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Abstract
Using the non-semisimple Temperley–Lieb calculus, we study the additive and
monoidal structure of the category of tilting modules for SL2 in the mixed case. This
simultaneously generalizes the semisimple situation, the case of the complex quantum
group at a root of unity, and the algebraic group case in positive characteristic. We
describe character formulas and give a presentation of the category of tilting modules
as an additive category via a quiver with relations. Turning to the monoidal structure,
we describe fusion rules and obtain an explicit recursive description of the appropriate
analog of Jones–Wenzl projectors.
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1 Introduction

Let 𝕜 be a field of characteristic p, fix a non-zero element 𝕢 ∈ 𝕜∗, and let K be an
algebraically closed field containing 𝕜. Tilting modules for SL2, the reductive group
SL2(K) if 𝕢 = ±1 or Lusztig’s divided power quantum group for sl2 if 𝕢 �= ±1, are
among the most well-studied objects in representation theory. In this paper, we use
diagrammatic methods to study monoidal categories of tilting modules in the mixed
case, i.e. for arbitrary (𝕜,𝕢). As a modern day perspective, the mixed case can be
thought of as a simultaneous generalization of the case of the complex quantum group
(at a root of unity), the case of the algebraic group in positive characteristic, as well
as the classical semisimple situation.

Tilting modules form a monoidal category, so one can ask questions concerning
objects, morphisms, and how these behave under the tensor product. Concentrating
on objects and their characters is the classical approach in representation theory.
Recently, the focus has shifted towards understanding morphisms between tilting
modules, especially from a monoidal perspective, which has been driven by work
from quantum topology and categorification. A more thorough understanding of the
associated diagrammatic and combinatorial model that underpins the behavior of these
tiltingmodules, known as the Temperley–Lieb category, was a key ingredient in recent
progress.

In this paper, we let Tilt𝕜,𝕢 for arbitrary (𝕜,𝕢) denote the monoidal category
obtained by idempotent completion from the Temperley–Lieb category TL𝕜,𝕢 (see
Remark 2.15). We study Tilt𝕜,𝕢 with a focus on the behavior of its objects and mor-
phismswith respect to itsmonoidal structure,which is a natural progression of previous
work [52, 53]. The main results of this paper are contained within Sects. 3 and 4 and
can be summarized as follows.

In Sect. 3B, we define mixed JW projectors Ev−1 in TL𝕜,𝕢 for v ∈ N and show
that they correspond to indecomposable tilting modules T(v − 1) of highest weight
v − 1. These idempotents have been constructed independently in [41] and are a
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simultaneous generalization of the classical Jones–Wenzl (short: JW) projectors [36,
54], the projectors of Goodman–Wenzl [32], and the pJones–Wenzl projectors of
Burrull–Libedinsky–Sentinelli [14].

In Sect. 3C, we studymorphisms betweenmixed JW projectors inTL𝕜,𝕢 and obtain
a presentation of Tilt𝕜,𝕢 as an additive category by generators and relations. Specifi-
cally, we exhibit Tilt𝕜,𝕢 as the category of projective modules for the path algebra of
a quiver with relations explicitly described in Theorem 3.21, which can be interpreted
as the (semi-infinite) Ringel dual of SL2.

In Sect. 4, we turn to the monoidal structure and study fusion rules for Tilt𝕜,𝕢

and their categorified analogs in TL𝕜,𝕢. Classically, fusion rules express the structure
constants for the representation ring, i.e. the decomposition multiplicities of tensor
products of modules, such as T(v) ⊗ T(w), into indecomposable modules. On the
categorified level, one is interested in explicitly describing the projection and inclu-
sion maps realizing such decompositions. In the Temperley–Lieb context this means
decomposing the tensor products Ev ⊗ Ew of projectors into idempotents that project
onto the indecomposable summands predicted by the fusion rule.

A famous example is the recursion for the classical Jones–Wenzl projectors

v−1 = v + 1

g∗
·

v−1

v−1

v−2 ,
1

g∗
= −[v − 1]𝕢

[v]𝕢 , (1.1)

which describes the decomposition T(v − 1) ⊗T(1) ∼= T(v) ⊕T(v − 2) whenever all
involved tilting modules are simple. In fact, the Jones–Wenzl recursion (1.1) is often
taken as (part of) the definition of the Jones–Wenzl projectors.

In Theorem 4.8 we establish decompositions analogous to (1.1) in the mixed setting
of TL𝕜,𝕢. These provide a recursive description of the mixed JW projectors, which
appear to be new in this generality, even new when specialized to the positive charac-
teristic or complex quantum group cases, cf.[12]. As an example, we show an instance
goingbeyond (1.1),whichdescribes a decompositionT(v−1)⊗T(1) ∼= T(v)⊕T(v−2)
with summands that need not be simple:

v−1 = v +

⎛
⎜⎜⎝

1

g∗
·

v−1

v−1

v−2 − f∗
g∗

·
v−1

v−1

v−2

v−2

⎞
⎟⎟⎠ . (1.2)

(Here and throughout the paper we use colored boxes to encode mixed JW projectors
corresponding to tilting modules that need not be simple.) The middle part of the
rightmost diagram in (1.2) corresponds to a nilpotent endomorphism of T(v − 2). In
particular, ifT(v−2) is simple, then the rightmost diagram is zero andwe recover (1.1).
In general, however, the decompositions provided by Theorem 4.8 are more complex
than suggested by the example (1.2). In particular, arbitrarily many summands can
appear, with multiplicities up to two.
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A bit of historical background and other works

Tilting modules for SL2 have played a crucial role in representation theory and low-
dimensional topology, even before their introduction by Donkin [20] and Ringel [43].
Let us recall parts of this story.

In the semisimple case, Tilt𝕜,𝕢 is well-understood on the level of objects and mor-
phisms: The characters are given by Weyl’s character formula and the fusion rules by
the Clebsch–Gordan rule. On the morphism level, Tilt𝕜,𝕢 was given a diagrammatic
presentation early on by Rumer–Teller–Weyl [45] using what is nowadays called the
Temperley–Lieb algebra or category TL𝕜,𝕢. This diagrammatic presentation, in its
quantum version, lies at the heart of constructions and calculations for the Jones-type
invariants of links and 3-manifolds via Jones–Wenzl projectors and recoupling theory,
see e.g. [38].

In the complex quantum group case, many of our results have previously appeared
in the literature. The fusion rules on the object level in this case have certainly been
known since the end of the 1980s, but are a bit hard to track down, see however [21]
for a slightly later reference. The category TL𝕜,𝕢 plays a major role as it provides
the diagrammatic and integral model of Tilt𝕜,𝕢. (While we do not know an explicit
exposition, this can be deduced from [22].) The appropriate analog of JW projectors in
this case was defined by Goodman–Wenzl [32], the Ringel dual quiver was computed
in [10], and (parts of) recoupling theory was developed under the umbrella of non-
semisimple 3-manifold invariants, see e.g. [12] or [18].

Historically speaking, the characteristic p case came long before the complex quan-
tum group case, for example, due to its relationship to projective modules of the finite
group SL2(Fpk ). On the level of objects, the characteristic p case has been intensively
studied throughout the literature, see e.g. [4, 16, 19, 20, 23, 24]. Of particular impor-
tance, are Steinberg’s and Donkin’s tensor product formulas, which give the characters
of simple and tilting modules. However, not much appears to be known about fusion
of objects beyond special cases, e.g. coming from studying Verlinde quotients, see for
example [1] or [13], or the situation of the finite group SL2(Fpk ), see for example [17].

On the morphism level, the use of TL𝕜,𝕢 is crucial, specifically in the recent work of
Burrull–Libedinsky–Sentinelli [14] that introduced the pJW projectors, which was a
main ingredient to find the quiver with relations and the center of Tilt𝕜,𝕢 – see [52]
and [53]. When it comes to fusion for morphisms, our results are new.

In the (strictly) mixed case, most of the results in the present paper are new. See,
however, e.g. [21] and [1] for character and fusion formulas, and [41] for their (inde-
pendent) construction of the mixed JW projectors.

Further directions

A potential application concerns quotients of Tilt𝕜,𝕢, especially in the characteristic
p and the strictly mixed cases in which the category Tilt𝕜,𝕢 has infinitely many ⊗-
ideals. This is in stark contrast to the semisimple and complex quantum group cases,
where one has no or only one non-trivial ⊗-ideal. The strictly mixed cases turn out
to be very appealing in two directions. First, in generalizing e.g. the results of [13]
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to the mixed situation, where Tilt𝕜,𝕢 may have universal properties that are similar to
those studied in the characteristic p case. Second, it is easy to see that Tilt𝕜,𝕢1/2 has
a non-degenerate braiding in the mixed case. This is particularly interesting from the
viewpoint of non-semisimple 3d TQFT, where one could try to apply the strategy of
modified traces from e.g. [30] and [31], to obtain new non-semisimple 3d TQFTs.

The fusion rules for Tilt𝕜,𝕢 are also of importance in physics (from which its
name arose), whose study so far has been focused on the semisimple and complex
quantum group cases. In fact, this was one motivation to develop the Temperley–Lieb
calculus [38] and its variations, which appear under different names in the physics-
and mathematics-oriented literature. For example, idempotent truncations by tensor
products of classical JW projectors are studied under the names valenced Temperley–
Lieb algebras in [29] and symmetric webs in [44]. (See also [49] for a discussion
using the p�JW projectors.) Other recent work concerns the non-semisimple complex
quantum group case and its relation to mathematical physics, see e.g. [39], but a
non-semisimple recoupling theory along the lines of [38] seems largely undeveloped.

Finally, the algorithm given in [35] to compute p-Kazhdan–Lusztig basis elements
of affine type A1 played a key role in [14], and one could hope that this is a two-way
street. For example, via quantum Satake [26] and the approach in [46] it might be
possible to study analogs of mixed Kazhdan–Lusztig bases.

Further remarks

Before we start with the main bulk of the paper, we remark:

(a) We tried to make the exposition of this paper self-contained by introducing all
relevant concepts and definitions, many of which are identical or very similar to
those in [52]. Some results that we need, for example Theorem 3.21, can then be
proved analogously as in [52]. Instead of repeating these proofs here, we decided
to only include detailed commentary about the necessary changes. In summary,
while some of our results here depend on those of [52], a reader who wants to skip
the proofs does not need to be familiar with that paper.

(b) The comparison of the various (non-)semisimple JW projectors in the literature
and their relation to this paper is as follows.

• Our mixed projectors agree (modulo conventions in illustrations) with the projec-
tors constructed independently in [41].

• In the semisimple case, they agree with the classical JW projectors, and over C
and at a root of unity they agree with the projectors from [32], again modulo
conventions.

• For p = � < ∞ and 𝕢 = 1, our projectors agree with the projectors from [14].

In each case, constructing the projectors and proving that they are well-defined, e.g.
Theorem 3.18, require non-trivial numerical data. In our approach, these are the tilting
characters, see Sect. 3A. There are two other ways to get equivalent numerical data:
First, one could use the Soergel category for affine type A1 and the p-Kazhdan–
Lusztig basis as in [14]. This works for the quantum parameter being 1, but for a
general quantum parameter the situation is more complicated. A second method is to
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calculate the simple multiplicities within the projective cover of the trivial Temperley–
Lieb module, as done in [41] (which is a follow-up of [50] where the decomposition
numbers of the Temperley–Lieb algebra are computed). This works in the mixed case.
However, a crucial upshot of the tilting characters approach taken in this paper is that
it might generalize beyond SL2, e.g. see [47] and [48] for the complex quantum group
case, which has been very explicitly worked out in [51].

2 Preliminaries

In this section we introduce necessary p�-adic notation, and recall how tilting modules
of SL2 and the Temperley–Lieb calculus are related.

