1(i) =i +bmodc + b and wuy € Sppq by u2(i) =i +
d mod a + d. The above diagram shows that

Tr(f o ) = pair”?(Diy ® LM Dip L),

Since pre- and post-composing with Lfy”) are invertible maps for every n and every
o € Sp, the radical does not change. By applying the character x to both sides of the
last equation we get the desired result. O

Proposition 4.2 The collection N, (—, —) is atensorideal in C,;y (see Definition2.5).
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Proof The first condition for a tensor ideal follows easily from the previous lemma,
using the fact that Tr(f o g) = Tr(g o f). The second condition follows from Lemme
6.2.1 and also from Lemme 7.1.1 of [1]. O

If (A, (y;)) is a structure of type ((p;, ¢;)) in a K-good category D, then by Propo-
sition 3.1 we get a functor Fy : C,,iy — D. We also get the character of invariants
X = xA. We claim the following:

Lemma4.3 If B, C are two objects of Cyuiv and f € Home
Fa(f) =0then f e N, (B, C)

(B, C) satisfies

univ

Proof Since Fj4 is a symmetric monoidal functor it commutes with taking traces.
(see Sect. 2.1). Therefore, for every g : B — A we have that F4(Tr(f o g)) =
X (Tr(f o g)) = Tr(Fa(f o g)) = Tr(Fa(f) o Fa(g)) = 0 because F4(f) = 0. We
used here the fact that yx is the character of invariants of (A, (y;)). By Lemma 4.1 we
get the result. O

The following definition appeared in the statement of Theorem 1.1.

Definition 4.4 The character x : 4 — K is called good if the following two conditions
hold:

(1) Forevery p, g € N the subspace N)’Z 1 C ConP4 has finite codimension.
(2) If B € Cypiy and T : B — B satisfies that 7" is x-negligible for some r > 0
then x (Tr(T)) = 0.

We can now prove the following:

Proposition 4.5 If x is the character of invariants of an algebraic structure (A, (y;))
in a K-good category D then it is a good character.

Proof We have seen in Lemma 4.3 that for every B, C € C,;, it holds that the kernel
Kp,c of Home,,, (B, C) — Homxp (Fa(B), Fa(C)) is contained N, (B, C). Since
the hom-spaces in D are finite dimensional, K g ¢ is cofinite in Home,,,, (B, C). Thus,
N, (B, C) is cofinite in Home,,,, (B, C), and the first condition is satisfied.

For the second condition, let 7 : B — B be an endomorphism in C,,;,. Assume
that 7" € N, (B, B) for some r > 0. This means that for n > r Tr(Fa(T)") = 0, and
thus F4(T) is nilpotent in Endp (F4 (B)). By Corollary 2.3 we see that Tr(F4(T)) =
x (Tr(T)) = 0 as required. m]

Definition 4.6 Let x : {{ — K be any character. We define éx := Cuniv/Ny. and we
define C, to be the Karoubian envelope of C, .

Thus, éx has the same objects as C,,iy, but the hom-spaces are given by
Homéx (A, B) = Homeg,,,, (A, B)/N, (A, B). The objects of C, can be thought of

as pairs (A, p) where A € Ex and p : A — A is an idempotent in @x- We think of
(A, p) as the object Im(p). The hom-spaces in €, are given by

univ

Home, (A, p), (B, q)) = gHomg (A, B)p,
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where we use the action of Endéx (A) from the right and the action of Endéx (B) from
the left on Homéx (A, B). We can thus think of the category éx as being contained

in Cy. In particular, since e » 1s formed from G,m,-v~by dividing out a tensor ideal, we
get a symmetric monoidal functor Fy : Cyuiy — €4 — €. To avoid cumbersome
notation, we will also write F,, for the functor C,,;» — C,. Notice that for the tensor
unit 1 we get Ende (1) = Ende,,,,(1)/N, (1, 1) = 4U/Ker(x) = K, and that the map
Ende,,;, (1) = Ende, (1) is just the map x : 4 — K.

We are now ready to prove Theorem 1.1. The implication 1 = 2isclear,and2 = 3
is Proposition 4.5. The implication 3 = 1 follows from the next proposition.

Proposition 4.7 Assume that x is a good character. Then the category Cy is a semisim-
ple K-good category. Denote by (W, (x;)) the image of the tautological structure of
Cuniv under the functor F,. Then x is the character of invariants of (W, (x;)). In par-
ticular, every good character arises as the character of invariants of some algebraic
structure in some K-good category.

Proof Notice first that by dividing out the ideal N, we get finite dimensional hom-
spaces in (? and in €, , because x is a good character Moreover, as was stated before
the propos1t10n EndeX (1) = K. The category C, is also rigid. Indeed, C,;;, is rigid
and therefore éx is rigid as every object in éx is the image of some object in Cy;;y
under the quotient functor. Since taking duals commutes with projections, C, is rigid
as well. Thus, we just need to prove that €, is semisimple.

For this, we begin by proving that all endomorphism algebras in G are semisimple.
Let A € G and let R = Endex (A). The trace pairing r; @ 1 > Tr(rlrz) defines
a non-degenerate pairing on R, since we showed in Lemma 4.1 that N, (A, A) is the
radical of the trace pairing. Let J be the Jacobson radical of R. If r € J then it holds
that rr’ € J forevery r’ € R.In particular, rr’ is nilpotent for every r’ € R because R
is finite dimensional. But if rr" = L is nilpotent, we can lift it to an endomorphism T
in Cypiy. The fact that L is nilpotent means that some positive power of T is contained
in the ideal N, . By the second condition in Definition 4.4 we know that this means that
x (Tr(T)) = Tr(L) = 0. but this implies that Tr(rr’) = 0 for all ' € R. Since Tris a
non-degenerate pairing on R this implies that » = 0, so J = 0 and R is semisimple.

The objects of C, are of the form (A, p) where p € Endéx (A) is an idempotent.
We shall think of the object (A, p) as Im(p). We then have Ende, ((A, p)) = pRp
where R = End@X (A). Since R is semisimple, it follows that p Rp is semisimple as
well. We thus see that all endomorphism algebras in €, are semisimple. By taking
a Wedderburn decomposition of the endomorphism algebra, and taking a complete
orthogonal set of primitive idempotents, we see that every object A in €, decomposes
as the direct sum A = @; A; where Endex (A) =K

We claim that all objects B which satisfy Ende, (B) = K are simple. For this it
will be enough to prove that if By and B; are two such objects then either they are
isomorphic, or Homex (B1, B2) = 0. To do so we consider the object A = B & Ba.
Assume that Home, (B1, B2) # 0. Then

Ende, (A) = Home (B, B2) @ Home, (B2, Bi) @ Ende, (B1) ® Ende, (Ba).
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The non-degeneracy of the trace pairing on Ende, (A) implies that if there is 0 #
f : By — B then there must be a non-zero morphism g : By — Bj such that
Tr(f og) # 0. In particular, f og # 0. Since Ende, (B2) = K this implies that f o g
is invertible. By rescaling we can assume that f o g = Idp,. By a symmetric argument
we can show that g o f = Idp, and we are done. O

Remark 4.8 Unlike C,;y, the category C, does not satisfy a universal property for
structures (A, (y;)) in some K -good category D which afford x as character of invari-
ants. The reason for this is that it is possible that (A, (y;)) will afford the character x
but the resulting functor F4 : C,,;» — D will not vanish on all morphisms in N, .
We will see an example of this phenomenon in Sect. 8.2

The construction of the category €, enables us to give an alternative definition for
good characters.

