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Abstract
In this paper, we discuss the properties of the generating functions of spin Hurwitz
numbers. In particular, for spin Hurwitz numbers with arbitrary ramification profiles,
we construct the weighed sums which are given by Orlov’s hypergeometric solutions
of the 2-component BKP hierarchy. We derive the closed algebraic formulas for the
correlation functions associated with these tau-functions, and under reasonable ana-
lytical assumptions we prove the loop equations (the blobbed topological recursion).
Finally, we prove a version of topological recursion for the spin Hurwitz numbers with
the spin completed cycles (a generalized version of the Giacchetto–Kramer–Lewański
conjecture).
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1 Introduction

1.1 Topological recursion and integrability

It is well known that the Chekhov–Eynard–Orantin topological recursion [10] is
closely related to integrability. However, the details of a general relationship between
the two phenomena remain unclear. Although topological recursion is believed to be a
universal property for a huge class of enumerative geometry and physics problems, the
proofs of its validity are often model-dependent and technically involved, and at this
point, despite the lack of understanding of the general relationship, various universal
properties of integrability often help to prove topological recursion.

One of the most general applications of integrability to topological recursion is
given by the weighted Hurwitz numbers. The generating functions of the weighted
Hurwitz numbers are hypergeometric tau-functions of the 2-component KP (2-KP)
hierarchy. The study of topological recursion for the general hypergeometric solutions
of the 2-KP hierarchy was initiated in [1, 2] (subsuming a huge list of particular exam-
ples known before). Many elements of the general construction including quantum
and classical spectral curves were properly identified there. However, the topolog-
ical recursion was proved only for an infinite-dimensional family of solutions with
polynomial weight functions and finite sets of the second times of the 2-KP hierar-
chy. Topological recursion for the much more general families of the hypergeometric
solutions of the 2-KP hierarchy was proved in [4, 5]. The proof there is based on
the free field description of the KP hierarchy, more specifically, on the free fermion
construction and the boson-fermion correspondence.
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These results indicate that the same line of reasoning can be applied to any inte-
grable hierarchy with free fermion description. In this paper, we describe topological
recursion for the hypergeometric solutions of the 2-component BKP (2-BKP) hier-
archy. A well-known neutral fermion description of the BKP hierarchy allows us to
follow the general approach for the 2-KP hierarchy, derived in [4, 5]. Many steps can
be repeated without essential changes, but some specifics of the 2-BKP case (mostly
important, the built-in oddness of the parametrizations) require extra analysis and lead
to new phenomena.We derive the general closed algebraic formulas for the correlation
functions in the 2-BKP case and prove the blobbed topological recursion [8], that is,
the linear and quadratic loop equations.

1.2 BKP and spin Hurwitz theory

The BKP hierarchy is believed to govern the spin Hurwitz numbers in essentially the
same way as the KP hierarchy governs the ordinary Hurwitz numbers [19]. However,
the important construction of the weighted spin Hurwitz numbers (in the sense of
[13]) is still unavailable in the literature. In this paper we show how to construct
integrable generating functions of spin Hurwitz numbers for arbitrary ramification
profiles and number of the branch points. These generating functions are Orlov’s
hypergeometric tau-functions of the 2-component BKPhierarchy [20], and theweights
associated with the ramifications serve as parameters. It is not clear at the moment
how to reduce naturally the number of parameters and to define the direct analogs
of weighted Hurwitz numbers in the spin case. To this end, we suggest two possible
candidates for the elementary weight functions.

It is well known that the tau-functions of the KP and BKP hierarchies are related
to each other by a simple quadratic relation [9]. Following Orlov [20], we describe
this relation for the hypergeometric tau-functions. Namely, for any hypergeometric
tau-function of the 2-BKP hierarchy we find the corresponding tau-function of the
2-KP hierarchy. It is easy to see that such KP tau-function is not unique. This relation
between tau-functions should lead to the non-trivial relations between the spin and
ordinary Hurwitz numbers.

1.3 Giacchetto–Kramer–Lewański conjecture and its generalization

Additional input andmotivation to study the correlation functions of the corresponding
hypergeometric 2-BKP tau-functions comes froma recentworkofGiacchetto,Kramer,
and Lewański [12]. They study in detail the theory of so-called spin Hurwitz numbers
with completed cycles, both single and double, whose elements occur naturally in a
number of other works in relation to computation of the volumes of strata in themoduli
spaces of holomorphic differentials [11] andGromov–Witten theory ofKähler surfaces
[17, Introduction].

Remarkably, Giacchetto, Kramer, and Lewański propose a conjectural statement on
Z2-equivariant version of topological recursion for the correlation differentials of these
numbers, and they prove that the statement on topological recursion is equivalent to an
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ELSV-type formula for spin Hurwitz numbers with completed cycles that expresses
these numbers in terms of the Chiodo classes twisted by the Witten 2-spin class.

Using the formulas for the correlation functions and loop equations we prove a
natural generalization of the Giacchetto–Kramer–Lewański conjecture, that is, a Z2-
equivariant version of topological recursion for the double spin Hurwitz numbers with
arbitrary finite linear combinations of the spin completed cycles.

Let us remark that while with the motivation coming from [12] we focus on this
particular family of spin Hurwitz numbers, we expect that our modification of the
methods of [4, 5] should immediately work for other families of the generating func-
tions of the spin Hurwitz numbers, analogous to the families investigated in [4]. We
also expect that the integrable approach to the topological recursion in the BKP case
should be as universal as for the KP case. Moreover, without significant modifications,
it should also work for other integrable hierarchies described by free fermions.

1.4 Notation

A partition λ is strict, if λ1 > λ2 > λ3 > · · · > λ�(λ) > λ�(λ)+1 = 0, where �(λ) is
the length of the partition. We denote the set of strict partitions, including the empty
one, by SP. A partition λ is odd if all parts in λ are odd. We denote the set of odd
partitions, including the empty one, by OP. For a partition λ by λ(k) we denote the
number of parts equal to k.

1.5 Organization of the paper

In Sect. 2 we recall the neutral fermion description of the BKP hierarchy. In Sect. 3 we
explain how to construct the generating functions of the spin Hurwitz numbers that
solve the 2-BKP hierarchy and how these tau-functions can be related to the generating
functions of the ordinary Hurwitz numbers. Section4 is devoted to the correlation
functions for the general hypergeometric tau-functions of the 2-BKP hierarchy. In
Sect. 5 we prove that these correlation functions, under mild analytic assumptions,
satisfy linear and quadratic loop equations. In Sect. 6 we derive explicit expressions
for the n-point correlation functions. In Sect. 7 we use these expressions to prove the
topological recursion for the spin Hurwitz numbers with the spin completed cycles.

2 Neutral fermions and boson-fermion correspondence

In this section we remind the reader the neutral fermion formalism and boson-fermion
correspondence in the framework of the BKP hierarchy. More detailed descriptions
can be found in [9, 20–22].
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2.1 Neutral fermions

Let φk , k ∈ Z, be the neutral free fermions satisfying the canonical anticommutation
relations

{φk, φm} = (−1)kδk+m,0. (2.1)

Note that φ2
0 = 1/2. These relations define the Clifford algebra as an associative

algebra.
For the vacuum vector

∣
∣0
〉

and the co-vacuum
〈

0
∣
∣, satisfying

φm
∣
∣0
〉 = 0,

〈

0
∣
∣φ−m = 0, m < 0 (2.2)

the elements φk1φk2 . . . φkm

∣
∣0
〉

with k1 > k2 > · · · > km ≥ 0 form a basis of the
neutral fermion Fock space FB ,

FB = span
{

φk1φk2 . . . φkm

∣
∣0
〉 | k1 > k2 > · · · > km ≥ 0

}

, (2.3)

and its dual

F∗
B = span

{〈

0
∣
∣φkm . . . φk2φk1 | k1 < k2 < · · · < km ≤ 0

}

. (2.4)

The space FB splits into two subspaces

FB = F0
B ⊕ F1

B, (2.5)

where F0
B and F1

B denote the subspaces with even and odd numbers of generators φk ,
respectively. The same decomposition exists for F∗

B .
There is a nondegenerate bilinear pairing FB × F∗

B → C, and the pairing of
〈U | ∈ F∗

B and
∣
∣V
〉 ∈ FB is denoted by

〈

U |V 〉 with
〈

0|0〉 = 1. (2.6)

The vacuum expectation values of an element a of the Clifford algebra is a pairing of
〈

0
∣
∣ and a

∣
∣0
〉

, which is denoted by
〈

0
∣
∣a
∣
∣0
〉

. It is uniquely defined by the anticommutation
relations (2.1), property (2.2), and the following relation:

〈

0
∣
∣φ0
∣
∣0
〉 = 0. (2.7)

In particular, if a is an odd element of the Clifford algebra, then
〈

0
∣
∣a
∣
∣0
〉 = 0. It is easy

to see that the bases in (2.3) and (2.4) are orthogonal. Let us focus on the spaceF0
B and

its dual. The basis can be labelled by strict partitions λ ∈ SP in the following way:

∣
∣λ
〉 =
{

φλ1φλ2 . . . φλ�(λ)

∣
∣0
〉

for �(λ) = 0 mod 2,√
2φλ1φλ2 . . . φλ�(λ)

φ0
∣
∣0
〉

for �(λ) = 1 mod 2,
(2.8)
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and similarly for F0∗
B . From the anticommutation relations we have

〈

λ|μ〉 = (−1)|λ|δλ,μ. (2.9)

It is easy to see that

〈

0
∣
∣φkφm

∣
∣0
〉 = δk+m,0H [m], (2.10)

where

H [m] =

⎧

⎪⎪⎨

⎪⎪⎩

0 for m < 0,
1

2
for m = 0,

(−1)m for m > 0.

(2.11)

Bilinear combinations of neutral fermions φkφm satisfy the commutation relations
of the Lie algebra B∞. Let

(

Ei, j
)

k,l = δi,kδ j,l be the standard basis of the matrix units
{

Ei, j
∣
∣i, j ∈ Z

}

. Then φkφ−m corresponds [9] to

Fk,m = (−1)mEk,m − (−1)k E−m,−k (2.12)

with the commutation relations

[

Fa,b, Fc,d
]

= (−1)bδb,cFa,d − (−1)aδa+c,0F−b,d + (−1)bδb+d,0Fc,−a − (−1)aδa,d Fc,b.

(2.13)

For the bilinear combinations of neutral fermions we introduce the normal ordering
by

:φkφm := φkφm − 〈0∣∣φkφm
∣
∣0
〉

. (2.14)

It is skewsymmetric

:φkφm := − :φmφk :, (2.15)

in particular, :φkφk := 0. The normal ordered quadratic combinations of neutral
fermions satisfy the commutation relations of a central extension of the algebra B∞:

[ :φaφb:, :φcφd :] = (−1)bδb+c,0 :φaφd : −(−1)aδa+c,0 :φbφd :
+ (−1)bδb+d,0 :φcφa : −(−)aδa+d,0 :φcφb:
+ (δc,bδa,d − δa−c,0δb−d,0)((−1)aH [b] − (−1)bH [a]), (2.16)
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where H [a] is given by (2.11). The operator :φkφ−m : corresponds to the projective
representation of the Lie algebra B∞, and will also be denoted by F̂k,m .