2A Basics of p�-adic expansions

Let 𝕜 denote a field, and fix an invertible element 𝕢 ∈ 𝕜 throughout. We also let 𝕧
denote a formal variable. For 𝕩 ∈ 𝕜 and a ∈ N we consider the quantum numbers:

[0]𝕩 = 0, [a]𝕩 = 𝕩−(a−1) + 𝕩−(a−3) + ... + 𝕩a−3 + 𝕩a−1, [−a]𝕩 = −[a]𝕩.

Definition 2.1 The mixed characteristic of the pair (𝕜,𝕢) is mchar(𝕜,𝕢) = (p, �),
where p ∈ N ∪ {∞} denotes the additive order of 1 in 𝕜, and � ∈ N ∪ {∞} is minimal
such that [�]𝕢 = 0 for 𝕢 �= ±1, and � = p for 𝕢 = ±1.

Note that p is a prime number, if finite, but � can be any element in N≥2 ∪ {∞}.
Moreover, for finite � the equation [�]𝕢 = (1−𝕢−�)(𝕢�+1)

𝕢−𝕢−1 = 0 implies that 𝕢� = ±1.
Conversely, the order n = ord(𝕢) of the root of unity 𝕢, if finite, determines � and the
signs 𝕢� and (−𝕢)� as follows:

� =
{
n if n ≡ 1 mod 2;
n/2 if n ≡ 0 mod 2,

𝕢� =
{
1 if n ≡ 1 mod 2;
−1 if n ≡ 0 mod 2,

(−𝕢)� =
{

−1 if n ≡ 0, 1, 3 mod 4;
1 if n ≡ 2 mod 4.

The signs 𝕢� and (−𝕢)� will appear in (3.10).

Example 2.2 The examples for (𝕜,𝕢) that the reader should keep in mind are:

(a) The integral case, where the pair is
(
Z[𝕧±1], 𝕧). Beware that here 𝕜 is not a

field, and we will always treat this case separately.
(b) The semisimple case, where p is arbitrary and � = ∞. Explicit examples

include
(
Q(𝕧), 𝕧

)
, and in fact

(
𝕜(𝕧), 𝕧

)
for any field 𝕜.
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(c) The complex quantum group case (at a root of unity), where p = ∞ and
� < ∞. For example, one could take 𝕜 = C with 𝕢 = exp(π i/�) or 𝕢 =
exp(2π i/�), the former for all possible � and the latter for odd �.

(d) The characteristic p case, where p = � < ∞ and 𝕢 = 1, e.g. (Fp, 1) or
(Fpk , 1).

(e) The (strictly) mixed cases are all other cases, i.e. p < ∞, � < ∞ with p �= �.
An explicit example is the pair (F7, 2) for which the mixed characteristic is
(7, 3).

For the rest of this paper, with the exception of concrete examples, we fix a pair
(𝕜,𝕢) of mixed characteristic (p, �). The numbers p and � will play a crucial role in
this paper, e.g. via p�-adic expansions:

Definition 2.3 Set p(0) = 1, and for i ∈ N let p(i) = pi−1�. For any v ∈ N we
write [a j , ..., a0]p,� = ∑ j

i=0 aip
(i) = v with a j �= 0. The digits are from the sets

ai ∈ {0, ...,p− 1} for i > 0, and a0 ∈ {0, ..., � − 1}. The higher digits are declared to
be zero: a> j = 0.

Conversely, any tuple (b j , ..., b0) ∈ Z
j+1 defines an integer [b j , ..., b0]p,� =∑ j

i=0 bip
(i) ∈ Z. Here we explicitly allow negative digits.

The p�-adic expansion of a natural number v as defined above is clearly unique: a0
is uniquely determined as the remainder of v upon division by �, and the remaining
digits [a j , ..., a1]p are determined by the usual p-adic expansion of the quotient v−a0

�
.

The leading digit a j and the zeroth digit a0 will play slightly different roles than the
other digits. If an index i ≥ 0 is implicit from the context, then the symbol p∨� refers
to p if i > 0 and to � if i = 0.

Remark 2.4 We will repeatedly encounter the law of small primes, losp for short: we
see special behavior in cases when relevant digits are (close to) 0 modulo p∨�. For
large characteristics such cases are exceptions, while for small ones they are the rule.

The following is taken from [52], but for p�-adic expansions.

Definition 2.5 If v = [a j , ..., a0]p,� ∈ N has only a single non-zero digit, then v is
called an eve. The set of eves is denoted by Eve. If v /∈ Eve, then themother mv of v

is obtained by setting the rightmost non-zero digit of v to zero.
Assume that v /∈ Eve has k non-zero, non-leading digits. We will also consider

the set A(v) = {mv,m2v = mmv , ...,m
k−1
v , [a j , 0, ..., 0]p,� = m∞

v } of (matrilineal)
ancestors of v, whose size genv is called the generation of v. By convention, A(v) =
∅ and genv = 0 for v ∈ Eve. The support ∇supp(v) ⊂ N is the set of the 2genv

integers of the form w = [a j ,±a j−1, ...,±a0]p,�.

We emphasise that every v /∈ Eve has an associated eve mkv = m∞
v with k as in

Definition 2.5, and genv = k. We think of the generation and the ancestry chart as a
measure of the complexity of the associated SL2-modules. For example, in Proposi-
tion 3.3 we will see that a tilting module is simple if and only if its ρ-shifted highest
weight is an eve.
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Example 2.6 In the semisimple case where � = ∞, every v ∈ N0 is an eve and has no
ancestors. In the complex quantumgroup casewherep = ∞ and � < ∞, every v ∈ N0
is either an eve or of generation 1. In the other cases, the generation can be any num-
ber in N0. For example, 68 = [68]∞,∞ = [66, 2]∞,3 = [1, 2, 5]7,7 = [3, 1, 2]7,3 has
generation 0, 1, 2 and 2 in the respective mixed characteristics. In mixed characteristic
(7, 3), we have A(68) = {66 = [3, 1, 0]7,3, 63 = [3, 0, 0]7,3} and ∇supp(68 =
[3, 1, 2]7,3) = {68 = [3, 1, 2]7,3, 64 = [3, 1,−2]7,3, 62 = [3,−1, 2]7,3, 58 =
[3,−1,−2]7,3}.

The elements w in the support ∇supp(v) of v ∈ N can be described by the sets of
indices of digits of v, which are negated (or “reflected”) to obtain an expression forw.
To obtain a bijection between elements in ∇supp(v) and sets of indices, we enforce
certain admissibility conditions on the latter:

Definition 2.7 For S ⊂ N0 a finite set, we consider partitions S = ⊔
i Si of S into

subsets Si of consecutive integers that we call stretches. For the rest of the definition,
we let S = ⊔

i Si be the coarsest such partition into stretches.
The set S is called down-admissible for v = [a j , ..., a0]p,� if the following condi-

tions hold:

(i) amin(Si ) �= 0 for every i , and
(ii) if s ∈ S and as+1 = 0, then s + 1 ∈ S.

If S ⊂ N0 is down-admissible for v = [a j , ..., a0]p,�, then we define its downward
reflection along S as

v[S] = [a j , ε j−1a j−1, ..., ε0 a0]p,�, εk =
{
1 if k /∈ S;
−1 if k ∈ S.

Conversely, S is up-admissible for v = [a j , ..., a0]p,� if the following conditions
hold:

(i) amin(Si ) �= 0 for every i , and
(ii) if s ∈ S and as+1 = p − 1, then s + 1 ∈ S.

If S ⊂ N0 is up-admissible forv = [a j , ..., a0]p,�, thenwedefine itsupwardreflection
along S as

v(S) = [a′
r(S), ..., a

′
0]p,�, a′

k =

⎧⎪⎨
⎪⎩

ak if k /∈ S, k − 1 /∈ S;
ak + 2 if k /∈ S, k − 1 ∈ S;
−ak if k ∈ S,

where we extend the digits of v by ah = 0 for h > j if necessary, and r(S) is the
biggest integer such that a′

k �= 0.
Any down- or up-admissible set S has a unique finest partition into down- or up-

admissible sets, each of which consists of consecutive integers and which we call
minimal down- or up-admissible stretches, respectively.
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A stretch {k, k − 1, ..., l + 1, l} is minimal down-admissible if and only if

(ak+1, ak, ..., al+1, al) = (ak+1, 0, ..., 0, al) with ak+1 �= 0, al �= 0.

It is minimal up-admissible if and only if

(ak+1, ak, ..., al+1, al) = (ak+1,p − 1, ...,p − 1, al) with ak+1 �= p − 1, al �= 0.

Very often (unless losp applies), the minimal stretches will just be singleton sets {i}
specifying a single digit in which we reflect. We also tend to omit the set brackets of
down- or up-admissible sets if no confusion can arise, e.g. we write v[i] instead of
v[{i}].

For v ∈ N, a finite set S ⊂ N0 is down-admissible if and only if it is up-admissible
for v[S], and in this case v[S](S) = v. For a representation-theoretic interpreta-
tion of the admissibility conditions see Remark 3.1: Note that ∇supp(v) = {v[S] |
S down-admissible}.
Definition 2.8 If S is up-admissible for v ∈ N, then we denote by S ⊂ N0 the down-
admissible hull of S, the smallest down-admissible set containing S, if it exists.

Note that S is only defined for up-admissible S, which excludes stretches with
rightmost digit zero. The singleton containing the leading digit is always up-admissible
and its down-admissible hull does not exist.

Remark 2.9 The above admissibility condition is taken from [52, Definition 2.8]. The
whole discussion after [52, Definition 2.8] works verbatim. Explicit examples appear
there and in [53, Example 2.9].

2B Tiltingmodules and their diagrams

Let 𝕜 ⊂ K denote an algebraically closed field containing 𝕜. We use the symbol SL2
to denote the reductive group SL2 overK if 𝕢 = ±1 ∈ K and Lusztig’s divided power
quantum group (using the conventions from [6]) associated to sl2 for other values of
𝕢. We will identify dominant integral weights of SL2 with N0 and weights with Z in
the usual way.

We consider finite-dimensional (left) SL2-modules of type 1 over K. (It is com-
mon practice to restrict to SL2-modules of type 1 out of convenience – see e.g. [34,
Section 5.2] for details.) These form an abelian, K-linear category fdModK,𝕢: =
SL2-fdModK,𝕢, for which we additionally choose a monoidal and a pivotal structure
using the comultiplication of SL2, the antipode of SL2 and the analog of the involution
ω from [34, Lemma 4.6]. The category fdModK,𝕢 contains four families of highest
weight modules of particular interest for our purpose, all parameterized by N0.

Remark 2.10 Here and in the following sections, we often write the highest weights
of these modules as v − 1 for v ∈ N. This puts an emphasis on the quantity v, the
ρ-shifted highest weight, which will play a greater role than the highest weight itself.
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The first two families are formed by theWeyl modules �(v − 1) and the dual Weyl
modules ∇(v − 1). These do not depend on the mixed characteristic in the sense that
they can be defined integrally, i.e. for

(
Z[𝕧±1], 𝕧). Their characters are given by the

Weyl character formula.
The other two families of modules are formed by the simple modules L(v − 1)

and the indecomposable tilting modules T(v − 1). These modules do not admit a
construction independent of the mixed characteristic. Their characters are given by
Proposition 3.3 below.

Let TiltK,𝕢: = SL2-TiltK,𝕢 be the full subcategory of fdModK,𝕢 whose objects are
direct sums of T(v − 1) for v ∈ N. We also write T(z) for z < 0, which is zero by
convention. The category TiltK,𝕢 is additive, idempotent closed, Krull–Schmidt (i.e.
there is a unique decomposition into indecomposables, and an object is indecompos-
able if and only if its endomorphism ring is local), K-linear, and pivotal (restricting
the structures from fdModK,𝕢 to TiltK,𝕢). It is the main object under study in this
paper and called the category of tilting modules of SL2.

