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Abstract
In this paper, using the correspondence of gentle algebras and dissections of marked
surfaces, we study full exceptional sequences in the perfect derived category Kb(A) of
a gentle algebra A. We show that full exceptional sequences in Kb(A) exist if and only
if the associated marked surface has no punctures and has at least two marked points
on the boundary. Furthermore, by using induction on cuts of surfaces, we characterize
when an exceptional sequence can be completed to a full exceptional sequence. If the
genus of the associated surface is zero then we show that the action of the braid group
together with the grading shift on full exceptional sequences in Kb(A) is transitive.
For the case of surfaces of higher genus, we reduce the problem of transitivity to the
problem of the existence of certain sequences of pairs of exceptional objects. Finally,
we interpret the duality of a full exceptional sequence induced by the longest element
in the associated symmetric group using Koszul duality.
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Introduction

The notion of an exceptional object was introduced by Drezet and Le Potier in [17]
to classify vector bundles on the projective plane P

2. The theory fast developed when
the group of algebraic geometers around Rudakov in Moscow systematically studied
exceptional objects [26]. They introduced exceptional sequences in derived categories
and connected these sequences through operations called mutations. An exceptional
sequence is called a full exceptional sequence if its length equals n, the rank of the
Grothendieck group of the category. General techniques of mutations for exceptional
sequences in triangulated categories were developed by Bondal [8]. In particular, he
shows that mutations give rise to an action of the braid group Bn on the set of full
exceptional sequences.

While for some special derived categories the theory of exceptional sequences is
well-studied, for example, the derived categories of hereditary algebras [15] and the
derived categories of coherent sheaves over some special varieties such as weighted
projective lines [23], for a general derived category, we know little. Even essential
questions such as the the existence of full exceptional sequences is not known.

In this paper we study full exceptional sequences in the perfect derived category
Kb(A) of a gentle algebra A. In particular, we consider the following questions in this
context:When do full exceptional sequences exist?When can an exceptional sequence
be completed to a full exceptional sequence? Is the braid group action together with
the grading shift transitive on the set of full exceptional sequences? And finally, what
are the relations between Koszul duality, Serre duality and dualities of full exceptional
sequences induced by the longest element of a symmetric group associated to the
sequence?

Gentle algebras are classical objects in the representation theory of associative
algebras. They were introduced in the 1980s as a generalization of iterated tilted
algebras of type An [2], and affine type ˜An [3]. Remarkably, they connect tomany other
areas of mathematics. For example, they play an important role in the homological
mirror symmetry of surfaces, see e.g. [7, 14, 19]. In particular, it has been shown
that the perfect derived category of a homologically smooth gentle algebra is triangle
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equivalent to the partially wrapped Fukaya category of a graded oriented smooth
surface with marked points on the boundary [19, 22].

From the perspective of representation theory, it is shown in [24] that any gentle
algebra A gives rise to a dissection �A of a marked surface (S, M), where S is an
oriented surface with boundary, M is a union of ◦-marked points and •-marked points
which alternatively appear on the boundary ∂S as well as a finite set of marked points
(called punctures) in the interior of S. Conversely, any gentle algebra arises in this
way. The objects and morphisms in Kb(A) can also been interpreted on the surface
model (S, M,�A). In particular, any indecomposable object P•

(γ, f ) corresponds to a
graded curve (γ, f ) on the surface, where γ is a closed curve or an arc with ◦-points
as endpoints and f is an integer valued function.

Although gentle algebras have been a constant object of study and much about
their representation theory is known, except for some particular cases, such as, for
example, those considered in [13] and [21], we know little in general about exceptional
sequences in their derived categories. The aim of this paper is to use the surface model
established in [24] to determine the existence of full exceptional sequences in Kb(A)
and to then study their properties. In [19, 22] it is shown that Kb(A) is a particular
realisation of a partially wrapped Fukaya category of a surface with stops and our
results imply that full exceptional sequences exist in these partially wrapped Fukaya
categories corresponding to Kb(A) except for certain small exceptions.

More precisely, our first result is a characterisation of gentle algebras that admit
full exceptional sequences in their perfect derived categories in terms of their surface
models. For convenience, we assume the algebras to be connected, so that the asso-
ciated surface is also connected. We denote by T(g,1,1) the marked surface of genus
g ≥ 1 with exactly one boundary component and exactly one ◦-marked point on it.

Theorem A (Theorem 3.7) Let A be a gentle algebra with surface model (S, M,�A).
The following are equivalent:

(1) There exists a full exceptional sequence in Kb(A);
(2) There are at least two ◦-points in M and there are no •-marked points in S\∂S;
(3) (S, M) is not homeomorphic toT(g,1,1) and there are no •-marked points in S\∂S.

Theorem A translates into the following criterion to determine the existence of full
exceptional sequences in Kb(A) by directly looking at the quiver and the relations of
the algebra A. For this we denote by Q0 the set of vertices and by Q1 the set of arrows
of Q.

Theorem B (Corollary 3.10) Let A = kQ/I be a gentle algebra. Then there exists a
full exceptional sequence in Kb(A) if and only if the global dimension of A is finite and
the pair (|Q0|, |Q1|) is not equal to (2g, 4g − 1), for any integer g ≥ 1.

The above theorem also confirms the existence of full exceptional sequences in the
derived category of a derived-discrete algebra, seeCorollary 3.9,which has been shown
in [13] by considering a semi-orthogonal decomposition induced by an exceptional
object.

By considering cuts of marked surfaces, we can use induction techniques to deter-
mine when an exceptional sequence can be completed to a full exceptional sequence.
More precisely, we show the following.
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Theorem C (Theorem 4.12) Assume that there exists a full exceptional sequence
in Kb(A) for a gentle algebra A arising from a marked surface (S, M) and let
P• = (P•

(γ1, f1)
, . . . , P•

(γm , fm )) be an exceptional sequence arising from a collection
� = {γ1, . . . , γm} of arcs on (S, M). Then P• can be completed to a full exceptional
sequence if and only if the cut surface of (S, M) along the arcs in � has no connected
component of the form T(g,1,1).

For any triangulated category with a full exceptional sequence, it is conjectured by
Bondal and Polishchuk in [11] that the action of Z

n
� Bn on the set of full exceptional

sequences is transitive, where the group Z
n acts on full exceptional sequences by

shifting the grading of the objects. This has been shown to hold for derived categories
of hereditary algebras [15], and also for derived categories of coherent sheaves over
some special varieties such as del Pezzo surfaces, projective planes, and weighted
projective lines, see more details in [23]. For the case of the derived category of gentle
algebras, we can show the following transitivity result.

Theorem D (Theorem 5.1, Corollary 5.15) Let A be a gentle algebra arising from a
marked surface with genus zero. The action of Z

n
� Bn on the set of full exceptional

sequences in Kb(A) is transitive. In particular, if A is a derived-discrete algebra, then
the action of Z

n
� Bn on the set of full exceptional sequences in Kb(A) is transitive.

In fact, we show that the braid group action is transitive in general for any gentle
algebra with full exceptional sequences if a certain reachability condition, Condition
RCEA (see Definition 5.9), holds for any two arcs corresponding to indecomposable
exceptional objects (see Proposition 5.10). However, it seems difficult to establish in
general for which surfaces (other than genus zero) the RCEA condition holds.

Finally, we determine the connection betweenKoszul duality and the right dualityR
and the left dualityL induced by the longest element in the associated symmetric group
(see Definition 6.1). For this, let X = (X1, . . . , Xn) be a full exceptional sequence
in Kb(A) associated with an ordered exceptional dissection � = (γ1, . . . , γn). Let Sn
be the symmetric group on n elements and let w0 be the longest element in Sn . We
define the right dual of X by setting RX = ω0X (see Definition 6.1 and Lemma 6.2
). Let �∗ = (γ ∗

n , . . . , γ ∗
1 ) be the dual of �, where γ ∗

i , 1 ≤ i ≤ n, is the unique •-arc
which intersects γi exactly once and intersects no other arcs in �. Denote by A(�)

and (A(�)!)op = A(�∗) the gentle algebra and its Koszul dual arising from � and �∗
respectively (we recall the constructions in subsection 1.2). The next result shows that
the right dual RX of X is induced by a twist to the next ◦-point of every arc γ ∗ in the
dissection �∗ corresponding to the Koszul dual (A(�)!)op of A(�).

Theorem E (Theorem 6.5) Let R� be the ordered exceptional dissection associated
to the right dual RX of X. Then R� = D(�∗), where D(�∗) is the twist of �∗, which
is obtained by rotating both endpoints of each arc in �∗ anticlockwise to the next
respective ◦-point.

Using our geometric interpretation of the left (and right) duality of a full exceptional
sequence, we recover a result which Bondal in [10] proves for a general triangulated
category with a full exceptional sequence.

Theorem F (Theorem 6.6) Let S be the Serre functor in Kb(A). Then S(X) = L2(X)

for any full exceptional sequence X in Kb(A).
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The paper is organized as follows. We recall some background material on marked
surfaces, gentle algebras and their derived categories, as well as the theory of excep-
tional sequences in Sect. 1. In Sect. 2, we interpret exceptional sequences in the derived
category of a gentle algebra in terms of ordered exceptional collections on the associ-
ated marked surface. We prove the existence of full exceptional sequences in Sect. 3.
Section4 is devoted to the study of cutting surfaces and the characterisation of when
an exceptional sequence can be completed to a full exceptional sequence. In Sect. 5
we give a geometric realization of the braid group action on the set of full exceptional
sequences, and study the transitivity of this action. Finally, in Sect. 6, we describe the
relation between the left and right duality of exceptional sequences, Koszul duality
and Serre duality.

1 Preliminaries

In this paper, an algebra will be assumed to be basic of finite dimension over a base
field k. A quiver will be denoted by Q = (Q0, Q1), where Q0 is the set of vertices and
Q1 is the set of arrows. Arrows in a quiver are composed from left to right as follows:
for arrows a and b we write ab for the path from the source s(a) of a to the target
t(b) of b. We adopt the convention that maps are also composed from left to right,
that is if f : X → Y and g : Y → Z then f g : X → Z . In general, we consider left
modules. We denote by Z the set of integer numbers, and by Z

∗ the set of non-zero
integer numbers. For a finite set M , we denote by |M | its cardinality.

1.1 Marked surfaces

We recall some concepts about marked surfaces associated to gentle algebras, for
which there are many references such as [19, 22, 25], in this paper we closely follow
[24] and [1].

Definition 1.1 A triple (S, M, P) is called a marked surface if

(1) S is an oriented compact surface with non-empty boundary with connected com-
ponents ∂S = �b

i=1∂i S;
(2) M = M◦ ∪M• is a finite set ofmarked points on ∂S. The elements of M◦ and M•

will be respectively represented by symbols ◦ and •. Each connected component
∂i S is required to contain at least onemarked point of each colour, where in general
the points ◦ and • are alternating on ∂i S;

(3) P = P• is a finite set of marked points in the interior of S. We refer to these points
as punctures, and we will also represent them by the symbol •.
Unless otherwise stated, we always assume that a marked surface is connected and

that in the case of a disk with no punctures there are at least two ◦-marked points and
two •-marked points on the boundary.

Definition 1.2 Let (S, M, P) be a marked surface.

• An ◦-arc is a non-contractible curve in S\P
with endpoints in M◦.
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Fig. 1 Two admissible dissections on an annulus

• A loop is an ◦-arc whose endpoints coincide.
• An •-arc is a non-contractible curve, with endpoints in M• ∪ P•.
• An infinite-arc is a non-contractible curve with endpoints in M◦ ∪ P•, which has
at least one endpoint in P•.

• An admissible arc is an ◦-arc or an infinite-arc.
• A closed curve is a non-contractible curve in the interior of S whose endpoints
coincide. We always assume a closed curve to be primitive, that is, it is not a
non-trivial power of a closed curve in the fundamental group of S.

• A simple closed curve is a closed curve without self-intersections.

We have the following lemma about simple closed curves, which can be found, for
example in [18, Section 1.3.1].

Lemma 1.3 If α and β are any two non-separating simple closed curves in a surface
S, then there is a homeomorphism φ : S 	→ S with φ(α) = β.

On the surface, all curves are considered up to homotopy, and all intersections of
curves are required to be transversal and inminimal position. For simplicity, we denote
a marked surface without punctures by (S, M).

Definition 1.4 A collection of ◦-arcs {γ1, . . . , γr } is admissible if the only possible
intersections of these arcs are at the endpoints, and each subsurface enclosed by the
arcs contains at least one •-point from M• ∪ P•. A maximal admissible collection �

of ◦-arcs is called an admissible ◦ -dissection. The notion of admissible • -dissection
is defined in a similar way. For convenience, we will often simply write admissible
dissection instead of admissible ◦-dissection.