Let us consider the generating function

φ(z) =
∑

k∈Z

φk z
k . (2.17)

It satisfies the anti-commutation relation

{φ(z), φ(w)} = δ(z + w). (2.18)

Here we introduce the delta-function

δ(z − w) =
∑

k∈Z

( z

w

)k
. (2.19)

It satisfies

δ(z − w) f (z) = δ(z − w) f (w) (2.20)

for any formal series f (z) ∈ C[[z, z−1]] and can be represented as

2δ(z + w) = ι|z|>|w|
z − w

z + w
− ι|w|>|z|

z − w

w + z
, (2.21)

where ι|z|>|w| is the operation of Laurent series expansion in the region |z| > |w|.
Quadratic combinations of the generating functions φ(z) generate a Lie algebra

with the following commutation relations

[φ1(z1)φ(w1), φ(z2)φ(w2)] = δ(w1 + z2)φ(z1)φ(w2) − δ(z1 + z2)φ(w1)φ(w2)

+ δ(w1 + w2)φ(z2)φ(z1) − δ(z1 + w2)φ(z2)φ(w1).

(2.22)

For the normal ordered operator we have

φ(z)φ(w) =:φ(z)φ(w): +1

2
ι|z|>|w|

z − w

z + w
. (2.23)

2.2 Vertex operators

For k ∈ Zodd we introduce bosonic operators

Jk = 1

2

∑

m∈Z

(−1)m+1 :φmφ−m−k : (2.24)
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satisfying a commutation relation of the Heisenberg algebra

[Jk, Jm] = k

2
δk+m,0. (2.25)

From (2.2) we have:

Jm
∣
∣0
〉 = 0,

〈

0
∣
∣J−m = 0, m > 0. (2.26)

Let us consider the vertex operator for the BKP hierarchy introduced in [9],

V̂ (1)
B (z) = exp

⎛

⎜
⎝

∑

k∈Z
+
odd

zktk

⎞

⎟
⎠ exp

⎛

⎜
⎝−2

∑

k∈Z
+
odd

1

kzk
∂

∂tk

⎞

⎟
⎠ . (2.27)

These operators satisfy the anticommutation relation

{

V̂ (1)
B (z), V̂ (1)

B (w)
}

= 2δ(z + w) (2.28)

similar to the relation (2.18).
It is convenient to introduce generating functions of the bosonic operators:

J+(t) =
∑

k∈Z
+
odd

tk Jk, J−(s) =
∑

k∈Z
+
odd

sk J−k . (2.29)

Then one has

V̂ (1)
B (z)

〈

0
∣
∣eJ+(t) = 2

〈

0
∣
∣φ0e

J+(t)φ(z),

V̂ (1)
B (z)

〈

0
∣
∣φ0e

J+(t) = 〈0∣∣eJ+(t)φ(z).
(2.30)

Let us consider a bilinear combination of the vertex operators

ŶB(z, w) = 1

2
V̂ (1)
B (z)V̂ (1)

B (w). (2.31)

Using the anti-commutation relation (2.28) it is easy to show that the vertex operators
ŶB(z, w) satisfy a commutation relation equivalent to the relation (2.22) for the bilinear
combinations φ(z)φ(w):

[

ŶB(z1, w1), ŶB(z2, w2)
] = δ(w1 + z2)ŶB(z1, w2) − δ(z1 + z2)ŶB(w1, w2)

+ δ(w1 + w2)ŶB(z2, z1) − δ(z1 + w2)ŶB(z2, w1).

(2.32)



Elements of spin Hurwitz theory: closed algebraic... Page 9 of 44 26

It is also convenient to consider its regularized version, corresponding to
:φ(z)φ(−w):

V̂ (2)
B (z, w) = ŶB(z, w) − 1

2
ι|z|>|w|

z − w

z + w
, (2.33)

where for the second termwe assume the series expansion in |z| > |w|. This expression
has no pole at z = −w, moreover, it is antisymmetric with respect to the permutation
of z and w. These vertex operators can be represented as

V̂ (2)
B (z, w) = 1

2

z − w

z + w

(

e
∑

k∈Z
+
odd

tk (zk+wk )
e
−2
∑

k∈Z
+
odd

(
1

kzk
+ 1

kwk

)
∂

∂tk − 1

)

. (2.34)

From (2.30) it follows that

V̂ (2)
B (z, w)

〈

0
∣
∣eJ+(t) = 〈0∣∣eJ+(t) :φ(z)φ(w): . (2.35)

2.3 Boson-fermion correspondence

For the neutral fermions the boson-fermion correspondence describes an isomorphism
[22]

σ i
B : F i

B � B(i) = C[[t1, t3, t5 . . . ]] (2.36)

for i = 0, 1. Here

σ i
B(
∣
∣i
〉

) = 1, (2.37)

where we introduce
∣
∣1
〉 = √

2φ0
∣
∣0
〉

, and for both i = 0, 1 we have

σ i
B J−k(σ

i
B)−1 = k

2
tk, σ i

B Jk(σ
i
B)−1 = ∂

∂tk
(2.38)

for k ∈ Z
+
odd. The boson-fermion correspondence is given by

σ i
B(
∣
∣a
〉

) =
{〈

1
∣
∣eJ+(t)∣∣a

〉

for
∣
∣a
〉 ∈ F1

B,
〈

0
∣
∣eJ+(t)∣∣a

〉

for
∣
∣a
〉 ∈ F0

B,
(2.39)

where
〈

1
∣
∣ = √

2
〈

0
∣
∣φ0. The boson-fermion correspondence between two different

representations of the central extension of the B∞ algebra is given by

σ i
B :φ(z)φ(w): (σ i

B)−1 = V̂ (2)
B (z, w). (2.40)

Below we will work only with F0
B component of the fermionic Fock space and its

bosonic counterpart.
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Relation between the Schur Q-functions and the BKP hierarchy, in particular, is
described by the following result of You:

Theorem 2.1 ([22]) For the states (2.8) the boson-fermion correspondence yields

σ 0
B(
∣
∣λ
〉

) = 2−�(λ)/2Qλ(t/2). (2.41)

Here Qλ are the Schur Q-functions (see Section III.8 of [18] for definition and details).
It was shown by Date, Jimbo, Kashiwara, and Miwa [9] that for any group element

of the central extension of the algebra B∞,

G = exp

⎛

⎝
∑

k,m∈Z

akm :φkφm :
⎞

⎠ , (2.42)

the bosonic image of the fermionic state GeJ−(s)
∣
∣0
〉

solves the 2-BKP hierarchy.
Namely,

τ(t, s) = 〈0∣∣eJ+(t)GeJ−(s)∣∣0
〉

(2.43)

is a tau-function of 2-BKP hierarchy.

3 Hypergeometric tau-functions and weighted spin Hurwitz numbers

In this section we suggest a way to construct the weighed sums of the spin Hurwitz
numbers which solve the 2-BKP hierarchy. There is a certain ambiguity associated to
the choice of the weights, and we discuss two natural candidates for the role of the
elementary weight functions.

3.1 Hypergeometric tau-functions of 2-BKP hierarchy

FollowingOrlov [20] we consider a set of parameters Tn , n ∈ Z, such that Tn = −T−n .
In particular, T0 = 0. Then

∑

k∈Z

(−1)kTk :φkφ−k := 2
∑

k∈Z+
(−1)kTk :φkφ−k := 2

∑

k∈Z+
(−1)kTk F̂k,k . (3.1)

Consider the group element

D = exp

(
∑

k∈Z

(−1)kTk :φkφ−k :
)

, (3.2)

then

τ(t, s) = 〈0∣∣eJ+(t)DeJ−(s)∣∣0
〉

(3.3)
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is a tau-function of the 2-component BKP hierarchy symmetric in the variables tk and
sk . From Theorem 2.1 it follows that this tau-function has an equivalent description
[20]

τ(t, s) =
∑

λ∈SP
2−�(λ)e2Tλ1+···+2Tλ�(λ) Qλ(t/2)Qλ(s/2). (3.4)

Here SP is the set of all strict partitions including the empty one. These are the
hypergeometric tau-functions of the 2-BKP hierarchy.

Consider T (x), an odd function such that T (k) = Tk for k ∈ Z. For future applica-
tions it is natural to introduce the topological expansion parameter �. Consider a new
even function ψ(z) such that

ψ(�(z + 1/2)) = T (z + 1) − T (z). (3.5)

We assume that ψ(z) is itself a series in �2, ψ(�2, z) = ∑∞
d=0 �2 gψ2d(z), where

ψ2d(z) is an even formal power series in z, therefore Tk also depend on �. The constant
term of this series, ψ0 = ψ(0, z), is also denoted by ψ = ψ(z).

Remark 3.1 Our definition of the parameters Tk corresponds to the doubled parameters
of [20] with the inverse sign.

3.2 Spin Hurwitz numbers

Spin Hurwitz numbers, which count the ramified coverings with sign coming from
spin structure, were introduces by Eskin, Okounkov, and Pandharipande [11]. Using
TQFT, Gunningham [14] found a combinatorial expression for all genera spin Hurwitz
numbers, which uses the representation theory of Sergeev’s group. In this section we
recall this combinatorial expression. We address the reader to [11, 12, 14, 16, 17, 19]
for the basic definitions and properties. Different authors use different conventions,
our notation is consistent with that of [12].

For any set of variables or parameters rk and any partition μ let us denote

rμ =
�(μ)
∏

j=1

rμ j . (3.6)

Let OP(d) and SP(d) be the sets of odd partitions and strict partitions of the size d
respectively. Then the Schur Q-functions can be expanded as

Qλ = 2
�(λ)−δ(λ)

2
∑

μ∈OP(|λ|)

ζ λ
μ

zμ
pμ (3.7)

with the inverse relation

pμ = 2−�(μ)
∑

λ∈SP(|μ|)
2− �(λ)+δ(λ)

2 ζ λ
μQλ. (3.8)
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Here pk = ktk are the independent variables,

δ(μ) =
{

0, for even �(μ)

1, for odd �(μ)
(3.9)

and zμ =∏k μ(k)!kμ(k).
The characters of the Sergeev group ζ

ρ
μ satisfy the orthogonality relations

∑

μ∈OP(d)

2−�(μ)−δ(σ )
ζ

ρ
μζ σ

μ

zμ
= δρ,σ (3.10)

and

∑

λ∈SP(d)

2−�(σ )−δ(λ)
ζ λ
σ ζ λ

ρ

zσ
= δρ,σ . (3.11)

Let us also introduce the central characters

f λ
μ = 2dd!

2�(μ)zμ dim V λ
ζ λ
μ. (3.12)

Here

dim V λ = ζ λ
1d = 2

δ(λ)−�(λ)
2 d!Qλ

∣
∣
∣
pk=δk,1

(3.13)

is the dimension of the irreducible supermodule associated with the strict partition λ.
Let us consider the disconnected spin Hurwitz numbers for the CP1 with the ram-

ifications at k branch points given by odd partitions μ1, . . . , μk with |μ j | = d. The
Gunningham formula [14, 16] describes them in terms of the central characters of the
Sergeev group:

H θ
d (μ1, . . . , μk) = 2−d−∑k

i=1 �∗(μi )/2
∑

λ∈SP(d)

2−δ(λ)

(
dim V λ

d!
)2 k
∏

j=1

f λ
μ j

, (3.14)

where �∗(μ) = |μ| − �(μ) is the colength of the partition μ.