Remark 2.11 ClassicallyTiltK,𝕢would be defined as the full subcategory of fdModK,𝕢

whose objects haveWeyl and dualWeyl filtrations, and its closure under tensor product
would be a theorem. The above definition is equivalent to the classical one for SL2,
because the sole fundamental representation, T(1), is tilting. Thus, all indecomposable
tiltings appear as direct summands of tensor powers thereof. This may fail for other
types in small characteristic.

Generally these four types of modules (Weyl, dual Weyl, simple, and indecompos-
able tilting) for a fixed highest weight are distinct from one another. If, however, any
two are isomorphic e.g. T(v − 1) ∼= ∇(v − 1), then it follows that all four types of
modules of the same highest weight are isomorphic. An example is T(0) ∼= �(0) ∼=
∇(0) ∼= L(0) ∼= K, which is the monoidal unit of TiltK,𝕢 and which we denote by 𝟙.

Remark 2.12 Let us comment on the references for the above commentary as well as
someof thematerial below, using the terminology fromExample 2.2. In the semisimple
case, TiltK,𝕢 is equivalent to fdModK,𝕢, a semisimple category endowed with the
classical combinatorics of SL2(C), which is covered in many textbooks. Otherwise,
TiltK,𝕢 is non-semisimple and we refer to [6] and [2] in the complex quantum group
case, to [43] and [20] in the characteristic p case, and to [5] as well as [21] and [1] in
the mixed case. A summary for tilting modules can also be found in [7].

The diagrammatic incarnation of TiltK,𝕢 is sometimes called the Temperley–Lieb
category (abbreviated to TL category) and can be defined as follows. Let TLZ[𝕧±1],𝕧
denote the Z[𝕧±1]-linear category with objects indexed by m ∈ N0, and with mor-
phisms from m to n being Z[𝕧±1]-linear combinations of unoriented string diagrams
drawn in a horizontal stripR×[0, 1] betweenm marked points on the lower boundary
R× {0} and n marked points on the upper boundary R× {1}, considered up to planar
isotopy relative to the boundary and the relation that a circle evaluates to −[2]𝕧. The
category TLZ[𝕧±1],𝕧 is (strict) monoidal with ⊗ given by horizontal concatenation and
admits a (strict) pivotal structure given by cups and caps (the duality maps), and all
objects are self-dual.
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Wewrite FG = F ◦G for the composition of morphisms in TLZ[𝕧±1],𝕧, and we read
diagrams from bottom to top and left to right, e.g.

(id ⊗ G)(F ⊗ id) = ◦ ◦

⊗

⊗

...

...
...

...

F

G =
...

......

...

F G = ◦◦

⊗

⊗

...

...
...

...

G

F

= (F ⊗ id)(id ⊗ G).

There is an antiinvolution (−)� onTLZ[𝕧±1],𝕧 which fixes objects and reflects diagrams
in a horizontal line, as well as an involution (−)↔ which mirrors along the vertical
axis. The following summarizes the important relations and conventions:

= , = , = −[2]𝕧, n� = n↔ = n,

(
...

...

F

)�
=

...

...F
,

(
...

...

F

)↔
=

...

...

F .

Let TL𝕜,𝕢: = TLZ[𝕧±1],𝕧 ⊗Z[𝕧±1] 𝕜 be the scalar extension and specialization
Z[𝕧±1] � 𝕧 �→ 𝕢 ∈ 𝕜. Recall that K denotes an algebraically closed field containing
𝕜. Recall also that T(1) generates TiltK,𝕢 as a monoidal category.

Proposition 2.13 We have a K-linear, pivotal functor

𝒟K,𝕢 : TLK,𝕢 → TiltK,𝕢, 𝒟K,𝕢(d) = T(1)⊗(d),

which induces an equivalence ofK-linear, pivotal categories upon additive idempotent
completion.

Proof This is folklore: the semisimple case dates back to [45], and a proof in general
can be found in e.g. [25, Theorem 2.58] or [8, Proposition 2.3]. ��

Recall that TLZ[𝕧±1/2],𝕧 (we need to add a formal square root of 𝕧) admits the
structure of a braided category. The braiding is determined on the generating object
by Kauffman’s skein relation

= 𝕧1/2 · + 𝕧−1/2 · , = 𝕧−1/2 · + 𝕧1/2 · . (2.1)

There is also a braiding onTiltK,𝕢, assuming that 𝕢 has a square root inK, given by the
so-called R-matrix, see e.g. [37, Section IX.7]. (We clear the denominators in these
formulas by using divided powers, and observe that the expression is well-defined
on all finite-dimensional modules without further adjustments.) These two braidings,
which are the only ones we will consider in this paper, are compatible. This can be
seen, e.g. by comparison on generating objects:
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Proposition 2.14 If 𝕢 has a square root in K, then the functor 𝒟K,𝕢 from Proposi-
tion 2.13 is an equivalence of braided categories. ��
Remark 2.15 Note that Proposition 2.13 allows us to identify the additive Karoubi clo-
sure ofTLK,𝕢 withTiltK,𝕢.Motivated by this, wewill also denote the additiveKaroubi
closure of TL𝕜,𝕢 by Tilt𝕜,𝕢 in case 𝕜 is not necessarily an algebraically closed field,
and the objects T(v − 1) ∈ Tilt𝕜,𝕢 are defined as the images of primitive idempotents
under𝒟𝕜,𝕢. With this notation, the functor𝒟𝕜,𝕢 is the universal embedding of TL𝕜,𝕢

into its Karoubi closure, and we omit it from our notation without confusion.

Remark 2.16 At this point, the reader is warned that Tilt𝕜,𝕢 may not be equivalent to
the category of tilting modules over 𝕜 (as defined via (dual) Weyl filtrations), even in
semisimple cases, if 𝕜 is finite – see [11, Section 5].

In the semisimple situation of TL𝕜(𝕧),𝕧, the primitive idempotents that are mapped
to the indecomposable tilting modules T(v − 1) in T(1)⊗(v−1) are the well-known
Jones–Wenzl projectors. Since T(v − 1) is a simple module in this case, we will call
these idempotents simple Jones–Wenzl projectors (simple JW projectors for short),
which also allows us to distinguish them from their non-simple analogs. All we need
to know about these projectors is summarized in the following proposition – see e.g.
[38] for a proof.

Proposition 2.17 For all v ∈ N, there exists a unique idempotent ẽv−1 ∈
EndTL𝕜(𝕧),𝕧(v − 1), which is invariant under duality (ẽv−1)

� = (ẽv−1)
↔ = ẽv−1

(this implies that the following relations hold under their mirror images as well) and
satisfies:

w−1

v−1
= v−1 , (2.2) v−1

k

= 0, (2.3) v−1 k =(−1)k [v]𝕧[v−k]𝕧 · v−1−k . (2.4)

Here we use the usual box notation for these projectors, where a number k next to a
strand means k parallel strands. The projector ẽw−1 in (2.2) and the cup (respectively,
a cap under duality) in (2.3) can be placed at arbitrary positions. The idempotent ẽv−1
satisfies the recursion in (1.1). ��

In Definition 2.18 and Convention 2.19 we will define various different bases of
morphism spaces in Temperley–Lieb categories. The first example is given by integral
bases: sets of crossingless matchings (a.k.a. Temperley–Lieb diagrams) Bint

v−1,w−1 of
v + w − 2 points. These are integral in the sense that they provide isomorphisms
Hom

TLZ[𝕧±1],𝕧(v − 1, w − 1) ∼= Z[𝕧±1]Bint
v−1,w−1 of Z[𝕧±1]-modules. Second, TL𝕜,𝕢

has projector basesB𝕢
v−1,w−1 given by decomposing T(1)⊗(v−1) into indecomposable

summands. (ForTL𝕜(𝕧),𝕧, a basis of the form B𝕧
v−1,w−1 is anArtin–Wedderburn basis

since these summands are simple.) We stress that these bases are not unique unless
one specifies further properties that these should satisfy. The existence of these bases
follows from abstract theory (see [9]) and all of these are cellular and related by
unitriangular basis change matrices. To construct these bases explicitly we can use the
light ladder strategy (see [25] and [9]).
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Definition 2.18 Fix a family of morphisms Gv−1 ∈ EndTL𝕜,𝕢(v − 1) for v ∈ N. Then
for each F ∈ HomTL𝕜,𝕢(w − 1, v − 1) we define morphisms ε̃1(F) ∈ HomTL𝕜,𝕢(w, v)

and (provided v > 1) ε̃−1(F) ∈ HomTL𝕜,𝕢(w, v − 2) by sending:

F =
F

v − 1

�→
F

Gv = ε̃1(F), F =
F

v − 1

�→
F

Gv−2 = ε̃−1(F).

For any path π in the positive Weyl chamber, considered as a finite sequence of
±1 whose partial sums are non-negative, we associate a down morphism δ(π) by
using the operators ε̃±1 in order specified by π , starting with F being the empty
diagram. Similarly, we define an up morphism υ(π) as δ(π)�. For a pair (π, π ′),
we define an element cλ

π,π ′ : = υ(π ′)δ(π) whenever it makes sense to do so, i.e. for
δ(π) ∈ HomTL𝕜,𝕢(v − 1, λ) and υ(π ′) ∈ HomTL𝕜,𝕢(λ,w − 1).

Convention 2.19 We will use the light ladder strategy from Definition 2.18 in several
different contexts. The associated down and up morphisms are consistently distin-
guished throughout this paper by the following convention in notation.

(a) For Gv−1 = idv−1, which works for any ground ring (in particular for(
Z[𝕧±1], 𝕧)), we obtain the integral bases Bint

v−1,w−1 for morphism spaces.
We reserve the following notation for these morphisms: Gv−1 = idv−1 �⇒
d(π), u(π).

(b) For Gv−1 = ẽv−1 and working over
(
𝕜(𝕧), 𝕧

)
we get the Artin–Wedderburn

basis. The associated morphisms will be denoted with tilde symbols: Gv−1 =
ẽv−1 �⇒ d̃(π), ũ(π).

(c) For Gv−1 = Ev−1, i.e. for the projectors constructed in Sect.3B for non-
semisimple situations, we will use capital letters: Gv−1 = Ev−1 �⇒
D(π),U(π). These are specializations of morphisms that one gets forGv−1 =
ev−1 (with ev−1 as in Definition 3.12 below), and we will use an overline in
this situation: Gv−1 = ev−1 �⇒ d(π), u(π).

Definition 2.20 A family of morphisms Gv−1 ∈ EndTL𝕜,𝕢(v − 1) for v ∈ N is left-
aligned if

Gv−1(Gw−1 ⊗ idv−w) = (Gw−1 ⊗ idv−w)Gv−1 = Gv−1 for 1 ≤ w ≤ v,

and right-aligned if

Gv−1(idv−w ⊗ Gw−1) = (idv−w ⊗ Gw−1)Gv−1 = Gv−1 for 1 ≤ w ≤ v.

We draw morphisms from a left-aligned family as boxes with a bar at the left-
hand side, and vice versa for right-aligned. Using this notation, the two conditions in
Definition 2.20 read:

Gw−1

Gv−1
= Gv−1 =

Gw−1

Gv−1
,

Gw−1

Gv−1
= Gv−1 =

Gw−1

Gv−1
.
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Note that left- and right-aligned families of morphisms are always idempotents, by
the v = w case of the defining relation.

Remark 2.21 The families of identity morphisms idv−1 are both left- and right-aligned
and so are simple JWprojectors by (2.2). However, in themixed case the corresponding
projectors Ev−1 form a family that is only left-aligned, see Example 3.13. (Of course,
there are also right-aligned versions (Ev−1)

↔.) This asymmetry will play an important
role within our setup. For example, in Definition 2.18 we presented a version of the
light ladders strategy that favors left-aligned families of projectors, which will be
significant when discussing fusion rules for morphisms.

3 Additive structure

In this section, we explain the additive structure of the category of tilting modules.
Some of the results in this section are well-known, while others generalize results
from [14] and [52]. We have also added a few new observations.