Note that an admissible dissection cuts the surface into polygons such that each
polygon contains exactly one •-marked point. Furthermore, whenever we write
(S, M, P,�), we implicitly assume that � is an admissible dissection on (S, M, P).

Example 1.5 The pictures in Fig. 1 are two admissible dissections on an annulus.

Denote by g the genus of S and by b the number of connected components of ∂S. It
is shown in [1], see also [25], that an admissible collection of ◦-arcs is an admissible
dissection if and only if it is maximal, that is, it contains exactly |M◦|−χ arcs, where
χ = 2− 2g − b − |P| is the Euler characteristic of the marked surface. Furthermore,
let � be an admissible dissection. Then there exists a unique admissible •-dissection
�∗ (up to homotopy) such that each arc of �∗ intersects exactly one arc of �. We
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call �∗ the dual • -dissection of �. For a fixed admissible dissection � and its dual
•-dissection�∗, unless otherwise stated, all curves on the surface are always assumed
to be in minimal position with respect to both these dissections.

A graded curve (γ, f ) on (S, M, P,�) is an admissible arc or a closed curve γ ,
together with a function

f : γ ∩ �∗ −→ Z,

where γ ∩ �∗ is the totally ordered set of intersection points of γ with �∗, where the
order is induced by the direction of γ . The function f is defined as follows: If p and
q are in γ ∩ �∗ and q is the direct successor of p, then γ enters a polygon enclosed
by •-arcs of �∗ via p and leaves it via q. If the unique ◦-point in this polygon is to
the left of γ , then f (q) = f (p) + 1; otherwise, f (q) = f (p) − 1. Note that not all
closed curves are gradable.

For a grading f of γ , the map f [n] : l → f (l)− n with n ∈ Z is also a grading on
γ , and all gradings on γ are of this form. We call [1] the shift of the grading f . The
grading shift on curves corresponds to the shift functor in the derived category of the
associated gentle algebra.

1.2 Derived categories of gentle algebras

We recall in this section the derived category of a gentle algebra, and its geometric
realization given in [24] using a marked surface.

Definition 1.6 [3] We call an algebra A a gentle algebra, if A is given by kQ/I ,
where Q = (Q0, Q1) is a finite quiver and I an admissible ideal of kQ satisfying the
following conditions:

(1) Each vertex in Q0 is the source of at most two arrows and the target of at most
two arrows.

(2) For each arrow a in Q1, there is at most one arrow b′ such that ab′ /∈ I ; at most
one arrow c′ such that c′a /∈ I ; at most one arrow b such that ab is a path in Q
and ab ∈ I ; at most one arrow c such that ca is a path in Q and ca ∈ I .

(3) I is generated by paths of length two.

For a finite dimensional algebra A, it is well known that the bounded derived
category is triangle equivalent to the homotopy category K−,b(A) of complexes of
projective A-modules bounded on the right and bounded in homology. In the following,
we will not distinguish these two categories. Denote by Kb(A) the full subcategory of
K−,b(A), which is the homotopy category of bounded complexes of projective A-
modules.

The derived category of a gentle algebra is well-studied. In particular, the authors in
[6] classified the indecomposable objects in the category in terms of (homotopy) string
objects and (homotopy) band objects. The morphisms between these indecomposable
objects are explicitly described in [5].

Starting with an admissible collection � on (S, M, P), we define an algebra
A(�) = kQ(�)/I (�) as follows:
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Fig. 2 The quivers with relations associated to the two admissible dissections in Fig. 1, where we denote
the relations by dotted lines

(1) The vertices of Q(�) are given by the arcs in �.
(2) There is an arrow a : α → β for each endpoint q that α and β share, and β directly

follows α anticlockwise at q.
(3) The ideal I (�) is generated by the following relations: whenever α and β intersect

at a marked point as above, and the other end of β intersects γ at a marked point
as above, then the composition ab of the corresponding arrows a : α → β and
b : β → γ is a relation.

Then A(�) is a gentle algebra. In particular, if � is an admissible dissection, then this
establishes a bijection between the set of homeomorphism classes of marked surfaces
(S, M, P,�) and the set of isomorphism classes of gentle algebras A(�), see [24],
and also [9].

Example 1.7 The pictures in Fig. 2 are the quivers with relations associated to the two
admissible dissections in Fig. 1.

Remark 1.8 Similarly, one can associate an algebra A(�∗) to an •-admissible collec-
tion �∗, which is the Koszul dual of A(�) by [24, Section 1.7].

Let A be a gentle algebra associated with a marked surface (S, M, P,�A). It is
shown in [24] that there is a correspondence between the indecomposable objects
in K−,b(A) and graded curves on the surface. More precisely, the graded admissible
arcs (γ, f ) on (S, M, P,�A) are in bijection with the isomorphism classes of the
indecomposable string objects P•

(γ, f ) in K−,b(A); the graded closed curves (γ, f ) on

(S, M, P,�A) together with an indecomposable k[x, x−1]-modulem are in bijection
with the isomorphism classes of the indecomposable band objects P•

(γ, f ,m) in K
−,b(A).

Furthermore, under the above bijections, the indecomposable objects in Kb(A) corre-
spond to the graded ◦-arcs and the pairs of graded closed curves and indecomposable
k[x, x−1]-modules. For convenience of notation, we often will drop the m from the
notation, so that P(γ, f ) denotes both a string or band object.

The morphisms in K−,b(A) are described in terms of graded oriented intersections,
see [24, Theorem 3.3]. Roughly speaking, each intersection of two curves on the
boundary (i.e. at a ◦-marked point) gives rise to exactly one morphism between the
corresponding indecomposable objects. Each intersection in the interior (not at a •-
puncture) of S gives rise to twomorphisms, while an intersection at a •-puncture gives
rise to infinitelymanymorphisms. Since the geometric description of themorphisms is
a crucial part of many of the proofs, we will now give a more detailed description. For
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Fig. 3 Boundary intersection of γ1 and γ2 giving rise to exactly one morphism

Fig. 4 Interior intersection of γ1 and γ2 giving rise to two morphisms in opposite directions

that, let P•
(γ1, f1)

and P•
(γ2, f2)

be two indecomposable objects in K−,b(A) corresponding
to admissible graded arcs or graded closed curves (γ1, f1) and (γ2, f2).

Assume first that γ1 and γ2 intersect at a ◦-point p on the boundary as depicted in
Fig. 3, where for i ∈ {1, 2}, qi is the intersection in γi ∩ �∗

A which is nearest to p. If
f1(q1) = f2(q2), then there is a morphism from P•

(γ1, f1)
to P•

(γ2, f2)
. Note that there is

no morphism from P•
(γ2, f2)

to P•
(γ1, f1)

[ j] for any j ∈ Z arising from this intersection
at p.

Assume now that γ1 and γ2 intersect at some point p in the interior of the surface,
which is not a •-puncture. Suppose that we have the following local configuration
in S depicted in Fig. 4 below. If f1(q1) = f2(q2), then there is one morphism from
P•

(γ1, f1)
to P•

(γ2, f2)
, and one morphism from P•

(γ2, f2)
to P•

(γ1, f1)
[1] (or to P•

(γ1, f1)
[−1]

depending on the position of the corresponding ◦-marked point).
The Auslander-Reiten translation τ in Kb(A) is described in [24] in terms of arcs

in the surface. We will rephrase the result by introducing a slightly different notion
of twisting an arc as follows. The direct twist (resp. inverse twist) of an ◦-arc γ in
(S, M, P) is an •-arc Dγ (resp. D−1γ ) obtained from γ by rotating both endpoints
anticlockwise (resp. clockwise) to the next •-point. Similarly, we define the direct
twist Dγ ∗ and the inverse twist D−1γ ∗ of an •-arc γ ∗ in (S, M, P). Note that there
is a canonical intersection between γ and D2γ arising from the rotation.

Lemma 1.9 ([24] Corollary 5.2) Let P•
(γ, f ) be an indecomposable string object in

Kb(A) corresponding to a graded ◦-arc (γ, f ). Then τ−1P•
(γ, f ) = P•

(D2γ, fD2γ
)
, where

fD2γ is a grading on D2γ which is uniquely determined by the fact that the canonical
intersection between γ and D2γ gives rise to a map from P•

(D2γ, fD2γ
)
to P•

(γ, f )[1].

1.3 Silting objects and exceptional sequences

We now recall some background on silting theory and the theory of exceptional
sequences in a general triangulated category as well as for the particular case of the
bounded derived categories of gentle algebras.

Let T be a triangulated category. We call a full subcategory P in T pre-silting if for
all i > 0, HomT (P,P[i]) = 0. It is silting if in addition T = thickP. An object P
of T is said to be pre-silting if addP is a pre-silting subcategory and silting if addP
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is a silting subcategory. We always assume that pre-silting objects as well as silting
objects are basic.

In the triangulated category T, we call an object X ∈ T exceptional if
HomT (X , X [
= 0]) = 0 and EndT (X) is a division algebra. We call an (ordered)
sequence (X1, . . . , Xn) of exceptional objects in T an exceptional sequence if
HomT (Xi , X j [Z]) = 0 for any 1 ≤ j < i ≤ n, which is said to be full if in
addition thickT (

⊕n
i=1 Xi ) = T. Note that the grading does not have any bearing on

whether a sequence is exceptional or not. In general, there is an action of Z
n on the

set of full exceptional sequences exp T in T given as follows

(�1, . . . , �n)(X1, . . . , Xn) := (X1[�1], . . . , Xn[�n]).

The following proposition shows that there are close relations between exceptional
sequences and silting objects.

Proposition 1.10 (Proposition 3.5 [4]) Let T be a totally Hom-finite triangulated cat-
egory, that is, for any X ,Y ∈ T we have HomT (X ,Y [�]) = 0 for any |�| � 0. Let
(X1, . . . , Xn) be an exceptional sequence in T. Then

(1) there exists a ∈ Z such that X1[�1] ⊕ · · · ⊕ Xn[�n] is a pre-silting object for
any integers �1 . . . , �n ∈ Z satisfying �i + a ≤ �i+1, for all 1 ≤ i < n.

(2) the exceptional sequence (X1, . . . , Xn) is a full exceptional sequence if and
only if X1[�1] ⊕ · · · ⊕ Xn[�n] is a silting object.

The category Kb(A) always has silting objects. The category K−,b(A) contains silting
objects if and only if the global dimension of A is finite, that is, K−,b(A) is triangle
equivalent to Kb(A). For a gentle algebra A, the silting objects in Kb(A) are described in
[1, Theorem 3.2]. Namely, any basic silting object X in Kb(A) is of the form P•

(�, f ) =
⊕n

i=1 P
•
(γi , fγi )

, where � = {γ1, . . . , γn} is an admissible dissection of (S, M, P) and

f is a set of gradings fγi on γi , 1 ≤ i ≤ n.
Note that, in general, for an arbitrary admissible dissection �, there currently is

no characterisation of when there exists a set of gradings f over � such that (�, f )
gives rise to a silting object.

2 Exceptional sequences in terms of ordered exceptional collections

In this section we describe exceptional sequences in terms of surface dissections.
Throughout this section, let A be a gentle algebra associated with a marked surface
(S, M, P,�A). Let �∗

A be the dual admissible •-dissection of �A.
We begin by describing indecomposable exceptional objects by the surface.

Lemma 2.1 Let P•
(γ, f ) be an indecomposable object in Kb(A) arising from a graded

curve (γ, f ).
(1) Then P•

(γ, f ) is exceptional if and only if γ is an ◦-arc without self-intersections.
In particular, γ is not a loop.

(2) If γ is an ◦-arc without self-intersections, then for any grading f of γ , P•
(γ, f )

is an indecomposable exceptional object in Kb(A).
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Fig. 5 A non-exceptional cycle

Proof (1) Assume P•
(γ, f ) is exceptional. Note that if γ is a closed curve, then P•

(γ, f )
is a band object which has self-extension and so cannot be exceptional. If γ is an
infinite arc, that is at least one end of γ wraps infinitely many times around a punc-
ture, then following [24, Remark 3.8] there exist infinitely many maps from P•

(γ, f )
to positive shifts of P•

(γ, f ). So γ can only be an ◦-arc. Moreover, if γ has an interior
self-intersection, then we have two linearly independent maps arising from this inter-
section, and Hom(P•

(γ, f ), P
•
(γ, f )[m]) 
= 0 for some m ∈ Z

∗. Therefore P•
(γ, f ) is not

exceptional. On the other hand, if γ is a loop without interior self-intersection, then we
have two cases. If the two gradings near the endpoint are equal, then we have two lin-
early independentmaps from P•

(γ, f ) to itself: the identity and themap corresponding to

the intersection. Then the endomorphism algebra of P•
(γ, f ) is isomorphic to k[x]/(x2),

which is not a division algebra. Otherwise, if the gradings are different, then there is
somem ∈ Z

∗ such that there is a non-zero element in Hom(P•
(γ, f ), P

•
(γ, f )[m]) arising

from the intersection. In both cases P•
(γ, f ) is not exceptional.