3.3 From spin Hurwitz numbers to 2-BKP hierarchy

Let us single out two of the k partitions and denote them by μ and ν. Using Eq. (3.12)
we can rewrite the spin Hurwitz numbers (3.14) as follows
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H θ
d (μ1, . . . , μk−2, μ, ν) = 2− 1

2 (�(μ)+�(ν)+∑k−2
i=1 �∗(μi ))

∑

λ∈SP(d)

2−δ(λ)
ζ λ
μ

zμ

ζλ
ν

zν

k−2
∏

j=1

f λ
μ j

.

(3.15)

Let us introduce k − 2 families of weights r ( j)
m for 1 ≤ j ≤ k − 2, m ∈ Z+,

associated with k − 2 branch points. Then for the spin Hurwitz numbers (3.15) we
introduce their weighted combinations

H θ
d,r(ν, μ) =

∑

μ1,...,μk−2∈OP(d)

H θ
d (μ1, . . . , μk−2, μ, ν)Rμ1(r

(1)) . . . Rμk−2(r
(k−2)),

(3.16)

where

Rμ(r) = �
−�∗(μ)2−�(μ)/2

∑

σ∈SP(d)

dim V σ

d!2d/2 2−δ(σ )ζ σ
μ rσ . (3.17)

Let us stress that the trivial ramifications μ j = 1d are allowed in the summation.
For the empty partition we put R∅ = 1. If we compare this expression with the
decomposition of the functions pμ(Qσ ) in the basis of Schur Q-functions (3.8), then
using Eq. (3.13) we get

Rμ(r) = �
−�∗(μ)2−�∗(μ)/2 pμ(Qσ (δk,1)rσ ). (3.18)

In particular,

R[1](r) = 1

2
Q[1](δk,1)r1 = r1,

R[1,1](r) = 1

2
Q[2](δk,1)r2 = r2,

R[3](r) = (2�
2)

−1
(
1

2
Q[3](δk,1)r3 − 1

2
Q[2,1](δk,1)r2r1

)

= 1

3�2
(r3 − r2r1),

R[1,1,1](r) = 1

2
Q[3](δk,1)r3 + 1

4
Q[2,1](δk,1)r2r1 = 1

3
(2r3 + r2r1).

(3.19)

Definition (3.17) is justified by the following observation: from the orthogonality
relation (3.10) it follows that

∑

μ∈OP(d)

2−�∗(μ)/2 f λ
μ Rμ(r) = rλ. (3.20)
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Therefore

H θ
d,r(ν, μ) = 2− �(μ)+�(ν)

2
∑

λ∈SP(d)

2−δ(λ)
ζ λ
μ

zμ

ζλ
ν

zν

k−2
∏

j=1

r ( j)
λ . (3.21)

By the Riemann–Hurwitz formula

2 − 2g = �(μ) + �(ν) −
k−2
∑

i=1

�∗(μi ), (3.22)

where g is the genus of the covering curve. Consider the following generating function

τ(t, s) =
∞
∑

d=0

∑

μ,ν∈OP(d)

�
2g−2+�(μ)+�(ν)2− �(μ)+�(ν)

2 H θ
d,r(ν, μ)

�(μ)
∏

j=1

μ j

�(ν)
∏

j=1

ν j tμsν.

(3.23)

Then for any choice of parameters r ( j)
k from (3.21) we have

Theorem 3.1 The generating function τ(t, s) is a hypergeometric tau-function of the
2-BKP hierarchy

τ(t, s) =
∑

λ∈SP

Qλ(t/2)Qλ(s/2)
2�(μ)

k−2
∏

j=1

r ( j)
λ . (3.24)

This tau-function can be identified with (3.4) if one puts

Tm = 1

2

k−2
∑

j=1

log r ( j)
m . (3.25)

Similarly to the case of ordinary Hurwitz numbers, we can consider the limit when
the maximal number of the branch points k tends to infinity.

3.4 Weighted spin Hurwitz numbers

In the previous section we have constructed the weighted sums of the spin Hurwitz
numbers that lead to the tau-functions of the 2-BKP hierarchy. While working with
arbitrary parameters r ( j)

k allow us to trace more information about the spin Hurwitz
numbers from the properties of the tau-function, similarly to the case of the ordinary
Hurwitz numbers [2, 13, 23] we would like to introduce the distinguished weights,
parametrized by one parameter c j , j = 1, . . . , k − 2 for each of k − 2 points.

By analogywith the ordinaryweightedHurwitz numbers, see [13] and,more specif-
ically, in [2, Equation (3.1)], one would tend to put Rμ(r ( j)) = c�∗(μ)

j . For this choice
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the weighted spin Hurwitz numbers (3.16) would be independent of �. However, it is
easy to see that Rμ should depend on�-this is clear from (3.19). Therefore, for the com-
binations of the spin Hurwitz numbers defined by (3.16) we need some “completion”
of the partitions for the rational weight functions,

Rμ(r ( j)) =
∞
∑

k=0

R(k)
μ �

2k, (3.26)

a neweffect of spinHurwitz numberswhich is absent in the theory of ordinaryweighted
Hurwitz numbers.

Let us consider the generating function (3.24) for the case with themaximal number
of the branch points k = 3. We claim that this tau-function can be considered as a
generating function of a spin version of dessins d’enfants. We also put sk = δk,1�

−1,
therefore the non-trivial branching is allowed only at two points. Then the tau-function
(3.24) reduces to

τ(t) =
∑

λ∈SP

Qλ(t/2)Qλ(δk,1)

2�(μ)+|λ| �|λ| rλ, (3.27)

where rλ = r (1)
λ . From the orthogonality relation (3.11) and Eq. (3.23) it follows that

τ(t) =
∑

μ∈OP
�

−�(μ)2− |μ|+�(μ)
2

�(μ)
∏

j=1

μ j tμ
Rμ(r)

zμ
. (3.28)

To relate Rμ to ψ(z) we use the results of Sect. 4 below. From Eq. (3.28) it follows
that the coefficients Rμ(r)’s are proportional to the coefficients of the correlation
functions W •

n , namely

W •
n = �

−n
∑

μ∈OP,�(μ)=n

2− |μ|+n
2 Rμ(r)

∑

σ∈Sn
Xμ1

σ(1) . . . Xμn
σ(n). (3.29)

If we require R(0)
μ = c�∗(μ), then for n = 1 the leading term of Eq. (3.29) reduces to

W0,1(x) = 1

2

∑

k∈Z
+
odd

(
c√
2

)k−1

Xk . (3.30)

After identification of this expression with the general expression for the correlation
function given by Proposition 4.4 we find ψ(z),

ψ(z) = 1

2
log

1 + √
1 + 2c2z2

2
. (3.31)

One can identify it withψ , however, it is also possible to consider the �-deformations.
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Another possibility is to consider

ψ(z) = 1

2
log

(

1 + c2z2

2

)

(3.32)

The associated functions Rμ, (3.19) are rational functions of c,

R[1](r) = 1 + 1

8
c2�2,

R[1,1](r) =
(

1 + 1

8
c2�2
)(

1 + 9

8
c2�2
)

,

R[3](r) = c2
(

1 + 1

8
c2�2
)(

1 + 9

8
c2�2
)

,

R[1,1,1](r) =
(

1 + 1

8
c2�2
)(

1 + 9

8
c2�2
)(

1 + 17

8
c2�2
)

.

(3.33)

For c = 1 the generating function τ(t) for this choice of parametrization can be
identified with the generalized BGW tau-function [3],

τBGW (t/2)
∣
∣
N2 →− 2

�2
= τ(t, δk,1�−1). (3.34)

3.5 From BKP to KP

It is well known that the solutions of the BKP hierarchy are related to the solutions
of the KP hierarchy for the particular choice of the variables [9]. Following [20], in
this section we consider this relation for the hypergeometric tau-functions of both
hierarchies. Namely, we relate any hypergeometric 2-BKP tau-function (3.4) to a
hypergeometric tau-function of the 2-KP hierarchy.

Let us consider a 2-component system of neutral fermions φ
(a)
k , a = 1, 2, satisfying

the anti-commutation relations

{

φ
(k)
j , φ

(m)
l

}

= (−1) jδk,mδ j+l,0. (3.35)

Following [15] we can relate them to the charged free fermions

φ
(1)
j = ψ j + (−1) jψ∗− j√

2
, φ

(2)
j = √−1

ψ j − (−1) jψ∗− j√
2

. (3.36)

for j ∈ Z. We immediately have

ψ jψ
∗
j + ψ∗− jψ− j = (−1) j

(

φ
(1)
j φ

(1)
− j + φ

(1)
j φ

(1)
− j

)

. (3.37)
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Consider the bosonic operators for the charged fermions

JKPk =
∑

j∈Z

:ψ jψ
∗
j+k : . (3.38)

Then for odd k we have

JKPk = J (1)
k + J (2)

k , (3.39)

where the bosonic operators J ( j)
k are given in terms of the corresponding neutral

fermions by Eq.(2.24).
Let us consider the hypergeometric 2-KP tau-function

τKP(t, s) = 〈0∣∣eJKP+ (t)e2
∑∞

j=1 Tj (:ψ jψ
∗
j :−:ψ∗− jψ− j :)eJKP− (s)∣∣0

〉

, (3.40)

where Tk are some parameters and JKP± (t) =∑∞
k=1 tk J

KP±k . Note that the group element
in (3.40) is not the most general diagonal group element. However, for this choice of
the the group element we have a simple relation between this tau-function and a tau-
function of the 2-BKP hierarchy. If all even time variables vanish, t2k = s2k = 0 for
k ∈ Z+, then in terms of the neutral fermions we have

τKP(t, s)
∣
∣
t2k=s2k=0 = 〈0∣∣eJ (1)

+ (t)+J (2)
+ (t)e

2
∑∞

j=1(−1) j T j (:φ(1)
j φ

(1)
− j :+:φ(2)

j φ
(2)
− j :)eJ

(1)
− (s)+J (2)

− (s)∣∣0
〉

(3.41)

Therefore [20]

τKP(t, s)
∣
∣
t2k=s2k=0 = τ(t, s)2, (3.42)

where

τ(t, s) = 〈0∣∣eJ+(t)e2
∑∞

j=1(−1) j Tj :φ jφ− j :eJ−(s)∣∣0
〉

(3.43)

is a hypergeometric tau-function of 2-BKP hierarchy (3.4). By definition, it depends
only on odd times t2k+1 and s2k+1.

Let us compare the expansions of the tau-functions τKP and τ in terms of the
corresponding sets of the Schur functions. For the hypergeometric 2-KP tau-function
(3.40) one has

τK P (t, s) =
∑

λ

e2
∑

(i, j)∈λ ψ(�( j−i−1/2))sλ(t)sλ(s), (3.44)

where sλ are the ordinary Schur functions and the sum runs over all partitions. These
tau-functions are generating functions of the ordinary weighted Hurwitz numbers. For
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the 2-component BKP tau-function (3.43) we have

τ(t, s) =
∑

λ∈SP
e2
∑

(i, j)∈λ ψ(�( j−1/2)) Qλ(t/2)Qλ(s/2)
2�(λ)

. (3.45)

We see that for any hypergeometric tau-function of 2-BKP there exist a hyper-
geometric tau-function of 2-KP satisfying (3.42). It is easy to see that such 2-KP
tau-function is not unique. Let λ′ denotes the transpose partition of λ. Then, as it
follows i.e. from the Giambelli formula,

sλ(t)
∣
∣
t2k=0 = sλ′(t)

∣
∣
t2k=0 (3.46)

and for the Eq. (3.44) we have

τK P (t, s)
∣
∣
t2k=s2k=0 =

∑

λ

e2
∑

(i, j)∈λ ψ(�( j−i−1/2))sλ′(t)sλ′(s)
∣
∣
t2k=s2k=0

=
∑

λ

e2
∑

(i, j)∈λ′ ψ(�( j−i−1/2))sλ(t)sλ(s)
∣
∣
t2k=s2k=0

=
∑

λ

e2
∑

(i, j)∈λ ψ(�(i− j−1/2))sλ(t)sλ(s)
∣
∣
t2k=s2k=0. (3.47)

Therefore, (3.42) is also satisfied for the tau-function (3.44) with ψ(z) substituted by
ψ(−z − �).