3A Character formulas

The Weyl and dual Weyl modules have classical Weyl characters, i.e. χ�(v−1) =
χ∇(v−1) = [v]𝕧, which we view as elements of N0[𝕧±1] where the coefficient of 𝕧k
is the dimension of the weight space of weight k. Each T(v − 1) has a (dual) Weyl
filtration and we denote the (dual) Weyl multiplicities by

(
T(v − 1) : �(w − 1)

) =(
T(v − 1) : ∇(w − 1)

)
.

Remark 3.1 The purpose of the admissibility conditions on finite sets S ⊂ N0 from
Definition 2.7 is so that for v ∈ N we have bijections

{S ⊂ N0 | S is down-admissible for v}
→ {w ∈ N | (

T(v − 1) : �(w − 1)
) = 1}, S �→ v[S];

{S ⊂ N0 | S is up-admissible for v}
→ {w ∈ N | (

T(w − 1) : �(v − 1)
) = 1}, S �→ v(S).

Moreover, each (dual) Weyl module has a filtration by simple modules, and we
denote the corresponding simplemultiplicities by

[
�(v−1) : L(w−1)

] = [∇(v−1) :
L(w − 1)

]
. These have a similar description as the Weyl multiplicities:

Definition 3.2 Let v = [a j , ..., a0]p,�. The L-support Lsupp(v) ⊂ N is defined as
follows.

(a) If ai �= 0,p − 1 for all j > i > 0, then for all v[S] ∈ ∇supp(v) we set

v[S]L = v[S] − 2
∑
Si ,i>0

pmin(Si ) and Lsupp(v) = {v[S]L | S}.

Here i denotes the index for possible non-leading digits.
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(b) Otherwise, there is a recursive description of Lsupp(v) as in [52, Section 5B],
working with p∨� instead of p.

One can check that ∇supp(v) is always of order 2genv , while the size of Lsupp(v)

can be different (for example when losp applies and digits are zero).

Proposition 3.3 Let v = [a j , ..., a0]p,�.

(a) We have

(
T(v − 1) : �(w − 1)

) =
{
1 if w ∈ ∇supp(v);
0 else,

[
�(v − 1) : L(w − 1)

] =
{
1 if w ∈ Lsupp(v);
0 else.

Thus, the tilting characters are

χT(v−1) =
∑

w∈∇supp(v)

χ�(w−1) =
∑

w∈∇supp(v)

[w]𝕧,

from which the simple characters can be obtained by inverting the identities
χ�(v−1) = ∑

w∈Lsupp(v) χL(w−1).
(b) We have a version of (Brauer–Humphreys or BGG) reciprocity, i.e. if ai �=

0,p − 1 for all j > i > 0, then

(
T(v − 1) : �(w − 1)

) = [
�(v − 1) : L(wL − 1)

]

=
{
1 if w = v[S] and wL = v[S]L;
0 if w �= v[S] and wL �= v[S]L.

In particular,
(
T(v−1) : �(w−1)

) = [
�(v−1) : L(w−1)

]
for v = [a, b]p,�.

Proof The Weyl multiplicities are known – see [21, Section 3.4] for the potentially
first written account in the mixed case. The simple multiplicities can be obtained by
direct calculation using the simple characters in (3.2) below. The reciprocity follows
immediately from these. ��

Two remarkable results describing the structure of objects in fdModK,𝕢 are
Donkin’s (3.1) and Steinberg’s (3.2) tensor product formulas, which we recall in
the following proposition. Both formulas describe modules of highest weight v − 1
in terms of tensor products of Frobenius–Lusztig twisted modules of lower weight,
following the p�-adic expansion of v. The i th Frobenius–Lusztig twist will be denoted
by (−)p

(i)
. It acts as the Frobenius twist on digits ai for i > 0 and as its quantum analog

on the zeroth digit. Furthermore, we will accompany the two famous tensor product
formulas with a third one. To this end, we note that we can naively apply (−)aip

(i)
to

weight spaces, although we lose the module structure for ai �= 1.
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Proposition 3.4 Let v = [a j , ..., a0]p,� and v − 1 = [b j , ..., b0]p,�.

(a) We have

T(v − 1) ∼= T(a j − 1)p
( j) ⊗ ⊗

ai T(ai + p∨� − 1)p
(i)

, (3.1)

where the monoidal product runs over all non-leading digits of v. Thus,
χT(v−1) = [a j ]𝕧p( j)

∏
ai

([ai + p∨�]𝕧p(i) + [−ai + p∨�]𝕧p(i)

)
.

(b) We have

L(v − 1) ∼= ⊗
bi �=0 L(bi )

p(i)
, (3.2)

where the monoidal product runs over all (non-zero) digits of v − 1. Thus,
χL(v−1) = ∏

bi �=0 [bi + 1]𝕧p(i) .
(c) We have an isomorphism of Z-graded vector spaces

T(v − 1) ∼= T(m∞
v − 1) ⊗ ⊗

ai �=0 T(1)(aip
(i)), (3.3)

where the monoidal product runs over all non-zero and non-leading digits of
v. Thus, χT(v−1) = [m∞

v ]𝕧∏ai �=0 [2]𝕧ai p(i) .
(d) (3.3) can be realized as an isomorphism of SL2-modules if all non-zero digits

ai are equal to 1. In this case, T(v − 1) is a tensor product of simple modules.

Proof For the tensor product formulas (3.1) and (3.2), see [1, Proposition 5.2] (to
be precise, the above is [53, Proposition 4.7] adjusted to mixed characteristic) and
[5, Theorem 1.10] for the mixed versions. We will give a diagrammatic proof of
the (apparently new) character formula in (c) in Proposition 3.20 below. For the final
statement, by (c), it suffices to observe that

⊗
ai �=0 T(1)(aip

(i)) is simple by (3.2), which
implies that the right-hand side of (3.3) is tilting by the mixed characteristic analog of
[13, Lemma 3.3]. ��
Example 3.5 Recall fromExample2.6 that∇supp(68 = [3, 1, 2]7,3)={68, 64, 62, 58}.

(a) For 68 we get χT(68−1) = [68]𝕧 + [64]𝕧 + [62]𝕧 + [58]𝕧, as well as χT(68−1) =
[3]𝕧21([8]𝕧3 + [6]𝕧3)([5]𝕧 + [1]𝕧) and χT(68−1) = [63]𝕧[2]𝕧3 [2]𝕧2 .

(b) From ∇supp(68) we obtain Lsupp(68) = {68, 64, 58, 48}, since we need
to adjust 62 = [3,−1, 2]7,3 to 62 − 2 · 7 = 48. We thus get χL(68−1) =
[4]𝕧21 [2]𝕧3 [2]𝕧, using 67 = [3, 1, 1]7,3, and χL(68−1) = [68]𝕧 − χL(64−1) −
χL(58−1) − χL(48−1).

Note that part (d) of Proposition 3.4 implies a remarkable appearance of losp:

Corollary 3.6 All indecomposable tilting modules are tensor products of simple mod-
ules in characteristic p = 2.

The tiltingmodulesT(v−1) for v ∈ Evewill also be called eves. By Proposition 3.3
these are the only simple tilting modules, i.e. T(v − 1) ∼= L(w − 1) if and only if
v = w ∈ Eve. The prime eves are those where v = p(i), and they play a special role
in the theory of tilting modules.
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3B Non-semisimple projectors

In order to define the projectors Ev−1, we need a few notions. A crucial role will be
played by certain down and up morphisms that are defined in the same spirit as those
in Definition 2.18, but with an emphasis on good compositional properties.

Definition 3.7 Fix a left-aligned family of morphisms Gv−1 ∈ EndTL𝕜,𝕢(v − 1) for
v ∈ N as in Definition 2.18. Let v = [a j , ..., a0]p,� and 0 ≤ i < j with ai �= 0.
Consider the ancestors v′ = [a j , ..., ai , 0..., 0]p,� and v′′ = [a j , ..., ai+1, 0..., 0]p,�

as well as the difference x = v − v′ = [ai−1, ..., a0]p,�. Then we define morphisms
δi idv−1, idv−1υi ∈ TL𝕜,𝕢 as follows.

δi idv−1: = ai p
(i)

x

, idv−1υi : = (δi idv−1)
�.

The box represents the morphisms Gv′′−1, and we will consider the three variations
with their corresponding notation (namely di , d̃i , Di ) that were introduced in Conven-
tion 2.19.

Similarly, if S = {sk > · · · > s1 > s0} is a down-admissible stretch for v, then we
define

δS idv−1: = idv[S]−1δs0 · · · δsk idv−1 = S . (3.4)

For the final equation we have used that the morphisms Gv−1 form a left-aligned
family.

Although we do not draw the corresponding up morphisms, we define them sym-
metrically using the down morphisms above. The corresponding upwards version of
these morphisms are defined by υS = δS

�.
We will also use the case S = ∅ for which all involved operations are identities. In

Definition 3.9wewill extend these definitions to down- and respectively up-admissible
sets S.

Example 3.8 Note that δi (and likewise υi ) itself does not specify a well-defined
morphism in TL𝕜,𝕢; we need to include information about the (co-)domain, e.g. by
including an idempotent in the notation as in δi idv−1. Note that the morphisms δsi in
(3.4) are composed in an order that leads to a nested configuration of caps. A concrete
example of this can be seen in Example 3.11, namely the bottom right part of the
morphism {1,0}.

For simplicity of notation, we often only indicate the number of strands at the
beginning or end of a composite of such morphisms since the other numbers are then
determined.
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Definition 3.9 Suppose that S = {sk > · · · > s1 > s0} is down-admissible for v and
S′ = {s′

l > · · · > s′
1 > s′

0} is up-admissible for v. Then we define simple trapezes
and loops

S : = ẽv[S]−1d̃S : = ẽv[S]−1d̃s0 · · · d̃sk idv−1, S′ : = ũS′ ẽv−1: = idv(S′)−1ũs′l · · · ũs′0 ẽv−1,

S : = L̃S
v−1: = ũS ẽv[S]−1d̃S,

which we also define for the other two variations from Convention 2.19, with the
appropriate adjustment of notation.

Note that in all cases loops carry an idempotent Gv[S]−1 in the center and down and
up morphisms carry this idempotent on their thin end.

Remark 3.10 Using Convention 2.19, we can give an alternative description of the
simple trapezes. If S is down-admissible for v = [a j , ..., a0]p,�, then we define a sign
sequence

πS(v) = ... + ...+︸ ︷︷ ︸
a jp( j)−1

ε j−1...ε j−1︸ ︷︷ ︸
a j−1p( j−1)

... ε0...ε0︸ ︷︷ ︸
a0p(0)

∈ {+,−}v−1, εi =
{

− if i ∈ S;
+ if i /∈ S.

That is, πS(v) is a concatenation of signs with multiplicity given by the digits of v.
We get

S = d̃(πS(v)), S = ũ(πS(v)).

Note the subtle, but important difference that d̃(πS(v)) includes an idempotent ẽv[S]−1
on the left, while d̃S does not. As a consequence, composites of morphisms of type
d̃(π) are automatically zero, while the morphisms of type d̃S can be composed in
interesting ways. Remarkably, this distinction disappears when considering analogs
of such morphisms built from mixed projectors, see Proposition 3.19.

Example 3.11 For v = [a, b, c]p,� we have:

∅ = , {0} =
c

, {1} =
bp(1)c

, {1,0} =
bp(1)c

.

Recall that we use v = [a j , ..., a0]p,� and write p(i) = pi−1� for i > 0. For v ∈ N

and s ∈ N0 let av,s denote the youngest ancestor of v whose sth digit is zero. (When
s = −1, we define av,−1 = v.) For each down-admissible S for v we let

λv,S = ∏
s∈S (−1)asp

(s−1) [av,s−1[S]]𝕧
[av,s [S]]𝕧 ∈ 𝕜(𝕧).