Conversely, it is clear that if γ is an ◦-arc without self-intersections, then
Hom(P•

(γ, f ), P
•
(γ, f )[
= 0]) = 0 and End(P•

(γ, f ))
∼= k is a division ring, so that P•

(γ, f )
is exceptional.

(2) This is clear by the first statement and an observation that shifting the grading
of objects does not change the fact whether an object is exceptional or not. ��

Following the above lemma, we will call an ◦-arc an exceptional arc if it has no
self-intersections.

Definition 2.2 Let � be an admissible ◦-collection on (S, M, P) consisting of excep-
tional arcs. We call� an exceptional collection, if it has no non-exceptional cycle, that
is a subgraph consisting of arcs in � as depicted in Fig. 5, where γi+1 (not necessarily
directly) follows γi in the anticlockwise order at the endpoint qi and where the index
1 ≤ i ≤ m is considered modulo m. We call an exceptional collection an exceptional
dissection if it is an admissible dissection.

The quiver Q(�) associated to an admissible collection � gives an easy way of
checking whether this collection is exceptional or not.

Lemma 2.3 An admissible collection� is an exceptional collection if and only if there
exists no oriented cycle in the associated quiver Q(�).

Proof Clearly every non-exceptional cycle in� gives rise to an oriented cycle in Q(�).
On the other hand suppose that we have an oriented cycle a1a2 . . . am in Q(�). Then
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the subgraph of � corresponding to all vertices t(ai ) of Q(�) such that aiai+1 ∈ I ,
considering the indexing set modulo m, form a non-exceptional cycle in �. Thus �

is not an exceptional collection. ��

Example 2.4 In Fig. 1, �1 is an exceptional dissection, while �2 is not. This can be
seen from the quivers of the two algebras in Fig. 2: the quiver Q(�1) does not have
an oriented cycle whereas the quiver Q(�2) has an oriented cycle.

Let � = {γi , 1 ≤ i ≤ n} be an exceptional collection. We define a partial order on
� as follows. For two arcs γi , γ j ∈ �, set γi � γ j if γi and γ j share an endpoint q and
if γi follows γ j in the clockwise order at q or if γi = γ j . We consider the transitive
closure of this relation which we will still denote by �. Then it is clear that � is
reflexive. On the other hand, it follows from the definition of an exceptional collection
that if γi � γ j and γi 
= γ j , then γ j � γi , since there are no ‘oriented’ subgraphs as
depicted above. Thus this order relation is antisymmetric, that is γi � γ j and γ j � γi
implies γi = γ j . Therefore � is a well-defined partial order on �.

Definition 2.5 We call an ordered set of arcs (γ1, . . . , γm) in (S, M, P) an ordered
exceptional collection if it is an exceptional collection and the order of the arcs are
compatible with the partial order � introduced above, that is, γi � γ j implies i ≤ j .
We call an ordered exceptional collection an ordered exceptional dissection if it is an
admissible dissection. We will use � to denote an ordered exceptional dissection. We
define �∗ = (γ ∗

m, . . . , γ ∗
1 ) as the dual ordered exceptional dissection of �. Note that

we reverse the indices of arcs in �∗.

While there is no geometric criterion to determine which admissible dissections
give rise to silting objects, we can give such a criterion to determine the admissible
dissections which correspond to full exceptional sequences as follows.

Proposition 2.6 (1) If (X1, . . . , Xn) is a full exceptional sequence in Kb(A), then Xi =
P•

(γi , fi )
for some graded ◦-arcs (γi , fi ) such that � = (γ1, . . . , γn) is an ordered

exceptional dissection of (S, M, P).
(2) Let � = (γ1, . . . , γn) be an ordered exceptional dissection of (S, M, P). Then

for any grading fi over γi , 1 ≤ i ≤ n, (P•
(γ1, f1)

, . . . , P•
(γn , fn)

) is a full exceptional

sequence in Kb(A).

Proof (1) Since each Xi , 1 ≤ i ≤ n, is an indecomposable exceptional object, by
Lemma 2.1, we may assume that Xi = P•

(γi , fi )
for some graded arc (γi , fi ), where γi

is an ◦-arc without self-intersections. On the other hand, since Kb(A) is totally Hom-
finite, there exists integers �1 . . . , �n ∈ Z such that X1[�1] ⊕ · · · ⊕ Xn[�n] is a silting
object by Proposition 1.10. Thus � = {γ1, . . . , γn} is an admissible dissection of
(S, M, P). Suppose � is not an exceptional dissection. Then there is a cycle formed
by arcs γi1 , γi2 , . . . , γim in �. Without loss of generality, we may assume that this is
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a cycle as follows.

γi1γim

γi2
γim−1

q1

q2

qm

Then we have

Hom(P•
(γi j , fi j )

, P•
(γi j+1 , fi j+1 )[Z]) 
= 0,

for 1 ≤ j ≤ m − 1, and

Hom(P•
(γim , fim ), P

•
(γi1 , fi1 )[Z]) 
= 0.

This contradicts that (X1, . . . , Xn) is an exceptional sequence. Therefore � is an
exceptional collection, and thus an exceptional dissection.

(2) Let � = (γ1, . . . , γn) be an ordered exceptional dissection of (S, M, P). Since
the order of � is compatible with the partial order � of the arcs on (S, M, P),
i < j implies that γi � γ j or γi and γ j are not comparable by �. If γi � γ j ,
then Hom(P•

(γ j , f j )
, P•

(γi , fi )
[Z]) = 0 for any grading fi and f j . On the other hand,

if γi and γ j are not comparable by �, then in particular, there exists no inter-
sections between γi and γ j , and thus Hom(P•

(γ j , f j )
, P•

(γi , fi )
[Z]) = 0. Therefore

Hom(P•
(γ j , f j )

, P•
(γi , fi )

[Z]) = 0 when i < j . Furthermore, since γi has no self-
intersection, P•

(γi , fi )
is an exceptional object for all 1 ≤ i ≤ n by Lemma 2.1. Thus

(P•
(γi1 , fi1 ), P

•
(γi2 , fi2 ), . . . , P

•
(γin , fin )) is an exceptional sequence, which is full since �

is maximal. ��
We have the following immediate corollary.

Corollary 2.7 (1) There exists a full exceptional sequence in Kb(A) if and only if there
exists an exceptional dissection on (S, M, P).

(2) Let A1 and A2 be two gentle algebras with the same surface model, then there
exists a full exceptional sequence in Kb(A1) if and only if there exists a full exceptional
sequence in Kb(A2).

3 The existence of full exceptional sequences

In this section, we consider the existence of full exceptional sequences in Kb(A) by
considering the existence of exceptional dissections on the associated surface. We
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Fig. 6 The quiver of an exceptional dissection on T(g,1,2)

Fig. 7 The quiver of an exceptional dissection on T(g,2,2)

begin by considering the case of surfaces containing one or two boundary components
and one or two marked points.

(1)T(g,1,1) is themarked surface of genus g ≥ 1with only one boundary component
and exactly one ◦-marked point.

(2)T(g,1,2) is themarked surface of genus g ≥ 1with only one boundary component
and exactly two ◦-marked point.

(3) T(g,2,2) is the marked surface of genus g ≥ 1 with two boundary components
each of which has one ◦-marked point.

Lemma 3.1 There exists no exceptional dissection in T(g,1,1).

Proof Note that if there exists only one ◦-marked point on the surface, then any ◦-
arc is a loop, and thus can not be exceptional. Therefore there exists no exceptional
dissections in T(g,1,1). ��
Lemma 3.2 There exist exceptional dissections in both T(g,1,2) and T(g,2,2).

Proof OnT(g,1,2) andT(g,2,2) there are admissible dissections such that the associated
gentle algebras are of the form as in Fig. 6 and Fig. 7, respectively.

The existence of such admissible dissections follows from the computation of the
ribbon graphs of these quivers with relations, see [24, 27], and from showing that
the surfaces given by the ribbon graphs are exactly the surfaces T(g,1,2) and T(g,2,2),
respectively. On the other hand, since the quivers have no oriented cycles, by Lemma
2.3, the associated admissible dissections are exceptional dissections on T(g,1,2) and
T(g,2,2), respectively. ��

In Proposition 4.7, we will show that any quiver with relations arising from an
exceptional dissection onT(g,1,2) andT(g,2,2) is isomorphic to the quiverwith relations
depicted in Fig. 6 and Fig. 7 respectively. The following lemma describes a numerical
property of the quiver arising from these three special surfaces.

Lemma 3.3 Let A = kQ/I be a gentle algebra arising from (S, M, P,�A). Then
(1) (S, M) is of the form T(g,1,1) if and only if (|Q0|, |Q1|) = (2n, 4n − 1), for

some n ≥ 1.
(2) (S, M) is of the form T(g,1,2) if and only if (|Q0|, |Q1|) = (2n + 1, 4n) for

some n ≥ 1.
(3) (S, M) is of the form T(g,2,2) if and only if (|Q0|, |Q1|) = (2n + 2, 4n + 2) for

some n ≥ 1.
Furthermore, if (1), (2) or (3) holds then n = g.
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Proof For a marked surface (S, M), denote by χ = 2−2g−b the Euler characteristic
of S, where g is the genus of S and b is the number of boundary components of S.
Then we have the following equalities:

|Q0| = |�| = |M◦| − χ (3.1)

χ = |Q0| − |Q1|, (3.2)

see for example in [1, 22].
It follows directly from these equalities that if (S, M) = T(g,1,1), then

(|Q0|, |Q1|) = (2g, 4g − 1); if (S, M) = T(g,1,2), then (|Q0|, |Q1|) = (2g + 1, 4g);
if (S, M) = T(g,2,2), then (|Q0|, |Q1|) = (2g + 2, 4g + 2).

Now we show the converse.
(1) If (|Q0|, |Q1|) = (2n, 4n − 1) for some n ≥ 1, then by equality (3.2), the

Euler characteristic of S equals 1 − 2n. Thus by equality (3.1) there exists only one
◦-marked point on (S, M). Furthermore, there is only one boundary component on S,
since there exists at least one ◦-marked point on each boundary component. Therefore
(S, M) is of the form T(g,1,1), and we have g = n.

(2) If (|Q0|, |Q1|) = (2n+1, 4n) for some n ≥ 1, then by equality (3.2), the Euler
characteristic of S equals 1−2n. Thus by equality (3.1) there are exactly two ◦-marked
points on (S, M). Hence S has only one or two boundary components. On the other
hand, note that since 2−2g−b = χ = 1−2n, we have that b is odd. Therefore there
is only one boundary component on S. So (S, M) is of the form T(g,1,1), and g = n.

(3) The proof is similar to the proof of the second part. ��
Before giving equivalent conditions for the existence of full exceptional dissections

on a marked surface, we show the following technical lemma.

Lemma 3.4 Let (S, M, P) be a marked surface. Let (S′, M ′, P) be a marked surface
obtained from (S, M, P) by adding a ◦-point and a •-point on some boundary com-
ponent or by adding a new boundary component with exactly one ◦-point and one
•-point. If there exists an exceptional dissection on (S, M, P) then there exists an
exceptional dissection on (S′, M ′, P).

Proof Let γ be a minimal element in an exceptional dissection � on (S, M, P) with
respect to the partial order introduced in Sect. 2. Denote the new ◦-marked point by p
and the new •-marked point by q. The two generic possible ways to add p and q is as
in Fig. 8.

We now construct an admissible collection of arcs �′ on (S′, M ′, P) by adding
new arcs to � as shown in Fig. 8, where we add an arc α as in the case of the left of
Fig. 8 and we add two arcs α1 and α2 as in the case of the right of Fig. 8. Then �′ is
an admissible dissection on (S′, M ′, P), since it is maximal, that is it has precisely
|�| + 1 arcs in the first case and |�| + 2 arcs in the second case.

Furthermore, note that the quiver Q(�′) is obtained from Q(�) by adding an arrow
from α to γ in the first case, and by adding two arrows from α1 to α2 and one arrow
from α2 to γ in the second case. On the other hand, since � is exceptional, there is no
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Fig. 8 Local configuration of the new surface (S′, M ′, P) obtained from a surface (S, M, P) by adding
marked points or a boundary with marked points. In the left case we add a ◦-marked point p and a •-marked
point q on a boundary component of S, while in the second case we add a new boundary component (upper
one) with one ◦-marked point p and one •-marked point q on (S, M, P)

oriented cycle in Q(�) by Lemma 2.3. Thus there is no oriented cycle in Q(�′). So
�′ is exceptional again by Lemma 2.3. ��

Proposition 3.5 Let (S, M, P)be amarked surface. Then the following are equivalent:

(1) There exists an exceptional dissection on (S, M, P);
(2) P = ∅ and |M◦| ≥ 2;
(3) P = ∅ and (S, M, P) is not homeomorphic to T(g,1,1).