Lemma4.9 Let x : 4 — K be a character that satisfies the first condition of Defi-
nition 4.4. Then x satisfies the second condition of Definition 4.4, and is therefore a
good character, if and only if the following condition holds: for every T € Cy,iy it
holds that )", x (Tr(T™))X" € K[[X]1] is a good rational function

Proof If x is good then €, is a K -good category, and by Corollary 2.3 ) ", x (Tr(T")) X"
is a good rational function. In the other direction, if yx satisfies the condition in
the lemma, then in particular if 7" is x-negligible for some » > 0 it holds that
>, x(Te(T™)X" is a polynomial. But the only polynomials of the form SE—Q
with deg(P) < deg(Q) are the constant polynomials. In particular, we get that

x(Tr(T)) = 0, and y is therefore a good character. O

Remark 4.10 The above lemma gives an alternative definition of good characters. The
advantage of this definition is that it refers to all morphisms in C,;,, and not only the
x -negligible ones.

5 Structures in Veck and a proof of Theorems 1.2 and 1.3

In this section we will describe the categories C, explicitly, in case x is a character
arising from a structure in Vecg. Recall from Sect. 2.2 that structures in Vecg of
dimension d are in one-to-one correspondence with GL; (K )-orbits in the variety Uy.
If (Y, (yi)) and (Z, (z;)) are two structures of dimension d, we will say that (Y, (y;))
specializes to (Z, (z;)) if the GL;(K)-orbit of the isomorphism class of (Z, (z;)) is
contained in the closure of the GL;(K)-orbit of the isomorphism class of (¥, (y;)).
If this happens, the characters of invariants of (¥, (y;)) and of (Z, (z;)) are equal. We
claim the following:

Lemma 5.1 Assume that (Y, (y;)) and (Z, (z;)) are two structures of dimension d,
and that (Y, (y;)) specializes to (Z, (z;)). Denote by Fy, Fz : Cyniy — Veck the
functors constructed in Sect. 3. If f : A — B is a morphism in C,;,, and Fy(f) =0,
then Fz(f) = 0 as well.
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Proof By fixing a basis for Y and for Z we can assume without loss of generality
that Y = Z = K9 as vector spaces. In this case we can think of the variety Uy as
the affine space made by the structure constants of the different structure tensors (See
Subsection 2.3. in [16]). The vanishing of Fy (f) then boils down to the vanishing of a
set of polynomial functions in the structure constants. Since these polynomials vanish
on all point in the orbit of (Y, (¥;)), they must also vanish on the orbit of (Z, (z;)) by
continuity, so Fz(f) = 0 as well. O

Let now (Y, (y;)) be an algebraic structure of dimension d in Vecg. Let x =
X(¥,(y:))- The isomorphism class of (Y, (y;)) gives a GLy(K)-orbitin Uy. Let O be the
unique closed orbit in the closure of this orbit (Uniqueness follows from the results
in Sect. 2.2). We write (Z, (z;)) for a representative of the orbit O. We claim the
following:

Proposition 5.2 There is a unique symmetric fiber functor F : €, — Vecg. The
image of the tautological structure in C, under F is isomorphic to (Z, (z;)), and
Cy = Rep(Aut(Z, (z;))).

Proof To prove the existence and uniqueness of the symmetric fiber functor F we
will use the theory of Deligne on Tannakian categories (see Théoréme 7.1. in [6] and
also Proposition 0.5. in [5] for the more general case of an sVecg valued functor).
Applied to the present situation, the theorem of Deligne tells us that there is a (unique)
symmetric monoidal functor C, — Vecg if and only if for every B € C, there is an
integer r such that /\" B = 0. This condition is equivalent to the condition that the
constructible idempotent Altf : B®" — B®" defined by

1
B __ _1yo7 ()
Al = =3 (=1)°L]

‘oes,

vanishes in C, . It will be enough to prove this statement for objects of the form web
because the collection of objects which satisfies this condition is closed under taking
direct sums and direct summands. So we need to prove that for every a and every b
there is an r such that Alt}w"b € Ny (Wabyer (wabyery,

Consider now the functor Fy : Cunin — Veck. We do know that Fy (W4?) = ya.b
is a finite dimensional vector space. This means that for » = dimg Y*? 4 1 it holds
that

r

0=Ar* = /\ Fy (W) = Fy(/r\ web),

where we use the fact that Fy is monoidal and symmetric, so it commutes with taking
tensor products and taking exterior powers. But this means that Fy (Altfv a‘b) = 0. We
have seen in 4.3 that this implies that AltrWa’b € Ny (WabY®r (wa-by®ry 5o the first
statement is proved.

We thus have a symmetric fiber functor F : C, — Vecg. We write F(W) = D
and F(x;) = t;. We get a structure (D, (#;)) in Vecg. The character of invariants of
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(D, (1;)) is still x, and (D, (t;)) specializes to (Z, (z;)). Following Section 6 of [14]
we get an equivalence between C, and Rep(Aut(D, (#;))) (notice that the framework
here is a bit different than that of [14], because we work here over an algebraically
closed field. This is why we get here a proper equivalence of the categories, and not
just up to a form). We need to prove that (D, (¢;)) is isomorphic to (Z, (z;)).

For this, let Fz : C,,;y — Veck be the functor sending the tautological structure in
Cuniv to (Z, (z;)). We will show that this functor splits via C, . This will imply that we
get a fiber functor C, — Veck sending the tautological structure in C, to (Z, (z;)).
By the uniqueness of the fiber functor this will prove that (Z, (z;)) = (D, (t;)).

To prove the above statement, it will be enough to show that for every y-negligible
morphism f we have Fz(f) = 0. But since (D, (t;)) spcializes to (Z, (z;)) and
Fp(f) = 0, this follows from Lemma 5.1. m]

Write now X (P-4 C Y74 for the image of Home,,, (W®4, W®P) under the functor
Fy . Inother words: X (79 contains all the linear transformations one can form from the
structure tensors of (Y, (y;)) using linear algebra operations. We have the following:

Corollary 5.3 The restriction of the natural pairing YP4 ® Y9P — K to XP? ®
X@-P) — K is non-degenerate if and only if the orbit of (Y, (y;)) is closed in Uy.

Proof We have already seen that if the orbit of (Y, (y;)) is closed then we have an
equivalence €, = Rep(Aut(Y, (y;))). By the way €, is constructed we see that the
pairing Home, (W®7, W¥P) @ Home, (W®P, W®7) — K givenby T} ® T»
Tr(T1 1) is non-degenerate. Since we have a fiber functor F : €, — Vecg which
sends (W, (x;)) to (Y, (y;)) the result follows.

In the other direction, assume that the pairing X7 @ X@P? — K is non-
degenerate. This means that if f is a x-negligible morphism in C,,;, then Fy (f) = 0.
This implies that Fy splits via C,, and we have already seen that this implies that
Y, (3)) = (Z, (z1)), where (Z, (z;)) is the closed orbit which (Y, (y;)) specializes
to. O

A special case of the next corollary was used in [15] to prove that every finite
dimensional semisimple Hopf algebra admits at most finitely many Hopf orders over
any number ring:

Corollary 5.4 Assume that (Y, (y;)) has a closed orbit. Let X9 C YP4 be the
subspace of constructible elements. Then X (P9 = (YP9)9 where G = Aut(Y, (yi)).

Proof This follows immediately because in this case €, = Rep(G) and the hom-
spaces in C, are spanned by the constructible elements. O

Remark 5.5 A simple example of a non-closed orbit is given as follows: Let ¥ = K?
and consider a single tensor T of type (1, 1) (i.e. an endomorphism). The orbit of
the nilpotent linear transformation ej; is not closed, and contains the zero endomor-
phism in its closure. The algebra of invariants 4l is a polynomial algebra on Tr(7")
n=20,1,2,...,and the character of invariants of (Kz, e12) and (K2, 0) is given by
x(Te(T")) = 0 for n > 0 and x(dim) = 2. Even though ey # 0, T will be a
negligible morphism and will therefore vanish in €, . The category that we will get is
Rep(GL,), as GL; is the automorphism group of (K 2.0).
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5.1 Proof of Theorem 1.3

Let now G be any reductive affine algebraic group. We show that Rep(G) = €, for
a suitable type of structure and a suitable character x. This would have been fairly
easy to prove if we allowed infinitely many structure tensors. We will show here that
it is also possible when considering only finitely many structure tensors. Since G is
an affine algebraic group, we know that G is a subgroup of GL(V) for some finite
dimensional vector space V. We begin with the following lemma:

Lemma 5.6 Assume that G € H C GL(V) are algebraic groups, and that G is also
reductive. If Homg (1, VP1) = Homg(1, VP'9) for every p,q € N, then G = H.

