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Abstract
We show that for a coconnective ring spectrum satisfying regularity and flatness
assumptions, its algebraic K -theory agrees with that of its π0. We prove this as a
consequence of a more general devissage result for stable infinity categories. Applica-
tions of our result include giving general conditions under which K -theory preserves
pushouts, generalizations of An-invariance of K -theory, and an understanding of the
K -theory of categories of unipotent local systems.
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1 Introduction

In this paper we examine the relationship between coconnectivity, regularity, and
algebraic K -theory. As a consequence of our investigation we prove that the K -theory
of a large collection of coconnective rings agrees with that of their π0.

Theorem 1.1 Given a coconnective E1-algebra R such that

(1) π0R is left regular coherent and
(2) τ≤−1R has Tor amplitude in [−∞,−1] as a right π0R-module,

the natural map in connective K -theory

K (π0R) → K (R)

is an equivalence and both π0R and R have vanishing K−1.

Although not immediately clear, Theorem 1.1 is a devissage theorem. The core
step in the proof is an application of Quillen’s devissage theorem [21, Theorem 4] and
condition (1) is exactly what is needed for the canonical t-structure onπ0R-modules to
restrict to a bounded t-structure on perfect π0R-modules with heart finitely presented,
discreteπ0R-modules. The essential novelty in Theorem 1.1 comes from condition (2)
as a simple condition, easily checked in practice,1 which guarantees a K -equivalence.
As a demonstration we work through the prototypical example of devissage.

Example 1.2 From the localization sequence

Perf(Z)p−nil ↪→ Perf(Z) � Perf(Z[1/p])

we obtain a cofiber sequence on non-connective K -theory

K nc
(
Perf(Z)p−nil

)
→ K nc(Perf(Z)) → K nc(Perf(Z[1/p])).

Identifying Fp as a generator of Perf(Z)p−nil we have an identification

Perf(Z)p−nil � Perf(EndZ(Fp)).

Devissage can then be phrased as the assertion that K (EndZ(Fp)) � K (Fp) and K−1
vanishes, from which we obtain a cofiber sequence on connective algebraic K -theory

K (Fp) → K (Z) → K (Z[1/p]).

In order to prove this using Theorem 1.1 we compute the homotopy groups of
EndZ(Fp), which are

1 Condition (2) is satisfied if π−i R has Tor dimension < i as a right π0R-module.
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πs EndZ(Fp) ∼=
{
Fp s = 0,−1

0 otherwise

and observe that conditions (1) and (2) are satisfied. �
Proving this localization sequence using Quillen’s devissage theorem directly

involves checking that p-torsion perfect Z-modules admits a bounded t-structure and
that every p-torsion abelian group has a filtration whose associated graded consists of
Fp-modules. For a more general E1-algebra R constructing t-structures and filtrations
in order to apply devissage involves contemplating the behavior of a generic perfect
R-module, which can become unwieldy. By contrast, the Tor amplitude condition in
Theorem 1.1 lives at the level of the homotopy groups of R and is therefore quite
concrete. This change represents a considerably gain in practical usability.

Before moving on, let us point out that this example also highlights another key
feature of devissage: namely, while localization sequences occur at the level of non-
commutative motives, devissage does not.2 It is rather a property K -theory satisfies
in addition to being localizing. Similarly, Theorem 1.1 does not hold in general for
localizing (or additive) invariants.

We prove Theorem 1.1 as a corollary of our main result, Theorem 1.3, which is a
more general devissage result taking place at the level of stable categories.

Theorem 1.3 Let F : C → D be an exact functor between small, stable, idempotent
complete categories and let (C≥0, C≤0) be a bounded t-structure on C. If we assume
that

(A) the image of F generates D under finite colimits and retracts and
(B) F is fully faithful when restricted to C♥

then there exists a unique bounded t-structure onD for which F is t-exact. Moreover,
the induced maps on connective K -theory

K (C♥) K (D♥)

K (C) K (D)

are all equivalences and K−1 of each term vanishes.

Theorem 1.3 is proved in Sect. 2 and the key step is the construction of the t-
structure on D. This is the most technical point in the proof and it uses all of the
conditions of the theorem in an essential way. In fact, as a byproduct of this argument
we obtain relatively fine-grained control over the abelian category D♥. Specifically,
we find that the inclusion C♥ ↪→ D♥ satisfies the hypotheses of Quillen’s devissage
theorem [21, Theorem 4] from which we obtain the K -equivalence between C♥ and
D♥. The proof ends with applying Barwick’s theorem of the heart [2] to identify the

2 For example THH(EndZ(Fp)) is the fiber of the map THH(Z) → THH(Z[1/p]), which does not agree
with THH(Fp).
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K -theories of C and D with that of their heart and the main results of [22] and [1] to
obtain the vanishing of K−1.

Examining the relation between C♥ and D♥ we see that conditions (A) and (B)
together can be thought of as asking that D behave like a category of unipotent local
systems with coefficients in C. Indeed, (B) is analogous to the fact that maps between
trivial representations can be computed on underlying and (A) is analogous to the
fact that unipotent representations are generated from trivial representations under
extensions. For this reasonwe say that amap is unipotent if it satisfies these conditions.
With this reformulation we can now introduce the key slogan of this paper:

Devissage is the invariance of K -theory under unipotent maps.

In Sect. 3 we deduce Theorem 1.1 from Theorem 1.3 and discuss several points which
are complementary to Theorem 1.3. A subtlety worth noting here is that up to this
point we have been working entirely with connective K -theory as this is the setting
where Barwick’s theorem of the heart and Quillen’s devissage are applicable. In fact,
assuming C♥ is Noetherian, we show in Lemma 3.12 that D♥ is Noetherian as well.
This lets us extend Theorem 1.3 to non-connective K -theory in the Notherian setting
for the simple reason that negative K -group vanish in the Noetherian setting [1]. One
mightwonderwhetherTheorem1.3 holds for negative K -groups in the non-Noetherian
settting and since we are not aware of any counter-example we are led to ask3:

Question 1.4 Do the theorem of the heart and devissage hold for negative K -theory?

In Sects. 4 and 5 we turn to applications of our main theorem. Combining our work
with the work of Land and Tamme on the K -theory of pullbacks and pushouts [12,
13] we provide general conditions under which K -theory preserves pushouts.

Theorem 1.5 Suppose C
g←− A

f−→ B is a span of discrete rings where A is left regular
coherent and both f and g are right faithfully flat. Then connective K -theory preserves
the pushout of this span.

Theorem 1.5 allows us to generalize Waldhausen’s theorems on the K -theory of
generalized free products [25] to the setting of non-discrete rings. Using similar tech-
niques, we then obtain an A

n-invariance result for K -theory.

Theorem 1.6 [An-invariance of algebraic K -theory] Let C be a small, stable, idem-
potent complete category equipped with a bounded t-structure. Then Ki (C) ∼=
Ki (C[x1, . . . , xn]) for i ≥ n − 1.

In the n = 1 case, for a regular, Noetherian ring this recovers Quillen’s fundamental
theorem of algebraic K -theory [21, Theorem 8]. An alternative proof extending the
result to regular coherent rings was given byWaldhausen, again in the n = 1 case [25].
If C♥ is in addition Noetherian, then through a combination of [1, Proposition 3.14],
Barwick’s theorem of the heart and the extension of Quillen’s argument to abelian
categories (see [18]) we in fact know that K nc(C) � K nc(C[x1, . . . , xn]) and that
the negative K -groups vanish. The case of non-Noetherian regular coherent rings and

3 See also [1, ConjectureC], which is part of Question 1.4.
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n > 1 is more difficult, because R[x] may not even be coherent, so one cannot induct
on n in the obvious way. Nevertheless, the n > 1 case was already known when R
is a discrete ring as a corollary of the Farrell-Jones conjecture for the groups Zn and
the n = 1 case4 (see for example [6, Corollary 2]). The degree bounds in the above
theorem ultimately come from our use of connective K -theory and a positive answer
to Question 1.4 would allow us to remove these restrictions.