Proof Clearly (2) and (3) are equivalent. We now show that (1) implies (3). Suppose
P 
= ∅ in (S, M, P). Let � be any admissible dissection of (S, M, P). Then there
exists a polygon in � containing a •-puncture and this polygon is a non-exceptional
cycle in �. Thus � can not be an exceptional dissection. Furthermore, by Lemma 3.1,
a surface of the form T(g,1,1) has no exceptional dissection.

We now show that (2) implies (1). So assume that P = ∅ and |M◦| ≥ 2. If the
genus of S is greater than one then the surfaces T(g,1,2) and T(g,2,2) are the marked
surfaces with minimal number of ◦-marked points containing at least two marked
points. Lemma 3.2 shows that there exists at least one exceptional dissection on both
T(g,1,2) and T(g,2,2). Then the result follows from Lemma 3.4 by induction on the
number of marked points of the surface. If the genus of S is zero, we can also use
an inductive argument based on iteratively using Lemma 3.4, and noticing that the
disk with two ◦-marked points is the minimal surface with genus zero, which has an
exceptional dissection. ��

The following result shows that if there is an exceptional dissection on (S, M) then
there are infinitely many, unless S is a disk.

Proposition 3.6 Let (S, M) be a marked surface with an exceptional dissection. Then
the number of exceptional dissections is finite if and only if S is a disk.

Proof Recall that the twist of an ◦-arc γ in (S, M) is an •-arc Dγ obtained from γ by
rotating anticlockwise both endpoints to the next respective •-point. Then the result
follows from the following two observations: any square of a twist of an exceptional
dissection is again an exceptional dissection; the group generated by homeomorphisms
of twisting each boundary component of (S, M) which maps a ◦-marked point to the
(anticlockwise) next ◦-marked point is finite if and only S is a disk. Furthermore, if S
is not a disk then the action of this group is faithful. ��
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FromProposition 3.5 and Proposition 2.6 (2), we now obtain a complete description
of the existence of full exceptional sequences in Kb(A) for a gentle algebra A.

Theorem 3.7 Let A be a gentle algebra with marked surface (S, M, P,�A). The
following are equivalent:

(1) There exists a full exceptional sequence in Kb(A);
(2) P = ∅ and |M◦| ≥ 2;
(3) P = ∅ and (S, M, P) is not homeomorhpic to T(g,1,1).

By the above Theorem and the fact that the global dimension of a gentle algebra
is finite if and only if the associated marked surface has no punctures, we have the
following.

Corollary 3.8 Let A be a gentle algebra. If the global dimension of A is infinite then
there exists no full exceptional sequence in Kb(A).

In particular, noting that the surface model of a non-hereditary discrete-derived
algebra is an annulus, Theorem 3.7 gives a new proof of the following result on the
existence of full exceptional sequences for the derived category of derived-discrete
algebras which was first proved in [13, Proposition 6.6]. We refer the reader to [13,
28] for details on derived-discrete algebras.

Corollary 3.9 Let A be a non-hereditary derived-discrete algebra. Then there exists a
full exceptional sequence in Kb(A).

We now give a criterion to determine the existence of full exceptional sequences in
Kb(A) of a gentle algebra A by directly looking at the quiver and the relations of the
algebra.

Corollary 3.10 Let A = kQ/I be a gentle algebra, then there exists a full exceptional
sequence in Kb(A) if and only if the following two conditions are satisfied

(1) the pair (|Q0|, |Q1|) is not of the form (2g, 4g − 1) for any g ≥ 1;
(2) there exist no oriented cycles in Q such that the composition of any twoneighboring

arrows belongs to I .

Proof Lemma 3.3 (1) says that a gentle algebra A = kQ/I arising from an admissible
dissection on a surface of the form T(g,1,1) if and only if (|Q0|, |Q1|) = (2g, 4g− 1).
Furthermore, the global dimension of a gentle algebra is finite if and only if there
exist no oriented cycles with relations at each vertex. This is further equivalent to the
surfaces having not punctures, that is P = ∅. Then the result follows from Theorem
3.5. ��

4 Cutting surfaces and completing exceptional sequences

We now define the notion of a cut surface which will play an important role in the
inductive arguments later in the paper.
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Fig. 9 An example of cut surface

Definition 4.1 Let γ be an exceptional ◦-arc on a marked surface (S, M) which has
two distinct endpoints p and q. We define (Sγ , Mγ ) to be the marked surface obtained
from (S, M) by cutting along γ and then contracting along the cut, and we set Mγ =
M\{p, q}�{pq, p′q ′}, where pq and p′q ′ are newmarked points obtained from p and
q after cutting and contracting along γ . We call (Sγ , Mγ ) the cut surface of (S, M)

along γ .

Note that whenever we consider a cut surface (Sγ , Mγ ), we implicitly assume that
γ is an exceptional ◦-arc. When cutting the surface, we always ignore components
corresponding to diskswith only one◦-point and one•-point. If the arcγ is a separating
arc, then the cut surface (Sγ , Mγ ) may not be connected anymore and (Sγ , Mγ ) is in
fact a union of marked surfaces.

Example 4.2 Fig. 9 gives an example of a cut surface. Namely, we cut an annulus along
an arc γ connecting the two boundary components and then contract along the cut.
From this we obtain the cut surface which is a disk.

Let α be an ◦-arc in (S, M). It is easy to see that if α does not intersect γ , then
α is still an ◦-arc in Sγ and there are no other arcs in S which are identified with α

in (Sγ , Mγ ). While if α and γ intersect in the interior of S then α disappears after
cutting, and it does not give rise to a curve in (Sγ , Mγ ) anymore. When α and γ only
intersect at endpoints, the situation becomes more complicated. In particular, in that
case, two distinct arcs in S might be identified in Sγ , see for example in Fig. 10, α1
and α2 are identified in (Sγ , Mγ ).

More precisely, for an ◦-arc α in (S, M), we denote by α the ◦-arc in (Sγ , Mγ )

induced by α. For example α1 = α2 for α1 and α2 in Fig. 10. In particular, if α

intersects γ in the interior, then we view α as an empty element. For example, γ is
empty. We refer to [16, Proposition 4.6] for a complete description of when two ◦-arcs
are identified in the cut surface.

The following two lemmas show that any admissible (resp. exceptional) collection
on (S, M) induces an admissible (resp. exceptional) collection on (Sγ , Mγ ).

Lemma 4.3 Let � be an admissible collection on (S, M) and γ an exceptional arc in
�. Denote respectively by Q and I the quiver and the set of relations associated to
�. Then � := {α, α ∈ �} is an admissible collection on (Sγ , Mγ ), whose quiver Q
and the set of relations I are obtained from Q and I as follows:
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Fig. 10 An example of how arcs are identified in the cut surface, where on the cut surface (Sγ , Mγ ), we
have α1 = α2

(1) The vertex set Q0 is given by Q0\{γ }. The set Q1 of arrows is the union

{c : s → t ∈ Q1 | s 
= γ and t 
= γ } � {[c1c2] = j
c1−→ γ

c2−→ k | c1c2 ∈ I }.

(2) I is generated by

{c1c2 | c1c2 ∈ I , c1, c2∈Q1 ∩ Q1} � {c0[c1c2] | c0c1∈ I } � {[c1c2]c3 | c2c3∈ I }.

Furthermore, if� is an admissible dissection, then� is also an admissible dissection.

Proof The proof is straightforward. ��
Lemma 4.4 Assuming the notations in Lemma 4.3, we have that if � is an exceptional
collection, then � is an exceptional collection. Furthermore, if � is an exceptional
dissection, then � also is an exceptional dissection.

Proof By Lemma 4.3, we know that � is an admissible collection on (Sγ , Mγ ). Now
we show that � is also exceptional. By Lemma 2.3, we only need to show that there
is no oriented cycle in Q. Assume for contradiction that ω is an oriented cycle in
Q. Then ω must contain a new arrow of the form [c1c2] described in Lemma 4.3,
otherwise ω would already be an oriented cycle in Q, which contradicts to the fact
that � is exceptional. But then after replacing all the new arrows [c1c2] in ω by the
path c1c2, we have an oriented cycle in Q, which is again a contradiction. Thus there
is no oriented cycle in Q, and thus � is exceptional.

Now we prove the second statement. Let α 
= β be two arcs in �\{γ }, then α 
= β

since otherwise α, β and γ form a triangle on the surface which has no •-point, which
contradicts the fact that � is admissible. On the other hand, note that if α is empty for
an arc α in�, then α = γ . Thus� has exact |�|−1 arcs. Therefore by [1, Proposition
1.11], � is a maximal admissible collection on (Sγ , Mγ ), that is, � is an exceptional
dissection. ��

Nowwe discuss how to lift an admissible (resp. exceptional) collection on (Sγ , Mγ )

to an admissible (resp. exceptional) collection on (S, M). Let �γ be a collection of
arcs on (Sγ , Mγ ). Each arc on (Sγ , Mγ ) can be viewed as an arc induced by an arc
(which may not be unique) on (S, M). Thus there always exists a collection of arcs
� = {γ1, . . . , γn} on (S, M) such that�γ = �. So we can always denote a collection
of arcs on (Sγ , Mγ ) by �γ = {α, α ∈ �} for some collection of arcs � on (S, M),
and we will always assume that � contains γ , noticing that γ is empty. We call � a
lift of �γ .
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Fig. 11 Two lifts �1 and �2 of an admissible dissection �γ on (Sγ , Mγ ), where �1 is an admissible
dissection on (S, M) while �2 is not

Fig. 12 Local configuration of lifting of arcs with endpoints pq or p′q ′ in an admissible collection �γ of
the cut surface. For different i and j , βi may coincide with β j . Similar for the arcs αi and α j . There may

also exist arcs βi and α j which coincide

Let �γ = {γi , 1 ≤ i ≤ n, γi ∈ �} be an admissible collection on (Sγ , Mγ ) where
� is a lift of �γ . Note that the collection � is not necessarily admissible, see Fig. 11
for an example.

We will give conditions which guarantee that � is admissible. For this we denote
by (β1, . . . , βv) and (α1, . . . , αt ), respectively, the ordered subsets of �γ of all arcs
with endpoints at pq, respectively at p′q ′. Here by our conventions the orders of
(β1, . . . , βv) and (α1, . . . , αt ) are compatible with the clockwise orders at the end-
points, that is, β1 � · · · � βv and α1 � · · · � αt , see the left picture in Fig. 12.

Lemma 4.5 Let � be a collection of arcs on (S, M) such that �γ = {γi , 1 ≤ i ≤
n, γi ∈ �} is an admissible collection on (Sγ , Mγ ). With the above notations, the
following statements hold.

(1) The collection � is an admissible collection if and only if there are integers
0 ≤ u ≤ v and 0 ≤ s ≤ t such that the lifts of pq and p′q ′ respectively are such that,
p is an endpoint of βi for 1 ≤ i ≤ u, p′ is an endpoint of αi for 1 ≤ i ≤ s, q is an
endpoint of β j for u + 1 ≤ j ≤ v and q ′ is an endpoint of α j for s + 1 ≤ j ≤ t , see
the two rightmost pictures in Fig.12. Furthermore, if �γ is an admissible dissection,
then � is an admissible dissection if and only if the above conditions are satisfied.

(2) The collection � is an exceptional collection (resp. dissection) if and only if the
following conditions are satisfied:
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(2.1) �γ is an exceptional collection (resp. dissection);
(2.2) � is an admissible collection consisting of exceptional arcs;
(2.3) for any two lifts βi and α j with common endpoint p (resp. q), either β i and

α j are not comparable or β i � α j (resp. α j � β i ).

We will denote by �(u,s) the admissible dissection in (S, M) as in Lemma 4.5 (1)
determined by a pair of integers (u, s).

Proof (1) If there exist integers 0 ≤ u ≤ v and 0 ≤ s ≤ t satisfying the conditions in
the first statement, then the lifting of arcs with endpoints pq or p′q ′ will not give rise
to new interior intersections. Thus � is admissible since �γ is. Conversely, assume
that there exists no integer 0 ≤ u ≤ v or 0 ≤ s ≤ t satisfying the conditions in the first
statement. Without loss of generality assume that such an integer u does not exist and
that βu has endpoint q and βu′ has endpoint p with u < u′. Then βu and βu′ intersect
in the interior and � is not admissible, see for example the right and middle pictures
of Fig. 11.