Proof Consider the category Rep(H ). Inside this category, consider an object of the
form A = A b)) = @; V4. By assumption, it holds that Endy (A) — Endg (A)
is an isomorphism. Since G is reductive, it holds that Endg(A) = Endg(A) is a
semisimple algebra, and thus A decomposes in Rep(H) into a direct sum of objects
B with Endy (B) = K. Moreover, for any two such objects B and B’ it holds that
Hompy (B, B’) is either zero or one dimensional, and if B is a direct summand of A
and B’ a direct summand of A’ then B ® B’ is a direct summand of A ® A’ which is
again a direct sum of objects of the form V2.

Consider now the full subcategory € C Rep(H) whose objects are direct sums
of direct summands of objects of the form A((; 5,)) for some ((a;, b;)). The above
argument shows that this is a rigid tensor subcategory of Rep(H) that contains V and
V*.Since V and V* tensor-generate Rep(H ), itholds that C = Rep(H). It follows that
the restriction functor Rep(H) — Rep(G) is an isomorphism on all hom-spaces, and
that it is surjective on objects, since Rep(G) is semisimple and every object there is
isomorphic to a direct summand of @ V¢ bi for some ((a;, b;)). The restriction functor
is therefore an equivalence of categories. By Tannaka reconstruction it follows that
H=0G. O

Next, we claim the following:

Lemma 5.7 There is a finite collection x; € VP4 | = 1,..., c of tensors such that
G = Stabgrv)((x;)).

Proof Write T for the set of all tensors in V79 for some p, g that are fixed by G.
Write Q for the set of subgroups of GL(V) that arise as stabilizers of finite subsets of
T. Since GL(V) is a Noetherian topological space, the set O has a minimal element
H. Since taking unions of finite sets corresponds to taking intersections in Q, we see
that this minimal element of Q is in fact unique. We claim that H = G. This follows
from the fact that by minimality, H is contained in the stabilizer of any finite subset
of T. This implies that H fixes all the elements in 7. By the previous lemma, this
implies that H = G. O

We fix now a tuple (x1, ..., x.) € U(V) = @ VP4 such that Stabgr (v)((x1, . . .,
x¢)) = G. We are almost in position to construct a x such that C,, = Rep(G). The only
problem is that it might happen that the GL(V) orbit of (x1, ..., x.) inside @ V7i-4i
is not closed. We solve this issue using localisation:
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Lemma5.8 Let (x1, ..., xc) be atuple as above. Then there are finitely many tensors
zi € V&bi i =1,..., d such that the GL(V)-orbit of (x1, ..., Xe,21,...,2q) in
UuWw)e o, vaibi is closed, and such that Stabgrvy((x1, ..., X¢, 215 ..., 2q)) = G.

Proof Recall first that if GL(V) acts on an affine space U, and u € U is any point,
then dim(0,) + dim(Stabgy,(v) (1)) = dim(GL(V)), where O, is the orbit of u. In
particular, if O; and O are two orbits such that O, C 01, thendim(O3) < dim(O;) and
as a result dim(Stabgp(v)(#1)) < dim(Stabgy(v)(#2)) where u; € O; and up € O».
For our concrete case, we can view p = (x1, ..., X.) as a point in the affine space
U (V) upon which GL(V) acts. If the orbit O of this point is closed, we are done.
Otherwise, consider the unique closed GL(V)-orbit in the closure of the GL(V)-orbit
of p.Let p’ = (x{, ..., x) be a point in this closed orbit. Write L = Stabgr(v)(p’).
Then it holds that dim(G) < dim(L). If x is the character of the structure defined

by (x1, ..., x¢), then we know that there is a constructible morphism f € Conb?
for some a, b € N such that f is x-negligible but 0 # Re?%(f) € V5. Denote by
Re®? : Con®® — V5@ the realization map with respect to the tensors (X715 X0).

The fact that f is x-negligible implies that Re’”“(f) = 0. Since G is reductive,
there is an element z € (V%?)Y such that (z, Re”“(f)) = 1. Consider now the
point g = (x1,...,%x:,2) € U(V) & V4P We have a GL(V)-action on this space
as well, and projection gives a GL(V)-equivariant map ® : U’ (V) — U(V). If
the closure of the orbit of ¢ contains a point ¢, then the closure of the orbit of
®(g) = p contains the orbit of ®(g’). However, the orbit of (x], ..., x[) is not in the
image of ®. Indeed, if it was the image of (x], ..., x., z') then we would have had
(Z/,Re®(f)) = (z,Re®?(f)) = 1 by continuity. But this contradicts the fact that
Re4(f) = 0.

We claim that if ¢’ € U’(V) is in the closure of the orbit of (x1, ..., xc, z) then
dim(Stabgrv)(¢g")) < dim(L). This follows from the fact that dim(Stabgr(v)(¢") <
dim(StabgrL(v)(®(¢"))). The orbit of ®(g’) is in the closure of the orbit of p,
and the closure of the orbit of ®(g’) contains the orbit of p’, where we use the
fact that the closure of any orbit contains a unique closed orbit. This implies that
dim(Stabgr(v)(¢")) < dim(L).

We thus see that by passing from (U (V), p) to (U’ (V), gq) we strictly decreased
the maximal dimension of the stabilizer of a point in the closure of the orbit of
D, respectively of g. It also holds that Stabgr(v)(p) = Stabgr(v)(¢) = G. By
repeating this process finitely many times, and adding finitely many tensors, we will

reach a space U”(V) and a point p” = (x1,...,x¢, 21, ...,24) € U"(V) such that
Stabgr(v)(p”) = G and such that the orbit of p” is closed. This will give us the
desired algebraic structure and character of invariants. O

6 The good characters form a K-algebra

The ring 4 is a polynomial algebra on the set P of closed connected diagrams. This
means that we have a one-to-one correspondence between characters 4 — K and
functions from P to K, given by restriction. The set of functions K = {f : P — K}
carries an additional structure of a K -algebra. To state this precisely, for every closed
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connected diagram Di € P, every x1, x2 € K P and every t € K, we have

(x1 + x2)(Di) = x1(Di) + x2(Di), (x1 - x2)(Di) = x1(Di) - x2(Di),
(tx)(Di) = t(x(D1i)).

In Section 6 of [16] we introduced two coproducts on i, A and A®. The elements
of P are primitive with respect to A and are group-like with respect to A®. A direct
calculation shows that as characters of {4 we have x; - x2 = (x1 ® x2)A® and
X1+ x2 = (x1 ® x2)A. We claim the following:

Lemma 6.1 The set of good characters in K ¥ is closed under addition and multipli-
cation.

Proof Assume that x; and y» are good characters. Then the categories C,, and C,,
are semisimple K-good categories. We can consider the Deligne product €, X C,,,
which is again a semisimple K-good category. This category contains the algebraic
structures Wi := W X 1 and W, := 1 X W. We will write (W1, (x;)) and (W2, (y;))
to indicate the specific structure tensors of these structures. It is easy to see that the
character of invariants of W; is x; fori = 1, 2. Since the two structures live in the same
category we can consider the structures (W1 @ Wa, (x; @ y;)) and (W1 @ Wa, (x; ®y;)).
Following Section 6 of [16] we see that the characters of invariants of these structures
are x1 + x2 and x - x2 respectively. But since these are the character of invariants of
structures in a K-good category we get that x; + x2 and xj - x2 are good characters,
as required. O

To prove that the good characters form a K-algebra we just need to show that the
set of good characters is closed under the action of t € K. To do so, we will use the
category Rep(S;), which will be described in detail in Sect. 8. The proof of the next
proposition finishes the proof of Theorem 1.4

Proposition 6.2 Assume that x : 4 — K is a good character. Then ty is a good
character as well.