In Sect. 5.2 we examine the category of unipotent local systems on a connected
space X with coefficients in a category C with a bounded t-structure. As one might
expect, we find that the K -theory of unipotent local systems agrees with the K -theory
of C, generalizing [1, Theorem 4.8]. In the final pair of subsections we work through a
collection of examples which demonstrate that the conditions in Theorem 1.1 cannot
be weakened.

1.1 Notations and conventions

In order to preserve the brevity of this paper we assume the reader is generally famil-
iar with higher algebra and algebraic K -theory. We also make use of the following
notations and conventions throughout.

• The term category will refer to an ∞-category as developed by Joyal and Lurie.
• Map(a, b) will denote the space of maps from a to b (in some ambient category).
• In a stable category map(a, b) will denotes the mapping spectrum between a and
b.

• For anE1-algebra R, Mod(R)will refer to its category of left modules and Perf(R)

will refer to the category of perfect left R-modules, i.e. the compact objects in
Mod(R).

• We use C,D to denote small, idempotent complete stable categories, and use
Catperf to denote the category of such categories and exact functors.

• Given an exact functor F : C → D in Catperf , F∗ : Ind(C) → Ind(D) denotes
Ind(F), and F∗ : Ind(D) → Ind(C) denotes the right adjoint of F∗.

• We use Uloc for the noncommutative motive (or just nc motive for short) functor
of Blumberg–Gepner–Tabuada [3].

• We use K (−) for connective K -theory and K nc(−) for non-connective K -theory.
• We use xn for a polynomial generator in degree n and εn for an exterior generator
in degree n. As an example, S[xn] is the free E1-algebra on a class in degree n.

• We use C[εn] as notation for C ⊗ Perf(S[εn]) and similarly for polynomial gener-
ators.

2 Themain theorem

In this section we prove our main theorem, Theorem 1.3, whose statement we repro-
duce below.

4 While the Farrell-Jones conjecture is about nonconnective K -theory, A1-invariance is only known for
connective K -theory, and for this reason this alternative approach arrives at the samedegree bound, i ≥ n−1,
for An -invariance.
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Theorem 2.1 [Theorem 1.3] Let F : C → D be an exact functor between small,
stable, idempotent complete categories and let (C≥0, C≤0) be a bounded t-structure
on C. If we assume that
(A) the image of F generates D under finite colimits and retracts and
(B) F is fully faithful when restricted to C♥

then there exists a unique bounded t-structure onD for which F is t-exact. Moreover,
the induced maps on connective K -theory

K (C♥) K (D♥)

K (C) K (D)

are all equivalences and K−1 of each term vanishes.
Before proceeding, we give a sketch of the strategy we follow in proving this

theorem. The final step is applying Barwick’s theorem of the heart and Quillen’s
devissage theorem to produce K -theory equivalences, along with the vanishing results
on K−1 due to Schlichting and Antieau–Gepner–Heller. In order to apply these results
we need to produce a bounded t-structure on D which is relatively well behaved. The
key idea is that after passing to categories of ind-objects it is in fact quite easy to
produce such a t-structure. Condition (B) is then rigged so that we have the control
necessary to restrict this t-structure to compact objects in Ind(D) (i.e. D). For the
remainder of this section the notation from the statement of Theorem 1.3 will remain
in place and we assume F satisfies conditions (A) and (B).

Passing to ind-completions gives us an induced commutative diagram

C D

Ind(C) Ind(D)

F

F∗

where F∗ is a left adjoint and the vertical arrows are each the inclusion of the full
subcategory of compact objects.5

As promised, we begin by producing a t-structure on the level of ind-objects. This
is rather easy since the category of ind-objects is presentable.

Lemma 2.2 ( [15, Proposition 1.4.4.11]) Let A be a presentable, stable category. If
{Xα} is a small collection of objects in A, then there is an accessible6 t-structure,
(A≥0,A≤0), onA such thatA≥0 is the smallest full subcategory ofA containing each
Xα and closed under colimits and extensions. The full subcategory of coconnective
objects is characterized by the condition Y ∈ A≤0 if and only if Map(�Xα,Y ) = 0
for each Xα .

We equip Ind(C)with the t-structure whose connective part is generated by C≥0 and
we equip Ind(D) with the t-structure whose connective part is generated by F(C≥0).
Applying Ind to the split localization sequence

5 We will suppress any further mention of these inclusions.
6 A t-structure on a presentable category is accessible if the full subcategory of connective objects is
accessible.
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C≥0 → C → C<0

we can then read off that Ind(C≥0) ⊆ Ind(C)≥0 and Ind(C<0) ⊆ Ind(C)<0which in
turn implies that Ind(C≥0) ∼= Ind(C)≥0 and Ind(C<0) ∼= Ind(C)<0.

Lemma 2.3 F∗ is t-exact.

Proof F∗ sends connective objects to connective objects by construction. To show
that F∗ preserves coconnectivity we need to check that for every c ∈ C≥1 and x ∈
Ind(C)≤0 the mapping space Map(F∗(c), F∗(x)) is contractible. Since the t-structure
on Ind(C) restricts to compact objects we can write x as a filtered colimit of compact,
coconnective objects. This implies (since F∗ is a left adjoint) that it suffices to prove
Map(F∗(c), F∗(x)) = 0 when x is compact. Via the boundedness of the t-structure
on C this follows from condition (B). ��

At this point we are now ready to prove that the t-structure on Ind(D) restricts to a
bounded t-structure on D. The main idea in proving this is that on the one hand, (A)
guarantees that every object in D is only finitely many steps away from being in the
image of F , while on the other hand, the t-structure on C can be used to produce a
rich collection of compact objects in Ind(D)♥.

Proposition 2.4 The t-structure on Ind(D) restricts to a bounded t-structure on D.
Each d ∈ D♥ has a finite filtration with associated graded in the image of F |C♥ :
C♥ → D♥.

Proof In order to prove the proposition it will suffice to show that every object d ∈ D
satisfies the following condition:

(∗) d is t-bounded and each π
♥
i (d) has a finite filtration whose associated graded

lies in C♥ ⊆ Ind(D)♥ ∩ D.

Note that if d satisfies (∗), then the finite filtrations on the homotopy groups implies
that each π

♥
i (d) lies in D ⊆ Ind(D) and similarly the t-boundedness implies d ∈ D.

Since F∗ is t-exact F(c) satisfies (∗) for each c ∈ C♥. Using hypothesis (A) it will
now suffice to show that the full subcategory of objects ofD satisfying (∗) is thick. As
the condition (∗) is stated entirely in terms of homotopy groups, it will suffice to show
that the corresponding condition (∗∗) on the level of the heart cuts out a subcategory
closed under kernels, cokernels and extensions.7

(∗∗) d ∈ Ind(D)♥ has a finite filtration whose associated graded lies in C♥.
Given two objects A, B ∈ D, eachwith a finite filtration inD and amap r : A → B,

we can paste the filtrations to form a filtration on the cofiber cof r as follows. Let us
view our filtration on A (and similarly on B) as a functor Fil∗ A : Z → D so that
Fili A denotes the i th filtered pieces of A, gri A = cof(Fili−1 A → Fili A). To be a
finite filtration on Ameans that limi Fil A = 0, colimi Fil A = A and gr∗ A is nonzero
only finitely many times. Because the filtrations are finite, by shifting we can suppose

7 This uses that fact that these operations suffice to describe how homotopy groups change under cofiber
sequences and idempotents
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that our filtrations on A and B are such that whenever gri B, gr j A are nonzero, j < i .
r then canonically lifts to a map of filtered objects Fil∗ A → Fil∗ B because all the
maps of Fil∗ B in the range where Fil∗ A is nonzero are isomorphisms. Taking the
cofiber of this map of filtered objects, we obtain a finite filtration on the cofiber. The
associated graded of this pasted filtration agrees with gr∗ B at first and switches over
to being � gr∗ A.