Definition 3.12 generalizes [52,Definition 2.22] andLemma3.16 belowgeneralizes
[14, Proposition 3.3] to the mixed case.
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Definition 3.12 For v ∈ N the semisimplep�JWprojectorev−1 ∈ EndTL𝕜(𝕧),𝕧(v−1)
is defined to be

v−1 : = ev−1: = ∑
v[S]∈∇supp(v) λv,S L̃

S
v−1 = ∑

v[S]∈∇supp(v) λv,S · S .

(3.5)

The choice of name for ev−1 is because the associated tilting module is a direct
sum of simple tilting modules, i.e.

T(v − 1) ∼= ⊕
v[S]∈∇supp(v) T(v[S] − 1) ∼= ⊕

v[S]∈∇supp(v) �(v[S] − 1). (3.6)

Note that mchar(𝕜(𝕧), 𝕧) = (p,∞), so (3.5) is well-defined. In Theorem 3.18 we
will see that the semisimple p�JW projectors can be base changed to (𝕜,𝕢) with
mchar(𝕜,𝕢) = (p, �).

Example 3.13 By construction, (ev−1)
� = ev−1. However, (ev−1)

↔ �= ev−1 in gen-
eral (we will address this in Lemma 3.17), as can be seen by the following example
in characteristic p = 3:

3 = + 1
2 · �= + 1

2 · = 3

Remark 3.14 Further concrete examples for projector expansions (3.5) can be found in
[52, Examples 2.20 and 2.23]. Relative to the treatment there, we allow the following
two generalizations. First, the p-adic expansions should be replaced by the p�-adic
expansions, and pk therein by p(k). Second, all coefficients use quantum numbers
instead of integers.

The following is reproduced from [52, Section 3B], adjusting the scalars.

Lemma 3.15

(a) Suppose that S and S′ are down-admissible for v. Then we have

ẽv[S]−1d̃S ũS′ ẽv[S′]−1 =
v[S]−1

v[S′]−1

S

S′ = δS,S′λ−1
v,S′ · v[S′]−1 = δS,S′λ−1

v,S′ ẽv[S′]−1.

Here δS,S′ denotes the Kronecker delta, so δS,S′ = 1 if S = S′ and zero
otherwise.

(b) Suppose S is down-admissible for v, and S′ = {s, ..., s′ − 1} is a minimal
down-admissible stretch for v. Then we have

S

S′
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−1)asp
(s) [av,s [S]]𝕧

[av,s−1[S]]𝕧 · S\S′ if s ∈ S, s′ /∈ S;
S ∪ S′ if s /∈ S, s′ ∈ S;

0 otherwise.
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(c) Suppose that S′ = {s, ..., s′ − 1} is the smallest minimal down-admissible
stretch for v and let S be down-admissible for av,s = mv . Then we have

S

S′
=

⎧⎨
⎩

S

S ∪ S′ = ũSẽv[S∪S′]−1d̃S∪S′ if s′ /∈ S;
S ∪ S′
S

= ũS∪S′ ẽv[S]−1d̃S if s′ ∈ S.

Proof Word-for-word as in [52, Lemmas 3.7, 3.8 and 3.9]. ��
Lemma 3.16 The semisimple p�JW projectors can be expanded as

v−1 = ∑
mv [S]∈∇supp(mv) λmv ,S

⎛
⎜⎜⎜⎝

S

S

v[S]−1

asp(s)

asp(s)

+ (−1)asp
(s) [v[S][s]]𝕧[mv [S]]𝕧 ·

S

S

v[S][s]−1

asp(s)

asp(s)

⎞
⎟⎟⎟⎠ ,

(3.7)

where as is the first non-zero digit of v. As a consequence, for any ancestor m j
v of v,

the projector ev−1 absorbs em j
v−1

when left-aligned as in Definition 2.20.

Proof With the properties listed in Lemma 3.15, the proof follows verbatim as in [52,
Lemma 2.24] and [14, Proposition 3.3]. ��

The next statement of this section enables us to relate the left and right versions
of the p�JW projectors. Let v = [a j , ..., a0]p,�, as usual, and let Sv−1 denote the
symmetric group on v − 1 letters. Assuming the existence of square roots, we can use
(2.1) to define g: = g(v −1) to be the positive braid lift of the longest element of Sv−1
(the positive half twist, a Garside element), and r: = r(a j , ..., a0) to be the positive
braid lift of a shortest coset representative for Sv−1/(Sa jp( j)−1×Sa j−1p( j−1) ×...×Sa0).

Lemma 3.17 Assume that 𝕧 has a square root, i.e. we are working in 𝕜(𝕧1/2), we have

g−1

v−1

g
= r−1

v−1

r
= v−1 .

Proof A straightforward consequence of two facts: conjugation with the half twist g
acts as the involution (−)↔ on the integral basis (and thus on everything) and JW
projectors absorb crossings up to scalars 𝕧±1/2. ��

The semisimple p�JW projectors ev−1 are defined over Fp(𝕧), but the algorithm
to construct them generates coefficients (with respect to the integral basis) that we
can view as elements of Q(𝕧), and we will do this below. We write spp,�(−) for the
specialization of morphisms to 𝕜, if it exists.

Theorem 3.18 We have that

Ev−1 := v−1 := spp,�(ev−1) ∈ EndTL𝕜,𝕢(v − 1)

is a well-defined idempotent whose coefficients are elements of Fp(𝕢). Moreover,
𝒟𝕜,𝕢(Ev−1) = idT(v−1), and Tilt𝕜,𝕢 is Krull–Schmidt.
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In particular, under the equivalence induced by 𝒟K,𝕢 (see Proposition 2.13) the
image of the idempotent Ev−1 is mapped to T(v − 1). We call the Ev−1 mixed JW
projectors.

Proof We start by explaining the lifting strategy. Assume that we are in the mixed
cases (the other cases are easier and omitted). Let δ̄ = −[2]𝕢 = −𝕢− 𝕢−1, the circle
value. Let p(δ) be the minimal polynomial in Fp[δ] satisfied by δ̄. We lift p(δ) to
Z[δ], and denote this lift by the same symbol. Let L denote the localization of Z[δ]
at the maximal ideal m = (p(δ),p). (That m is maximal in Z[δ] follows since (p) is
maximal in Z and p(δ) is irreducible in Fp[δ].) Then we have that mL is a maximal
ideal in L , and the completion of L is a complete Noetherian local domain L, and its
field of fractions F is a characteristic zero field. The residue field is contained in 𝕜.
The triple (F,L, 𝕜) satisfies 𝕜 ←↩ L/mL � L ↪→ F , and which allows comparison
of idempotents similarly to the p-adic case and the classical theory of idempotent lifts.
In fact, by construction of the TL category and our idempotents, we will work in the
subfield Q(δ) of F , which we immediately extend to Q(𝕧) along δ = −𝕧 − 𝕧−1.

As above we assume that we are in the mixed cases (the other cases are easier
and omitted). Note that we could have defined ev−1 directly over Q(δ), and then
the idempotents over Q(𝕧) and F arise by extending scalars. These settings are all
semisimple, so the projector combinatorics over Q(δ) and F is the same as in Q(𝕧).
We will also implicitly extend scalars from the residue field to 𝕜, and we will do both
in the proof to be consistent with the above lifting strategy.

Note that ev−1 has the correct character, namely χImev−1 = χT(v−1). By
Lemma 3.16, ev−1 ∈ EndTiltF

(
T(1)⊗(v−1)

)
is an idempotent and it absorbs the tensor

product emv−1 ⊗ idv−mv of the idempotent for the mother with extra strands. Now we
claim there is exactly one idempotent in EndTiltF

(
T(1)⊗(v−1)

)
with this property and

the correct character. To see that this is true let us denote byT(mv−1) ∈ TiltF the direct
sumofWeylmoduleswith the correct character. NowT(mv−1)⊗T(1)⊗(v−mv) ∈ TiltF

contains eachWeyl factor of T(v−1) exactly once, see Lemma 4.2, so there is exactly
one idempotent in EndTiltF

(
T(1)⊗(v−1)

)
with the correct character and absorption

property, and the claim follows.
Now letL be the completion as described above. There are specialization maps and

functors

L

𝕜 F

,

EndTiltL
(
T(1)⊗(v−1)

)

EndTilt𝕜
(
T(1)⊗(v−1)

)
EndTiltF

(
T(1)⊗(v−1)

)
F𝕜 FF .

Next, we show that ev−1 can be lifted to EndTiltL
(
T(1)⊗(v−1)

)
and its specialization

to 𝕜 projects to T(v − 1). To this end, we use induction over the ancestry of v, with
the case of v ∈ Eve being clear since T(v − 1) ∼= �(v − 1) in these cases. So let emv

be liftable and let lF (emv ) be its lift. Induction implies

F𝕜
(
lF (emv )

) = idT(mv−1).
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We further know thatT(v−1) is a direct summand ofT(mv−1)⊗T(1)⊗(v−mv) ∈ Tilt𝕜,
so, there is some projector E ′ ∈ EndTilt𝕜

(
T(1)⊗(v−1)

)
projecting to this summand,

which absorbs the idempotent corresponding to themother tensor productwith strands.
By idempotent lifting, cf. [40, Theorem 21.31], we can pull E ′ back to TiltL giving
us another projector l𝕜(E ′). Pushing this forward gives a projector FF

(
l𝕜(E ′)

)
in the

semisimple case with the correct character and absorption property. However, as we
have seen, such a projector is unique and thus, has to be ev−1. Hence, we get that
l𝕜(E ′) is a lift of ev−1.

Thus, we can specialize ev−1 to Ev−1 = E ′, and the claims about the coefficients
and Ev−1 = idT(v−1) follow by construction of ev−1. The Krull–Schmidt property
then follows inductively as the above constructs all highest weight projectors, and
the claim about the coefficients being in Fp(𝕢) is evident by the construction of the
projectors. ��

Diagrammatically, the three types of projectors are distinguished as follows:

ẽv−1 = v−1 , ev−1 =
{

v−1

v−1 for v ∈ Eve,
Ev−1 =

{
v−1

v−1 for v ∈ Eve.

(3.8)

The middle and the rightmost projector have the same character, but ev−1 corresponds
to a direct sum of simple tilting modules in the semisimple setting, cf. (3.6), and Ev−1
corresponds to the indecomposable T(v − 1). We will use the middle projectors to
deduce properties of the right projectors. Moreover, as illustrated in (3.8), we also use
white boxes for eves to indicate that these satisfy the same diagrammatic properties
as the simple JW projectors.

We stress again that the non-semisimple projectors do not have a left-right-
symmetry, and their properties do not have such a symmetry either. For the remainder
of the paper, each cup and cap in the illustrations is a parallel bundle of cups and caps,
depending on S or respectively S′, or a plain number. (We also omit to illustrate these
if no confusion can arise.)

We have the following generalizations of Proposition 2.17, called classical absorp-
tion, non-classical absorption, shortening and partial trace.

Proposition 3.19

(a) The projectors ev−1 form a left-aligned family in the sense of Definition 2.20.
(b) Let S be a down-admissible stretch for v. Then we have

v−1

S =
v−1

S , S =
v−1

S ,

where the top boxes are labeled v[S] − 1, and the small box is labeled by
av,S−1 for av,S being the youngest ancestor of v for which all digits indexed
by elements of S are zero.
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(c) For v = [a j , ..., a0]p,� /∈ Eve let w = [ak, ..., a0]p,� for some k < j . Then we
have

v−1 w = (−1)w
∏
ai �=0

[2]𝕧ai p(i) · mxv−1 ,

where the product runs over all non-zero digits of w, and mx
v = v − w is

the corresponding ancestor. (Note that for 𝕢� = ±1 and i > 0 we have
(−1)aip

(i)[2]𝕢ai p(i) = (−q)aip
(i)
2.) For v = [a j , 0, ..., 0]p,� ∈ Eve, v ≥ � and

k ≤ v such that v − k = [bi , 0, ..., 0]p,� ∈ Eve with i < j we additionally
have

v−1 k = 0 = v−1k ∈ EndTL𝕜,𝕢(v − k).

(A special case of this is the trace down to the empty diagram.)