(2) If � is an exceptional collection, then in particular it is an admissible collection
and any arc in � is an exceptional arc with two distinct endpoints. By Lemma 4.4,
�γ is an exceptional collection. So conditions (2.1) and (2.2) hold. Furthermore, note
that the condition α j � β i implies that α j � βi in �. On the other hand, the fact that
βi and α j share a common endpoint p shows that βi � α j in �. So (βi , α j ) cannot
be an exceptional pair, and � will not be exceptional. A similar discussion works for
the case that βi and α j share a common endpoint q.

Conversely, assume that the three conditions in the second statement hold.We prove
that � is exceptional. Suppose for contradiction that there is a non-exceptional cycle
in �, or equivalently, that there is an oriented cycle c in the quiver Q associated to �.
Since Q is the quiver of a gentle algebra, there are at most four arrows at the vertex in
Q corresponding to γ , depicted as follows:

γ

a b

c d

Note that since �γ is exceptional, the associated quiver Q has no oriented cycles.
On the other hand, Q is obtained from Q by deleting the arrows attached to γ and
then adding new arrows [ab] and [cd] (if a, b and c, d, respectively, exist in Q). Thus
the cycle c goes through γ and contains a deleted arrow in Q.

Assume c contains a. Then c also contains b or d, since it is a cycle. In the following
we always assume that γ appears in c once, and each deleted arrow appears at most
once in c and we call c a minimal cycle.

Case 1. If b belongs to c, since c is minimal, a and b appear in c just once and no
other deleted arrow appears in c. After replacing ab in c by [ab], we obtain a path in Q,
which is still an oriented cycle. This contradicts the assumption that�γ is exceptional.

Case 2. If d belongs to c, then we have two subcases. If ad = c, then the source of
a and the target of d coincide and we denote this vertex by α. Then the corresponding
arc α on (S, M) is a loop in �, which contradicts the assumption that any arc in � is
exceptional. Now assume ad 
= c. We denote by β the source of a and by α the target
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of d. Since the composition of a and d is nonzero, β and α share an endpoint p or
q. Without loss of generality, we assume that they share the endpoint p. On the other
hand, under the assumption that c is minimal, the path obtained from c by deleting the
arrows a and d is a path in Q, which is still connected and gives rise to the relation
α � β. This contradicts condition (2.3) in the second statement.

The proof for the case that c contains c is similar. To sum up, if the three conditions
in the second statement hold, then � is exceptional. ��

The following corollary is a direct consequence of Lemma 4.5.

Corollary 4.6 For any exceptional collection �γ on (Sγ , Mγ ), the admissible collec-
tion �(v,t) is the unique exceptional collection on (S, M) such that �γ = �(v,t) and
such that γ is a maximal element in �(v,t). Furthermore, if �γ is an exceptional
dissection, then �(v,t) is also an exceptional dissection.

We apply iterated cuts of surfaces to prove the following.

Proposition 4.7 The quiver with relations associated to any exceptional dissection on
the surface T(g,1,2) is of the form

2g + 1 2g 3 2 1

(4.1)

and on the surface T(g,2,2) it is of the form

2g + 2 2g + 1 3 2 1.

(4.2)

Proof At first we show that any quiver Q associated to an exceptional dissection on
the surface T(1,1,2) is isomorphic to a quiver as in (4.1). By Lemma 3.3 there are three
vertices and four arrows in Q and there must exist two vertices, for example vertices 3
and 2, such that there are two arrows between them. On the other hand, since there is
no oriented cycle in Q, these two arrows have the same direction. So we can assume
that there are two arrows from 3 to 2 in Q. Furthermore, since Q is the quiver of a
gentle algebra, there are at most two arrows starting and at most to arrow ending at a
given vertex, so the other two arrows must either start at 2 and end at 1, or start at 1
and end at 3. So Q is isomorphic to a quiver as (4.1). Furthermore, for such a quiver,
up to isomorphism there is a unique choice of relations, depicted in (4.1), such that
the resulting quotient algebra is gentle.

Let � be an exceptional dissection on the surface (S, M) = T(1,2,2). Let γ be any
arc in�, then the cut surface (Sγ , Mγ ) is homeomorphic to the surfaceT(1,1,2) with an
exceptional dissection�, whose quiver Q is then necessarily as in (4.1). Furthermore,
we may assume that γ is maximal in � with respect to the partial order of �. Then by
Lemma 4.3, the quiver Q of � is obtained from Q by adding a vertex corresponding
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to γ and two new arrows. Note that the latter follows from the fact that by Lemma 3.3,
there are 6 arrows in Q. By the maximality of γ the two new arrows start at γ . Since
� is an exceptional dissection, there are no oriented cycles in Q and thus in order for
Q to give rise to a gentle algebra, it must be as in (4.2). Thus the statement holds for
surfaces of genus one.

For the general case, the following two claims guarantee that we can use inductions
on the genus of the surface, where the first claim is clear and we will prove the second
one.

Claim 1. Let γ be any arc in an exceptional dissection � of the surface (S, M) =
T(g,2,2). Then the cut surface (Sγ , Mγ ) is homeomorphic to T(g,1,2).

Claim 2. Let γ be a maximal arc in an exceptional dissection � of the surface
(S, M) = T(g,1,2). Then the cut surface (Sγ , Mγ ) is homeomorphic to T(g−1,2,2).

We now show Claim 2. Since γ is a minimal arc in �, by Lemma 4.3, the quiver
Q is obtained from Q by deleting the vertex corresponding to γ (which is a source)
and the arrows incident with it. Note that since the surface (S, M) is connected, the
quiver Q is connected. So the quiver Q is connected, and thus the cut surface (Sγ , Mγ )

is also connected. Therefore γ is non-separating. Denote by S̃ the compact surface
obtained from S by contracting the boundary to a point. Then γ becomes a simple
closed curve on S̃, which is denoted by γ̃ . By Lemma 1.3, there is a homeomorphism
φ̃ : S̃ 	→ S̃ which maps γ̃ to a simple closed curve φ̃(γ̃ ) which is a curve going
around a handle of S̃ once. In fact, φ̃ can be lifted to a homeomorphism φ of (S, M)

by keeping the local configuration of the boundary, whereφ(γ ) is a curve going around
a handle of (S, M) once. Thus the cut surface of (S, M) along φ(γ ) is homeomorphic
to T(g−1,2,2). Furthermore, the cut surface of (S, M) along γ is also homeomorphic
to T(g−1,2,2), since φ is a homeomorphism of (S, M). ��
Corollary 4.8 (1) Any arc in an exceptional dissection on the surfaces T(g,1,2) and on
T(g,2,2) is a non-separating arc.

(2) Let �1 and �2 be two exceptional dissections on T(g,1,2) (on T(g,2,2) resp.),
then there is homeomorphism φ of T(g,1,2) (of T(g,2,2) resp.) such that φ(�1) = �2.

Proof (1) Let γ be an arc in an exceptional dissection � on the surface T(g,1,2) or on
T(g,2,2). By Proposition 4.7, the quiver with relations associated to � is as in (4.1)
or (4.2) respectively. On the other hand, by the construction in Lemma 4.3 of the
quiver Q associated to the exceptional dissection �, Q is still connected. Thus γ is
non-separating.

(2) This follows from Proposition 4.7 and the bijective correspondence between
gentle quivers and admissible dissections of the surfaces. ��

As another application of cutting marked surfaces, we will describe when an excep-
tional sequence in Kb(A) can be completed to a full exceptional sequence. We begin
with the following straightforward observation.

Lemma 4.9 An exceptional sequence (P•
(γ1, f1)

, . . . , P•
(γm , fm )) in Kb(A) can be com-

pleted to a full exceptional sequence if and only if the associated exceptional collection
{γ1, . . . , γm} on (S, M) can be completed to an exceptional dissection.

We now give an example showing that not every exceptional sequence can be
completed to a full exceptional sequence.
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Fig. 13 The local configuration of an arc γ on T(1,1,2)

Example 4.10 Consider the marked surfaceT(g,1,2) of genus g ≥ 1 with one boundary
component and two ◦-marked point p and q. Let γ be an arc connecting p and q, and
such that γ is homotopic to a boundary segment, see Fig. 13. Then for any grading fγ
on γ , the associated object P•

(γ, fγ ) is exceptional. However, it cannot be completed to
a full exceptional sequence: Let α be an ◦-arc which has no self-intersections. So in
particular, α must be have endpoints p and q. If α is not homotopic to γ , then γ and
α form a non-exceptional cycle, and {γ, α} cannot be an exceptional collection. Thus
by Lemma 4.9, P•

(γ, fγ ) can not be completed to a full exceptional sequence.

Let {γ1, γ2} be an exceptional collection, it is easy to see that

((Sγ1)γ2 , (Mγ1)γ2) = ((Sγ2)γ1 , (Mγ2)γ1).

This ensures that for any exceptional collection �, we may define the cut surface
(S�, M�) by successively cutting the arcs in � in any order.

Proposition 4.11 Let � = {γ1, . . . , γm} be an exceptional collection on (S, M). Then
� can be completed to an exceptional dissection if and only if (S�, M�) has no
connected component which is homeomorphic to T(g,1,1).

Proof We prove this by induction on m. We begin with the case m = 1. In this case
� = {γ1}. Suppose that there is no connected component of (S�, M�) homeomorphic
to T(g,1,1). Then by Proposition 3.5, there exists an exceptional dissection �γ1 on
(S�, M�). Furthermore, by Corollary 4.6, there exists an exceptional dissection �

of (S, M) containing γ1, that is, � can be completed to an exceptional dissection on
(S, M).

For the general case, let � = {γ1, . . . , γm} be an exceptional collection on (S, M)

and suppose that (S�, M�) has no connected component homeomorphic to T(g,1,1).
Then {γ2, . . . , γm} is an exceptional collection on (Sγ1 , Mγ1) by Lemma 4.4. By
induction, it can be completed to an exceptional dissection on (Sγ1 , Mγ1). Then
again by Corollary 4.6, there exists an exceptional dissection on (S, M) containing
{γ1, . . . , γm}.

The converse directly follows from the fact that if there is a connected component
of the form T(g,1,1), then there are no exceptional arcs on T(g,1,1) since this connected
component has a single marked point on its unique boundary. ��

Now we have the following geometric characterisation of when an exceptional
sequence can be completed to a full exceptional sequence.
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Theorem 4.12 Let A be a gentle algebra associatedwith amarked surface (S, M,�A)

with associated admissible dissection �A. Assume there exist full exceptional
sequences in Kb(A) and let (P•

(γ1, f1)
, . . . , P•

(γm , fm )) be an exceptional sequence arising
from an exceptional collection � = {γ1, . . . , γm}. Then it can be completed to a full
exceptional sequence if and only if the cut surface (S�, M�) has no subsurface of the
form T(g,1,1).

Proof This follows directly from Lemma 4.9 and Proposition 4.11. ��

5 Transitivity of the braid group action

In this section we will use the geometric model to show that the induced action of
the Artin braid group is transitive on the set of full exceptional sequences in the
perfect derived category of a gentle algebra corresponding to a genus zero surface.
More precisely, denote by Bn the Artin braid group generated by σ1, . . . , σn−1 with
relations σiσ j = σ jσi , |i − j | > 1 and σiσi+1σi = σi+1σiσi+1. Then we show the
following.

Theorem 5.1 Let A be a gentle algebra arising from a marked surface of genus zero,
let n be the rank of K0(Kb(A)) and Bn the Artin braid group on n strands. Then the
action of Z

n
� Bn on the set of full exceptional sequences in Kb(A) is transitive.

The proof is based on the following strategy: In the first half of this section we
introduce an action of Bn on the set of ordered exceptional dissections of a marked
surface (S, M). We then discuss the transitivity of this action and show that it holds for
surfaces satisfying a certain condition (RCEA condition). In the second half of this
section we prove the theorem by showing how this geometric interpretation translates
to the braid group action on full exceptional sequences in the associated derived
category Kb(A).

5.1 Braid group action on exceptional surface dissections

We start with the following observation.

Lemma 5.2 Let (γ1, γ2) be an ordered exceptional pair in (S, M). Then γ1 and γ2
either do not intersect or they intersect at one or two common endpoints, as shown in
Figure 14.

Definition 5.3 (1) Let (γ1, γ2) be an ordered exceptional pair in (S, M).We nowdefine
the left (resp. right) mutation of γ2 at γ1 denoted by Lγ1γ2 (resp. Rγ1γ2) as follows:

• If γ1 and γ2 do not intersect, then we define Lγ1γ2 as γ2 and define Rγ2γ1 as γ1.
• If γ1 and γ2 share one endpoint q1 then Lγ1γ2 is the smoothing of the crossing of

γ1 and γ2 at q1.
• If γ1 and γ2 share both endpoints, then Lγ1γ2 is obtained by first smoothing the
crossing of γ1 and γ2 at one of the endpoints and then smoothing the crossing of
the resulting arc with γ1 at the other endpoint of γ1, see Fig. 14.
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Fig. 14 Possible intersections of γ1 and γ2 in an ordered exceptional pair (γ1, γ2), where case II is depicted
in the universal covering. This figure also illustrates the mutations of the ordered exceptional pair (γ1, γ2)

(in blue)

Dually, we define Rγ2γ1 when γ1 and γ2 intersect in one or both endpoints, see Fig. 14.