By pasting filtrations, we learn that the collection of objects satisfying (∗∗) is
closed under extensions, since extensions of A by B are cofibers of maps of the
form �−1A → B. We will handle kernels and cokernels simultaneously. Suppose
A, B ∈ Ind(D)♥ satisfy (∗∗) and r is a map between them. We paste the filtrations on
A and B to form a filtration on the cofiber, cof(r). In the spectral sequence associated
to this filtered object, the E1-page is the homotopy groups of the associated graded of
the filtration. By the previous paragraph has a copy of the associated graded of B in
topological degree 0, and a copy of the associated graded of A in topological degree
1. This spectral sequence converges to the associated graded of a finite filtration on
the π

♥∗ of the cofiber. By hypothesis, the E1-page of this spectral sequence involves
only objects of C♥. Now, since F is t-exact and fully faithful on C♥, kernels and
cokernels of maps between objects in the image of F |C♥ remain in the image of F |C♥ .
Consequently, as we run the differentials in this spectral sequence the terms remain in
the essential image of C♥. Since the spectral sequence has only finitely many pages
we learn that it abuts to a filtration of the desired type on the kernel and cokernel of r
(which appears as π

♥
1 (cof(r)) and π

♥
0 (cof(r)) respectively).

The second conclusion follows from knowing that (∗) applies to the objects of
D♥ ⊆ D. ��

We now recall Quillen’s devissage and the theorem of the heart, which we use to
finish the proof of the main theorem.

Theorem 2.5 [[2] Barwick’s theorem of the heart] Let C be a stable category with
bounded t-structure. Then the inclusionC♥ → C induces an equivalence on connective
K -theory.

Theorem 2.6 [[21, Theorem 4] Quillen’s devissage] Let A ⊂ B be an exact fully
faithful inclusion of abelian categories withA closed in B under subobjects, and such
that every object of B has a finite filtration with associated graded in A. Then the
inclusion A → B induces an equivalence on connective K -theory.

Proof (of Theorem 1.3). At this point we have already shown that D admits a bounded
t-structure Proposition (2.4) for which F is t-exact (Lemma 2.3). Next we argue that
this t-structure onD is unique. We start by observing that the filtration condition from
Proposition 2.4 implies that the extension closure of F(C≥0) isD≥0 and the extension
closure of F(C<0) is D<0. Now suppose we have another t-structure (D�0,D≺0) on
D for which F is t-exact. Using the assumption that F is t-exact the above lets us
conclude that D≥0 ⊆ D�0 and D<0 ⊆ D≺0. Using the orthogonality of positive and
negative parts of t-structures in turn implies that in fact D≥0 = D�0 and D<0 = D≺0
giving the desired uniqueness.

Finally, we examine the square on K -theory,
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K (C♥) K (D♥)

K (C) K (D).
K (F)

Because the t-structures on C andD are bounded, we can use Theorem 2.5 to see that
the vertical maps are equivalences. Moreover, the results of [22] and [1] show that
K−1 of C and D vanish.

In order to finish the proof it suffices to show that the top horizontal map is an
equivalence, which we show by applying Theorem 2.6. The map f : C♥ → D♥ is
fully faithful and exact by construction, and we showed that the filtration condition is
satisfied in Proposition 2.4.

It remains to check that if d ∈ D♥ is a subobject of c ∈ C♥, then d ∈ C♥. Using
the exactness of the inclusion it will suffice to instead show that coker(d → c) ∈ C♥.
Using Proposition 2.4 we can equip d with a finite filtration with associated graded
in C♥. The cokernel coker(d → c) can be produced by successively quotienting c by
the pieces in the associated graded of the filtration on d, thus we only need to know
that quotients by subobjects coming from C♥ stay in C♥. This last statement follows
from the fact that f is fully faithful and exact. ��
Remark 2.7 In fact, the assumption that C and D be idempotent complete in Theorem
1.1 can be removed. For C this does not provide additional generality as any stable
category with a bounded t-structure is automatically idempotent complete.8 IfD is not
idempotent complete, then we can instead apply Theorem 1.1 to the map C → Didem

to learn that the composite

K0(C) → K0(D) → K0(Didem)

is an isomorphism. This means that K0(D) → K0(Didem) is surjective, which implies
that D is idempotent complete by [24].

Remark 2.8 We end this section by observing that the following converse to Theorem
1.3 holds: if we have F : C → D a map which we can use the theorem of the heart
and Quillen’s devissage to prove is a K -equivalence, then (A) and (B) must hold.

To see this, first note that to apply the theorem of the heart we need bounded t-
structures on C and D so that F is t-exact. To apply Quillen’s devissage, the induced
functor on hearts should by fully faithful and its image should generate D♥ under
extensions. The condition on generating D♥ implies (A). The t-exactness of F , plus
fully faithfulness on the heart implies (B).

Simply put, this is saying that Theorem 1.3 is essentially equivalent to the combi-
nation of Quillen’s devissage and the theorem of the heart. �

3 Complements

In this section we discuss a couple points which are complementary to Theorem 1.3.
We begin by introducing some ideas from noncommutative geometry which provide a

8 It suffices to split idempotents on the heart and abelian categories are automatically idempotent complete.
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convenient language for thinking about ourmain theorem. Then, we discuss variants of
themain theorem and prove Theorem 1.1 from the introduction. In the third subsection
we consider improvements to Theorem 1.3 which are possible when C♥ is Noetherian.
We end the section by briefly discussing negative K -groups.

3.1 Some nc geometry

For us noncommutative geometry refers to thinking about small idempotent complete
stable categories equipped with a “positive half” closed under finite colimits and
extensions. This is quite close to established notions of noncommutative geometry
such as in [20], with the notable difference being that we work relative to the sphere
rather than relative to a discrete base ring k. We explore this setting in some depth in
[5] and in this sectionwe build on the groundwork from that paper.9 Before proceeding
we remind the reader of the main definitions.

Definition 3.1 We use Catperf to denote the category of small idempotent complete
stable categories. Our main objects of study are objects of Catperf≥0 . This is the category
of C ∈ Catperf equipped with an idempotent complete prestable10 full subcategory
C≥0 that generates C.

Being prestable amounts to asking that C≥0 be closed under finite colimits and
extensions. Often, we abuse notation by writing C ∈ Catperf≥0 , leaving the subcategory
of positive objects, C≥0, implicit.