Proof Since we already know that the set of good characters is closed under multipli-
cation, it will be enough to show that the character c;, given by c¢;(Di) = t for every
closed connected diagram Di, is a good character. For this we will use the category
Rep(S;) described in Sect. 8. The category Rep(S;) can be described as C,, where y is
the character of invariants of a certain separable commutative Frobenius algerba. Such
an algebra is given by the following list of tensors: m of degree (1, 2), A of degree
(2, 1), € of degree (0, 1), and u of degree (1, 0). We will see in Sect. 8 that x (Di) =t
for every closed diagram formed by the boxes m, A, €, u, Idw.

We are interested here in structures of type ((p;, gi)). We will define a structure of
this type in Cy. Let W be the tautological structure in C,. We define y; : W®%i —
W®Pi tobe (A®Id§,p_2) cAm(mQIdy) - - (m®Id;8;,q_2) incase p > 2andg > 2.
If p = 1 we justremove the A-part from the above expression, and if p = 0 we replace
it by €. If ¢ = 1 we remove the m-part from the above expression, and if g = 0 we
replace it by u. We get in this way an algebraic structure of type ((p;, g;)) in C,. Write
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Y for its character of invariants. We will show that ¢ = ¢;, thus proving the claim.
If Di is any closed connected diagram for structures of type ((p;, gi)), we can create
a closed diagram Di’ for structures of type ((1, 2), (2, 1), (0, 1), (1, 0)) by replacing
any box labeled by x; by the composition y; described above. It is easy to see that if
Di is connected, then Di’ is connected as well, since the morphisms are formed by
connected diagrams (even if not closed ones). We then get that v (Di) = x (Di’) = ¢
because Di’ is a closed connected diagram. But this means that ¥ = ¢;, so we are
done. O

7 Interpolations

Our goal in this section is to show that under some mild conditions a family of char-
acters, and their symmetric monoidal categories, can be interpolated. We begin with
the following definition:

Definition 7.1 A one-parameter family of characters (x;);ck is a collection of charac-
ters x; : 3 — K, such that for every closed diagram Di the element x;(Di) € K is a
polynomial in #. A family (x;);ck is called additive if V11, 1 € K x¢, + X1, = Xty +12
and it is called multiplicative if Vt1, 12 € K x4 X1, = X1110-

Remark 7.2 The condition that x,(Di) is a polynomial in ¢ for every closed diagram is
equivalent to the condition that x;(D1i) is a polynomial in ¢ for every closed connected
diagram, because every diagram can be written as a product of closed connected
diagrams.

Definition 7.3 We say that a property holds for almost all # € K if it does not hold
only for finitely many values of 7.

Lemma7.4 Let (x;)ick be a one-paramter family of characters, and let ¢ € Con?1
be a constructible morphism. Assume that there is an infinite subset {s1, s2, ...} C K

such that c € rad(pair)'g,l_q). Then c € rad(pair)'zt’q)for everyt € K.

Proof The assertion ¢ € rad(pairit’q) is equivalent to
Vd € Con?"? y;(pair”9(c ® d)) = 0.

But for every d € Con??, x;(pair’?(c ® d)) is a polynomial in ¢. By assumption,
this polynomial has infinitely many zeros, and is therefore zero. O

We claim the following:

Lemma?7.5 Let (x:)iex be a one-paramter family of characters. Assume that there
is an infinite subset {s1, sz, ...} < K such that the following condition holds: for
every (p, q) € N? there is a number n(p, q) such that for every i the codimension of
md(pairﬁa’_iq) in Con?1is < n(p, q). Then the codimension ofrad(pairgzt’q) in Con?1
is < n(p, q) for all t. If moreover there are elements cy, ..., Cu(p,q) € Con?1 such
that ¢y —l—rad(pairfg,’q), s Cnipg) —l—rad(pairi’q)form abasis ofConp’q/rad(pairfg,’q)
for some value of t then they form a basis of Con”’q/rad(pairfz;q)for almost all t.
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Proof Let(p,q) € N*. Let {w!?, w5, .. .} be abasis for Con? 4. Similarly, we have
abasis {w‘f’p, wg’p, ...} for Con?-P. Then the pairing pair”? : Con?1QCon?? — il
is determined by its action on tensor products of basis elements. In particular, for every
natural number N and every ¢t € K it holds that the codimension of rad(pairfz; 1) in
Con?-1 is < N if and only if for every iy, i, ...in, in+1 € N the determinant of the
matrix

Ot (pair™ (] ® wi ™)) jx

vanishes. Since x; is a one-parameter family, this determinant is a polynomial p(¢)
int. If N = n(p, q) then we know that p(s;) = 0 foreveryi = 1,2,.... Buta
polynomial in one variable with infinitely many zeros is zero, so we deduce that the
codimension of rad(pairy?) is < n(p, q) forevery r € K.

For the second assertion, assume that ¢y, .. ., ¢u(p,q) are elements of Con? 9. Then
they form a basis modulo rad(pair};?) if and only if the following condition is satisfied:
there are elements di, . . ., dy(p,q) in the basis of Con?-? such that the determinant of
the matrix (x,(pair”?(c; ® d;))) is non-zero. This is a Zariski-open condition, since
this determinant is also a polynomial in ¢. Thus, if there is a single value of # for which
there is a set of basis elements d, . .., dy(p,4) such that this determinant is non-zero,
then it will be non-zero for almost all . O

Lemma7.6 Let (x:) be a one-parameter family of characters, and let A be an
object of Cyniy. Assume that for almost all t € K the endomorphism algebra
R, := End@m (Fy, (A)) is of dimension N and that for some value of t it has dimension
N and is semisimple. Then R; semisimple for almost all t, and for almost all t it holds
that if r € Ry is nilpotent then Tr(r) = 0.

Proof Let s € K be an element for which R, has dimension N and is semisimple.
Then R; has a basis given by F, (c1), ..., Fy, (cn), for some morphisms ¢; in Cypip.
It follows from the previous lemma that Fy, (c1), ..., Fy,(cy) form a basis for R, for
almost all 7. Let Try.¢ : R, — K be the trace of the regular representation of R,. Then
R; is semisimple if and only if the determinant of the matrix

Trreg(FXz (ci) o FX/ (Cj))

is non-zero (see Sect. 2.3) Again, this is a Zariski-open condition. Since we know that
this determinant does not vanish for t = s it doesn’t vanish for almost all ¢, and R,
is thus semisimple for almost all ¢. Now, if R, is semisimple, then the fact that Tr, .,
is non-degenerate implies that there is a unique r; € R; such that Tr(a) = Tr,.q (ar;)
for every a € R;. This is because non-degeneracy of Tr,., implies that every linear
functional R, — K is of the form Tr,.¢(—x) for some x € R;.

We claim that r; is central. Indeed, itholds that Tr(ab) = Tr(ba) foreverya, b € R;.
This implies that Tty (abr;) = Tr, .4 (bar,). We use the linearity and cyclicity of Tr¢g
to deduce that Tree (a(br; — ;b)) = 0O for every a, b € R,. Because Tr,.g is non-
degenerate this implies that r,b — br; = 0 for every b € R;, which means that r; is
central in R;. Now, if a € R, is nilpotent then Tr(a) = Tr,.g(ar,). Since r; is central,
ar; is nilpotent as well, and therefore Tr(a) = Try.g(ar;) = 0 as required. O
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Proposition 7.7 Let (x;) be a one-parameter family of characters. Assume that there
is a countable subset {s1, 52, ...} of values of t such that xs, is a good character for
every i. Assume moreover that for every (p, q) € N? there is a number n(p, q) such
that

dim(Conp’q/rad(pairi;q)) <n(p, q).

Then yx; is not a good character for at most countably many values of t. If in addition
(x:) is additive then x; is a good character for all t, and if it is multiplicative then x;
is a good character for all t # 0.