(2) Let � = (γ1, . . . , γm) be an ordered exceptional collection of arcs in (S, M),
for any 1 ≤ i ≤ m − 1, we define

σi� = (γ1, . . . , γi−1, γi+1, Rγi+1γi , γi+2, . . . , γm),

σ−1
i � = (γ1, . . . , γi−1, Lγi γi+1, γi , γi+2, . . . , γm).

Theorem 5.4 Let � = (γ1, . . . , γm) be an ordered exceptional collection on (S, M).
Then σi� and σ−1

i � are ordered exceptional collections on (S, M) of length m, for
all 1 ≤ i ≤ m − 1. Furthermore, we have

σ−1
i σi = σiσ

−1
i = id,

σiσi+1σi = σi+1σiσi+1,

σiσ j = σ jσi , if |i − j| > 1,

and this induces an action of the braid group Bm on the set of ordered exceptional
collections on (S, M) of length m.

Proof The statement that σi� and σ−1
i � are ordered exceptional collections on (S, M)

of length m can be checked directly using the definitions. It is also straightforward to
check the equalities σ−1

i σi = σiσ
−1
i = id and σiσ j = σ jσi , if |i − j| > 1. Now we

consider the braid relations. Without loss of generality, we may assume m = 3. Then

σ1σ2σ1(γ1, γ2, γ3) = (γ3, Rγ3γ2, Rγ3Rγ2γ1),

σ2σ1σ2(γ1, γ2, γ3) = (γ3, Rγ3γ2, RRγ3γ2 Rγ3γ1).

So we have to show that Rγ3Rγ2γ1 = RRγ3γ2 Rγ3γ1.

If there exists an arc γ j , 1 ≤ j ≤ 3 which shares no endpoints with the other two
arcs, then it can be easily checked that Rγ3Rγ2γ1 = RRγ3γ2 Rγ3γ1 = γ1 if j = 1,
Rγ3Rγ2γ1 = RRγ3γ2 Rγ3γ1 = Rγ3γ1 if j = 2, Rγ3Rγ2γ1 = RRγ3γ2 Rγ3γ1 = Rγ2γ1 if
j = 3.



Exceptional sequences in the derived category of a gentle algebra Page 27 of 41 33

If any two arcs intersect at one or both of the endpoints then there are several cases
to consider depending on the number of the intersections as well as the positions of
the different arcs. The result then follows from a straightforward verification of the
definitions. We prove one of the cases in the following figure, the other cases being
similar.

γ1

γ1
γ1γ3 γ3

γ2γ2
δ

Rγ3 γ1

Rγ2 γ1Rγ3 γ2

q1 q1 q1

q2 q2 q2

In this situation it directly follows from the figure that Rγ3Rγ2γ1 = RRγ3γ2 Rγ3γ1,
which corresponds to the blue arc δ for the case when γ2 shares one endpoint both
with γ1 and γ3, and γ1, γ3 share two endpoints. ��

In the following we consider the transitivity of the braid group action on the set
of ordered exceptional dissections on (S, M). For this we first show some technical
lemmas.

We observe that different choices of order for a given exceptional collection on
(S, M) gives rise to distinct ordered exceptional collections. However, we show that
they are all related through the braid group action.

Lemma 5.5 Let � = (γ1, . . . , γm) and �′ = (γ ′
1, . . . , γ

′
m) be two ordered exceptional

collections on (S, M) arising from the same exceptional collection �. Then there is
an element σ in Bm such that σ� = �′.

Proof Suppose that γi = γ ′
m for some 1 ≤ i ≤ m. Then note that γi is a maxi-

mal element with respect to the partial order on �. Thus there are no intersections
between γi and γ j , for i + 1 ≤ j ≤ m and Rγ j γi = γi . So σm−1 · · · σi� =
(γ1, . . . , γi−1, γi+1, . . . , γm, γi = γ ′

m) which is obtained from � by moving γ ′
m to

the last position and shifting the arcs γi+1, . . . , γm one position to the left. Then we
consider the position of γ ′

m−1 in σm−1 · · · σi�, and similarly mutate it to the position
before γ ′

m . Continuing in this way, we can mutate � to �′, that is, we have inductively
constructed an element σ such that σ� = �′. ��

For the rest of this section we fix the following conventions. Let (S, M) be amarked
surfacewith exceptional dissections. Let γ be an exceptional ◦-arc such that there exist
exceptional dissections on the cut surface (Sγ , Mγ ). We extend the definition of the
braid group action to a non-connected marked surface. Note that if the braid group
Bm acts on the set of ordered exceptional dissections of a marked surface (S, M), then
the braid group Bm−1 acts on the cut surface (Sγ , Mγ ), independently from whether
(Sγ , Mγ ) is connected or not.

Let�γ be an admissible dissection on (Sγ , Mγ ). Recall fromLemma4.5 that�(u,s)

is the unique lift of �γ to (S, M) which is an admissible dissection determined by
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the pair (u, s) such that 0 ≤ u ≤ v, 0 ≤ s ≤ t , where v and t are as in the paragraph
preceding Lemma 4.5. For two pairs (u, s) and (u′, s′), we say (u, s) < (u′, s′) if
u ≤ u′, s ≤ s′ and at least one of the inequalities is strict. The following lemma
allows us to later use induction.

Lemma 5.6 Let�(u,s) be a lift of�γ which is exceptional. If (u, s) < (v, t), then there
exists an ordered exceptional dissection �(u,s) arising from�(u,s) and an element σ in
Bn such that σ�(u,s) is an ordered exceptional dissection with underlying set �(u′,s′)
for some (u′, s′), which is a lift of �γ with (u, s) < (u′, s′).

Proof We first note the following useful fact: Using the notations in Fig. 12, αs+1 and
βu+1 are the only two minimal elements in �(u,s) which are greater than γ , that is, if
γ � α for some α ∈ �(u,s), then at least one of αs+1 � α or βu+1 � α holds.

Case 1. αs+1 = βu+1. Let �(u,s) be an ordered exceptional dissection arising from
�(u,s) such that αs+1 directly follows γ . This is possible, since for any α ∈ �(u,s)

with γ � α, we have αs+1 = βu+1 � α by the above fact. Assume γ is at the
i-th position in �(u,s), then σ−1

i �(u,s) is an ordered exceptional dissection obtained
from �(u,s) by exchanging the positions of γ and αs+1, and then replacing αs+1 by
Lγ αs+1. Then �(u′,s′) := σ−1

i �(u,s) is what we want, noticing that on the one hand
(u′, s′) = (u + 1, s + 1), on the other hand Lγ αs+1 = αs+1 and thus the underlying
set of �(u′,s′) is a lift of �γ .

Case 2. αs+1 
= βu+1. Then at most one of αs+1 � βu+1 and βu+1 � αs+1 is
satisfied. Otherwise, we have βu+1 � αs+1 � βu+1, which contradicts the fact that
�γ is exceptional. Without loss of generality, assume that βu+1 � αs+1 does not hold.
Then for α ∈ � such that γ � α, we have αs+1 � α. Otherwise, if α � αs+1, then by
the above fact, we have βu+1 � α, thus βu+1 � αs+1. A contradiction. Then similar
to the first case, we define �(u,s) as an ordered exceptional dissection arising from
�(u,s) such that αs+1 directly follows γ . And then define �(u′,s′) as σ−1

i �(u,s), where
(u′, s′) = (u, s + 1). ��

The next corollary follows from the two previous lemmas.

Corollary 5.7 Let �1 and �2 be two ordered exceptional dissections on (S, M) con-
taining γ . Let �1 and �2 be the ordered exceptional dissections on (Sγ , Mγ ) induced
by�1 and�2, respectively. Suppose�1 and�2 have the same underlying set�γ . Then
there is an element σ in Bn such that σ�1 = �2.

Proof Denote by �(v,t) the unique exceptional dissection on (S, M) such that �γ =
�(v,t) and γ is a maximal element in �(v,t). Let �(v,t) be any ordered exceptional
dissection arising from �(v,t). Denote by �(u1,s1) and �(u2,s2) the underlying sets of
�1 and �2 respectively. Then by alternatively using Lemma 5.6 and Lemma 5.5, for
1 ≤ i ≤ 2, we have an element σ ′

i in Bn and an ordered exceptional dissection �′
i on

(S, M) with underlying set �(ui ,si ), such that σ ′
i �

′
i = �(v,t). On the other hand, by

Lemma 5.5, for 1 ≤ i ≤ 2, we have an element σi in Bn such that σi�i = �′
i . Then

by setting σ = σ−1
2 σ ′−1

2 σ ′
1σ1, we have σ�1 = �2. ��

The next lemma sets up the induction step for the proof of Theorem 5.1.
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Lemma 5.8 Let� and�′ be two ordered exceptional dissections on (S, M) containing
γ . If Bn−1 is transitive on the set of ordered exceptional dissections on (Sγ , Mγ ), then
there is an element σ in Bn such that σ� = �′.

Proof At first, we assume that γ is a maximal element in both � and �′. Then due to
Lemma 5.5, without loss of generality, we assume that γ is the last element in� and�′.
Note that by Lemma 4.4 the induced ordered sets� and�

′
are both ordered exceptional

dissections on (Sγ , Mγ ). So by assumption, there is an element σ = δm · · · δ1 in Bn−1

such that σ� = �
′
, where each δ j is some generator σi or σ−1

i of Bn−1 for some
1 ≤ i ≤ n− 2. By Corollary 4.6, there is an unique ordered exceptional dissection �1
on (S, M) such that �1 = δ1� and such that γ is its last element. By viewing δ1 as an
element in Bn by the natural embedding of braid groups Bn−1 ⊆ Bn , the set δ1� is an
ordered exceptional dissection on (S, M). Note that �1 and δ1� are both lifts of δ1�

containing γ as their last element. Thus we have �1 = δ1�. Similarly, we construct
ordered exceptional dissections � j , 2 ≤ j ≤ m, on (S, M) such that � j = δ j · · · δ1�
and � j = δ j · · · δ1�. Then we have

�′ = δm�m−1 = δmδm−1�m−2 = · · · = δm · · · δ1� = σ�,

where δ j , 1 ≤ j ≤ m and σ are viewed as elements in Bn .
Finally, for the general case, that is, the case when γ is not necessary a maximal

element in � or �′, the proof follows from the above and Corollary 5.7. ��
Next we formulate a condition on a marked surface such that for surfaces satisfying

this condition, the actionof the braid group is transitive on the set of ordered exceptional
dissections. We say that a marked surfaces (S, M) satisfies the ‘reachable condition
for exceptional arcs’ if the following holds.

Definition 5.9 (Condition RCEA) We say that a marked surface (S, M) satisfies the
RCEAcondition if for any two exceptional arcs γ and γ ′ on (S, M), there is a sequence
of exceptional arcs γ0, . . . , γm+1 on (S, M), such that each pair {γi , γi+1} is an excep-
tional collection, where 0 ≤ i ≤ m, γ0 = γ , and γm+1 = γ ′.

Theorem 5.10 Suppose that theRCEA condition holds for all marked surfaces. Then
for any marked surface with exceptional dissections, the braid group action on the set
of ordered exceptional dissections is transitive.

Proof Let (S, M) be a connected marked surface. We prove the result by using induc-
tion on the number n = |M◦| + 2g + b − 2 of elements in an exceptional dissection
on (S, M). The base case of the induction corresponds to marked surfaces which are
unions of non-punctured-disks each with two ◦-marked points, where the statement
is clearly true. We now show the induction step. Assume the result holds for surfaces
with less than n − 1 elements in an exceptional dissection.

Let � and �′ be any two ordered exceptional dissections on (S, M). We will show
that there is an element σ in Bn such that σ� = �′. Let γ and γ ′ be any two arcs in �

and �′ respectively. Then by the RCEA condition, there is a sequence of exceptional
arcs γ0, . . . , γm+1 on (S, M), such that each pair {γi , γi+1} is an exceptional collection,
where 0 ≤ i ≤ m and γ0 = γ , γm+1 = γ ′. We have two cases.
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Fig. 15 The exceptional arcs γ and γ ′ share two endpoints and (γ, γ ′) is a non-exceptional cycle, where
the left and right boundary components may coincide

Case 1. (S, M) is not a surface of the form T(g,1,2). Note that in this case, for each
1 ≤ i ≤ m, the cut surface (Sγi , Mγi ) does not have a connected component of the
form T(g,1,1). Then by Proposition 4.11, there exists an exceptional dissection �i on
(S, M) which contains γi and γi−1 for each 1 ≤ i ≤ m. Furthermore, by Lemma
5.8, there is an element σi , 0 ≤ i ≤ m in Bn such that σi�i = �i+1, where we
denote � by �0 and denote �′ by �m+1 for simplicity. Then we have σ� = �′, where
σ = σm · · · σ0 ∈ Bn .