Example 3.2 Given an E1-algebra R, the category compact R-modules, Mod(R)ω,
naturally lives in Catperf≥0 . The positive objects are those built from R via extensions,
finite colimits and retracts. �

Given C ∈ Catperf≥0 , the subcatgory Ind(C≥0) ⊂ Ind(C) determines a t-structure
on Ind(C) (see Lemma 2.2). In fact, C≥0 can be recovered from the t-structure as
Ind(C≥0) ∩ C.
Example 3.3 In the t-structure associated to Example 3.2, a connective object is one
built out of copies of R under colimits and extensions, and a coconnective object is
one whose underlying spectrum is coconnective. �
Definition 3.4 Given C ∈ Catperf≥0 ,

• C is regular if the t-structure on Ind(C) restricts to C (i.e truncations of compact
objects are compact),

• C is bounded if each c ∈ C is bounded as an object of Ind(C),
• a functor C → D is quasi-affine if its image generates D under finite colimits and
retracts and

9 Even though we cite results in [5], we do not use anything particularly difficult from there, and so the
results here can be considered independent of that paper.
10 As introduced in [16, Appendix C]
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• a quasi-affine functor C → D is unipotent if it induces a fully faithful functor on
Ind(C)♥. �

Example 3.5 We say a ring R is regular if Mod(R)ω is regular. If R is a discrete ring
then, as a result of well-known arguments, R is regular in this sense iff R is left regular
coherent. For a proof stating things this way, see [5, Proposition 2.4]. �

Theorem 1.1 gives sufficient conditions for a coconnective ring R to be regular,
but they are not necessary. Moreover for a general regular coconnective ring, K (R)

may not agree with K (π0R). See Example 5.14 for an example of such a regular
coconnective ring.

Example 3.6 We show in [5, Proposition 2.16] that if C is regular, and n �= 0, then
C[xn] is regular. �
Remark 3.7 If we think in terms of categories of quasicoherent sheaves, the reasoning
behind the term quasi-affine is relatively transparent.

The term unipotent bearsmore explanation. The key identifying features of a unipo-
tent group are thatmaps between trivial representations can be computed on underlying
and every representation is built out of extensions of trivial reps. Our definition takes
these properties as the definition of unipotent.

Note that conditions (A) and (B) of Theorem 1.3 are equivalent to saying that F is
unipotent. This lets us reinterpret Theorem 1.3 as saying that bounded regularity can
be transferred along unipotent maps, and that such maps induce K -equivalences. This
reinterpretation is a precise form of the slogan in the introduction. �

3.2 Other forms of themain theorem

In practice unipotence can be difficult to check so we recall an equivalent condition
which is often more transparent. The functor F∗ : Ind(C) → Ind(D) has a right
adjoint F∗, which preserves colimits since F∗ preserves compact objects.

Lemma 3.8 ( [5, Corollary 4.12]) For a map F : C → D as in Theorem 1.3 condition
(B) is equivalent to:

(B′) For every c ∈ C♥, the cofiber of the unit map c → F∗F∗(c) is in Ind(C)≤−1.

Proof sketch Unraveling (B′) gives the statement that the cofiber of map(d, c) →
map(Fd, Fc) is coconnected for all c ∈ C♥ and d ∈ C≥0. This visibly implies (B).
The key point in proving the reverse implication is using the fact that C♥ is closed
under extensions in Ind(C).11 ��

We now provide a version of Theorem 1.3 for categories of modules over an E1-
algebra from which Theorem 1.1 will follow.

Proposition 3.9 Let f : A → B be a map of E1-algebras such that

1. Mod(A)ω is bounded and regular and

11 In this paper we only use that (B′) implies (B) and not the reverse implication.
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2. cof( f ) has Tor amplitude in [−∞,−1] as a right A-module,
thenMod(B)ω is bounded and regular, the base-change functor (−)⊗A B is a t-exact
K -equivalence, and K−1 of A and B vanish.

Proof We apply Theorem 1.3 to the base-change functor

B ⊗A − : Mod(A)ω → Mod(B)ω.

This functor is quasi-affine since A is sent to B which is a generator. Condition (B′) of
Lemma 3.8 asks that for every N ∈ Mod♥

A the A-module cof( f )⊗A N be coconnected.
This is equivalent to the given Tor amplitude bound on cof( f ). ��
Proof (of Theorem 1.1). We apply Proposition 3.9 to the connective cover map f :
π0R → R. From Example 3.5 we know that π0R is left regular coherent iff
Mod(π0R)ω is regular. Boundedness is automatic. Since τ<0R � cof( f ), the Tor
amplitude bounds in Proposition 3.9 and Theorem 1.1 match up. ��
Remark 3.10 Amplifying Remark 2.8, we note that the conditions of Theorem 1.1 are
actually equivalent to (A) and (B′) for the connective cover map, implying a converse
to this theorem. �
Remark 3.11 The reader might wonder when the the abelian categories C♥ and D♥
appearing in Theorem 1.3 are equivalent. We remark that this will be the case as soon
as F satisfies:

(C) for every c ∈ C♥, the cofiber of the unit map c → F∗F∗(c) is ≤ −2 in the
t-structure on Ind(C).12

�

3.3 The noetherian case

In situation of Theorem 1.3 if we further assume that the heart of C is Noetherian, then
we can draw stronger conclusions about K -theory and the induced t-structure on D.

Lemma 3.12 In situation of Theorem 1.3, if C♥ is Noetherian, then the heart of the
induced t-structure on D is Noetherian as well. Moreover, in the square of noncon-
nective K -theories,

K nc(C♥) K nc(D♥)

K nc(C) K nc(D)

all maps are equivalences.

12 See [5, Proposition 7.2] for details.
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Proof We would first like to show that every d ∈ D♥ is Noetherian. By Proposition
2.4, d has a finite filtration with associated graded in F(C♥), so since Noetherian
objects are closed under extensions, it suffices to show that F(c) is Noetherian for
each c ∈ C♥. As argued in the proof of Theorem 1.3, F is fully faithful with image
closed under passing to subobjects. This implies that the lattice of subobjects of F(c)
agrees with that of c, so F(c) is Noetherian since c is.

Now by applying the vanishing theorems of [22] and [1], the negative K -groups of
categories with a bounded t-structure with Noetherian heart vanish, so the square of
equivalences in Theorem 1.3 extends to negative K -theory. ��

Next we examine the interpretation of condition (B) as “unipotence” more closely.
Let f : C♥ → D♥ denote the restriction of F to C♥, as well as its Ind-completion. At
the moment we know that

(1) f : C♥ → D♥ is fully faithful.
(2) Each d ∈ D♥ has a finite filtration with associated graded in the image of f .
(3) Every subobject of f (c) comes from a subobject of c.

Note that the finite filtrations are not guaranteed to be functorial,13 but when D is
Noetherian, functoriality comes for free in the form of the socle filtration:

Construction 3.13 At the level of Ind-categories the functor f has right adjoint given
by g:=τ≥0G(−). Since f is a fully faithful left adjoint it exhibits Ind(C)♥ as a coreflec-
tive subcategory of Ind(D)♥. We let soc0(M) denote f g(M), which sits as a subobject
of M via the counit map.

We define socn(−) inductively via the pullback

socn soc0(Id/socn−1)

socn−1 Id Id/socn−1.

�

The key property of the socle filtration is that socn/socn−1 is in the image of f for
every n. Since the maps Id/socn−1 → Id/socn become zero after applying g and since
g = τ≥0G and G detects coconnectivity we learn that

colim
n

socn → Id

is an equivalence, i.e. the socle filtration is exhaustive.
Now, using our Noetherian-ness hypothesis we know that arbitrary subobjects of

compact objects are compact in Ind(D)♥, therefore the socle filtration restricts to a
functorial filtration on D♥ that is finite on each object. �
Remark 3.14 The construction of a bounded t-structure together with socle filtrations
can be interpreted as a generalization of [11, Theorem 8.1] where a similar result is
proven for dg-algebras with strong finiteness assumptions. �
13 Quillen’s devissage, doesn’t require a functorial filtration, but merely an object-wise one.
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It is important to note that outside of the Noetherian setting the socle filtration,
while still existent at the level of Ind-categories, need not restrict to compact objects.