Hence, we can relate any generating function of the spin Hurwitz numbers (3.45) to
the generating function of the ordinary Hurwitz numbers (3.44). Moreover, we have at
least two different hypergeometric tau-functions of the 2-KP hierarchy, corresponding
to a given hypergeometric tau-function of the 2-BKP hierarchy. We expect that this
identification should lead to a non-trivial relation between spin and ordinary Hurwitz
numbers.

Let us consider a few examples. If T (x) = ax , then ψ(z) = a is a constant, and
the tau-function of the 2-BKP hierarchy is very simple

τ(t, s) =
∑

λ∈SP
e2a|λ| Qλ(t/2)Qλ(s/2)

2�(λ)

= exp

⎛

⎜
⎝a

∑

k∈Z
+
odd

ktksk

⎞

⎟
⎠ .

(3.48)

More complicated example corresponds to T (x) = bx3
3 + ax for some a and b. It

is associated with to ψ(z) = b
2�2 z

2 + b
12 + a. The identity (3.42) for this case with

a = 2
3b and � = 1 was proven by Lee [17]. On the KP side the generating function,

considered by Lee, is given by the last line of (3.47).
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4 Diagonal group element and n-point functions

In this section we prove explicit closed algebraic formulas for the correlation functions
Wg,n .

4.1 Operators Jk

For the diagonal group element (3.2) introduce the operators

Jk = D−1 JkD, (4.1)

Our first goal is to provide a few explicit formulas for these operators. To this end, we
introduce a fermionic operator

E(u, a) = :φ(a−1eu/2)φ(−a−1e−u/2):
=
∑

k,m∈Z

(−1)m :φm−kφ−m : ake(m−k/2)u

=
∑

k,m∈Z

(−1)m F̂m−k,ma
ke(m−k/2)u . (4.2)

Let

S(z) = ez/2 − e−z/2

z
. (4.3)

Then in termsof thebosonic operators (2.24) theoperatorE(u, a) is a reparametrization
of the operator V̂ (2)

B given by (2.34), and can be represented as

E(u, a) = 1

2

1 + e−u

1 − e−u

⎛

⎜
⎝exp

⎛

⎜
⎝2u

∑

k∈Z
+
odd

a−kS(ku)J−k

⎞

⎟
⎠ exp

⎛

⎜
⎝2u

∑

k∈Z
+
odd

akS(ku)Jk

⎞

⎟
⎠− 1

⎞

⎟
⎠ .

(4.4)

Proposition 4.1 The operators Jk belong to the image of the projective representation
of B∞ for all k ∈ Zodd

Jk = 1

2

∑

m∈Z

(−1)m+1eTk+m−T−k−m−Tm+T−m F̂m,m+k (4.5)

and

Jk = 1

2
[ak]e2T (∂u+1/2a∂a)−2T (∂u−1/2a∂a)E(u, a)

∣
∣
u=0. (4.6)
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Proof From (2.13) we have

[
∑

a∈Z

(−1)aTa Fa,a, Fk,m

]

= (Tk − T−k − Tm + T−m)Fk,m . (4.7)

Hence

D−1 F̂k,mD = e−Tk+T−k+Tm−T−m F̂k,m (4.8)

and

Jk = 1

2

∑

m∈Z

(−1)m+1eTk+m−T−k−m−Tm+T−m F̂m,m+k, (4.9)

or, equivalently

Jk = 1

2

∑

m∈Z

(−1)m+k+1eTm−T−m−Tm−k+Tk−m F̂m−k,m . (4.10)

Comparing it to (4.2) we get

Jk = 1

2
[ak]eT (∂u+1/2a∂a)−T (−∂u−1/2a∂a)−T (∂u−1/2a∂a)+T (−∂u+1/2a∂a)E(u, a)

∣
∣
u=0.

(4.11)

��

4.2 Topological expansion

In terms of ψ we can rewrite the formula for Jk , k ∈ Z
+
odd, as

Jk = 1

2

∑

m∈Z

(−1)m+1eTk+m−T−k−m−Tm+T−m F̂m,m+k

= 1

2

∑

m∈Z

(−1)m+1 exp

(

2
k
∑

i=1

ψ(�2, �(m − 1

2
+ i))

)

F̂m,m+k (4.12)

Let φk(y) := exp
(

2
∑k

i=1 ψ(�2, y + �(− k
2 − 1

2 + i))
)

= exp
(

2k S(k�∂y)

S(�∂y)
ψ(�2, y)

)

. Then

Jk = 1

2

∑

m∈Z

(−1)m+1φk(�(m + k

2
))F̂m,m+k
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= −1

2

∞
∑

r=0

∂ryφk(y)
∣
∣
∣
y=0

· [urak]E(�u,−a)

= −1

4

∞
∑

r=0

∂ry exp

(

2k
S(k�∂y)

S(�∂y)
ψ(�2, y)

) ∣
∣
∣
y=0

[urak]1 + e−�u

1 − e−�u
exp

⎛

⎜
⎝2�u

∑

l∈Z
+
odd

(−a)−lS(l�u)J−l

⎞

⎟
⎠

exp

⎛

⎜
⎝2�u

∑

l∈Z
+
odd

(−a)lS(l�u)Jl

⎞

⎟
⎠

= 1

4

∞
∑

r=0

∂ry exp

(

2k
S(k�∂y)

S(�∂y)
ψ(�2, y)

) ∣
∣
∣
y=0

[urak]e
�u/2 + e−�u/2

u�S(u�)
exp

⎛

⎜
⎝2�u

∑

l∈Z
+
odd

a−lS(l�u)J−l

⎞

⎟
⎠

exp

⎛

⎜
⎝2�u

∑

l∈Z
+
odd

alS(l�u)Jl

⎞

⎟
⎠ . (4.13)

We also consider an arbitrary series y(�2, z) =∑∞
d=0 �2d yd(z), where each yd(z)

is an odd formal power series in z. The constant term of this series, y0 = y(0, z), is
also denoted by y = y(z). The prime object of our interest in this and the subsequent
sections are the �-expansions of the (disconnected) n-point functions

H•
n =

∑

k1,...,kn∈Z
+
odd

∂nτ(t, �−1s)
∂tk1 . . . ∂tk1

∣
∣
t=0

Xk1
1

k1
. . .

Xkn
1

kn
(4.14)

and

W •
n = D1 · · · DnH

•
n , (4.15)

where Di := Xi∂Xi . Then from the definition of the operators Jm we have

H•
n =

∞
∑

m1,...,mn∈Z
+
odd

Xm1
1 . . . Xmn

n

m1 . . .mn

〈

0
∣
∣Jm1 . . . Jmne

∑∞
d=0 �

2d∑

k∈Z
+
odd

J−k
�k [zk ]yd (z)∣

∣0
〉

(4.16)
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and

W •
n =

∑

m1,...,mn∈Z
+
odd

Xm1
1 . . . Xmn

n

〈

0
∣
∣Jm1 . . . Jmne

∑∞
d=0 �

2d∑

k∈Z
+
odd

J−k
�k [zk ]yd (z)∣

∣0
〉

.

(4.17)

Using the inclusion–exclusion formulas, we define the connected n-point functions
Hn and Wn , n ≥ 1, and they expand in � as

Hn =
∞
∑

g=0

Hg,n�
2g−2+n; Wn =

∞
∑

g=0

Wg,n�
2g−2+n . (4.18)

4.3 Preliminary formulas for H•
n andW

•
n

Denote

B(z, w) := zw

(z − w)2
+ zw

(z + w)2
. (4.19)

Proposition 4.2 We have the following formula for H•
n :

H•
n =

∑

m1,...,mn∈Z
+
odd

n
∏

i=1

1

mi
Xmi
i

∞
∑

r1,...,rn=0

n
∏

i=1

∂riy exp

(

2mi
S(mi�∂y)

S(�∂y)
ψ

) ∣
∣
∣
y=0

[
n
∏

i=1

urii z
mi
i ]

n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
euiS(�ui zi ∂zi )yi

∏

1≤i< j≤n

(

e�
2ui u jS(�ui zi ∂zi )S(�u j z j ∂z j )B(zi ,z j ) − 1

)

, (4.20)

where ψ = ψ(�2, y) and yi = y(�2, zi ). An analogous formula for W •
n is obtained

by replacing
∏n

i=1
1
mi

Xmi
i in Equation (4.20) by

∏n
i=1 X

mi
i .

Proof This formula should be understood as an expansion in the sector |z1| � |z2| �
· · · � |zn| � 1, and it comes directly from the commutation of the operators Jk given
in Equation (4.13), once one observes that

[

J+(z), J−(w)
] = 1

4
B(z, w). (4.21)

We refer also to an argument in [5, Section 3.2], which does exactly the same in a bit
different situation. ��
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4.4 Closed algebraic formula forWg,n

We use a change of variables of exactly the type as in [1], namely,

X = ze−2ψ(y(z)). (4.22)

Define D := X∂X and define Q by D = Q−1z∂z . In the case we have variables
X1, . . . , Xn , we define zi by Xi := X(zi ), and furthermore we use the notation
Di := Xi∂Xi , Qi := zi/Xi · dXi/dzi , yi = y(�2, zi ), yi = y(zi ), ψ i = ψ(�2, yi ),
and ψi = ψ(yi ).

Theorem 4.1 For g ≥ 0, n ≥ 2, 2 g − 2 + n > 0, we have:

Wg,n = [�2g−2+n]
∞
∑

j1,..., jn ,
r1,...,rn=0

[
n
∏

i=1

D ji
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

]

n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−yi

) ∑

γ∈�n
∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

(4.23)

Here �n is the set of all connected simple graphs on n vertices v1, . . . , vn, and Eγ is
the set of edges of γ .

Remark 4.1 It is an explicit closed algebraic formula of the same type as in [4, 5]. In
particular the sum over j1, . . . , jn, r1, . . . , rn is finite for every (g, n).

Remark 4.2 Note that yi and hence ∂yi are odd in zi . Note also that ψ i and hence
S(ti�∂yi )

S(�∂yi )
ψ i are even in zi . Note also that Di and Qi are even in zi . Note also that in

the second line the coefficient of urii for odd ri is even in zi and the coefficient of urii
for even ri is odd in zi . These observations imply that the right hand side of (4.23) is
necessarily odd in z1, . . . , zn .

Remark 4.3 Note that the structure of the formula suggests that there might be non-
trivial poles along the diagonals zi = z j and antidiagonals zi = −z j , but in fact the
statement of the theorem in particular implies that these polar parts cancel and the
resulting formula is non-singular at the diagonals and antidiagonals. Cf. a discussion
in [5, Remark 1.3 and Corollary 4.10].