Proof We use here the fact that a character is good if and only if it is afforded by
a structure in a K-good category. By Lemma 7.5 we see that the first condition of
Definition 4.4 holds for x, forevery ¢t € K.

For the second condition, we proceed as follows: for every object A € G,y We
know that R; := Endém (Fy, (A)) is finite dimensional and of dimension < M for
some M (this follows from the condition on the radicals and the fact that every object
of Cyniv has the form €p; weibi 1f N = sup,{dim R;} then dim(R;) = N holds for
almost all . This is because the condition dim(R;) > N is a Zariski-open condition.
In particular, for some s; it will hold that dim(Ry,) = N. Since y;, is a good character,
it follows that Ry, is semisimple, by the proof of Proposition 4.7. The condition of
Lemma 7.6 are thus fulfilled, and we see that for almost all ¢ it holds thatif 7 : A — A
in Cypiy satisfies that T" is x;-negligible, then F,, (T) € R; is nilpotent, and therefore
Tr(Fy, (T)) = x:(Tr(T)) = 0. We thus see that for every object A € C,;;y there are
at most finitely many values of ¢ for which the second condition of Definition 4.4 is
not satisfied. The category C,,;, has countably many objects Ay, As, .. .. Since the
countable union of finite sets is countable, we get the first part of the proposition.

For the second part, assume that K is uncountable. This is not really a restriction,
since we can always embed K in an uncountable field L and deduce back to K. Write
C = {t|x; is a good character}. Then D := K\C is at most countable. Assume that
(x) is additive and that D # &. Let d € D. Consider the set E = {d — ¢t|t € C}.
Then E has a countable complement. It follows that E N C # &. So thereist € C
such that d — ¢ is also in C. But since C is closed under addition it follows that
d =d —t+1t e C,acontradiction. The proof for the case where the family (y;) is
multiplicative is similar, where we use multiplication instead of addition and K\ {0}
instead of K. O

Definition 7.8 We call {sy, s2, ...} a special collection for (x;) if it satisfies the con-
dition of the proposition.

8 Examples
8.1 The empty structure, and the categories Rep(GL;(K))

Consider first the empty structure, where » = 0 and there are no structure tensors. In
this case the algebra of invariants il is just K[ D], where D is the dimension invariant.
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Define a one-parameter family of characters by the formula yx,(D) = ¢ for every
t € K. Notice that this is an additive family. We have the special collection C =
{0,1,2,3,4,...}. In this particular case it holds that Con?9 = 0 if p # ¢, while
Con? P has already finite rank p! over {{ = K[D], and it has a basis given by Lf,p )
for 0 € §,. As a result, the condition for finite dimensionality of the hom-spaces
in é)@ holds for all ¢, and x; is a good character for every ¢ by Proposition 7.7. For
t = n, a non-negative integer, we get the category Rep(GL,(K)). We thus write
€y, = Rep(GL;(K)) for every t € K. The algebra of good characters in this case is
simply K. This example was given by Deligne [7].

8.2 A single endomorphism

Consider now the algebraic structure consisting of a vector space W and a single
endomorphism 7 : W — W. Alternatively, we can think of such an algebraic structure
asa K[t]-module, where f acts by T'. In this case the ring $Lis K[ D, Tr(T), Tr(TZ), .
Let x : &4 — K be a good character. By Corollary 2.3 we know that the rational
function ) ; ¥ (Tr(T?))X' has the form Z?:l ﬁﬁ where t; € K and {A;} is the
spectrum of T'. The algebra Ende, (W) is generated by the endomorphism 7'. Since
C, is semisimple, this algebra is semisimple, and W splits as W = @j’:l W;, where
W; = Ker(T — A;). It then follows easily that ¢; = dim W;. Moreover, we get an
equivalence of categories

F : @, =Rep(GL,, (K)) K- K Rep(GLy, (K)),

where F(W;) =1X.. . XWXI1K...X1 e Rep(GL; (K)). The morphism F(T') is
then given by F(T)|rw,) = Aildrw,). We thus see that any good rational function
can be received here. For A € K write U, : 4 — K for the character Tr(T?) > A’
A direct calculation shows that U U,, = Uy,. It follows that the algebra of good
characters here is the monoid algebra of (K, x).

We next use this type of algebraic structure to show that the category C, does
not necessarily satisfy a universal property, as was stated in Remark 4.8. Take A =
K? € Veck, and take T : A — A to be the linear transformation represented by

the matrix (8 (1)> Then dim(A) = 2 and Tr(7T") = 0 for all n > 0. Let x be the

character of invariants of (A, 7). Then T € C,,;, is a x -negligible morphism, and as
aresult 7 = 0 in C,. This shows that there is no functor F : C, — Veck such that
F(W,T) = (A, T), because F is K-linear and therefore cannot send the zero vector
to a non-zero vector.

8.3 Non-degenerate symmetric pairings and the categories Rep (0,(K))
For the next example, we would like to consider vector spaces W with a non-degenerate
symmetric pairingc : W®W — K. The non-degeneracy is equivalent to the existence

of d € W ® W such that ev(c ® d) = Idw, or in graphical terms:
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‘ d )

The fact that ¢ is symmetric implies that d is symmetric as well, considered as a map
W* ® W* — K. This can also be proved directly using diagrams. We thus consider
the theory T which contains two axioms: the axioms ev(c ® d) — Idw and the axiom
cL(?)2 — c. In this case, the resulting hom-spaces in ng i already have finite rank over
Y/ Iy. Indeed, whenever a diagram contains a connection between an input string of
a c-box and an output string of a d-box we can reduce this to the identity morphism
on W (we use here the fact that both ¢ and d are symmetric). Thus, every diagram is
equivalent to a diagram in which no c- and d-boxes are connected. But there are only
finitely many such diagrams with a given number of input and output strings.

For the scalar invariants, notice that the only closed connected diagram in which
no input strings of ¢ are connected to output strings of of d is the dimension invariant.
Thus /I35 = K[D] in this case, and characters for models of T are determined by
their value on D. Write x; : 4 — /Iy = K[D] — K for the unique character that
satisfies x (D) = t. Then x, is a good character for every n € N. Indeed, it is the
character of invariants of the structure (K", (c,, dy)) where ¢, = Y 7, e ® e and
d, = Z?:l e; ® e;, where ¢; is the standard basis for K”. Up to isomorphism, this is
the only n-dimensional vector space with a non-degenerate symmetric pairing, and it
thus have a closed orbit. It is easy to see that (x;) is an additive family. Since yx, is
good for every n € N, and the dimensions of the hom-spaces is uniformly bounded,
Proposition 7.7 implies that x; is good for every 7. In case t = n is an integer, we
get by Proposition 5.2 that C,, = Rep(Aut(K", (cu, dy))) = Rep(0;(K)). We thus
denote C,, by Rep(0;(K)). This example, as well as the next two examples, were
given by Deligne [7].

8.4 Non-degenerate skew-symmetric pairings and the categories Rep(Sp,(K))

Consider now skew-symmetric pairings. In a very similar way to the last example,
such structures are given by two structure tensors: ¢ of degree (0, 2) and d of degree
(2, 0). The theory here is made of the two axioms ch)z) + cand ev(c ® d) — Idw.
As before, one can show that d is also skew-symmetric, and that /I3 = K[D]. We
define x; : 4 — /Iy = K[D] — K to be the character which sends D to ¢ € K.
Just as in the last example we can show that the hom-spaces in ngiv have finite rank
over U/ Iy. For t = 2n where n € N, the character xo, is a good character, since it is
the character of the structure (K", ¢, dy) where ¢, = Y 1 el @ /™" — &+ ® ¢
and d, = Z?:l ei ®ejyy —eitn Qe;. Since (x;) is an additive family, Proposition 7.7
implies that x; is a good character for all ¢. Since C,,, = Rep(Aut(K 2 (e, dy))) =
Rep(Sp,, (K)) we write C,, = Rep(Sp,(K)). As pointed out in Section 9.5 of [7] for
the case that ¢ is an integer, there is a connection between the categories Rep(O;) and
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RepSp_;. We have an equivalence of symmetric monoidal categories F : Rep(O;) X
sVecg = Rep(Sp_,) W sVecg. This equivalence is given by acting as the identity on
sVeck, and by sending the tautological structure W of Rep(O;) to W X k_, where
k_ is the odd vector space of dimension 1, and W € Rep(Sp_,) is the tautological
object. One can easily check that W € Rep(O;) and W X k_ € Rep(Sp_,) have the
same invariants, and therefore the functor F is well defined. It is also easy to write its
inverse, by a similar formula.