Proof All except the final statement can be shown as in [52, Propositions 3.11, 3.13 and
3.14]. The final statement follows by using (2.4) and observing that the projector after
taking partial trace satisfies ẽv−k = ev−k and the zero obtained by (2.4) annihilates
it. ��

The projectors ev−1 typically do not form a right-aligned family. Example 3.13
gives a counterexample to right-aligned absorption of id1 ⊗ e2 into e3.

Recall the definition of the categorical dimension dimC of objects in a pivotal
category C, see e.g. [28, Definition 4.7.1] (the categorical dimension is the trace of
the identity therein).

Proposition 3.20 For v = [a j , ..., a0]p,� we have

dimTilt𝕜,𝕢
(
T(v − 1)

) = (−1)v−1∑
S∈∇supp(v)[v[S]]𝕢 = (−1)v−1[m∞

v ]𝕢∏ai �=0 [2]𝕢ai p(i) ,

where the product runs over all non-zero and non-leading digits of v.

Proof The categorical dimension in TL𝕜,𝕢 is given by closing pictures in the usual
way, and for the first equality we calculate

v−1 =
∑

S∈∇supp(v)

λv,S · v[S]−1

S

S

=
∑

S∈∇supp(v)

λv,S ·
v[S]−1

S

S

=
∑

S∈∇supp(v)

v[S]−1 .
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Observing that (−1)v[S]−1 = (−1)v−1 for all S ∈ ∇supp(v), the first equality follows
by classical theory, see e.g. [38, Section 9.5]. The second equation follows then from
Proposition 3.19. ��

Note that the categorical dimension of T(v − 1) is an element of the underlying
field, but interpreted in N0[𝕧±1] we obtain the character χT(v−1).

3C Tiltingmodules as an additive category

Let us define a (locally unital) 𝕜-algebra via

Z𝕜,𝕢 = ⊕
v,w∈NHomTilt𝕜,𝕢

(
T(v − 1),T(w − 1)

)
.

Let Proj-Z𝕜,𝕢 denote the category of finitely generated, projective (right) Z𝕜,𝕢-
modules. By construction we obtain, as instance of Ringel duality (semi-infinite in
the sense of [15]), that

ℱ : Tilt𝕜,𝕢 → Proj-Z𝕜,𝕢,T �→ ⊕
v∈NHomTilt𝕜,𝕢

(
T(v − 1),T

)

is an equivalence of additive, 𝕜-linear categories, sending indecomposable tiltings to
indecomposable projectives. Let us describe Z𝕜,𝕢 explicitly.

By construction, morphisms in HomTilt𝕜,𝕢
(
T(v − 1),T(w − 1)

)
are given by flank-

ing TL morphisms with Ev−1 from the bottom and with Ew−1 from the top, and the
primitive idempotents (which are local units) are the Ev−1 for v ∈ N. Other mor-
phisms, called mixed trapezes and loops, are diagrammatically given by the analog
of Definition 3.9: if S and S′ are down- and up-admissible for v, respectively, and
assuming that S and S′ are minimal admissible stretches of consecutive integers, then
we define

ES : = Ev[S]−1DSEv−1 =
v−1

S , ES′ : = Ev(S)−1US′Ev−1 =
v−1

S′ .

(3.9)

These are the generators of Z𝕜,𝕢, and (up to losp) the respective minimal stretches
are singleton sets S = {i}, reflecting along the i th digit. The corresponding S-labeled
cups and caps in (3.9) consist of aip(i) parallel strands. We also define the loops
LS

v−1 := Ev−1USEv[S]−1DSEv−1. Finally, note that these morphisms can be defined
more generally for any down- and up-admissible stretches, but then their diagrammatic
incarnations can involve multiple stretch-labeled cups and caps.
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To describe the relations between expressions in the generating morphisms, we will
use the same scalars (depending on the digits) as in [52, Section 3A], namely

f(a) =
{

(−𝕢)(a+1)�·−2
a if 1 ≤ a ≤ p − 2;

0 if a = 0 or a = p − 1,

g(a) =
{

(−𝕢)�
( a+1

a

)
if 1 ≤ a ≤ p − 1;

(−𝕢)�2 if a = 0,

fSEv−1 = f(amax(S)+1)Ev−1, gSEv−1 = g(amax(S)+1)Ev−1,

hSEv−1 = g(amax(S)+1 − 1)Ev−1.

(3.10)

In fact, as we will see later, these scalars can be seen as (inverses of higher order) local
intersection forms in the language of [25].

We obtain the mixed characteristic version of [52, Theorem 3.2]:

Theorem 3.21 The algebraZ𝕜,𝕢 is generated byEv−1 for v ∈ N, and elementsDSEv−1
and US′Ev−1, where S and S′ denote minimal down- and up-admissible stretches for
v, respectively. These generators are subject to the following complete set of relations.
(As before, we omit idempotents from the notation if they can be recovered from the
given data.)

(1) Idempotents.

Ev−1Ew−1 = δv,wEv−1,

Ev[S]−1DSEv−1 = Ev[S]−1DS = DSEv−1,

Ev(S′)−1US′Ev−1 = Ev(S′)−1US′ = US′Ev−1.

(2) Containment. If S′ ⊂ S, then we have

DS′DSEv−1 = 0, USUS′Ev−1 = 0.

(3) Far-commutativity. If d(S, S′) > 1, then

DSDS′Ev−1 = DS′DSEv−1, DSUS′Ev−1 = US′DSEv−1,

USUS′Ev−1 = US′USEv−1.

(4) Adjacency relations. If d(S, S′) = 1 and S′ > S, then

DS′USEv−1 = DS∪S′Ev−1, DSUS′Ev−1 = US′∪SEv−1,

DS′DSEv−1 = USDS′hSEv−1, USUS′Ev−1 = hSUS′DSEv−1.

(5) Overlap relations. If S′ ≥ S with S′ ∩ S = {s} and S′ �⊂ S, then we have

DS′DSEv−1 = U{s}DSDS′\{s}Ev−1, USUS′Ev−1 = US′\{s}USD{s}Ev−1.
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(6) Zigzag.

DSUSEv−1 = USDSgSEv−1 + UTUSDSDTfSEv−1.

Here, if the down-admissible hull S, or the smallest minimal down-admissible
stretch T with T > S does not exist, then the involved symbols are zero by
definition.
The elements of the form

Ew−1US′
il

· · ·US′
i0
DSi0

· · ·DSik
Ev−1, (Basis)

with S′
il

> · · · > S′
i0
, and Si0 < · · · < Sik , form a basis for Ew−1Z𝕜,𝕢Ev−1.

Any word Ew−1XEv−1 in the generators of Z
𝕜,𝕢 can be rewritten as a linear

combination of basis elements from (Basis) using only the above relations.
(Complete)

Proof This is analogous to the ten page proof of the characteristic p case in [52]. The
proof given therein splits into the following steps which one can copy up to some
adjustments detailed below.

(a) The proof starts with [52, Lemma 3.6] which proves (Complete). The argu-
ments given therein work verbatim.

(b) The proof continues with [52, Section 3B] listing properties of the pJW pro-
jectors. The p�-versions of these properties are given above.

(c) Then (Basis) is proven, see [52, Section 3C]. The arguments given therein work
again verbatim.

(d) Then some of the relations are proven in the following order. Relation (1)
is clear, relation (2) is proven in [52, Lemma 3.22], relation (3) is proven
in [52, Lemma 3.23], and the first pair of the relations (4) is proven in [52,
Lemma 3.24]. All of these proofs go through verbatim.

(e) The gist is the simultaneous proof of the first pair of the relations (4), relation
(5), relation (6), and the identification of EndTL𝕜,𝕢(Ev−1), which are [52, Lem-
mas 3.25−3.28]. The arguments given in [52] carry over to the mixed case, but
some subtle changes need to be made as detailed below.

As mentioned above, the proofs given in [52] need some adjustment due to e.g. the
appearance of signs in f and g from (3.10). We record the necessary modification to
the numerical arguments used in [52].

First of all, the scalars λv,S and partial trace formulas for the various JW projectors
now involve fractions of quantum numbers. Moreover, a few signs that have started
their lives as−1 = (−1)p

i
nowhave to replaced by (−1)p

(i) = (−1)� when i > 0. This
concerns the sign of the fraction of quantum numbers in [52, (4-2)] (this replacement
leads to the desired interpretation in terms of g), the sign in q from [52, (4-8)] should
be (−1)p

(s)
, which balances against the sign of λw,R in the following display. Further,

in the Proof, which caveat for [52, Lemma 4.9], the signs (−1)w−u and (−1)w+1−u
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are to be replaced with (−q)w−u and (−q)w+p(i)−u , which is again compatible with f
and g as desired. The vanishing of q ′ from [52, (4-4)] follows using a similar argument
using quantum numbers. Finally, the zigzag relations are established by an inductive
argument based on the case of generation 2, which is proved exactly as outlined in
[52, Lemma 4.8].

��
Note that the non-idempotent generators of Z𝕜,𝕢 are given by down and up mor-

phisms for minimal stretches, a.k.a. singleton sets if we ignore losp (we will write
e.g. Di instead of D{i} for these to simplify notation). By using the relations, e.g.
Theorem 3.21.(4), one obtains down and up morphisms for more general stretches.

Example 3.22 For the complexquantumgroupcase the onlypossible stretch is S = {0},
which is down-admissible unless a0 = 0, where we note that {0} does not exist in this
case (and so T does not exist either). The only relevant relations are the ones in
Theorem 3.21.(1) and

D0D0Ev−1 = 0, U0U0Ev−1 = 0, D0U0Ev−1 =
{
g(a1)U0D0Ev−1 if a0 �= 0;
0 if a0 = 0,

andZ𝕜,𝕢 has connected components corresponding to (scaled) zigzag algebras for each
v < �, and single vertices for v = [a1, 0]∞,�. Thus, we recover [10, Theorem 3.12].

Example 3.23 One can show the useful relation that

DSUSDSEv−1 = 0, Ev−1USDSUS = 0, (3.11)

for any down-admissible stretch S, cf. [52, (3-13)]. In particular, loops square to zero.

The following proposition gives explicit versions of the cellular bases constructed
in [3] and [9]. To state it recall from [33] that the crossingless matching basis of
TLZ[𝕧±1],𝕧 together with (N0,<) and (−)� endows TLZ[𝕧±1],𝕧 with the structure of a
(strictly object adapted) cellular category. (We refer to [55, Definition 2.1] and [27,
Definition 2.4] for the terminology.)

Proposition 3.24 Let B denote the set given by the elements in Theorem 3.21.(Basis).
Moreover, let b̃ and b denote the respective sets obtained from the analogous expres-
sions based on the respective projectors ẽv−1 and eq−1.

(a) The sets b̃ and b give bases for the hom-spaces in Tilt𝕜(𝕧),𝕧, while the set B
gives a basis for the hom-spaces in Tilt𝕜,𝕢.

(b) All of the aforementioned bases are unitriangularly equivalent to the crossin-
gless matching bases (with respect to (N0,<)).

(c) All of the aforementioned bases together with (N0,<) and (−)� endow
Tilt𝕜(𝕧),𝕧, respectively Tilt𝕜,𝕢, with the structure of a (strictly object adapted)
cellular category.
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Proof Theorem 3.21 shows that b and B give bases of the respective hom-spaces,
and the former is unitriangularly equivalent to b̃, by construction. Moreover, b̃ is
unitriangularly equivalent to the crossingless matching basis, and a base change that
is unitriangular with respect to the cell order preserves all structures defining a (strictly
object adapted) cellular category. ��

Finally, we record a useful consequence of Theorem 3.21.(Basis).

Lemma 3.25 Suppose that v,w ∈ N are such that ∇supp(v) ∩ ∇supp(w) = ∅. We
have

HomTilt𝕜,𝕢
(
T(v − 1),T(w − 1)

) ∼= Ew−1Z
𝕜,𝕢Ev−1 = {0}.