Proof of Theorem 4.1 Recall the formula for W •
n in Proposition 4.2. Passing to the

connected n-point functions Wn via inclusion–exclusion formula we replace

∏

1≤i< j≤n

(

e�
2ui u jS(�ui zi ∂zi )S(�u j z j ∂z j )B(zi ,z j ) − 1

)

(4.24)
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with
∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

. (4.25)

Using the series expansion in u1, . . . , un (cf. [5, Lemma 4.5]), which is applicable
only if n ≥ 2 (hence the restriction on n in the statement of the theorem) we can
rewrite the formula as

Wn =
∑

m1,...,mn∈Z
+
odd

n
∏

i=1

Xmi
i ·

∞
∑

r1,...,rn=0

n
∏

i=1

∂riy e
2mi

S(mi�∂y )

S(�∂y )
ψ i

[
n
∏

i=1

urii z
mi
i

]
n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−yi

)

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

. (4.26)

The next observation that we use is the following. Replace the summation in Equa-
tion (4.17) from

∑

m1,...,mn∈Z
+
odd

to
∑

m1,...,mn∈Zodd
. This replacement changes the

disconnected W •
n , but when we pass to the connected ones, this replacement just

changes the W0,2 by adding to it the singular term 1
4 B(X1, X2) (hence the condition

2g − 2 + n > 0 in the statement of the theorem), cf. [5, Proposition 4.1]. With this
adjustment, we have for g ≥ 0, n ≥ 2, 2g − 2 + n > 0:

Wg,n = [�2g−2+n]
∑

m1,...,mn∈Zodd

n
∏

i=1

Xmi
i [zmi

i ] ·
∞
∑

r1,...,rn=0

n
∏

i=1

∂riy e
2mi

S(mi�∂y )

S(�∂y )
ψ i

[
n
∏

i=1

urii

]
n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−yi

)

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

. (4.27)

Now note two things. First, ∂riy exp
(

2mi
S(mi�∂y)

S(�∂y)
ψ i

)

is even in zi for even ri and odd

in zi for odd ri . On the other hand, in the expression

[
n
∏

i=1

urii z
mi
i

]
n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−yi

)

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

(4.28)

we only have terms with ri +mi odd. This means that the whole expression in which
we take the coefficients of [∏n

i=1 z
mi
i ] is odd in z1, . . . , zn , and thus we can extend the
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summation to m1, . . . ,mn ∈ Z. Second, we can use the trick that for a polynomial g
in m we can replace

∑
Xmg(m) by

∑∞
j=o D

j Xm[t j ]g(t). These two ideas allow to
rewrite (4.27) as

Wg,n = [�2g−2+n]
∞
∑

j1,..., jn=0

D ji
i [t jii ]

∑

m1,...,mn∈Z

n
∏

i=1

Xmi
i [zmi

i ]e2miψi

∞
∑

r1,...,rn=0

n
∏

i=1

e−2tiψi ∂riy e
2mi

S(mi�∂y )

S(�∂y )
ψ i

[
n
∏

i=1

urii ]
n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−yi

)

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

(4.29)

(here for each r1, . . . , rn the second line expands in�with the coefficients that areman-
ifestly polynomial in t1, . . . , tn). Finally, we apply the Lagrange–Bührmann formula
for Xi = zi e−2ψi to Equation (4.29) (cf. [5, Lemma 4.7]) and obtain the statement of
the theorem.

4.5 Special cases

In this section we discuss the formulas for Wg,n for (g, n) = (0, 2) and n = 1,
in the variable z related to X by X = ze−2ψ(y(z)). We begin with unstable terms
(g, n) = (0, 2) and (0, 1).

Proposition 4.3 For (g, n) = (0, 2) we have:

W0,2 = 1

4Q1Q2
B(z1, z2) − 1

4
B(X1, X2). (4.30)

Proof Indeed, as we discussed in the proof of Theorem 4.1, the change of summation
from m ∈ Z+

odd to m ∈ Zodd and the commutation rules for J+(X1), J−(X2) imply
that the (0, 2) term gets a correction. We have:

W0,2 + 1

4
B(X1, X2) =

∑

m1,m2∈Zodd

Xm1
1 Xm2

2 [zm1
1 zm2

2 ]e2m1ψ1+2m2ψ2
1

4
B(z1, z2)

=
∑

m1,m2∈Z

Xm1
1 Xm2

2 [zm1
1 zm2

2 ]e2m1ψ1+2m2ψ2
1

4
B(z1, z2)

= 1

4Q1Q2
B(z1, z2). (4.31)
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In the second line, in order to change the summation fromm1,m2 ∈ Zodd tom1,m2 ∈
Z, we use that B(z1, z2) is odd in z1 and z2 andψ1 = ψ(y1) (respectively,ψ2 = ψ(y2))
is even in z1 (respectively, z2). ��
Proposition 4.4 For (g, n) = (0, 1) we have: W0,1(X) = y(z)/2.

Proof It is a straightforward computation. First, recall that

H0,1(X) = [�−1]
∑

m∈Z
+
odd

Xm

m

∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ(�2,y)∣∣

∣
y=0

[ur zm ] e
�u
2 + e−

�u
2

4u�S(u�)
euS(�uz∂z )y(�2,z)

=
∑

m∈Z
+
odd

Xm

m

∞
∑

r=0

∂rye
2mψ(y)

∣
∣
∣
y=0

[ur zm ] e
uy(z)

2u
. (4.32)

With this equation, in order to compute W0,1, we consider its differential. We have:

DW0,1(X) =
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2mψ(y)

∣
∣
∣
y=0

[ur zm]z∂z e
uy(z)

2u

=
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2mψ(y)

∣
∣
∣
y=0

[ur zm]e
uy(z)QDy(z)

2

=
∑

m∈Z
+
odd

Xm[zm]e2mψ(y(z))) QDy(z)

2

=
∑

m∈Z

Xm[zm]e2mψ(y(z))) QDy(z)

2

= 1

2
Dy(z). (4.33)

Hence W0,1(X) = y(z)/2. ��

4.5.1 Stable terms for n = 1

Consider g ≥ 1, n = 1, that is, we consider W1 =∑∞
g=0 �2 g−1Wg,1(X).

Proposition 4.5 Under the change of variables X = ze−2ψ(y(z)) we have:

W1(X) = y

2�
+

∞
∑

j=1

D j−1[t j ]e−2tψ+2t
S(t�∂y )

S(�∂y )
ψ Dy

2�

+
∞
∑

j,r=0

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4u�S(u�)
eu(S(�uz∂z)y−y)

)

. (4.34)

Here y = y(z), y = y(�2, z), ψ = ψ(y), ψ = ψ(�2, y), and D = X∂X .
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Proof By direct commutation of the operators, we have:

W1(X) =
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ
∣
∣
∣
y=0

[ur zm]e
�u
2 + e− �u

2

4u�S(u�)
euS(�uz∂z)y

=
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ
∣
∣
∣
y=0

[ur zm]
(

e
�u
2 + e− �u

2

4u�S(u�)
euS(�uz∂z)y − euy

2u�

)

+
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ
∣
∣
∣
y=0

[ur zm] e
uy

2u�
(4.35)

The first summand is regular in u, so it can be computed as in the proof of Theorem 4.1:

∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ
∣
∣
∣
y=0

[ur zm]
(

e
�u
2 + e− �u

2

4u�S(u�)
euS(�uz∂z)y − euy

2u�

)

=
∑

m∈Z

Xm[zm]
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4u�S(u�)
e−uy+uS(�uz∂z)y − 1

2u�

)

=
∞
∑

j,r=0

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4u�S(u�)
e−uy+uS(�uz∂z)y

)

. (4.36)

The second summand of (4.35) can be computed by differentiation.

D
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ
∣
∣
∣
y=0

[ur zm ] e
uy

2u�

=
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ
∣
∣
∣
y=0

[ur zm ] e
uy(z)QDy

2�

=
∑

m∈Z
+
odd

Xm
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ [ur zm ] QDy

2�
=
∑

m∈Z

Xm [zm ]
∞
∑

r=0

∂rye
2m

S(m�∂y )

S(�∂y )
ψ [ur ] QDy

2�

=
∞
∑

j=0

D j [t j ]e−2tψ+2t
S(t�∂y )

S(�∂y )
ψ Dy

2�
= Dy

2�
+ D

∞
∑

j=1

D j−1[t j ]e−2tψ+2t
S(t�∂y )

S(�∂y )
ψ Dy

2�
. (4.37)

Combining these two computations, we obtain the statement of the proposition. ��

5 Loop equations

Consider the change of variables X = ze−2ψ(y(z)). In this section we make a number
of extra assumptions of analytical nature on the coefficients ψ2d and y2d of the �2-
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expansions of ψ and y, and with these assumptions we prove the linear and quadratic
loop equations for the Wg,n’s that we computed in the closed form in the previous
section (or, more precisely, for the symmetric differentials that we construct from
Wg,n’s).

5.1 Assumptions

Let z be a global affine coordinate on CP1. We assume that ψ ′(y(z)) and y′(z) can
be analytically extended to rational functions on CP1. These assumptions imply that
X = ze−2ψ(y(z)) extends to a global function on CP1 and d log X is a rational 1-form
in the global coordinate z.

The rational 1-form d log X has a finite number of zeros, and we assume that all
zeros of d log X are simple.We also assume that the coefficients of the positive degrees
of � in the series ψ(�2, y(z)) and y(�2, z) are rational functions in z as well, and their
singular points are disjoint from the zeros of d log X .

Proposition 5.1 Under these assumptions the symmetric n-differentials

ωg,n := 21−gWg,n(X1, . . . , Xn)

n
∏

i=1

d log Xi + δg,0δn,2
1

2
B(X1, X2)d log X1d log X2, g ≥ 0, n ≥ 1, (5.1)

analytically extend to global rational differentials on (CP1)n for 2g − 2 + n > 0.

Proof This statement follows directly from the structure of formulas given in Equa-
tions (4.23) and (4.34). ��

Note the factor 21−g . It is a compensation for the fact that the naturalW0,1 andW0,2
that we obtained in the previous section are twice less than the formulas one might
expect from the point of view of the spectral curve topological recursion, see Sect. 7.1.

5.2 Blobbed topological recursion

Let p be a simple zero point of d log X . Let σ denote the deck transformation of X
near p.

Definition 5.1 We say that the system of symmetric n-differentials {ωg,n}g≥0,n≥1 sat-
isfies the linear loop equations at p if for any g ≥ 0, n ≥ 0,

ωg,n+1(w, z�n�) + ωg,n+1(σ (w), z�n�) (5.2)

is holomorphic at w → p and vanishes at w = p.
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We say that the system of symmetric n-differentials {ωg,n}g≥0,n≥1 satisfies the
quadratic loop equations at p if for any g ≥ 0, n ≥ 0, (g, n) �= (1, 0),

ωg−1,n+2(w, σ (w), z�n�) +
∑

g1+g2=g
I1�I2=�n�

ωg1,n1+1(w, zI2)ωg2,n2+1(σ (w), zI2) (5.3)

is holomorphic at w → p and has a zero of order at least two at w = p. In the case
(g, n) = (1, 0) we require the same property, but we remove the singularity from the
first summand, that is, we replace ω0,2(w, σ (w)) with

(

ω0,2 − 1

2
B(X1, X2)d log X1d log X2

)

|X1=X(w),X2=X(σ (w))

= 2W0,2(X1, X2)d log X1d log X2|X1=X(w),X2=X(σ (w)). (5.4)

If all zero points of d log X are simple and ωg,n’s satisfy the linear and quadratic
loop equations at each of them, thenwe say that the systemof symmetric n-differentials
{ωg,n}g≥0,n≥1 satisfies the blobbed topological recursion [8].