8.5 Separable commutative algebras and the categories Rep(S;)

In this example we consider the structure of separable commutative algebras. Such an
algebra is an associative commutative unital algebra W such that the multiplication
m: WQRW — W splitsasa W — W-bimodule morphism. The splitting s is determined
byc:=s(1) e WQW.

To phrase everything in the language of algebraic structures, a separable commu-
tative algebra contains a multiplicationm : W @ W — W,aunitu : 1 — W, and
separability idempotent ¢ : 1 — W ® W. Another formulation is given by replacing c
with A :=ev(m®c) : W — W ® W. The separability idempotent ¢ can be recovered
fromAasAou:1—- W — W ® W. The comultiplication A was used in Sect. 6.

The theory Ty, of separable commutative algebras contains the axioms saying that
m is associative and commutative, that « is a unit for m, and that ¢ defines a splitting
of m as a W — W-bimodule morphism. This boils down to the following equality of
morphisms:

m m m
[T i
:

8.1)

The axioms in Ty, also imply the following equality of constructible morphisms:

8.2)
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We then get the following equality of diagrams:

(8.3)

We claim the following:

Lemma 8.1 The algebra 75 is isomorphic to K[D]. The natural projection $ —
UTser sends every closed connected diagram to D = dim(W).

Proof Let Di be aclosed connected diagram. We will show that we can reduce Di to D
using the axioms in Jy,,. We shall do so by induction on the number n of appearances
of the tensor ¢ in Di. If n = 0 then Di contains only the tensors u and m. Since
Di is a closed diagram, the number of u-boxes and the number of m-boxes must be
equal. Since only the tensor m contains input strings, the output of every u-box will be
connected to one of the input strings of m. But since u is a unit for m, we can replace
this by Idyw . We can get rid of all appearances of u in this way. Since a closed diagram
cannot have only m-boxes, because the number of input and output strings will not
be balanced, we are left with a closed connected diagram with no u-,m-, or c-boxes.
Such a diagram can only be the trace of Idy, or D = dim(W).

Consider now the case where n > 0. If Di contains a diagram of the form mc then
we can use the axioms in Fig. 8.1 to reduce these two boxes to the box u. This also
reduces the number of appearances of ¢ by one. In the general case, since m is the
only type of box with input strings, if we have any c-box then its output strings will
be connected to an input string of some m-box. We follow the output string of this
m-box, which must be connected as well to the input string of another m-box, or to
the other input string of itself. Since the number of m-boxes in the diagram is finite, a
circle will be closed eventually. Since m is associative and commutative, we can find
an equivalent diagram to Di which contains a diagram which appear in Fig. 8.2 or 8.3.
In any case, we can remove a sub-diagram which contains the c-box and replace it
with either Id,, or u. Again, this will reduce the number of c-boxes by one, and the
induction is completed. O

Thus, for every + € K we have a character x; : 4 — K which sends all closed
connected diagrams to ¢. It is easy to see that (x;) is an additive one-parameter family.
We claim the following:

Proposition 8.2 All the characters yx; are good characters.

Proof For t = n, a natural number, x, is the character of invariants associated to the
structure (K", my, uy, cy,) Wherem, =Y/ ei ® e ®e',uy, =Y ;_ e, and ¢, =
Y, e ® e;. This is just the algebra K" with pointwise addition and multiplication.
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Since the dimension of this algebra is n we see that yx, is a good character. The
automorphism group of the algebra K" is S, acting by permuting the basis. For every
natural a, b it holds that the dimension of ((K™)%?)S» is bounded by the number of

equivalence relationson {1, 2, . .., a+ b}, which does not depend on 7. The conditions
of Proposition 7.7 are satisfied, so we see that indeed ; is a good character for every
tek. O

Since K" is the only n-dimensional commutative separable algebra, it has a closed
orbit, and €,, = Rep(S,). We thus get an interpolation of the categories Rep(S,).
The resulting category C,, is then the Deligne’s category Rep(S;). The family of
good characters that correspond to separable commutative algebras then just gives the
algebra K.

8.6 Commutative Frobenius algebras and the categories DCob,,

We consider now the structure of commutative Frobenius algebras. Recall that such a
structure W has the following structure tensors: multiplicationm : W @ W — W, unit
u:1— W,andcounite : W — 1. The axioms for a commutative Frobenius algebra
are the following: m is an associative and commutative multiplication,  is a unit for m,
and the pairingem : W®W — 1isnon-degenerate. As in the case of O, we will record
the non-degeneracy by adding ¢ : 1 — W ® W such that ev(c ® em) = Idy . We write
A : W — W ®W for the dual of m with respect to the pairing em. One can prove that
A is also given by ev(c ®m). We denote the theory of commutative Frobenius algebras
by TcomFr. Itis known (see Section 2.3. in [13]) that commutative Frobenius algebras
in a given category C correspond to 2-dimensional oriented topological quantum field
theories (TQFTs) in C. The correspondence between the 2-dimensional cobordisms
and our diagrams is given by the following dictionary:

A 895 &

1

=

=
1

e b

Composition of morphisms is given by gluing of cobordisms. The closed connected
diagrams then correspond to closed connected two-dimensional orientable manifolds.
Such manifolds are classified by their genus. We write M, for the connected oriented
two-dimensional manifold of genus g. If A is a commutative Frobenius algebra and
XA 1s its character of invariants, we can consider y (M), where we understand that
we evaluate y on the closed connected diagram that corresponds to a manifold of
genus g. We write oy := x4(Mg) € K. The sequence (a) also appears in [13].
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We thus see that characters {7ConFr — K are in one-to-one correspondence with
sequences (o) of elements in K. The category C, is the category DCob,, from [13],
where (ag) is the sequence that corresponds to the character .

We next determine the sequences which correspond to good characters. For this,
define the handle endomorphism x = mA : A — A. This is given by the cobordism

It holds that Tr(x") = ;1 for every n € N. We consider now the function Z(X) =
dioX i By Corollary 2.3 we see that if (c ¢) corresponds to a good character then this
function has the form % , where Q(X) has no multiple roots, deg(P)+1 < deg(Q),
and Q(0) # 0. We call rational functions of this specific form loyal. We claim the
following:

Proposition 8.3 (See Theorem 3.4.in [13]). The sequence (ag) corresponds to a good
character if and only if Z(X) is a loyal rational function.

Proof We have already seen that if (ag) comes from a good character then Z(X) is
loyal. In the other direction, the set of loyal functions is a linear subspace of K[[X]]
spanned by the functions {1, X} U {ﬁ} rek x - Since we know that the set of good
characters is a linear subspaces, it will be enough to show that all functions in this
basis correspond to good characters.

For ﬁ we have the following algebra: take A = K with basis element e and

dual basis f. The structure tensors are givenby m = e ® f ® f,u = e, € = %f,
c=XeQ®e,and A = Ae ® e ® f. We get that x = Aldg, so Tr(x") = A", and
g = €(u) = % We get the rational function %Zi()»x)" = %ﬁ, which is the
basis element ﬁ rescaled by % Since the set of good characters is closed under
multiplication by scalars this is good enough.