Example 3.15 Let C denote the category of pairs (V0, V1) where V0 is a k[x1, . . . ]-
module and V1 is a k-module. Since the infinite dimensional affine space is
regular coherent, C has a bounded t-structure. Let D denote the category of triples
(V0, V1, V0 ⊗k[x1,... ] k → V1).

The natural functor C → D which uses the zero map is fully faithful on the heart,
therefore the hypotheses of Theorem 1.3 are satisfied. On the other hand, the socle of

(k[x1, . . . ], k, k[x1, . . . ] � k)

is (I , k) and the augmentation ideal of k[x1, . . . ] is not compact. �

3.4 Negative K-theory

It would be desirable to extend Theorem 1.3 to negative K -theory, however both the
theorem of the heart and Quillen’s devissage only apply to connective K -theory in
their current form. For that reason we ask the following question (which we hope has
a positive answer):

Question 3.16 Do the theorem of the heart and devissage hold for negative K -theory?

As discussed above, if C♥ is Noetherian, thenD♥ is Noetherian and so the negative
K -theory vanishes. This might suggest that one should approach this question by
proving a vanishing statement for negative K -theory. However, the example from [19]
shows that in general regularity does not imply the vanishing of negative K -groups.

In order to probe question of this typemore closelywe examine the relation between
stable coherence and the vanishing of negative K -theory in [5, Section 3.2]14. We
reproduce the statements proved therein for the convenience of the reader interested
in thinking about Question 3.16.

Definition 3.17 Given a category C with bounded t-structure we say that C is A
n-

coherent if the finitely presented Z[t1, . . . , tn]-modules in Ind(C♥) form an abelian
category15. If C is An-coherent for all n, then we say it is stably coherent. �
Example 3.18 In [8, Example 7.3.13], it is shown that an infinite product of copies of
the ring Q[[x, y]] is regular coherent, but this ring is not A1-coherent (demonstrating
that this is a non-trivial condition on a regular coherent ring). �

The following lemma uses the vanishing results of [1].

Lemma 3.19 ([5, Corollary 3.14, Lemma 3.17]) If C is regular and An-coherent, then
the first n + 1 negative K -groups of C vanish.

14 see also [1, Section 3.5] for a similar discussion.
15 If C is the category of perfect R-modules for R a discrete ring, then this is equivalent to asking that
R[t1, . . . , tn ] be left coherent.
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Proposition 3.20 ([5, Proposition 3.18]) If we are given a functor F : C → D ∈
Catperf and a bounded A

n-coherent t-structure on C such that the conditions of The-
orem 1.3 are satisfied, then the induced t-structure on D is An-coherent as well.

4 K -theory of pushouts

In this section we prove Theorem 4.11 (a corollary of which is Theorem 1.5 from the
introduction) which says that K -theory preserves pushouts of (well-behaved) regular
prestable categories. This theorem arises from the examining the interaction of our
main theorem with the Land–Tamme �-product. In fact, the idea that a result like
Theorem 1.1 should be true was suggested to the authors by Markus Land and Georg
Tamme with the intention of using such a result to compute the K -theory of pushouts.

4.1 A review on the�-product

The Land–Tamme �-product is a relatively new operation on E1-algebras (and cate-
gories more generally) first introduced in [12], with generalizations appearing in [4]
and the forthcoming [13]. Here we roughly follow [13] in our formulation of this
operation.

Construction 4.1 Given a pair of categories B and C in Catperf and an arrow f ∈
FunL(Ind(C), Ind(B)) we can form the oplax limit of f , which we denote B× f C ∈
Catperf . This is the category of triples (b, c, r), where b ∈ B, c ∈ C, and r : b → f (c)
is a map. For our purposes, the key observation about B× f C is that the forgetful map
B× f C → B × C induces an equivalence at the level of nc motives

Uloc(B× f C) ∼= Uloc(B × C) ∼= Uloc(B) ⊕ Uloc(C).

Adding another layer, associated to each square

A C

B Ind(B).

f

we have an induced map A → B× f C in Catperf and we define the Land–Tamme

�-product B � f
A C to be the cofiber of this map. This cofiber sequence in Catperf

provides a pushout in nc motives

Uloc(imA) Uloc(C)

Uloc(B) Uloc(B � f
A C)

�

where imA denotes the image of A inside B× f C. �
Remark 4.2 If we specialize to the case where A, B and C are module categories of
E1-algebras A, B and C , then we can move down a categorical level:
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(1) The category FunL(Mod(C),Mod(B)) can be identified with Mod(B ⊗ Cop),
meaning the bonding map is just a choice of (B, C)-bimodule M .

(2) imA is generated by the image of A, meaning im(A) ∼= Mod(im A)ω where im A
is the endomorphism algebra of the image of A.

(3) If the functors A → B and A → C came from E1-algebra maps A → B and
A → C , then B � f

A C is generated by the image of B (which is equivalent to the
image of C). We let B �M

A C denote the ring of endomorphisms of this object
where M is the bimodule used as the bonding map.

�
Speaking practically, the fundamental difficulty in working with the�-product lies

in identifying the categories im(A) and B � f
A C. A fundamental insight of Land and

Tamme is that in many cases of interest these categories are surprisingly computation-
ally accessible.

Example 4.3 In [12], where the �-product was introduced, the following example of
Construction 4.1 is analyzed. Suppose we are given a pullback square of E1-algebras

A C

B D.

�

Using D as our (B,C)-bimodule, Mod(A) for A and the map B → D of (B, A)-
bimodules for the natural transformation,we can construct a�-product B�D

A C . In this
situation they prove that im(A) ∼= A and the spectrumunderlying B�D

A C is equivalent
to B ⊗A C as a (B,C)-bimodule. Furthermore, they show in [12, Proposition1.13]
that the underlying C-bimodule of B �D

A C is the cofiber of the map I ⊗A C → C ,
where I is the fiber of C → D. �

In the forthcoming [13] another, somewhat dual, situation is analyzed.

Theorem 4.4 ([13]) Given a span B b←− A c−→ C in Catperf there is a square

A C

B Ind(B)

c

b b∗c∗
b∗ηc

and an equivalence of the associated �-product with the pushout of the span,

B �b∗c∗
A C � B

∐
A

C.

Corollary 4.5 ([13]) Given a span B ← A → C of E1-algebras we have an equiva-
lence

B �B⊗AC
A C � B

∐
A

C
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of the �-product with the pushout of the span in E1-algebras.

Remark 4.6 In Theorem 4.5 if we have a span of commutative algebras instead, then
the base-change equivalence B ⊗A C ⊗C − ∼= B ⊗A − allows us to recognize that
we are actually in the situation of Example 4.3 for the cospan B → B ⊗A C ← C .
The benefit of making this identification is that we can identify im(A) as the pullback
of this cospan. �
Lemma 4.7 The �-product is compatible with base-change, i.e.

(B � f
A C) ⊗ D ∼= (B ⊗ D) � f ⊗D

A⊗D (C ⊗ D).

Proof This follows from the fact that−⊗B preserves fully faithful maps and localiza-
tion sequences (see for example [1, Lemma 3.3, Corollary 3.5]) and commutes with
pullbacks, lax pullbacks and oplax limits of arrows. ��

The�-product allows us to produce examples of equivalences of nc motives which
do not arise from equivalences of categories. We end our recollection by working
through a pair of examples which illustrate this flexibility phenomenon.