Theorem 5.1 Under the analytic assumptions listed in Sect.5.1 the system of symmet-
ric differentials (5.1) satisfies the blobbed topological recursion.

5.3 Proof of Theorem 5.1

Consider the connected correlation function defined as

Wg,n = [�2g−2+n]
∑

m1,...,mn∈Zodd

Xm1
1 . . . Xmn

n

〈

0
∣
∣
Jm1

�m1
[a0]E(�v, a)Jm2 . . . JmnDe

∑∞
d=0 �

2d∑

k∈Z
+
odd

J−k
�k [zk ]yd (z)∣

∣0
〉◦

. (5.5)

(here by
〈

0
∣
∣− ∣∣0〉◦ wemean the connected vacuum expectation obtained by inclusion–

exclusion formula from the disconnected one).

Lemma 5.1 For
∑

m∈Zodd
Jm Xm/(�m) =∑m∈Z

Jm Xm/(�m) we have:

[
∑

m∈Z

Jm Xm

�m
, [a0]E(�v, a)

]

= vS(�vX∂X )

(E(�v, X) + E(−�v, X)

2

)

. (5.6)

Proof A straightforward computation using Equations (4.4) and (2.25). ��
Remark 5.1 Note that E(u, X) = −E(−u,−X). Hence the right hand side of Equa-
tion (5.6) is odd in X . Note also that the right hand side of Equation (5.6) is manifestly
odd in v.
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Our next goal is to compute the coefficients of v1 and v3 in (5.6) applied to the
covacuum.

Lemma 5.2 We have:

〈

0
∣
∣[v1]vS(�vX∂X )

(E(�v, X) + E(−�v, X)

2

)

= 2
〈

0
∣
∣
∑

m∈Z
+
odd

Xm Jm; (5.7)

〈

0
∣
∣[v3]vS(�vX∂X )

(E(�v, X) + E(−�v, X)

2

)

= �
2
(
1

6
(X∂X )2 + 1

6

)
〈

0
∣
∣
∑

m∈Z
+
odd

Xm Jm

+ �
2 4

3

〈

0
∣
∣

( ∑

m∈Z
+
odd

Xm Jm
)3

(5.8)

Proof A straightforward computation using Equation (4.4). ��
Corollary 5.1 We have:

Wg,n(X�n�) =v

(

2Wg,n(X�n�)

)

+ v3
(
4

3

(

Wg−2,n+2(X1, X1, X1, X�n�\1)

+ 3
∑

g1+g2=g−1
I1�I2=�n�\1

Wg1,n1+1(X1, XI1 )Wg2,n2+2(X1, X1, XI2 )

+
∑

g1+g2+g3=g
I1�I2�I3=�n�\1

Wg1,n1+1(X1, XI1 )Wg2,n2+1(X1, XI2 )Wg3,n3+1(X1, XI3 )
)

+
(
1

6
(X1∂X1 )

2 + 1

6

)

Wg−1,n(X�n�)

)

+ O(v5), (5.9)

where we have to substitue W0,2(Xi , X j ) + 1
4 B(Xi , X j ) instead of W0,2(Xi , X j ) in

all instances when the arguments are not the same, that is, i �= j .

Now, repeating mutatis mutandis the arguments of the proofs of Theorem 4.1 and
Propositions 4.3, 4.4, and 4.5, we obtain closed algebraic formulas for Wg,n .

Lemma 5.3 Under the change of variables X = ze−2ψ(y(z)) we have:

Wg,n(X�n�) = [�2g−2+n]
∞
∑

j1,..., jn ,
r1,...,rn=0

[
n
∏

i=2

D ji
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

]

[

D j1
1 [t j11 ] 1

Q1
e−2t1ψ1∂r1y1e

2t1
S(t1�∂y1 )

S(�∂y1 )
ψ1

vS(t1�∂y1 )(e
vy1 + e−vy1 )[ur11 ]

]

n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−yi

) ∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

(5.10)
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for n ≥ 2, (g, n) �= (0, 2). Here �n is the set of all connected simple graphs on n
vertices v1, . . . , vn, and Eγ is the set of edges of γ .

In the case (g, n) = (0, 2) we have

W0,2 = v(evy1 + e−vy1)

4Q1Q2
B(z1, z2) (5.11)

In the case (g, n) = (0, 1) we have

W0,1 = 1

2
(evy1 − e−vy1). (5.12)

In the case g ≥ 1, n = 1 we have

Wg,1 =[�2g−1]
∞
∑

j1,r1=0

D j1
1 [t j11 ] 1

Q1
e−2t1ψ1∂

r1
y1e

2t1
S(t1�∂y1 )

S(�∂y1 )
ψ1

vS(t1�∂y1)(e
vy1 + e−vy1)

[ur11 ] e
�u1
2 + e−

�u1
2

4u1�S(u1�)
e−u1y1+u1S(�u1z1∂z1 )y1

+ [�2g−1]
∞
∑

j1=1

D j1−1[t j1 ]e−2t1ψ1+2t1
S(t1�∂y1 )

S(�∂y1 )
ψ1

vS(t1�∂y1)(e
vy1 + e−vy1)

Dy

2
.

(5.13)

In all these formulas we use yi = y(zi ), yi = y(�2, zi ),ψi = ψ(yi ),ψ i = ψ(�2, yi ),
Qi = Q(zi ), Xi = X(zi ), Di = Xi∂Xi = Q−1

i zi∂zi .

Proof First, observe that [a0]E(�v, a) can be represented as the coefficient of [ε1] in
the expression

eε[a0]E(�v,a) = eε
∑

k∈Z
(−1)ke�vk :φkφ−k : = eε

∑

k∈Z+ (−1)k (e�vk−e−�vk ):φkφ−k : (5.14)

For T (k) = 1
2�

(e�vk − e−�vk) we have T (k + 1)− T (k) = �ψ(�2, �(k + 1
2 )), where

�ψ(�2, y) = 1

2�
(e

�v
2 − e− hv

2 )(evy + e−vy) = v + v3
(

�2

24
+ y2

2

)

+ O(v5).

(5.15)

Define J̃k as the conjugation of Jk with the operator given in (5.14). It is operator of
exactly the same type as Jk , we just replace ψ(�2, y) by ψ(�2, y) + ε�ψ(�2, y) in
its definition. By (4.13) we have:
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J̃k = 1

4

∞
∑

r=0

∂ry exp

(

2k
S(k�∂y)

S(�∂y)
(ψ(�2, y) + ε�ψ(�2, y))

) ∣
∣
∣
y=0

[ur ak ] e
�u/2 + e−�u/2

u�S(u�)
exp

⎛

⎜
⎝2�u

∑

l∈Z
+
odd

a−lS(l�u)J−l

⎞

⎟
⎠ exp

⎛

⎜
⎝2�u

∑

l∈Z
+
odd

alS(l�u)Jl

⎞

⎟
⎠ .

(5.16)

Let Wn =∑∞
g=0 �2 g−2+nWg,n . Then

Wn(X�n�) = [ε1]
∑

m1,...,mn∈Z
+
odd

1

m1
Xm1
1 . . . Xmn

n

〈

0
∣
∣̃Jm1 . . . Jmne

∑∞
d=0 �

2d∑

k∈Z
+
odd

J−k
�k [zk ]yd (z)∣

∣0
〉◦

. (5.17)

By commutation of the operators, we have:

Wn =
∑

m1,...,mn∈Z
+
odd

n
∏

i=1

Xmi
i ·

∞
∑

r1,...,rn=0

1

m1
[ε1]∂r1y

exp

(

2m1
S(m1�∂y)

S(�∂y)
(ψ + ε�ψ(�2, y))

) ∣
∣
∣
y=0

n
∏

i=2

∂riy exp

(

2mi
S(mi�∂y)

S(�∂y)
ψ

) ∣
∣
∣
y=0

[
n
∏

i=1

urii z
mi
i

]
n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
euiS(�ui zi ∂zi )yi

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

, (5.18)

where �n is the set of all connected simple graphs on n vertices v1, . . . , vn , and Eγ is
the set of edges of γ .

As in the proof of Theorem 4.1 and Propositions 4.4 and 4.5, we use that for any
formal power series G(y) in y and F(u) in u, we have

∞
∑

r=0

∂ryG(y)|y=0[ur ]F(u) =
∞
∑

r=0

∂ryG(y)[ur ]e−uy F(u) (5.19)

( [5, Lemma 4.5]). Applying it to Equation (5.18) in the cases n ≥ 2, (g, n) �= (0, 2)
(these cases have to be treated separately, it is the same situation as in the proof of
Theorem 4.1), we obtain:
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Wn =
∑

m1,...,mn∈Z
+
odd

n
∏

i=1

Xmi
i [zmi

i ]e2miψi ·
∞
∑

r1,...,rn=0

e−2m1ψ1∂r1y1

(

exp

(

2m1
S(m1�∂y1 )

S(�∂y1 )
ψ1

)

vS(m1�∂y1 )(e
vy1 + e−vy1 )

)

n
∏

i=2

e−2miψi ∂riyi exp

(

2mi
S(mi�∂yi )

S(�∂yi )
ψ i

)

[
n
∏

i=1

urii ]
n
∏

i=1

e
�ui
2 + e− �ui

2

4ui�S(ui�)
eui
(S(�ui zi ∂zi )yi−y

)

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

, (5.20)

Starting from this point all further steps just repeat the computations made in the proof
of Theorem 4.1. We use three ideas:

• extend the summation to m1, . . . ,mn ∈ Z;
• capture the polynomial dependence on m1, . . . ,mn replacing their entrances by
t1, . . . , tn and applying

∏n
i=1
∑∞

ji=1 D
ji
i [t jii ];

• apply Lagrange–Bührmann formula for the change of variables.

This completes the proof of Equation (5.10). All other equations stated in the lemma
are obtained by small variations of this argument, which repeat the corresponding
special cases in the proofs of Propositions 4.3, 4.4, and 4.5. ��
Corollary 5.2 The functionsWg,n, g ≥ 0, n ≥ 1, are formal power series in v, whose
coefficients are rational functions in the variables z�n�, that near each simple zero
point p of d log X satisfy the property that

Wg,n(z1, z�n�\1) + Wg,n(σ (z1), z�n�\1) (5.21)

is holomorphic at z1 → p. Here σ is the deck transformation of X at p.