For the rational functions 1 and X we consider the following algebras: Let A =
k[y]/(yz). We define €1(1) = 0, €1(y) = 1 and ex2(1) = e2(y) = 1. Fori = 1,2
let A; be the Frobenius algebra with € = ¢;. We will calculate the resulting rational
functions. A direct calculation shows that in both cases the handle endomorphism
x = mA is given by 1 — 2y and y +— 0. This is a nilpotent endomorphism, and
therefore all the scalars «; for i > 2 vanish. We have that «; = dim A = 2 in both
cases. We have ag = €(u), so it is O for A; and 1 for A;. We thus get the rational
functions 2X and 1 + 2X. Since we get a spanning set for the loyal rational functions
we are done. O

The collection of good characters arising from commutative Frobenius algebras
is closed under sums, products, and multiplication by a scalar in K, it thus form a
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subalgebra of K. By considering the proposition above we see that this algebra is
isomorphic to KM @ Ke where M is the monoid (K, x), we write U, for a basis of
KM, e is an idempotent, and U, e = Ae. Here e corresponds to the characters with
a-sequence (0,1,0,0,...).

Remark 8.4 The paper [13] also studies the case where the ground field is of charac-
teristic p.

8.7 Wreath products with S,

If G is any group one can construct the wreath product S, : G := S, x G", where
S, acts by permuting the entries in G". We will show here how we can interpolate
this construction when G is any reductive group. We will use Theorem 1.3, that says
that G is the automorphism group of some algebraic structure with a closed orbit. Our
construction generalizes the construction of Knop from [12], where he constructed the
categories Rep(S; : G) for G a finite group. The construction we present here work
for general good characters as well.

Let (A, (y;)) be an algebraic structure in some good category D. Write x : 4 —
K for the character of invariants of (A, (y;)). We will define now a new algebraic
structure, and show that its direct sums can be interpolated. We define A=1@A,
and we consider the new algebraic structure (Z, 1y --vsyr, P,u,€,m,c)) where

P : A — A is the projection with kernel A and image 1, u : 1 — A is the natural

inclusion, € : A — 1is the natural projection,m : AQ A — Ais givenby A® A Pel
1@ A= A,andc:1—> A® Aisgivenby1 =1®1 L@)LtZ@Z.Wewillwritethe

new structure as (A, (z;)). We claim the following:

Lemma 8.5 Assume that (A, (y;)) is an algebraic Structure in Vecg with automor-
phism group G. Then the automorphism group of (A, (z;))®" is S, 1 G

Proof We write A7 = A®" @ 19" Write B := 19" = Ke| @ - -- @ Ke,. There is
an action of S, G = S, x G" on (A, (z;))®", where G" acts diagonally on A®" and
trivially on B, and S, permutes the direct summands. We will show that these are all
the possible automorphisms of the structure (Z, (zi)®".

The constructible map P is just the projection onto B with kernel A®". Thus, every
automorphism of (4, (z;)®" must preserve the direct sum decomposition A®" @ B.
The map m restricted to B gives an algebra structure mp : B ® B — B on B.
This algebra is just isomorphic to 1", and so its multiplication is given by the rule
ej -ej = 0; je;. We thus see that restriction gives a group homomorphism ¢ from
the automorphism group of (A, (z;))®" to the automorphism group of the algebra B,
which is just S,.

We consider now an automorphism g in Ker(¢), and show that it must be in G”".
Indeed, the morphism m induces a B-module structure on A®". Since g acts trivially
on B, itsends e; - W to itself. Thus, for every i we get an induced automorphism g; of
(A, (¥i)). The assignment g — (g1, ..., gn) thus gives us the desired isomorphism
between Ker(¢) and G" and we are done. ]

We next claim the following:
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Lemma 8.6 Assume that (A, (y;)) is a Veck -structure with a closed orbit and automor-
phism group G. Then (A, (z;))®" has a closed orbit and therefore Cryx = Rep(S,2G).

Proof By Corollary 5.3 we know that having a closed orbit is equivalent to the non-
degeneracy of the pairings X 79 @ X(4-7) — K where X (P9 C AP-4 is the subspace
of constructible elements. Since we will deal with a few different structures here we
will write X (79 (A, (y;)) to make it clear what structure we are considering. We first
show that (A, (z;)) has a closed orbit. Using the projection P : A — A it follows
easily that X(P-9 (A, (z;)) splits as

2
XA )= P XA )N AL © 4,

R---® Aip ® (14,‘p+1)>,< K& (Aip+q)*),

where A1 = 1 and A, = A. It then follows that we need to prove that the restriction
of the pairing is non-degenerate on every one of these direct summands, using the fact
that the space X @-P) (A, (z;)) has a similar decomposition. But this follows easily from
the fact that the pairing X797 (A, (v;)) ® X¥"-P)(A, (yi)) — K is non-degenerate
for p’ < p and ¢’ < g, and from the fact that u and € provide a dual basis of 1 C A
and1*=1C A"

Consider now the structure (A, (z;))®". Write A; for the i-th copy of Ain ZEB”. We
will begin by considering the structure (Z@n, Zlls - -5 Z0nms -+ Zls -5 2in), Where
we write z;; for the tensor z; applied to A ;. For convenience, we assume that Id is one
of the tensors in {z}, so that we get all the projections A% LA = A%" The fact
that the pairing on X9 (A, (z;)) ® X@P) (A, (z;)) — K is non-degenerate easily
implies that the pairings for (Z®n, (zij)) are non-degenerate. The group S, acts on
A% by permuting the direct summands A;. We will show that X 79 ((A, (z;))®") =
X0 A% (4 ))5n. This will prove that the pairing is non-degenerate, since the field
K has characteristic zero, and S, is therefore a reductive group.

For this, notice first that all the structure tensors of (A, (z;))®" are f; := zj1 +
zi2 + - -+ + zin, which are invariant under the action of S,,. It follows easily that all
the constructible tensors for (Z, (z))®" are S,-invariant as well, and we thus have an
inclusion X P+0 (4, (21))®") € X0 (A™", (2;)))%.

To prove the inclusion in the other direction, we notice that by reordering the ten-
sors, X<P’q)(X@", (zij)) is spanned by elements of the form c(o, 7, v1, ..., v,) =
L((,p)m R ® v”qu), where v; € X @YD (A;, z1i, ..., zii), Yiai=p, > bi=q,
o € Spand T € §;. By the reductivity of §, it will be enough to show that
Zuesn w(c(o, T,v1, ..., v,)) is in XPD((A, (z;))®"). Since the action of S, com-
mutes with the action of S, x S;, we can assume without loss of generality that
o = Id and = Id. We next use the fact that ¢ = Zi e ®e and (u @ u) —c =
> izj ¢ ® ej, using the notation for the basis of B from the previous lemma. The

. . ) .
constructible morphism m enables us to consider A " as a B-module. Write now
v; = vi (214, ..., 2). Using the elements ¢ and u ® u we can construct the element
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o ®ai . Ran o ®b1 . ®by,
a =) yes, €y @ ®e gy andup =3 g e, ) ® - ®e, . It then holds

that Zues,, w(cdd, Id, vy, ..., vp)) = ug (v ®- - - ® v, )up, where we identify u, and
up with their action on (Z$n)p’q via m, and where v/ = v;(f1, ..., fi). But the last
expression belongs to X (P9 ((A, (z;))®"), so we are done. O

Following the above lemmas, we give the following definition:

Definition 8.7 If x : ${ — K is the character of invariants of (A, (y;)) we write
¥ : 4 — K for the character of invariants of (A, (z;)), where { is the uni-
versal ring of invariants for structures of type ((p1, q1),--., (pr, qr), (1, 1), (1, 0),
0, 1), (1, 2), (2,0)). If C;, = Rep(G) we write Rep(S; : G) := C;.x as by the above
lemma it interpolates the categories Rep(S, : G).

All the characters ¢ - ¥ are good characters. This follows from the fact that  is
a good character, and the set of good characters is closed under multiplication by a
scalar. It was necessary to form the auxiliary structure A because it is possible that
the automorphism group of A®" will be strictly bigger than S, : G. This happens for
example for the families GL;, O;, and Sp,. The construction we have works as well
also in case €, does not admit a fiber functor to Vecg.