Definition 4.8 Let S[xn] denote the polynomial algebra on a generator in degree n.
We let Nn denote the cofiber

Nn := cof (Uloc(S) → Uloc(S[xn]))

and use N to mean N0. �
If we think about N as a homology theory on nc motives it is the NK -theory of

Bass which measures the failure of A1-invariance.

Example 4.9 Consider the span of commutative algebras S ← S[xn] → S. Applying
Corollary 4.5 we obtain a pullback of nc motives

Uloc(im S[xn]) Uloc(S)

Uloc(S) Uloc(S[xn+1]).
�

Using Remark 4.6 we can identify im(S[xn]) as S[εn] (the exterior algebra on a class
in degree n) since S⊗S[xn ] S � S[εn+1] and the pullback moves the exterior generator
down a degree. Since the diagram above is diagonally symmetric we have a splitting

Uloc(S[εn]) � 1 ⊕ �−1Nn+1.

�
We learned of next example, which allows us to turn a copy of the coordinate axes

in the plane into a polynomial algebra, from Markus Land and Georg Tamme.
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Example 4.10 Consider the algebra R:=S[xa, xb]/(xaxb)which is built from the pull-
back square on the left below (where xa is in degree a and xb is in degree b).

S[xa, xb]/(xaxb) S[xa] Uloc(S[xa, xb]/(xaxb)) Uloc(S[xa])

S[xb] S Uloc(S[xb]) Uloc

(
S[xa] ∐

S[xa ,xb] S[xb]
)

� �

Applying Corollary 4.5 and Remark 4.6 we then obtain the pullback of nc motives
on the right. In fact, we can simplify this by exhibiting an equivalence of E1-algebras

S[xa]
∐

S[xa ,xb]
S[xb] � S[xa+b+2].

To show this, suppose first that a, b > 0. Then using the fact that

S∗
�∞+ 
−−−−−→ Alg(Sp)

is a left adjoint and so preserves pushouts, we reduce to the pushout square

Sa+1 × Sb+1 Sa+1

Sb+1 Sa+b+3.
�

We use a trick in order to extend this equivalence to the case where a, b are not
strictly positive. First, we lift the pushout above to a pushout in graded rings where
xa and xb are in grading 1. Since the functor forgetting the grading on an E1-algebra
preserves colimits, it will suffice to compute the pushout in the graded setting. Next we
use the E2-monoidal shearing functor which suspends by 2n in grading n constructed
in [14] to reduce to the case where a, b are positive.

In the graded setting the generator xa+b+2 is in grading 2 and as a consequence of
the fact that S[xa] is the free graded algebra on the class xa in grading 1 we obtain
a factorization S[xa] → S → S[xa+b+2]. With control over the maps in the square
above we now obtain an equivalence of nc motives

Uloc(S[xa, xb]/(xaxb)) � 1 ⊕ Na ⊕ Nb ⊕ �−1Na+b+2.

�

4.2 K-theory of pushouts

There is a sharp contrast between the ideas behind the Land–Tamme �-product and
our main theorem. The�-product arises from 2-categorical maneuvers and essentially
operates at the level categories and ncmotives.Meanwhile ourmain theorem is specific
to K -theory, exploiting additive but non-exact operations (such as truncation) in an
essential way. The complementary nature of these approaches allows us to combine
them to surprising effect.
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Theorem 4.11 Suppose we are given a span B b←− A c−→ C in Catperf where A is
equipped with a bounded t-structure. If we assume that

(D) the induced functor A♥ → B×b∗c∗C is fully faithful,

then connective K -theory preserves the pushout of the span, i.e the diagram below is
a pushout square.

K (A) K (C)

K (B) K
(B∐

A C)�

Proof From Theorem 4.4, we have a pushout square

K nc(imA) K nc(C)

K nc(B) K nc
(B∐

A C)
.

�

Condition (D) implies that the functorA → im(A) satisfies the hypotheses ofTheorem
1.3, so we have an equivalence K (A) � K (imA), and K−1 of each vanishes. This
implies that the square above remains a pushout when we take connective covers and
replace K (imA) by K (A). ��

In order to make this theorem easier to apply we give a simpler condition which
implies (D) and is more natural to check in practice.

Lemma 4.12 In the situation of Theorem 4.11 condition (D) is implied by

(D′) The functors A♥ → B and A♥ → C are faithful.

Proof Let F denote the functor A → B×b∗c∗C. Using Lemma 3.8 it suffices to show
that cof(a → F∗F∗(a)) is ≤ −1 for each a ∈ A♥. In order to proceed we’ll give a
formula for F∗F∗. From the pullback square

MapB×b∗c∗C(F∗x, F∗y) MapB(b∗x, b∗x)

MapC(c∗x, c∗y) MapB(b∗c∗c∗x, b∗c∗c∗y) MapB(b∗x, b∗c∗c∗y)

�
b∗c∗ b∗ηc◦−

natural in both x and y we learn that F∗F∗ sits in a pullback square

F∗F∗ b∗b∗

c∗c∗ b∗b∗c∗c∗.

�
b∗b∗◦ηc

ηb◦c∗c∗

We can then read off that

cof(Id → F∗F∗) � �−1 cof(Id → b∗b∗) ◦ cof(Id → c∗c∗)
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where ◦ is the composition monoidal structure on FunL(Mod(A),Mod(A)). Using
[5, Remark 4.9] (which is a variant of Lemma 3.8) and compatibility with colimits
we can reformulate the faithfulness hypothesis as saying that cof(Id → c∗c∗) and
cof(Id → b∗b∗) preserve coconnectivity. Composing and desuspending we obtain
the desired coconnectivity bound on cof(Id → F∗F∗). ��

For discrete rings condition (D′) has a simple interpretation: A map A → B is
faithful on the heart exactly when B is right faithfully flat as an A-module (see [5,
Lemma 4.7]). Consequently, we obtain the following corollary, which appeared in the
introduction as Theorem 1.5.

Corollary 4.13 Suppose B
f←− A

g−→ C is a span of discrete rings where A is left
regular coherent and both f and g are right faithfully flat. Then connective K -theory
preserves the pushout of this span.

Remark 4.14 Note that (D) does not imply (D′). For example if X and Y are (well-
behaved) smooth varieties which form a Zariski covering of Z , then (D) is satisfied
for the span

QCoh(X) ← QCoh(Z) → QCoh(Y )

while (D′) need not be satisfied. �
Remark 4.15 Corollary 4.13 (and in turn Lemma 4.12 and Theorem 4.11) can be
viewed as a generalization of [25, Theorems 1 and 4] where the stronger condition
that f : A → B and g : A → C are pure inclusions16 was imposed. �

5 Applications and examples

In this section we work through a collection of applications and examples which use
Theorem 1.1. Of particular note are

• (Prop.5.1) which proves A1-invariance for regular categories.
• (Prop.5.2) which proves An-invariance for regular categories in high degrees.
• (Prop.5.10) which analyzes the K -theory of unipotent local systems.
• (Exm.5.13, 5.15 and 5.16) which show that the conditions of Theorem 1.1 are
sharp.

5.1 Invariance theorems

We give a short proof of A1-invariance of K -theory for categories with a bounded
t-structure. This result was first proven for regular Noetherian rings by Quillen in his
foundational paper [21]. Building on this we then prove that K j (−) is An-invariant
once j ≥ n−1 (again for categories with a bounded t-structure). Using Theorem 4.11
we then extend A

1-invariance to the case of adjoining free variables generalizing the
main results of [7].