Proof This follows directly from the structure of the formulas in Lemma 5.3.We apply
D j1
1 to a rational function that has a simple pole at w → p (coming from the factor

1/Q1). A function with at most simple pole automatically satisfies (5.21), and the
operator D1 preserves this property. ��
Proof of Theorem 5.1 Fix a zero point p of d log X (which by assumption is simple)
and let σ be the deck transformation of X near this point. For any function f (z) defined
in the neighborhood of p we define

Sz f (z) = f (z) + f (σ (z)). (5.22)

Then the linear loop equations at the point p for the symmetric differentials expressed
as in Equation (5.1) can be equivalently rewritten as

Sz1Wg,n(z�n�) (5.23)

is holomorphic at z → p for any (g, n). Corollary 5.2 applied to the coefficients of
[v1] inWg,n implies that it is indeed the case.
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Note also that Corollary 5.2 applied to the coefficients of [v3] in Wg,n implies
that Sz1 [v3]Wg,n is holomorphic at z → p for any (g, n). Using explicit formula for
[v3]23−gWg,n given in Equation (5.9) and the linear loop equations, we conclude that

Sz1
(

21−(g−2)Wg−2,n+2(z1, z1, z1, z�n�\1)

+ 3
∑

g1+g2=g−1
I1�I2=�n�\1

21−g1Wg1,n1+1(z1, zI1)2
1−g2Wg2,n2+2(z1, z1, zI2 )

+
∑

g1+g2+g3=g
I1�I2�I3=�n�\1

21−g1Wg1,n1+1(z1, zI1)2
1−g3Wg2,n2+1(z1, zI2 )2

1−g3Wg3,n3+1(z1, zI3 )
)

(5.24)

is holomorphic at z → p for any (g, n). Here we abuse the notation a little bit since
each time we use 2W0,2(zi , z j ) with i �= j , we actually mean 1

2 B(zi , z j ).
This particular system of equations is studied in a bit different situation in [7,

Lemma 20]. The main difference between our situation and the one studied in [7,
Lemma 20] is the choice of B, which is the standard Bergman kernel in [7], but it
does not affect the proof in any step. Another difference is the rescaling of Wg,n by
21−g in the definition of ωg,n’s, but both (5.24) and the quadratic loop equations are
homogeneous with respect to this rescaling.

So, adjusted in our situation [7, Lemma 20] proves that the holomorphy of the
expression given in (5.24) implies the quadratic loop equations for the symmetric
differentials ωg,n given by Equation (5.1), under the condition that y does not vanish
at z = p. The latter condition is obviously satisfied in our situation. Indeed, the point
p satisfies the equation 1 − 2pψ ′(y(p))y′(p) = 0. On the other hand, ψ ′ is an odd
function in y, so at any point z where y(z) = 0, we have 1 − 2zψ ′(y(z))y′(z) = 1.
Therefore, y does not vanish at z = p. Hence the symmetric differentials ωg,n satisfy
the quadratic loop equations.

6 Formulas for Hg,n

In this section we derive expressions for Hg,n by integration of the earlier derived
expressions for Wg,n . Since the case of Wg,1 was a bit special, we firstly perform a
separate computation for Hg,1.

Proposition 6.1 For g ≥ 1 we have:

Hg,1 = [�2g]
∞
∑

j=2

D j−2[t j ]e−2tψ+2t
S(t�∂y )

S(�∂y )
ψ Dy

2

+ [�2g]
∞
∑

j=1

D j−1[t j ]
∞
∑

r=0

1

Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)
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+ [�2g]
∫ z

0

(
1

S(�∂y)
ψ − ψ

)

y′dz + [�2g]
∫ z

0

dz

2z
(y − y) . (6.1)

Here, as usual, we use y = y(z), y = y(�2, z), ψ = ψ(y) = ψ(y(z)), ψ =
ψ(�2, y) = ψ(�2, y(z)), Q = Q(z), X = X(z), D = X∂X = Q−1z∂z .

Proof Recall that for g ≥ 1

Wg,1 = [�2g]
∞
∑

j=1

D j−1[t j ]e−2tψ+2t
S(t�∂y )

S(�∂y )
ψ Dy

2

+ [�2g]
∞
∑

j,r=0

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)

.

(6.2)

Hence, for g ≥ 1

Hg,1 = [�2g]
∞
∑

j=2

D j−2[t j ]e−2tψ+2t
S(t�∂y )

S(�∂y )
ψ Dy

2

+ [�2g]
∞
∑

j=1

D j−1[t j ]
∞
∑

r=0

1

Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)

+ [�2g]
∫ z

0
dz

Q

z
[t1]e−2tψ+2t

S(t�∂y )

S(�∂y )
ψ Dy

2

+ [�2g]
∫ z

0
dz

Q

z
[t0]

∞
∑

r=0

1

Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)

(6.3)

(note that the constant term in z of this expression vanishes). The third term here can
be computed as

[�2g]
∫ z

0
dz

Q

z
[t1]e−2tψ+2t

S(t�∂y )

S(�∂y )
ψ Dy

2
= [�2g]

∫ z

0
dz

(
1

S(�∂y)
ψ − ψ

)
QDy

z

= [�2g]
∫ z

0

(
1

S(�∂y)
ψ − ψ

)

y′dz. (6.4)
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The fourth term can be computed as

[�2g]
∫ z

0
dz

Q

z
[t0]

∞
∑

r=0

1

Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)

= [�2g]
∫ z

0

dz

z
[u0]
(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)

= [�2g]
∫ z

0

dz

2z
(y − y) = [�2g]

∫ z

0

dz

2z
(y − y) . (6.5)

Combining these formulas, we obtain the statement of the proposition. ��
In the case n = 2 we have the following formula for Hg,2.

Proposition 6.2 In the case g = 0 we have

H0,2 = 1

4
log

(z1 − z2)(X1 + X2)

(z1 + z2)(X1 − X2)
. (6.6)

For g ≥ 0 we have:

Hg,2 = [�2g]
∞
∑

j1, j2=1
r1,r2=0

[ 2
∏

i=1

D ji−1
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

] (

e�
2u1u2S(�u1z1∂z1 )S(�u2z2∂z2 )B(z1,z2) − 1

)

+ [�2g]
∞
∑

j=1
r=0

[

D j−1
1 [t j ] 1

Q1
e−2tψ1∂ry1e

2t
S(t�∂y1 )

S(�∂y1 )
ψ1 [ur ]

e�u/2 + e−�u/2

4u�S(u�)
e−uy1+uS(�uz1∂z1 )y1

]
1

2
�uS(�uz1∂z1 )

( z1
z1 − z2

− z1
z1 + z2

)

+ [�2g]
∞
∑

j=1
r=0

[

D j−1
2 [t j ] 1

Q2
e−2tψ2∂ry2e

2t
S(t�∂y2 )

S(�∂y2 )
ψ2 [ur ]

e�u/2 + e−�u/2

4u�S(u�)
e−uy2+uS(�uz2∂z2 )y2

]
1

2
�uS(�uz2∂z2 )

( z2
z2 − z1

− z2
z2 + z1

)

. (6.7)

Here we use the notation yi = y(zi ), yi = y(�2, zi ), ψi = ψ(yi ), ψ i = ψ(�2, yi ),
Qi = Q(zi ), Xi = X(zi ), Di = Xi∂Xi = Q−1

i zi∂zi for i = 1, 2.

Proof Note that all formulas above are odd in both arguments, hence they vanish if
any of their arguments vanishes. Hence it is enough to check that D1D2Hg,2 = Wg,2.
In the case g = 0 it is a straightforward computation. For g ≥ 1 we recall the relevant
special case of Equation (4.23):
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Wg,2 = [�2g]
∞
∑

j1, j2
r1,r2=0

[
2
∏

i=1

D ji
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

]

2
∏

i=1

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

(

e�
2u1u2S(�u1z1∂z1 )S(�u2z2∂z2 )B(z1,z2) − 1

)

.

(6.8)

Note that

∞
∑

j,r=0

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ] = 1

Q
[u0] +

∞
∑

r=0

∞
∑

j=1

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(6.9)

The second summand here can be trivially integrated by applying D−1. In order to
integrate the cases of application of 1

Q [u0] we observe that for any γ ∈ �n the

coefficient of u0i in

1

Qi
[u0i ]

e�u1/2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

(

e�
2ui ukS(�ui zi ∂zi )S(�uk zk∂zk )B(zi ,zk ) − 1

)

= Di
1

2
�ukS(�uk zk∂zk )

( zk
zk − zi

− zk
zk + zi

)

. (6.10)

(here k = 2 if i = 1 and k = 1 if i = 2), which also admits application of D−1
i . In

particular, if we apply this term for both variables, we have:

2
∏

i=1

[

1

Qi
[u0i ]

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

]

(

e�
2u1u2S(�u1z1∂z1 )S(�u2z2∂z2 )B(z1,z2) − 1

)

= 1

4Q1Q2
B(z1, z2), (6.11)

so this case doesn’t contribute to [�2 g], g ≥ 1. Combining these computations with
the application of D−1

1 D−1
2 , we obtain the statement of the proposition. ��

Finally, in the general case of n ≥ 3 we have the following expression for Hg,n .

Proposition 6.3 For a γ ∈ �n let Iγ denote the subset of vertices of γ of index ≥ 2.
Let Kγ ⊂ Eγ be the subset of the set of edges that connect a vertex of index 1 to
another vertex. When we write (vi , vk) ∈ Kγ , we assume that vi is the vertex of index
1 (and, therefore, vk ∈ Iγ ). We have:
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Hg,n = [�2g−2+n]
∑

γ∈�n

∏

i∈Iγ

⎡

⎣

∞
∑

ri=0

∞
∑

ji=1

D ji−1
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

⎤

⎦

∏

i∈Iγ

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+ui (S(�ui zi ∂zi )yi

∏

(vk ,v�)∈Eγ \Kγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

∏

(vi ,vk )∈Kγ

(
1

2
�ukS(�uk zk∂zk )

( zk
zk − zi

− zk
zk + zi

)

+
⎡

⎣

∞
∑

ri=0

∞
∑

ji=1

D ji−1
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

⎤

⎦

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+ui (S(�ui zi ∂zi )yi

(

e�
2ui ukS(�ui zi ∂zi )S(�uk zk∂zk )B(zi ,zk ) − 1

))

.

(6.12)

Here, as usual, we use yi = y(zi ), yi = y(�2, zi ), ψi = ψ(yi ), ψ i = ψ(�2, yi ),
Qi = Q(zi ), Xi = X(zi ), Di = Xi∂Xi = Q−1

i zi∂zi .

Proof Note that Hg,n as given in Equation (6.12) vanishes if we set any of its variables
to zero (since it is odd in each of its variables). So, the only thing that we have
to check is that indeed D1 · · · DnHg,n = Wg,n as given by Equation (4.23). Recall
Equation (4.23):

Wg,n =[�2g−2+n]
∞
∑

j1,..., jn ,
r1,...,rn=0

[
n
∏

i=1

D ji
i [t jii ] 1

Qi
e−2tiψi ∂riyi e

2ti
S(ti�∂yi )

S(�∂yi )
ψ i [urii ]

]

n
∏

i=1

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

∑

γ∈�n

∏

(vk ,v�)∈Eγ

(

e�
2uku�S(�uk zk∂zk )S(�u�z�∂z� )B(zk ,z�) − 1

)

. (6.13)

Note that

∞
∑

j,r=0

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ] = 1

Q
[u0] +

∞
∑

r=0

∞
∑

j=1

D j [t j ] 1
Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ].

(6.14)

The second summand here can be trivially integrated by applying D−1. In order to
integrate the cases of application of 1

Q [u0] we observe that for any γ ∈ �n the

coefficient of u0i in
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e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

∏

(vi ,vk )∈Eγ

(

e�
2ui ukS(�ui zi ∂zi )S(�uk zk∂zk )B(zi ,zk ) − 1

)

(6.15)

is non-trivial if and only if i has index 1 in γ . Then there is only one edge (ei , ek) ∈ Eγ

that is attached to the vertex i . In this case,

1

Qi
[u0i ]

e�ui /2 + e−�ui /2

4ui�S(ui�)
e−ui yi+uiS(�ui zi ∂zi )yi

(

e�
2ui ukS(�ui zi ∂zi )S(�uk zk∂zk )B(zi ,zk ) − 1

)

= 1

Qi

1

2
�ukS(�uk zk∂zk )B(zi , zk) = Di

1

2
�ukS(�uk zk∂zk )

( zk
zk − zi

− zk
zk + zi

)

, (6.16)

and we can apply D−1
i to the latter expression. This explains the special summands

for (vi , vk) ∈ Kγ in Equation (6.12) and completes the proof of the proposition. ��

7 Topological recursion for spin Hurwitz number with completed
cycles

The goal of this Section is to prove a conjecture proposed by Giacchetto, Kramer, and
Lewański. In our terms, it concerns the symmetric n-differentials constructed from
Orlov’s hypergeometric 2-BKP tau-functions for ψ = 1

2S(�∂y)y2 s and y = z. But in
fact we consider amore general situation, withψ = 1

2S(�∂y)P(y) and y = y = R(z),
where P is an arbitrary even polynomial in y and R is an arbitrary odd polynomial in
z, since the arguments in this more general situation do not differ from the ones for
the Giacchetto–Kramer–Lewański situation.