In particular, this holds true if the zeroth digit b0 ofw satisfies b0 �= a0 and b0 �= �−a0,
or b0 = a0 �= �

2 but p > 2 and the parity of the sum of the remaining digits of v and
w is different.

Proof The first part of the statement is clear by Theorem 3.21.Basis. The first condi-
tion for when ∇supp(v) ∩ ∇supp(w) = ∅ is immediate from the definitions as the
corresponding p�-adic expansions of the elements of ∇supp(v) and ∇supp(w) have
to agree on the zeroth digit. For the second condition note that b0 = a0 �= �

2 ensures
that every element of∇supp(v) is distinguished from the elements of∇supp(w) by its
zeroth digit or by the parity of the sum of higher digits (here we use that p is odd). ��

Note that the conditions given at the end ofLemma3.25 are in general only sufficient
to ensure ∇supp(v) ∩ ∇supp(w) = ∅.
Remark 3.26 The statement in Lemma 3.25 is known as a Weyl factor overlap cri-
terion in the theory of tilting modules and follows from Ext-vanishing, see e.g. [9,
Section 2B], using the integrality of these statements which follows from [42]. One
can see Lemma 3.25 as an explicit incarnation of these (general) facts about tilting
modules.

3D More partial trace formulas

The next lemma deals with partial traces that do not reach an ancestor. Hence, they
are complementary to part (c) of Proposition 3.19.

Lemma 3.27 Let v = [a j , ..., ak, 0..., 0]p,� with k > 0, and ak �= 0. Suppose that
w = (p − ai )p(i) for some 1 ≤ i < k. Then we have

v−1 w = v+w−1

x−1

x−1

= DSUSEx−1,

where x = (v + w)[S] = [a j , ..., ak − 1,p − 1, ...,p − 1, ai , 0, ..., 0]p,� with S =
{i, ..., k − 1}. The same holds for 0 < w′ = � − a0 < �, where x ′ = (v + w′)[S′] =
[a j , ..., ak − 1,p − 1...,p − 1, a0]p,� and S = {0, ..., k − 1}.
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Proof This follows from projector absorption and shortening where we have used that
S is the minimal down-admissible stretch of v + w. The formula for w′ and x ′ can be
proven verbatim. ��

We can now use the zigzag relation from Theorem 3.21.(6) to simplify DSUSEx−1
further. To use this relation, recall that if the down-admissible hull S, or the smallest
minimal down-admissible stretch T with T > S does not exist, then the involved
symbols are zero by definition.

Proposition 3.28 Retain notation as in Lemma 3.27. We have

v−1 w = g(ak − 1) · USDSEx−1 + f(ak − 1) · UTUSDSDTEx−1.

Moreover, the formula holds for w′ and x ′.

Note that the f-terms in Proposition 3.28 vanish if ak = 1. On the other hand, the
g-terms can be zero only if no admissible hull S exists. Hence, the whole partial trace
vanishes if and only if ak = a j = 1, i.e. if and only if v = p(k) is a prime eve.

We will state more partial trace formulas in Theorem 4.8 later on.

4 Monoidal structure

In this section, we studyTilt𝕜,𝕢 as amonoidal category. In the semisimple and complex
quantum group cases, the results in this section appear throughout the literature. For
example, see the remarks in this section for a small (and somewhat biased) collection
of references.

4A Fusion rules

We start by recalling the well-known fusion rules for tilting modules lying in the
fundamental alcove, in which tilting modules are simple. Note that in the semisimple
case, i.e. when � = ∞, the fundamental alcove is the whole of N0.

Lemma 4.1 For 1 ≤ v,w ≤ � and v + w − 2 < �, we have

T(v − 1) ⊗ T(w − 1) ∼= ⊕min(v,w)
i=1 T(v + w − 2i). (4.1)

Let us write x ′ to denote x, if x is odd, and x − 1, if x is even. For 1 ≤ v,w ≤ � and
v + w − 2 ≥ �, we have

T(v − 1) ⊗ T(w − 1) ∼=⊕�−max(v,w)
i=1 T

([|v − w| − 1 + 2i]p,� − 1
)

⊕ ⊕((v+w−�)′−1)/2
i=0 T

([1, v + w − 1 − � − 2i]p,� − 1
)
,

(4.2)
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where, for later use, we indicate the p�-adic expansions of the occurring terms. (The
first direct sum in (4.2) is empty if max(v,w) = �.)

Proof The first part is classical; the second part is easy using Proposition 3.3. ��

The summands with highest weights in the fundamental alcove appear in the first
direct sum in (4.2). The second direct sum collects all remaining summands. If v + w

and � have the same parity, then each of the summands are of generation one, otherwise
there exists a simple summand T(� − 1). Equation (4.1) is the Clebsch–Gordan rule.

We note the following consequence, used in the proof of Theorem 3.18:

Lemma 4.2 For all v,w ∈ N such that v /∈ Eve, suppose that
(
T(v−1) : �(w−1)

) =
1. Then

(
T(mv − 1) ⊗ T(1)⊗(v−mv) : �(w − 1)

) = 1.

Proof This follows a character argument: we compute theWeyl factors of T(mv −1)⊗
T(1)⊗(v−mv) by repeatedly raising or lowering the corresponding highest weights of
these Weyl factors by ±1 since

�(0) ⊗ �(1) ∼= �(1), �(n) ⊗ �(1) ∼= �(n + 1) ⊕ �(n − 1) if n �= 0. (4.3)

In other words, we multiply the character of T(mv − 1) as it appears in part (a) of
Proposition 3.3 by [2]v−mv

𝕧 . Now observe that any Weyl factor of T(v − 1) is uniquely
obtained from the summand [w]𝕧 that appears in the character of T(mv − 1), and so
the statement follows. ��

Definition 4.3 We define the tail-length tl(v) of v = [a j , ..., a0]p,� to be the maximal
k ∈ N0 such that a0 = � − 1 and ai = p − 1 for all k > i > 0. If a0 �= � − 1, then
tl(v) = 0.

The next fusion rule, which goes beyond the fundamental alcove, involves tensoring
with the monoidal generator T(1).

Proposition 4.4 Let v = [a j , ..., a0]p,�. We have

T(v − 1) ⊗ T(1) ∼= T(v) ⊕
tl(v)⊕
i=0

T(v − 2p(i))⊕xi ,

xi =

⎧⎪⎨
⎪⎩

0 if ai = 0 or i = j and a j = 1;
2 if ai = 1;
1 if ai > 1.

Proof A character computation based on (3.3). ��
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Let us comment on the qualitative differences between the cases found in Proposi-
tion 4.4. For the sake of exposition, we consider � ≥ 4. Focusing on the zeroth digit,
we see:

T(v − 1) ⊗ T(1) ∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T(v) if a0 = 0;
T(v) ⊕ T(v − 2)⊕2 if a0 = 1;
T(v) ⊕ T(v − 2) if a0 ∈ {2, ..., � − 2};
generation drop case if a0 = � − 1.

The generation drop case occurs when the zeroth digit is maximal, in which case
additional direct summands may appear. Recall that T(v − 1) has 2genv Weyl factors.
Under tensoring with T(1) ∼= �(1), most of them produce two new Weyl factors by
(4.3). In total, T(v−1)⊗T(1)will have 2genv+1 or 2genv+1−1Weyl factors. Observe
that we are guaranteed to find a direct summand T(v) in T(v−1)⊗T(1). Nowwe have
three cases depending on whether the generation increases, stays constant or drops,
which are precisely the respective cases a0 = 0, a0 ∈ {1, ..., � − 2} and a0 = � − 1,
as above. In the first case, T(v) exhausts all newly generated Weyl factors, so it is the
only summand that appears. In the second case, it exhausts roughly half of all Weyl
factors, so one expects a further summand to appear. In the generation drop case, we
have genv+1 = genv − tl(v). Hence T(v) only accounts for a small proportion of
the Weyl modules, and we expect several other tilting summands to appear.

Proposition 4.4 immediately implies the following appearance of losp.

Proposition 4.5 Let d ∈ N. If mchar(𝕜,𝕢) = (2, 2), then 𝟙 is never a direct summand
of T(1)⊗2d , whereas if mchar(𝕜,𝕢) = (3, 3), then 𝟙 appears exactly once.

Note the contrast to the semisimple situation, where the multiplicities of 𝟙 in tensor
products T(1)⊗2d are given by the Catalan numbers, which grow exponentially.

Proof Let us prove the (harder) case mchar(𝕜,𝕢) = (3, 3) by induction on d. The
case d = 1 is just T(1)⊗2 ∼= 𝟙 ⊕ T(2). For d > 1, we observe that T(v) ⊗ T(1) for
v > 1 will never contain a summand below 2 by Proposition 4.4. Hence, we are done
since the summand with the second lowest highest weight in T(1)⊗(d−1) is T(2), by
induction. ��
Remark 4.6 Questions about the structure constants of the representation ring have
been studied for the finite group SL2(Fpk ) for a long time. (The connection to our

setup is to embed SL2(Fpk ) into SL2(Fpk ) via fixed points under the Frobenius twist.)
For example, Lemma 4.1 and [23, Lemma 5] is used in [17, Section 3] to find the finite
group analog of fusion rules.

4B Categorified fusion rules for tensoring with the vector representation

The fusion rule from Proposition 4.4 describes the multiplicities of indecomposable
tilting modules in the tensor product T(v − 1) ⊗ T(1). In this section, we consider
the refined problem of describing the morphisms that project onto such summands
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using the Temperley–Lieb calculus. Specifically, in Theorem 4.8 we will decompose
the idempotent Ev−1 ⊗ id1 into a sum of orthogonal, primitive idempotents factoring
through Ev as well as the other Ev−2p(i) predicted by Proposition 4.4. Conversely, such
a decomposition can also be read as a recursive description of the mixed JW projector
Ev in terms of mixed JW projectors of lower order.

For the following definition, we use scalars determined by evaluating the functions
g𝕢 and f𝕢 on digits. On all digits, except for the zeroth one, we use (3.10). For the
zeroth digit, we instead use:

f𝕩(a) =
{

(−1)a+1 · −2
[a]𝕩 if 1 ≤ a ≤ � − 2;

0 if a = 0 or a = � − 1,

g𝕩(a) =
{

−[a+1]𝕩[a]𝕩 if 1 ≤ a ≤ � − 1;
−[2]𝕩 if a = 0.

(4.4)

Armed with this notation, we now define the morphisms that will feature in the
decomposition of Ev−1 ⊗ id1 into orthogonal, primitive idempotents.

Definition 4.7 Let v = [a j , ..., a0]p,� and 0 ≤ i ≤ tl(v). If ai = 1 and i �= j , then we
define

Ai
v :=

v−w

v−2w

v−w

w

w

w

+
v−w

v−2w

v−w

w

w

w

w

, w = p(i).

Here the caps and cups have thickness w = p(i), and are thus admissible. If ai = 1
and i = j , then we declare Ai

v = 0 (the diagram makes no sense in this case since

v < 2w). We will also consider the reflected morphism (Ai
v)

�
along a horizontal line.

For ai > 1 and i �= j , we consider

Bi
v := 1

g𝕢(ai−1) ·
v−w

v−w

w

w

− f𝕢(ai )
g𝕢(ai−1) ·

v−w

v−w

w

w

S(i) , w = p(i).

Here the caps and cups are of thickness aip(i) and are thus admissible. If i = j , then
we use the same formula to define Bi

v , except we omit the second summand.

The categorified fusion rule for T(v − 1) ⊗ T(1) is now given by the following
theorem.

Theorem 4.8 Let v = [a j , ..., a0]p,�.
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(a) We have the following decomposition of Ev−1 ⊗ id1 into a sum of orthogonal,
primitive idempotents.

v−1 = v + ∑tl(v)
i=0 Piv where Piv =

⎧⎪⎨
⎪⎩

0 if ai = 0;
Ai

v + (Ai
v)

�
if ai = 1;

Bi
v if ai > 1.