16 This asks that B have a splitting B ∼= f (A)⊕ I as an A-bimodule where I is a projective right A-module.
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Proposition 5.1 [A1-invariance for regular categories] IfC ∈ Catperf admits a bounded
t-structure, then K (C) � K (C[x0]).
Proof In order to prove this we must show that K nc(N ⊗ C) vanishes in non-negative
degrees. Applying Theorem 1.3 to the map C → C[ε−1] and applying the equivalence
of motives Uloc(C[ε−1]) ∼= Uloc(C) ⊕ �−1N ⊗ Uloc(C) from Example 4.9 we learn
that K nc(N ⊗ C) vanishes in non-negative degrees as desired.17 ��

Just as N controls A1-invariance, An-invariance is controlled by tensor-powers of
N. Using the same ideas we can show that K -theory is An-invariant in sufficiently
large degrees as well.

Proposition 5.2 [An- invariance for regular categories] Suppose C ∈ Catperf admits a
bounded t-structure. Then τ≥n−1K (C) � τ≥n−1K (C[x1, . . . , xn]), where |xi | = 0.

Proof From the equivalence

Uloc(S[x1, . . . , xn]) � Uloc(S[x]⊗n) � (Uloc(S[x]))⊗n � (1 ⊕ N)⊗n

we can read off that the obstructions to A
n-invariance in degree j are K j (N⊗k ⊗ C)

for 1 ≤ k ≤ n. Using Example 4.9 we can find �−kN⊗k ⊗ C as a summand in
Uloc(C[ε1, . . . , εk]) (where each exterior generator is in degree −1). Applying Theo-
rem 1.3 to the map C → C[ε1, . . . , εk] we learn that K nc(�−kN⊗k ⊗ C) vanishes in
degrees ≥ −1, which lets us conclude. ��
Corollary 5.3 Let R be a left regular coherent ring. Then Ki (R) ∼= Ki (R[x1, . . . , xn])
for i ≥ n − 1.

As mentioned in the introduction, the above corollary, which is more subtle for
n > 1, was already known when R is a discrete ring, where it follows from the
Farrell–Jones conjecture for the groups Zn .

Proposition 5.4 [Free generator invariance] Let C ∈ Catperf have a bounded t-
structure. Then K (C) � K (C{x1, . . . , xn}), where |xi | = 0.

Proof We proceed by induction on n with base-case given by Proposition 5.1. If we
consider the pushout of categories

C C{x1, . . . , xn−1}

C[x] C{x1, . . . , xn}.

i

j �

then condition (D′) holds since the arrows labeled i and j are t-exact at the level of
ind-completions and each have a section (sending all the x’s to zero). As a consequence
we can apply Theorem 4.11 and conclude. ��
Corollary 5.5 Let R be a left regular coherent ring, then K (R) � K (R{x1, . . . , xn}).
17 In degree zero this uses that K−1 of C and C[ε−1] both vanish.
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In fact, Corollary 5.5 is a special case of the next example, which allows for a more
general module in place of the indeterminants x1, . . . , xn .

Example 5.6 Applying Corollary 4.5 to the span of rings

R ← R{�−1M} → R

we get a pullback square

Knc(R ⊕ �−1M) Knc(R)

Knc(R) Knc(R{M}).
Applying Theorem 1.1 to the section R → R⊕�−1M we learn that the top horizontal
map is an equivalence on −1-connective covers, so via the pullback square we learn
that K (R) ∼= K (R{M}). �

There aremanymore invariance-type results that can be proven using a combination
of Theorem 1.3 and the Land-Tamme �-product and we end this subsection with a
more generic example.

Example 5.7 Suppose we are given a map of discrete rings R → S with R left regular
coherent and an S-bimodule M which is right flat over R. We can form the pullback
of E1-algebras

R ⊕ �−1M S

R S ⊕ M

where S⊕M is the trivial square-zero extension of S byM and likewise for R⊕�−1M .
From Theorem 1.1 we know that K (R ⊕ �−1M) � K (R) and therefore

K (S) � K
(
R �S⊕M

R⊕�−1M
S
)

.

We can think of this as a relative version of A1-invariance for the map R → S
and bi-module M . The underlying (R, S)-bimdoule of the �-product is given by
R ⊗R⊕�−1M S which is equivalent to R{M} ⊗R S. The free algebra R{M} is discrete
and right flat as an R-module since M is, so R{M} ⊗R S is discrete as well.

We now will finish completely describing its ring structure. By the previous exam-
ple, which is the case R = S, the �-product receives ring maps from both R{M}
and S. It remains then to determine the left multiplication of an element of S by one
of M . This can be read off using Example 4.3, which gives a cofiber sequence of
S-bimodules

S → R �S⊕M
R⊕�−1M

S → M ⊗R⊕�−1M S,

showing that the left multiplication of S onM is the one coming from the left S-module
structure. �
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Note that in Example 5.7 the ring S is not required to be regular! For example, we
can let R = k be a field, take S = k[ε]/ε2 and let M be k thought of as an S-bimodule
via the augmentation. In this case we obtain an equivalence

K (k[ε]/ε2) � K (k{ε, y}/(ε2, εy)).

5.2 K-theory of unipotent representations

Next we analyze the K -theory of categories of local systems with values in a regular
category. The following generalizes the discussion in [1, Section 4.3], in which they
analyze the K -theory of cochain algebras of finite, connected spaces with coefficients
in commutative Noetherian rings using the Koszul dual description of the module
categories in [17, Proposition 7.8] as ind-unipotent representations of the loopspace.

Definition 5.8 Given C ∈ Catperf and a connected X ∈ S∗, let Rep(
X , C) denote the
category of local systems on X with values in C (this is just Fun(X , C)).18 Pullback
along the map X → ∗ provides a functor

(−)triv : C → Rep(
X , C)

which associates to c ∈ C the constant local system at c. Let Rep(
X , C)uni denote
im((−)triv) (where the image is taken as an idempotent complete stable category). We
refer to this as the category of unipotent local systems valued in C. �
Remark 5.9 One can make similar definitions forA a small abelian category. Namely,
we let Rep(
X ,A) denote Fun(X ,A), and let Rep(
X ,A)uni denote unipotent rep-
resentations, i.e the category generated under extensions, kernels and cokernels by the
image of (−)triv. �
Proposition 5.10 If C ∈ Catperf≥0 is bounded and regular, and X is connected, then

(1) Truncation on C provides Rep(
X , C) a bounded t-structure with heart
Rep(π1X , C♥).

(2) The t-structure on Rep(
X , C) restricts to Rep(
X , C)uni, with heart
Rep(π1X , C♥)uni.

(3) (−)triv induces an equivalence K (C) � K (Rep(
X , C)uni).

Proof For (1), in order to check that τ≥0 and τ<0 determine a t-structure onRep(
X , C)

we just need to check that the space of maps from τ≥0c to τ<0d is contractible. To do
this we use the formula

MapRep(
X ,C)(τ≥0c, τ<0d) � MapC(τ≥0c, τ<0d)h
X

where 
X acts on the space of maps in C by conjugation. Since MapC(τ≥0c, τ<0d) is
contractible, so is the limit under the action. Boundedness is inherited from C since the

18 There is a subtlety here, which is that in general Rep(
X ,C) and Fun(X , Ind(C))ω differ. It is this which
motivated us to use Rep as notation when Fun would appear to suffice.
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underlying object functor Rep(
X , C) → C is t-exact and conservative. The heart is
clearlyRep(
X , C♥), and since C is a 1-category, this is the same asRep(
τ≤1X , C♥).
We conclude since τ≤1X ∼= Bπ1X .