Remark 7.1 Note that if we put ψ(y) = 1
2S(�∂y)P(y), then the weight for the KP

hypergeometric tau-function (3.44) does not coincidewith the deformation, considered
in [4]. Therefore, if in the relation (3.42) one of the tau-functions, τK P or τ , is described
by a suitable version of topological recursion, the other one is not described by it.

7.1 Topological recursion in the odd situation

Consider CP1 with a fixed global coordinate z, and with two functions, X and y such
that X(−z) = −X(z) and y(−z) = −y(−z), with an extra assumption that dX/X is a
rational differential with the simple critical points p1, . . . , pN (it is clear that N must
be even and the set of critical points is invariant under z ↔ −z) and y is holomorphic
near the critical points with dy|pi �= 0. It is not necessary but both convenient and
sufficient for our goals to assume that y is meromorphic. Let

B(z1, z2) := 1

2

(
1

(z1 − z2)2
+ 1

(z1 + z2)2

)

dz1dz2. (7.1)

With this input we construct a system of symmetric differentialsωg,n , g ≥ 0, n ≥ 1,
given by
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ω0,1(z1) = y(z1)d log X(z1);
ω0,2(z1, z2) = B(z1, z2); (7.2)

and for 2g − 2 + n > 0 we use the recursion

ωg,n(z1, . . . , zn) :=1

2

N
∑

i=1

Resz→pi

∫ σi (z)
z B(z1, ·)

ω0,1(σi (z1)) − ω0,1(z1)

(

ωg−1,n+1(z, σi (z), z�n�\{1})

+
∑

g1+g2=g,I1�I2=�n�\{1}
(g1,|I1|),(g2,|I2|) �=(0,0)

ωg1,1+|I1|(z, zI1)ωg2,1+|I2|(σi (z), zI2 )
)

,

(7.3)

where σi is the deck transformation of X near pi , i = 1, . . . , N . We wouldn’t go into
the discussion of this peculiar version of this topological recursion, as it should be
done in a more general equivariant setup.

For our goals it is sufficient to state the following equivalent reformulation of this
version of topological recursion, which is completely parallel to [8, Theorem 2.2] and
[6, Section 1].

Lemma 7.1 A system of meromorphic symmetric differentials ωg,n, 2g − 2 + n > 0
is obtained from the given starting data (that includes the formulas for ω0,1 and ω0,2)
by topological recursion (7.3) if and only if

(1) This system of differentials satisfies the blobbed topological recursion (see Defi-
nition 5.1).

(2) For any g ≥ 0, n ≥ 1, 2g − 2 + n > 0

ωg,n(z�n�) =
N
∑

i1,...,in=1

( n
∏

j=1

Resw j→pi j

∫ wi

pi j

B(·, z j )
)

ωg,n(w�n�) (7.4)

(this is the so-called projection property).

Proof The same argument as in [8, Section 2.4]. ��
If we represent the symmetric differentialωg,n asωg,n = 21−gWg,n

∏n
i=1 d log Xi ,

ω0,2 = 2W0,2d log X1d log X2 + B(X1, X2), where Wg,n = D1 · · · DnHg,n , Di =
Xi∂Xi , then the linear loop equations in combination with the projection property
can be equivalently reformulated in terms of Hg,n . This reformulation can be directly
applied in the odd case that we consider here, and we recall it and prove for the
particular n-point functions of spin Hurwitz numbers with completed cycles in the
next section, Sect. 7.2.

7.2 Quasi-polynomiality

The goal of this section is to prove some special property of the functions Hg,n , and, as
a corollary, Wg,n’s that is sometimes called quasi-polynomiality in the literature and
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in the context of topological recursion is equivalent to a combination of the so-called
projection property and the liner loop equations. We refer to [4, Section 3] for a full
discussion.

Recall that with ψ = 1
2S(�∂y)P(y), P(−y) = P(y) is a polynomial, and y =

y = R(z), R(−z) = −R(z) is a polynomial we have X = z exp(−P(R(z))). Let
p1, . . . , pN ∈ CP1 be the critical points of X . Here N = deg P · deg R ∈ 2Z, we
assume that all critical points are simple, and the set of critical points is obviously
invariant under the involution z ↔ −z.

Define the space �n as the linear span of functions
∏N

i=1 fi (zi ), where each fi (zi )
is a rational function on CP1, fi (−zi ) = − fi (zi ), fi has poles only at the points
p1, . . . , pN , and the principal part of fi at pk , k = 1, . . . , N , is odd with respect to
the corresponding deck transformation σk of function X near pk . The last condition
can be reformulated as a requirement that for any k = 1, . . . , N the locally defined
function fi (zi ) + fi (σk zi ) is holomorphic at zi → pk .

Proposition 7.1 In the case ψ = 1
2S(�∂y)P(y), P(−y) = P(y) is a polynomial, and

y = y = R(z), R(−z) = −R(z) is a polynomial, the functions Hg,n belong to the
space �n, for any n ≥ 1, g ≥ 0 such that 2g − 2 + n > 0.

Proof In the proof we analyze the formulas obtained in Propositions 6.1, 6.2, and 6.3.
It is clear from the structure of the formulas (6.1), (6.7), and (6.12) that with our
assumptions Hg,n are rational functions in z1, . . . , zn .

Consider Hg,n as a function of z1, treating the rest of the variables as parameters.
From the shape of the formula we see that it might have poles at z1 → ±zi , i =
2, . . . , n, z1 → ∞, and at the zeros of Q. In this case Q = z∂z log X = 1 +
z∂z P(R(z)), and its zeros are exactly p1, . . . , pN .

FromRemark 4.3 it follows that there are no singularities at z1 = ±zi , i = 2, . . . , n.
In all terms of the formulas (6.1), (6.7), and (6.12) the principal part at z1 → pk is

generated by the iterative application of the operator D1 = X1∂X1 = Q(z1)−1z1∂z1
to a function that is either holomorphic at z1 → pk (as in the first summand of (6.1)),
or has a simple pole at z1 → pk (as in the second summand of (6.1), where we divide
a function holomorphic at z1 → pk by Q(z1)). Holomorphic functions and functions
with a simple pole automatically have principal parts at z1 → pk that are odd with
respect to the deck transformation at pk , and the operator D1 preserves this property
(while increasing the order of the pole at pk).

Let us now check that there is no pole at z1 → ∞. Note that the terms that really
look special, the last two summands in Equation (6.1), vanish with our assumptions
(and that is crucially important since for any other choice ofψ and y with givenψ = P
and y = R it wouldn’t be the case). To all other terms in the formulas (6.1), (6.7),
and (6.12) the same rough estimation of the order of pole is applicable, cf. [4, Lemma
4.6]. We perform it here only for the second summand in Equation (6.1), since in all
other cases the analysis is exactly the same. To this end, consider

[�2g]
∞
∑

j=1

D j−1[t j ]
∞
∑

r=0

1

Q
e−2tψ∂rye

2t
S(t�∂y )

S(�∂y )
ψ [ur ]

(

e
�u
2 + e− �u

2

4uS(u�)
e−uy+uS(�uz∂z)y

)
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= [�2g]
∞
∑

j=1

D j−1[t j ]
∞
∑

r=0

1

Q
(∂y + 2t P ′(y))r e2t(S(t�∂y)−1)P(y)

[ur ]
(

e
�u
2 + e− �u

2

4uS(u�)
eu(S(�uz∂z)−1)R(z)

)

(7.5)

Note that the operator D = Q−1z∂z decreases the order of pole at z → ∞ by
deg Q = deg P deg R. The same holds for the factor Q−1 alone. This means that the
order of pole in (7.5) at z → ∞ is equal to the order of pole at z → ∞ of

[�2g]
∞
∑

r=0

(∂y + 2t P ′(y))r e2t(S(t�∂y)−1)P(y)
∣
∣
∣

′
t=z− deg P deg R

[ur ]
(

e
�u
2 + e− �u

2

4uS(u�)
eu(S(�uz∂z)−1)R(z)

)

, (7.6)

where by |′ wemean that we only select the termswith deg t ≥ 1.With this substitution
observe that each application of the operator ∂y + 2t P ′(y) decreases the order at
z → ∞ by deg R. Thus the order of pole of (7.6) at z → ∞ is equal to the order of
pole at z → ∞ of

[�2g]e2t(S(t�∂y)−1)P(y)

(

e
�u
2 + e− �u

2

4uS(u�)
eu(S(�uz∂z)−1)R(z)

)
∣
∣
∣

′
t=z− deg P deg R

∣
∣
∣

′′
u=z− deg R

,

(7.7)

where by |′′ wemean thatwe only select the termswith deg u ≥ 0. The latter expression
is manifestly regular at z → ∞.

Finally, extending our arguments to all variables z1, . . . , zn , we obtain that
Hg,n(z1, . . . , zn), 2 g − 2 + n > 0, is a rational function that in each of its vari-
ables has poles only at the points p1, . . . , pN with the odd principal parts with respect
to the corresponding deck transformations. This immediately implies that Hg,n ∈ �n .

��

7.3 Giacchetto–Kramer–Lewański conjecture and its generalization

Consider the n-functions Hg,n constructed from Orlov’s hypergeometric BKP tau-
functions for ψ = 1

2S(�∂y)P(y) and y = y = R(z), where P is an arbitrary even
polynomial in y and R is an arbitrary odd polynomial in z. Recall X = X(z) =
z exp(−P(R(z))). Recall that we defined Wg,n = D1 · · · DnHg,n , and we set

ωg,n(z�n�) := 21−gWg,n(X�n�)

n
∏

i=1

dXi

Xi
+ δg,0δn,2

1

2
B(X1, X2)d log X1d log X2,

(7.8)
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With this assignment, it follows from Propositions 4.3 and 4.4 that

ω0,1(z) = y d log X and ω0,2(z1, z2) = B(z1, z2). (7.9)

For all other ωg,n , g ≥ 0, n ≥ 1, 2 g − 2 + n > 0, we have the following theorem

Theorem 7.1 (Generalized Giacchetto–Kramer–Lewański conjecture) The symmetric
n-differentials ωg,n are obtained by the odd topological recursion (7.3) for the initial
data X = z exp(−P(R(z))) and y = R(z).

Proof According to Lemma 7.1 we have to check the blobbed topological recursion
and the projection property. The blobbed topological recursion follows from Theo-
rem5.1,which is proved in amuchmore general situation (it is obvious that the analytic
assumptions listed in Sect. 5.1 are satisfied). On the other hand, the linear loop equa-
tions and the projection property are equivalent to the statement of Proposition 7.1.

��
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