Case 2. (S, M) is a surface of the form T(g,1,2). Note that in this case, since each
γi , 1 ≤ i ≤ m is contained in an exceptional pair, it can not be an arc homotopic to a
boundary segment which contains a •-marked point, see in Fig. 13. Thus there exists
an exceptional dissection �i which contains γi for each 1 ≤ i ≤ m. Then similar to
the proof of the first case, we have an element σ in Bn such that σ� = �′.

��
In general, it seems a difficult problem to determine, for which surfaces the RCEA

condition holds. In the following, we show that the RCEA condition does hold for
surfaces of genus zero.

Theorem 5.11 TheRCEA condition is satisfied for any marked surface of zero genus.

Proof Let γ and γ ′ be two exceptional arcs on (S, M). Assume that (γ, γ ′) is not
an exceptional collection, otherwise there is nothing to prove. Then γ and γ ′ share
two endpoints or they have at least one intersection in the interior of S. Suppose first
that γ and γ ′ share two endpoints and that they do not intersect in the interior. Then
they surround a bigon which contains at least one boundary component, see in Fig. 15,
noticing that the genus of the surface is zero. Then there exists an exceptional arc
γ1 which connects an endpoint of γ and a ◦-marked point on a boundary component
in the bigon, as depicted in Fig. 15. Then (γ, γ1) and (γ1, γ

′) are both exceptional
collections.

In the following, we assume that γ and γ ′ intersect in the interior of the surface.
Note that since the genus of the surface is zero there are three possible cases as shown
in Figs. 16, 17, and 18.

Case 1. All the endpoints of γ and γ ′ are on the same boundary component. Then
the local configuration of the intersection nearest to an endpoint p of γ ′ is depicted
in Fig. 16. We choose γ1 as showed in the figure, then (γ, γ1) and (γ1, γ

′) are both
exceptional pairs.

Case 2. Both endpoints of γ (resp.γ ′)are on the sameboundary component B (resp.
B ′), where B and B ′ are different.By assumption γ and γ ′ have an interior intersection
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Fig. 16 Local configurations of the intersection nearest to an endpoint p of γ ′ on a surface of genus zero,
where the endpoints of the two exceptional arcs γ and γ ′ are on the same boundary component

Fig. 17 Local configuration of the intersection of two exceptional arcs γ and γ ′ nearest to an endpoint p
of γ on a surface of genus zero, where the endpoints of γ and γ ′ are on different boundary components B
and B′ respectively

which implies that there are at least three boundary components on (S, M). Then up
to homotopy, the local configuration of the intersection nearest to one of the endpoints
of γ , which will denote by p, is as in Fig. 17. We choose γ1 and γ2 as shown in Fig. 17.
Then (γ, γ1), (γ1, γ2) and (γ2, γ

′) are exceptional pairs.
Case 3. There is at least one arc, for example γ , with endpoints on two different

boundary components. Denote one of these by B. Assume that locally γ and γ ′ form
a bigon containing at least one boundary component as shown in the left picture of
Fig. 18. We construct a new arc γ1 obtained from γ by smoothing the intersections of
γ and γ ′ at this bigon, as shown in the left picture of Fig. 18. Then there are no interior
intersections of γ and γ1, and |γ1 ∩ γ ′| = |γ ∩ γ ′| − 2. But γ1 and γ do not form an
exceptional pair, since γ and γ1 intersect each other at both endpoints in such a way
that they form a non-exceptional cycle.

Now we rotate γ1 anti-clockwise one time around the boundary component B.
Then γ1 and γ form an exceptional pair, noticing that the endpoints of γ are on two
different boundary components and that in this case this process does not give rise to
interior intersections of these arcs. On the other hand, such a rotationmay produce new
intersections between γ1 and γ ′. However, we may assume that at most one endpoint
of γ ′ lies on B, otherwise we choose the boundary component of the other endpoint
of γ . Under such assumption, there may appear at most one new intersection between
γ1 and γ ′. So that we have |γ1 ∩ γ ′| ≤ |γ ∩ γ ′| − 1, and (γ, γ1) is an exceptional pair.

Then we replace γ by γ1, and continue this process until there are no bigons
surrounded by γ ′ and the successive replacements of γ . By abuse of notation, we will
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Fig. 18 Local configurations of intersections between two exceptional arcs on a surface of genus zero,
where in the right picture the arc γ may also surround the boundary component in another direction

denote this new arc replacing γ again by γ . Then there are two cases. Either γ and
γ ′ share at most one endpoint (with possible interior intersections) and an argument
as in case 1 finishes the proof or γ and γ ′ share both endpoints. But then, since
the genus of the surface is zero, the only possible intersections between γ and γ ′
come from rotations of one of the arcs, for example γ , around a boundary component
which is incident to the other arc γ ′, see the right picture in Fig. 18. Then define γ1
as the new arc which is obtained from γ by a local surgery, where locally we replace
the shown segment of γ by the blue segment as in the figure. Note that we have
|γ1 ∩γ ′| = |γ ∩γ ′|−1, and (γ, γ1) is an exceptional pair. Continue this process until
there are no intersections between the new arc and γ ′. Then we have a sequence of
exceptional arcs as desired. ��

Combining Theorems 5.10 and 5.11, we obtain the following.

Corollary 5.12 The action of the braid group on the set of ordered exceptional dissec-
tions on a surface of genus zero is transitive.

5.2 Braid group action on full exceptional sequences in Kb(A)

In the following, by using the geometric model established above, we will show how
the braid group Bn acts on the full exceptional sequences in the perfect derived category
Kb(A) of a gentle algebra A. This allows us to show the transitivity of the braid group
action when the associated surface is of genus zero.

We start by recalling the braid group action on a triangulated category T. Let (X ,Y )

be an exceptional pair in T. Define objects RY X and LXY in T through the following
triangles

X
∐

�∈Z DHomT (X ,Y [�]) ⊗k Y [�] RY X [1] X [1] (5.1)

Y [−1] LXY [−1] ∐

�∈ZHomT (X [�],Y ) ⊗k X [�] Y . (5.2)

Then (Y , RY X) and (LXY , X) are again exceptional pairs in T. We call RY X the
right mutation of X at Y , and and LXY the left mutation of Y at X , where the two
distinguished triangles (5.1) and (5.2) are called exchange triangles.

We denote by exp T the set of isomorphism classes of full exceptional sequences
in T, where the length of each full exceptional sequence is n which is the rank of the
Grothendieck group K0(T ).
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Fig. 19 Possible relative positions of γi and γi+1 with regards to the right mutation

Fig. 20 Possible relative positions of γi and γi+1 with regards to the left mutation

Then by [20], Bn acts on exp T as follows: For a full exceptional sequence X :=
(X1, . . . , Xn) and 1 ≤ i < n, set

σiX := (X1, . . . , Xi−1, Xi+1, RXi+1Xi , Xi+2, . . . , Xn)

σ−1
i X := (X1, . . . , Xi−1, LXi Xi+1, Xi , Xi+2, . . . , Xn).

Let (X1, . . . , Xn) be a full exceptional sequence in Kb(A) where, for all 1 ≤ i ≤ n,
Xi = P•

(γi , fγi )
for some graded ◦-arc (γi , fγi ) in the surface model (S, M,�A) of A.

Then by Proposition 2.6 the set (γ1, . . . , γn) is an ordered exceptional dissection. In
particular, for any 1 ≤ i ≤ n − 1, (γi , γi+1) is an exceptional pair. So the possible
relative positions of γi and γi+1 are shown in Fig. 14, where we view γ1 as γi and view
γ2 as γi+1.

Note that for the right mutation, we need to consider the maps from Xi to Xi+1[m]
for any integer m, while for the left mutation, we need to consider all the maps from
Xi [m] to Xi+1, see the exchange triangles (5.1) and (5.2) respectively. So in both
cases we need to associate gradings to the arcs. For the sake of clarity, we redraw and
relabel the picture in Fig. 14 as four pictures in Figs. 19 and 20, where s and t (s′ and
t ′ respectively) denote the intersections of the ◦-arcs Rγi+1γi and γi (Lγi γi+1 and γi+1
respectively) with the initial dual •-dissection�∗

A closest to the intersection of Rγi+1γi

and γi (Lγi γi+1 and γi+1 respectively).

Theorem 5.13 Let A be a gentle algebra with associated surface model (S, M,�A).
Let X = (X1, . . . , Xn) be a full exceptional sequence in Kb(A), and assume that
Xi = P•

(γi , fγi )
for some graded ◦-arc (γi , fγi ), for all 1 ≤ i ≤ n.
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(1) If γi and γi+1 do not intersect then RXi+1Xi = Xi and LXi Xi+1 = Xi+1. So

σiX = σ−1
i X = (X1, . . . , Xi−1, Xi+1, Xi , Xi+2, . . . , Xn),

that is, the actions of σi and σ−1
i change the order of Xi and Xi+1.

(2) Suppose that γi and γi+1 intersect. Then

• RXi+1Xi = P•
(Rγi+1γi , fRγi+1 γi )

with fRγi+1γi (s) = fγi (t), where the arc Rγi+1γi

and the intersections s and t are depicted in Fig.19.
• LXi Xi+1 = P•

(Lγi γi+1, fLγi γi+1 ) with fLγi γi+1(s
′) = fγi+1(t

′), where the arc Lγi γi+1

and the intersections s′ and t ′ are depicted in Fig.20.

In this case,

σiX = (X1, . . . , Xi−1, Xi+1, P
•
(Rγi+1γi , fRγi+1 γi )

, Xi+2, . . . , Xn),

σ−1
i X = (X1, . . . , Xi−1, P

•
(Lγi γi+1, fLγi γi+1 ), Xi , Xi+2, . . . , Xn).

Proof (1) Since γi and γi+1 do not intersect, there exists no map from Xi to Xi+1[Z].
Therefore the distinguished triangles

Xi 0 Xi [1] Xi [1],
Xi+1[−1] Xi+1[−1] 0 Xi+1

are the respective exchange triangles of the right and left mutations in (5.1) and (5.2).
So RXi+1Xi = Xi , LXi Xi+1 = Xi+1, and

σiX = σ−1
i X = (X1, . . . , Xi−1, Xi+1, Xi , Xi+2, . . . , Xn).

(2) We only prove the case for the right braid group action in detail, the proof for
left braid group action is similar. For this we consider the two cases in Fig. 19.

For case I, note that there exists a uniquem ∈ Z such that the intersection q1 induces
a map

a : P•
(γi , fγi )

−→ P•
(γi+1, fγi+1 )[m].

Moreover, note that up to isomorphism this is the unique map from P•
(γi , fγi )

to

P•
(γi+1, fγi+1 )[Z], since there are no other intersections of γi and γi+1. Thus for some

proper grading g of Rγi+1γi , the distinguished triangle

Xi
a−→ Xi+1[m] −→ P•

(Rγi+1γi ,g) −→ Xi [1]

is exactly the triangle in (5.1) defining the right mutation. So RXi+1Xi [1] =
P•

(Rγi+1γi ,g)
. Note that by [16, Lemma 2.3], we have g(s) = fγi (t) − 1. Set

fRγi+1γi = g[−1], then RXi+1Xi = P•
(Rγi+1γi , fRγi+1 γi )

with fRγi+1γi (s) = fγi (t).
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For case II, there are unique m, n ∈ Z such that we have homomorphisms

a1 : P•
(γi , fγi )

−→ P•
(γi+1, fγi+1 )[m],

a2 : P•
(γi , fγi )

−→ P•
(γi+1, fγi+1 )[n]

arising from the intersections at q1 and q2 respectively. Then by [16, Proposition
2.5], there is a grading g over Rγi+1γi such that

Xi
(a1,a2)−→ Xi+1[m] ⊕ Xi+1[n] −→ P•

(Rγi+1γi ,g) −→ Xi [1]
is a distinguished triangle. On the other hand, note that a1 and a2 form a basis of
the homomorphism space from P•

(γi , fγi )
to P•

(γi+1, fγi+1 )[Z] since there are no other

intersections of γi and γi+1. So the above triangle is again exactly the exchange
triangle in (5.1) defining the right mutation. Therefore RXi+1Xi [1] = P•

(Rγi+1γi ,g)
with

g(s) = fγi (t) − 1. Then RXi+1Xi = P•
(Rγi+1γi , fRγi+1 γi )

if we set fRγi+1γi = g[−1],
where fRγi+1γi (s) = fγi (t).