8.8 Finite modules over a discrete valuation ring and the categories
Rep(Aut(Mq,,....q,))

Let O be a discrete valuation ring with a uniformizer 7 and a finite residue field of
cardinality g. We will consider here finitely generated modules over O, := O/(x"),
where r > 0 is some integer. Such a module M gives rise to the group algebra
KM = spang {U;}menm- This group algebra is a Hopf algebra. The multiplication
is given by Uy, Uy, = Uyyy4m,, the comultiplication by A(U,,) = Uy ® Uy, the
unit is Uy, the counit is €(U,,) = 1 for every m € M, and the antipode is given by
S(Uy) = U_y,. In addition, for every x € O, we have a Hopf albgera homomorphism
T, : KM — KM given by Ty (U,) = U,;x. These homomorphisms satisfy in
addition the conditions Ty Ty = Tyy, m(Tx ® Ty)A = Ty 1y, and T = Idg ps. We can
thus consider (KM, m, A, u, €, S, (Tx)xeo,) as an algebraic structure. Let T be the
theory containing the axioms for a commutative and cocommutative Hopf algebra,
the axioms saying that 7, is a homomorphism of Hopf algebras for every x € O,,
the axiom T\ T, = Ty for all x, y € O,, the axiom m(Ty ® Ty)A = Ty, for all
x,y € O, and the axiom 7| = Idg .

Claim 8.8 Isomorphism classes of models for T inside Vecg are in one-to-one corre-
spondence with isomorphism types of finite modules over O,.

Proof We have seen that if M is a finite module over O, then K M is a model for the
above theory J. On the other hand, if W is a model for 7, then by Cartier-Milnor-
Moore-Kostant Theorem we know that a commutative cocomuutative Hopf algebra
is necessarily the group algebra KM of some finite abelian group M. The fact that
T, : KM — KM is a Hopf algebra homomorphism implies that 7, arises from a
group homomorphism M — M. The other axioms ensure us that we get indeed a
structure of an O,-module on M. O

W Birkhauser



Interpolations and invariants Page350f37 58

Since O is a principal ideal domain, the structure theorem for finitely generated
modules over a PID applies here. Adapted to O/(x"), we see that every module over
O, has the form

M= (/@) & (O/@N? D - ® (/T )*™,

for some ay, ay, ..., a, € N. Moreover, the tuple (ay, ..., a,) € N is a complete set
of invariants for M. We will write M = My, . 4,

The integers ay, .. ., a, can be recovered from the associated character of invari-
ants of KM, . ., which we denote by x4, . : Y — K. Indeed, for every

i=1,2,...,ritholds that

¢i i= Tr(Tyy i) = g2t Haitidicttiar (8.4)

where g = |O/(7r)|. This is because Tr(T' 1) = [{m € M|(1 +rym =m}| = {m €
M|n'm = 0}| = [Homg, (O;, M)|.

We can write g% in the form [ | j c;ij for some x;; € Z. We will need the following
lemma:

Lemma8.9 Let L € N be an inclusion of finitely generated O,-modules. Let M be
another O.-module. Then there are elements a; € L andintegersn; € {0, 1,...,r—1}
such that a homomorphism : L — M can be extended to a homomorphism N — M
if and only if the set of equations " & = Y («;) has a solution (&;); € M". If  is
extendable to N, then there are |Homo, (N /L, M)| possible extensions.

Proof Write N/L = Q = @;(q;), where (g;) = O,,. Write g; for a preimage of g;
in N. Then " g; € L. We write " q; = «; € L. It then holds that v is extendable
to N exactly when we can choose ¥ (g;) such that 7"y (g;) = ¥ («;), as required.
The second result follows from the fact that any two extensions of ¢ to N differ by a

homomorphism inflated from a homomorphism Q — M. O
Proposition 8.10 For every ay,...,ar,a,b € N write n(ay,...,a,,a,b) for the
dimension of the space of constructible elements in K M 1‘{7__,5,,. Then there is a number

n(a, b) such that n(ay, ..., ar,a,b) < n(a,b) foreveryay,...,a.

Proof By the space of constructible elements we mean the image of Con®? under
Fxy : Home,,, (WP, W) — Homvyec, (K M®?, K M®4). Write M = M, . 4,
and write {e,, } for the dual basis of {U,,}. For every O,-module N and every two tuples
of elements of N, (s1,...,,) and (I1, ..., 1[p), we define

b
Rv.so. ;) = D Ups)) @+ ® Uy(s,) ® ey ® - ® eyty) € KM,
v

where the sum is taken over all O,-module homomorphisms ¢ : N — M. We claim

that all the constructible elements are of the form R (s;),;)) for some (N, (s;), (7;)).
For the structure tensors this follows directly. For example: for the multiplication,
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Zml,mz Um1+mz Qem & em,, take N = Orp1 @ Or a2, 51 = 1 +p2 and (11, o) =
(w1, (2). Similar constructions hold for A, u, €, S, and Ty.

The set of tensors Rn,(s), () 1s closed under taking tensor products and under
applying tensor permutations. If we can show that it is also closed under applying
ev then it will follow that it must contain all the constructible elements. For this,
recall that ev(Up ® €') = O - Thus, after applying ev to R (s,), () only the
homomorphisms ¢ : N — M for which v (s;) = ¥ (¢,) will survive. These are in
one-to-one correspondence with homomorphisms N := N /(s, —t,) — M. Writen
for the image of n € N in N;. We thus see that

ev(R (s).() = Ry, 61 5a70). (i)

and all constructible elements are of the form Ry ). (L)

We need to show that for a given (a, b) € N2 the elements Ry, sp), (1)) span a vector
space of bounded dimension in K M%?_For this, write L = (St -y Sastl, ..., 8) C
N and write N/L = Q. The /-summand in the tensor Ry (s, () is determined by
the restriction of ¢ to L. By Lemma 8.9, we see that there are elements o, ..., &y in L
and numbers ny, ..., ny € {0, 1,...r —1} such that a homomorphism ¢ : L — M is
extendable to N if and only if the equation 7" & = 1/ (;) has a solution in M for every
i =1,...w.If ¥ is extendable to N, then it has exactly Homg, (Q, M) extensions.
We can thus write R(N,(s,-),(t_,‘) as [Homg, (Q, M)]| ZI// Upsn®- - QUys,) Qeyn ®
-+ - ® ey (), where the sum is taken over all homomorphisms L — M which satisfy
the conditions given by the tuples («;) and (n;).

Since there are only finitely many modules L of rank < a+b, And since the possible
tuples (s;), (¢;), (@;) and (n;) are all taken from finite sets, we get the desired result.
We also see that the scalar invariants that we get are all of the form [Homg, (Q, M)|
for some O,-module Q. By writing Q as the direct sum of cyclic modules, we see that
every such invariant is a product of the elements ¢; from Eq. 8.4. O

We can now prove that there exists an interpolation of the categories
Rep(Aut(My, ... 4,)). It holds that

,,,,,

Xay,...ar = Xay,0,...,0 - * * X0,0,...a, -

It will thus be enough to show that for every i there is an interpolation of the family
X0,...,0,a;,0,...,0- For this, we use the fact that all the character values of xo,...0.4;,..,0

are integer powers of ¢%. We define a one-parameter family of character wl(l) by
the following formula: if xo...0.4,...,0(Di) = ¢"% then w,(')(Di) = ". This gives
us a multiplicative family, and all the conditions of Proposition 7.7 hold. Indeed,
all the hom-spaces are of bounded finite dimension by Proposition 8.10, and the
special collection is given by the elements {qi }ien. The categories Rep(GL;(O1) were
also constructed by Deligne (unpublished). In [12] Knop constructed the categories
Rep(GL;(O,)). We get here a bigger family of tensor categories, as for general values
of (t1, ..., 1t ) it holds that

1 .
I/fr(l )... '/ftr ‘//t?)
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(in fact, there is no equivalence of categories even when all the parameters #; are
positive integer powers of g.)
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