(4.5)

For ai = 1, both the summands A0
v and (A0

v)
�
are orthogonal, primitive idem-

potents.
(b) Further, we have the following partial trace rules. Let 0 ≤ i ≤ tl(v), ai �= 0,

and w = p(i). For the case i = j , we additionally assume a j > 1. Then we
have

v−w w = g𝕢(ai − 1) · v−2w + f𝕢(ai − 1) · Li
v−2w. (4.6)

(If ai = 1 or i = j , then the second summand is zero. Even though L0
v−2w is

not defined on its own, this is meaningful in both cases because f𝕢(0) = 0 or
v − 2w + 1 is an eve.)

Example 4.9 For v = [4, 1, 6, 6, 6, 10]7,11, we have tl(v) = 4 and

Ev−1 ⊗ id1 = Ev + B0
v + B1

v + B2
v + B3

v + (
A4

v + (A4
v)

�)
.

For v = [1, 1, 1, 1]2,2, we have tl(v) = 4 and

Ev−1 ⊗ id1 = Ev + (
A0

v + (A0
v)

�) + (
A1

v + (A1
v)

�) + (
A2

v + (A2
v)

�)
,

where we note A3
v = (A3

v)
� = 0 since the leading digit is a3 = 1, and P4v = 0 since

a4 = 0. The occurrence of multiple pairs Ai
v + (Ai

v)
�
is an instance of losp. For � �= 2

and p �= 2 we encounter at most one pair of the form Ai
v + (Ai

v)
�
since ai = 1 implies

that tl(v) ≤ i .

Remark 4.10 The fusion rule (1.1) can be used to express classical JW projectors in
terms of JW projectors of lower order. Analogously, Theorem 4.8 gives a recursion of
p�JW projectors in terms of p�JW projectors of lower order. This is in contrast to the
defining description in (3.7), which uses classical JW projectors.

Remark 4.11 In the complex quantum group case and for v ≤ 2� − 2, the fusion rule
(4.5) can be deduced from [12, Lemma 3.2]. The three cases of their rule reflect the
trichotomy of a0 = 0, a0 = 1, and a0 > 1.
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Remark 4.12 We do not know a good partial trace formula of type (4.6) in the case
ai = 1, not even for i = 0 and w = 1. (One can write down a formula using (4.5),
of course.) We expect this formula to be more complicated, because it deals with a
generation increase (on comparison with the increased complexity of the fusion rule
when the generation drops).

Proof of Theorem 4.8 The proof proceeds by induction on v. To do so, we split the
statement of the theorem into the following two types of assertions.

F(v) denotes: The categorified fusion rules are given by (4.5) for v.
PT(v) denotes: The partial trace rules (4.6) hold for v.

The former makes sense for all v ≥ 1 and the latter for all v ≥ 2. We will also write
F(< v) to express the assertion that F(w) holds for all 1 ≤ w < v, and similarly for
PT(< v).

The base cases for the inductive argument are given by F(1), which is immediate.
The induction stepwill be accomplished by two arguments that we separate into two

distinct statements below. Lemma 4.13 shows the implication F(< v) �⇒ PT(v)

for all v ≥ 2. Lemma 4.14 shows the implication PT(v) �⇒ F(v) for all v ≥ 2.
Induction then shows that both assertions hold for all relevant values of v. ��

We now turn to the two lemmas that form the heart of the proof of Theorem 4.8.

Lemma 4.13 We have F(< v) �⇒ PT(v) for all v ≥ 2.

Proof We first consider i = 0, where we have w = 1 and assume a0 �= 0, i.e. we aim
to prove

v−1 = g𝕢(a0 − 1) · v−2 + f𝕢(a0 − 1) · L0
v−2. (4.7)

To verify this, we will use the fusion rule for v − 1 in reverse to expand the projector
Ev−1. If a0 = 1, then we have Ev−1 = Ev−2 ⊗ id1. The claimed statement follows
since the circle value is −[2]𝕢 = g𝕢(0) and the second term is zero by definition. If
� = 2, then we are done. Thus, we suppose � > 2 from now on.

We consider the case a0 = 2, where the fusion rule involves A0
v−1 + (A0

v−1)
�
:

v−1 = v−2 −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v−2

v−3

v−2

+

v−2

v−3

v−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v−2

v−3

v−2

+

v−2

v−3

v−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The first term in each of the brackets is L0
v−2; the second is (L0

v−2)
2, which is zero by

(3.11). Since g𝕢(1) = −[2]𝕢 and f𝕢(1) = −2, the claim follows for a0 = 2.

Next, we consider a0 ∈ {3, ..., � − 1}. Here we use −[2]𝕢 + [a0−2]𝕢
[a0−1]𝕢 = − [a0]𝕢

[a0−1]𝕢 to
get

v−1 = v−2 −

⎛
⎜⎜⎜⎝

1
g𝕢(a0−2) ·

v−2

v−2

− f𝕢(a0−1)
g𝕢(a0−2) ·

v−2

v−2

S0

⎞
⎟⎟⎟⎠

= g𝕢(a0 − 1) · v−2 + f𝕢(a0−1)
g𝕢(a0−2) ·

v−2

v−2

S0 , (4.8)

and it remains to compute the final term. To this end, we will use the fusion rule for
v−2a0+2 on themini box (using induction), which corresponds toEv−2a0+1. The last
digit of its relevant p�-adic expansion is an element of {3, ..., �−1}, namely �−a0+2.
We claim that fusion results in:

v−2

v−2

S0 =
v−2

v−2

+ 1
g𝕢(�−a0+1)L

0
v−2 + lower order terms = 1

g𝕢(�−a0+1)L
0
v−2.

(4.9)

Here, we have three things to check. To start, the first term in themiddle is zero because
T(v−2) andT(v−2a0+2) do not share any commonWeyl factors. Second, the fusion
rule includes a term of the form B0

v−2a0+2, which is typically a sum of two diagrams
(although the second may not appear in some cases). The first diagram combines with
the present caps and cups to form 1

g𝕢(�−a0+1)L
0
v−2. The second diagram (if it is present

at all) vanishes when it is sandwiched because of the containment relation U0U0 = 0.
Third, one checks that all possible terms of even lower order arising from the fusion
rule become zero when sandwiched. Such terms only arise if tl(v − 2a0 + 2) > 0, i.e.
if a0 = 3. This finishes the verification of (4.9), which we now use to rewrite (4.8).
The coefficient of L0

v−2 is

f𝕢(a0−1)
g𝕢(a0−2) · 1

g𝕢(�−a0+1) = f𝕢(a0−1)
g𝕢(a0−2) · g𝕢(a0 − 2) = f𝕢(a0 − 1),

where we have simplified g𝕢(� − a0 + 1)−1 = g𝕢(a0 − 2) using [�]𝕢 = 0 (this does
not hold in the semisimple case). Thus, we have verified the partial trace claim (4.7).
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Finally, we consider the case 0 < i ≤ tl(v), which, surprisingly, is much easier to
prove. Recall that we assume ai �= 0 and aim to prove:

v−w w = g𝕢(ai − 1) · v−2w + f𝕢(ai − 1) · Li
v−2w.

To verify this claim, we calculate that v−w+1 = [a j , ..., ai , 0, ..., 0]p,�. In particular,
we can use (a slight generalization of) Proposition 3.28 to trace off w − 1 = p(i) − 1
strands and get

v−w w − 1 = g𝕢(ai − 1) ·
x−1

x−1

+ f𝕢(ai − 1) ·
x−1

x−1

,

where x = [a j , ..., ai − 1, 0, ..., 1]p,� (if i = j , the f-term vanishes but the g-term
does not because we assume a j > 1). Now we use shortening to compute the full
partial trace as:

v−w w = g𝕢(ai − 1) ·
x−1

x−1

+ f𝕢(ai − 1) ·
x−1

x−1

= g𝕢(ai − 1) ·

+f𝕢(ai − 1) · ,

which we pull straight to get the claimed partial trace formula. ��
Lemma 4.14 We have PT(v) �⇒ F(v) for all v ≥ 2.

Proof We start with a few observations. First, Proposition 4.4 ensures that we know
how many orthogonal, primitive idempotents to expect in the categorified fusion rule.
Second, by the same arguments as in the proof of Theorem 3.18 (however, it is easier in
this case since we only need to tensor with T(1)) the idempotents projecting onto iso-
typic components are uniquely determined by the property of absorbing Ev−1 ⊗ id1.
These isotypic idempotents are automatically orthogonal because a straightforward
computation, using Proposition 3.3 and Lemma 4.1, shows that the isotypic compo-
nents share no Weyl factors, which implies that there are no non-zero morphisms
between them by Lemma 3.25.

Combining these observations, it remains to show that the morphisms Bi
v , A

i
v ,

(Ai
v)

�
from Definition 4.7 satisfy the absorption property and are indeed idempotents

whenever they appear in (4.5). Finally, we also check thatAi
v and (Ai

v)
�
are orthogonal.

Absorption. Let us first check that all of the candidate idempotents appearing in

Theorem 4.8 absorb Ev−1 ⊗ id1. For Ev , B0
v , A

0
v , and (A0

v)
�
, this follows immediately
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from the absorption properties of the p�JW projectors – see Proposition 3.19.(a). For
the cases with i > 0, we use the shortening property from Proposition 3.19.(b).

We will now verify the idempotency of the candidate expressions on a case-by-case
basis.

Idempotency (and orthogonality) of Ai
v and (Ai

v)
�
. We start with the term Ai

v

(which also covers the symmetric case (Ai
v)

�
), which is defined as the sum of the two

diagrams

Ai
v = X + Y, where X =

v−w

v−2w

v−w

w

w

w

and Y =
v−w

v−2w

v−w

w

w

w

w

,

in which w = p(i). Next, we compute the pairwise products of X, X�, and Y. First,
we use shortening and absorption of mixed JW projectors to compute X2 = X and
XY = Y.

Symmetrically, we also have (X�)2 = X� and Y(X�) = Y. Now we claim that all
other products are zero, namely (X�)X = X(X�) = YX = (X�)Y = Y2 = 0. This
can be seen as follows. Up to symmetry, these statements all follow from

v−2w

v−w

w
w

= 0 ⇔
v−2w

v−w

w

w

=
v−w

v−w

w

w

= Ev−wUiDiUi = 0.

The equivalence is given by bending, as illustrated. On the right-hand side we undid
shortening and translated the caps and cups into morphisms Ui and Di respectively
(this is possible since ai = 1), and then applied (3.11). Taking all of these together
shows that

(X + Y)2 = X + Y, (X� + Y)2 = X� + Y,

(X + Y)(X� + Y) = (X� + Y)(X + Y) = 0,

which expresses Ai
v and (Ai

v)
�
as orthogonal idempotents.

Idempotency of Bi
v . Next we check that the terms Bi

v are idempotents. Recall that
Bi

v for i �= j is defined as a linear combination of the following two morphisms

X =
v−w

v−w

w

w

=
v−w

v−w

w

w

and Y =
v−w

v−w

w

w

Si =
v−w

v−w

w

w

Si ,
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where we also write w = p(i). For i = j , we use the same definition for X, but set
Y = 0. To compute the various products of these elements, wewill use the partial trace
rule (4.6) for Ev−w, which holds by assumption PT(v). Since we know from (3.11)
that the loop Li

v−2w is annihilated by postcomposing with another down morphism
DiEv−2w, we also obtain from (4.7) that

v−w w = g𝕢(ai − 1) · v−2w and v−w w = g𝕢(ai − 1) · v−2w .

Thus a diagrammatic calculation shows

X2 = g𝕢(ai − 1)X + f𝕢(ai − 1)Y, XY = g𝕢(ai − 1)Y and Y2 = 0.

The latter holds since (Li
v−2w)2 = 0, which follows from (3.11). (Observe that the

above relations also hold in the special case i = j where Y = 0.) These equations
verify that Bi

v is an idempotent. ��
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