To sum up, for both cases, we have RXi+1Xi = P•
(Rγi+1γi , fRγi+1 γi )

with fRγi+1γi =
g[−1], and thus

σiX = (X1, . . . , Xi−1, Xi+1, P
•
(Rγi+1γi , fRγi+1 γi )

, Xi+2, . . . , Xn).

��
The following proposition can be directly derived from above theorem and Propo-

sition 5.10.

Proposition 5.14 If the RCEA condition is satisfied for any marked surface, then for
any gentle algebra A such that there are full exceptional sequences in Kb(A), the action
of Z

n
� Bn on the set of full exceptional sequences in Kb(A) is transitive.

Then Theorem 5.1 follows from above proposition and Theorem 5.11. We have the
following straightforward corollary from Theorem 5.1, noticing that for those derived-
discrete algebra Awhich are hereditary, [15] has proven the transitivity of the action of
Z
n

� Bn on the set of ordered exceptional dissections in Kb(A) and that the remaining
derived-discrete algebras are gentle algebras associated to surfaces of genus zero.

Corollary 5.15 Let A be a derived-discrete algebra. The action of Z
n

� Bn on the set
of ordered exceptional dissections in Kb(A) is transitive.

6 Three dualities: exceptional, Koszul and Serre dualities

In this section we study the relation between the duality of a full exceptional sequence
introduced in [26, Section 8] and Koszul duality for gentle algebras. We further show
that the duality of exceptional sequences can also be explained using the Auslander-
Reiten translation in Kb(A), thereby giving a new proof of this result by Bondal [10]
in the case of the perfect derived categories of gentle algebras.
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For the rest of this section, we fix the following notation. Denote by A a gen-
tle algebra associated to a marked surface (S, M,�A) such that there exists a full
exceptional sequence in Kb(A) and let X = (X1, . . . , Xn) be such a full exceptional
sequence associated to an ordered exceptional dissection� = (γ1, . . . , γn) on (S, M).
We define the ordered dual exceptional dissection of � to be the dual dissection �∗
with the following order �∗ = (γ ∗

n , . . . , γ ∗
1 ). Denote by A(�) and A(�∗) the gentle

algebras arising from � and �∗ respectively. Then A(�∗) is the Koszul dual of A(�),
see Remark 1.8. Furthermore, �∗ is exceptional, this follows directly from the fact
that the quiver of A(�∗) is the opposite quiver of A(�).

For any i ≤ j ≤ n, set

R j−i Xi = RX j · · · RXi+1Xi ,

and for any 1 ≤ k ≤ i , set

Li−k Xi = LXk · · · LXi−1Xi .

In particular, we have R j−i Xi = Xi and Li−k Xi = Xi if j = i and k = i respectively.
We will denote by R j−iγi the arc associated to R j−i Xi , and denote by Li−kγi the arc
associated to Li−k Xi .

Definition 6.1 [26] Let X = (X1, . . . , Xn) be a full exceptional sequence in
Kb(A). We call RX = (Xn, R1Xn−1 . . . , Rn−1X1) the right dual of X and LX =
(Ln−1Xn, Ln−2Xn−1 . . . , X1) left dual of X.

The following lemma directly follows from the definitions.

Lemma 6.2 Let ω0 = σ1(σ2σ1) · · · (σn−1σn−2 · · · σ1) be the element in Bn cor-
responding to the longest element in the associated symmetric group Sn. Then
RX = ω0X and LX = ω−1

0 X. So we have R = L−1 on the set of full exceptional
sequences in Kb(A).

Wenowgive an interpretation of the left and right dual of a full exceptional sequence
in terms of the geometric surface model of A. For this, note that in an exceptional
dissection we cannot have polygons such that if the polygon is unfolded one of its
edges appears twice since such an arc must be contained in a non-exceptional cycle.
An example of such a non-exceptional cycle is given in Fig. 15 where the arc γ1 would
appear twice in the unfolded polygon. Therefore, in particular, for any 1 ≤ i ≤ n,
γi belongs to two polygons of �, as in Fig. 21, where k and m are allowed to be
zero, which means that the •-marked points q and q ′ in the polygons lie in the same
boundary component, otherwise we have 1 ≤ j ≤ k ≤ n, and 1 ≤ l ≤ m ≤ n. Denote
the sets of arcs in Fig. 21 by � = {α1, . . . , αk} and �′ = {α′

1, . . . , α
′
m}.

Let s be the intersection γi ∩ γ ∗
i , noting that following our conventions, this is the

unique intersection of γi and γ ∗
i . Recall that Dγ ∗

i and D−1γ ∗
i are the direct and inverse

twists of γ ∗
i to the next ◦-point, respectively. We also have the following intersections,

which are in fact the unique intersections between the two arcs in consideration,

u = γi ∩ Dγ ∗
i , u′ = γi ∩ D−1γ ∗

i , u′′ = Dγ ∗
i ∩ D−1γ ∗

i ,
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Fig. 21 An ◦-arc γi of an exceptional dissection belongs to two polygons, where two marked points and
two ◦-arcs may coincide

Fig. 22 Rn−iγi = Dγ ∗
i and Li−1γi = D−1γ ∗

i for an ◦-arc γi in an exceptional dissection

where u′′ always is in the interior of S, while u and u′ may be on the boundary, see
Fig. 22.

The following proposition gives an explicit description of the object Rn−i Xi in
terms of the twist of the dual γ ∗

i of the arc γi corresponding to Xi .

Proposition 6.3 With the notation above, we have Rn−i Xi = P•
(Dγ ∗

i , f ), where f is

the grading of Dγ ∗
i such that there is a map from P•

(Dγ ∗
i , f ) to Xi arising from the

intersection u of Dγ ∗
i and γi .

Proof At first we show that Rn−iγi = Dγ ∗
i . Following our conventions, see Fig. 21,

we have

α1 � · · · � α j � γi � α j+1 � · · · � αk,

α′
1 � · · · � α′

l � γi � α′
l+1 � · · · � α′

m .
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Then either γi+1 = α j+1 or α′
l+1 if γi+1 ∈ � � �′, or γi+1 ∈ �\(� � �′). In either

case, γi+1 ∈ {α j+1, α
′
l+1} � (�\(� � �′)).

Case 1. If γi+1 = α j+1 
= α′
l+1, then by Theorem 5.13 (2), Rγi = β1 as shown in

Fig. 21 (compare also to the left picture in Fig. 19).
Case 2. If γi+1 = α′

l+1 
= α j+1, then similar to the first case, Rγi = β2 as shown
in Fig. 21.

Case 3. If γi+1 = α j+1 = α′
l+1, then by Theorem 5.13 (2), Rγi = β3 as in Fig. 21

(compare to the right picture in Fig. 19).
Case 4. If γi+1 ∈ � \ (� � �′) then we show that Hom(Xi , Xi+1) = 0 and by

Theorem 5.13 (1), Rγi = γi . Suppose for contradiction that Hom(Xi , Xi+1) 
= 0.
Then γi ∩ γi+1 ∈ {p, p′}. If p ∈ γi ∩ γi+1, then γi+1 follows γi anticlockwise at p.
On the other hand, α j+1 directly follows γi at p in the anticlockwise direction, thus
α j+1 � γi+1. This is a contradiction since γi+1 � α j+1 (γi+1 is a minimal element
which is larger than γi ) and γi+1 
= α j+1. The argument for the case p′ ∈ γi ∩ γi+1
is similar.

To sum up, for all the cases, Rγi = γi or Rγi is obtained by rotating γi clockwise
at one endpoint or at both endpoints. Now let

σiX = {X1, . . . , Xi−1, Xi+1, RXi , Xi+2, . . . , Xn}

be the new full exceptional sequence. Using a similar discussion for Rγi as for γi
above, we know that R2γi = Rγi or R2γi is obtained by rotating Rγi clockwise
at one endpoint or at both endpoints. Continue this process until we obtain a full
exceptional dissection

σi+r−1 · · · σi (X) = (X1, . . . , Xi−1, Xi+1, . . . , Xi+r , R
r Xi , Xi+r+1, . . . , Xn)

such that we can not continue the process any more, that is, q is the •-point which
directly follows (anticlockwise) an endpoint of Rrγi and q ′ is the •-point which
directly follows (anticlockwise) the other endpoint of Rrγi . In this case, there is no
intersection between γv and Rrγi , for any i+r+1 ≤ v ≤ n. Otherwise, they intersect
at the endpoints of Rrγi which implies γv � Rrγi , see Fig. 22. But this contradicts the
fact that σi+r−1 · · · σi (X) is an exceptional sequence. Therefore Hom(Rr Xi , Xv) = 0
for any i + r + 1 ≤ v ≤ n and by inductively using Theorem 5.13 (1), we obtain
Rr Xi = Rn−i Xi and thus Rrγi = Rn−iγi . On the other hand, since Rrγi = Dγ ∗

i , so
Rn−iγi = Dγ ∗

i .
Now we consider the grading f . By the definition of σ j , i ≤ j ≤ i + r − 1, we

have the following exchange triangle

R j−i Xi
∐

�∈Z DHom(R j−i Xi , R j−i+1Xi [�]) ⊗k R j−i+1Xi [�]

R j−i+1Xi [1]
a j

R j−i Xi [1],

where the last map a j is nonzero. Furthermore, the composition ai · · · an is again a
nonzero map from Rn−i Xi to Xi , which corresponds to the intersection u of Rn−iγi =
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Dγ ∗ and γi . This implies that f is the grading such that there is a non-zero map from
Rn−i Xi = P•

(Rn−iγi , f )
to Xi . ��

The following proposition gives an explicit description of the object Li−1Xi . The
proof is similar to the proof of Proposition 6.3.

Proposition 6.4 With the notation above we have Li−1Xi = P•
(Li−1γi ,g)

, where

Li−1γi = D−1(γ ∗
i ) and g is the grading such that there is a map from Xi to Li−1Xi

arising from the intersection u′.

The following theorem shows that the right (resp. left) duality of an exceptional
sequence corresponds to Koszul duality followed by twisting (resp. inversely twisting)
the arcs in the corresponding dual exceptional dissection.

Theorem 6.5 LetX = (X1, . . . , Xn) be a full exceptional sequence inKb(A) associated
to an ordered exceptional dissection� = (γ1, . . . , γn) of (S, M), that is Xi = P•

(γi , fγi )

for some grading fγi . Then the right dual RX is induced by the equality

R� = D(�∗)

where D(�∗) is the twist of the ordered dual exceptional dissection �∗.
The left dual LX is induced by the equality

L� = D−1(�∗)

where D−1(�∗) is the inverse twist of the ordered dual exceptional dissection �∗.

Proof The proof directly follows from Lemma 6.2 and Proposition 6.3. ��
Note that in Theorem 6.5 when we say that RX is induced by the equality R� =

D(�∗) we mean that the grading of RX is induced by the gradings as described in
Proposition 6.3 and similarly for LX the grading is the one induced by the gradings
in Proposition 6.4.

It is shown in [12] that if a triangulated category has full exceptional sequences, then
it has a Serre functor, and in [10, Proposition 4.2] that the duality of the exceptional
sequences can be obtained using the Serre functor. In the following we give a new
proof of this result for Kb(A).

Theorem 6.6 Let X = (X1, . . . , Xn) be a full exceptional sequence in Kb(A) and let S

be the Serre functor in Kb(A). Then τ(X) = L2[−1](X) and thus S(X) = L2(X).

Proof We only need to show τ(X) = L2[−1](X), since τ = S[−1]. Let Xi = P•
(γi , fi )

so that � = (γ1, γ2, . . . , γn) is the ordered exceptional dissection corresponding
to X and set L2(X) = (Y1,Y2, . . . ,Yn). Then by Theorem 6.5, L� = D−1(�∗).
Furthermore, it is easy to see that the twist operator D (as well as D−1) and the dual
operator ∗ commute, that is, D−1(�∗) = (D−1(�))∗. So we have L2(�) = D−2(�).
On the other hand, we know from Lemma 1.9 that the arc of τ Xi is exactly D−2γi .
Thus τ Xi and Yi correspond to the same arc D−2γi .
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Now we consider the grading. On the one hand, there is a non-zero map F from
Xi [−1] to τ Xi arising from the Auslander-Reiten triangle for Xi . On the other hand,
by Proposition 6.4, there is a non-zero map G from Xi to Yi . Note that both maps
F and G arise from the unique intersection between D−2γi and γi . Thus we have
τ Xi = Yi [−1] and τ(X) = L2[−1](X). ��

The following corollary directly follows from Theorem 6.6.

Corollary 6.7 Let X = (X1, . . . , Xn) be a full exceptional sequence in Kb(A). Then
Ln−1Xn = SXn = τ Xn[1] and Rn−1X1 = S

−1X1 = τ−1X1[−1].
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