For (2) and (3), we check that the functor (−)triv is unipotent (see Definition 3.4), so
that we can apply Theorem 1.3 to conclude. Quasi-affineness follows from construc-
tion, and fully faithfulness on the heart follows from the fact that equivariant maps
between objects in C♥ with trivial π1(X)-action are just given by the underlying maps
in C♥ since it is a 1-category. ��
Remark 5.11 If R is an E1-algebra, then the R-module R (with trivial action) is a
generator of Rep(
X ,Mod(R))uni, therefore we may identify this category with
Mod(C∗(X; R)), the category of modules over the cochain algebra of X with val-
ues in R. If R is a regular coherent discrete ring, Proposition 5.10(3) then provides an
equivalence19

K (R) � K (C∗(X; R)).

When X is additionally compact and R Noetherian and commutative, the above
result combined with Lemma 3.12 and vanishing of negative K -theory coincides with
[1, Theorem 4.8]. However, as pointed out to us by Markus Land, their proof is not
quite correct, since they claim that the heart of the t-structure on C∗(X; R) agrees
with that of R, which is not true if for example X = S1. The hearts will agree exactly
when all unipotent representations of π1X are trivial, which is the same as asking that
cof(R → EndR[π1X ](R, R)) has Tor amplitude in [−∞,−2] as a right R-module.
Despite this, the hearts are in general sufficiently similar that Quillen’s devissage
provides an equivalence on K -theory. �

5.3 Testing the limits of Theorem 1.1

In the next sequence of examples we probe the limits of Theorem 1.1. Summarizing
what we find: the conditions of Theorem 1.1 are sharp. To see that regularity of π0R
is necessary we look at an example where A1-invariance fails.

Example 5.12 Weconsider the exterior algebra k[ε0, ε−1] over a field k. FromExample
4.9 we have an equivalence of non-connective K -theories

K nc(k[ε0, ε−1]) � K nc(k[ε0]) ⊕ �−1K nc(N0 ⊗ k[ε0]).

Since A1-invariance fails for k[ε0] (see [10]), both terms in the sum are non-trivial.
On the other hand Theorem 1.1 predicts only the first term. �

Now we turn to the tor condition of Theorem 1.1. Essentially the simplest example
of an algebra which violates it is the trivial square zero extension S:=Fp[x]⊕�−1

Fp

19 One could also have deduced the equivalence by a direct application of Theorem 1.1: to do this, one can
use the fact that a product of flat right modules over a left coherent ring is flat. In particular, the t-structure
on Mod(C∗(X; R)) is the standard one.
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where x is in degree zero and acts by zero on Fp. In a conversation with Markus Land
and Georg Tamme we determined that K1(S) differs from K1 of Fp[x] by using the
�-product to reduce to a connective ring and then using trace methods20.

Example 5.13 The algebra S fits into the pullback square on the left.

S Fp[x] K nc(S) K nc(Fp[x])

Fp[x] Fp[x] ⊕ Fp K nc(Fp[x]) K nc
(
Fp[x]{Fp}

)
� �

Writing the Fp[x]-bimodule Fp[x] ⊕Fp as the tensor product21 Fp[x] ⊗Fp[x]{�−1Fp}
Fp[x] we can apply Corollary 4.5 to identify Fp[x] �Fp[x]⊕Fp

Fp[x]{�−1Fp} Fp[x] with

Fp[x]{Fp}. From this we obtain the pullback square of K -theories on the right.
Using A1-invariance we have an isomorphism of relative K -theories

cof(K nc(Fp) → K nc(S)) � �−1 cof(K nc(Fp) → K nc(Fp[x]{Fp})

To conclude that K1(S) differs from K1(Fp) we will argue that K2(Fp[x]{Fp}) is not
even finitely generated.

Let R:=Fp[x]{Fp}. We can construct a DGA model for R which is Fp[x]{y, z}
with |y| = 0, |z| = 1, d(z) = xy. From this we can compute that

• π0R ∼= Fp[x, y]/xy,
• x acts by zero on π1R and
• π1R is a free Fp-vector space on the classes ya0 [z, y]ya1 with a0, a1 ≥ 0.

As a consequence ofWaldhausen’s calculation of the first nonzero vanishing homo-
topy group of the fiber of K (A) → K (π0A) for a connective simplicial ring A ( [26,
Proposition 1.2]), we learn that the fiber of K (R) → K (π0R) is 1-connected, and has
second homotopy group given by

HH0(Fp[x, y]/xy;π1R) ∼= Fp{ya[z, y] | a ≥ 0}.

Since K3(Fp[x, y]/xy) is finitely generated (see [9])we learn that K2(R) is not finitely
generated as promised. �

In the example above, although the K -theory differs from that of the connective
cover, if we think in terms of Theorem 1.3 it is not immediately clear at what point
things broke down. Possibilities include:

• The ring failed to be regular (in the sense of Definition 3.4).
• The base-change functor from the connective cover failed to be t-exact.
• The base-change failed to be fully faithful on the heart.

In view of this we now proceed to give several more geometric examples where we
have better control over how things break down.

20 A similar analysis also works for S = Z ⊕ �−1
Fp .

21 Here {M} denotes the free algebra on a bimodule.
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Example 5.14 Consider the quasi-affine variety X :=A
n
k \ {0} over a field k for n ≥ 2.

Since this scheme is quasi-affine, its category of quasicoherent sheaves is equivalent
to the category of modules over the ring of global sections, R. This is a commutative
k-algebra whose homotopy groups are the coherent cohomology groups of An

k \ {0}.
In this case we have

πs R ∼=

⎧⎪⎨
⎪⎩

k[x1, . . . , xn] s = 0

(
∏

i x
−1
i )k[x−1

1 , . . . , x−1
n ] s = 1 − n

0 otherwise

.

The divisible module which shows in degree 1− n has tor dimension n and therefore
violates condition (2) in Theorem 1.1. There is a localization sequence

Mod(k[x1, . . . , xn])xi−nil) Mod(k[x1, . . . , xn]) Mod(R)

coming from the fact that An
k − 0 is an open subset of An

k . Mod(k[x1, . . . , xn])xi−nil)

is generated by ⊗n
i=1 cof(xi ), whose endomorphism is an exterior algebra over k on n

classes in degree −1. Thus by Theorem 1.1, K (Mod(k[x1, . . . , xn])xi−nil)) ∼= K (k),
and so the map K (An

k ) → K (R) is not an equivalence, as its fiber is K (k). �
In Example 5.14, the tor condition fails and the K -theories differ, but R is regular

anyway. What happens here is that the map Mod(π0R)♥ → Mod(R)♥ isn’t faithful
because the module k supported at the origin is sent to zero. This example also exhibits
another more subtle behavior. In [26, Proposition 1.1] (which is extended to general
connective ring spectra by [12, Lemma 2.4]), Waldhausen shows that an n-connective
map of connective algebras induces an (n+1)-connective map on K -theory. A similar
phenomenon does not occur our setting. In Example 5.14 the first degree where R
differs from its π0R is 1 − n while the K -theory first differs in degree 1, which is
independent of the parameter n.

Since Example 5.14 isn’t tight with respect to the tor condition we now provide
another family of examples which, although more geometrically degenerate, do show
that the tor condition is tight.

Example 5.15 For n ≥ 1, considerAn with a doubled origin over the same field k, that
is to say we look at the pullback below

R �(An)

�(An) �(An − 0).

�

From our examination of �(An − 0) in Example 5.1422 we know that π−n R has tor
dimension n. Since �(An) → �(An − 0) is a localization the induced square on
K -theory is a pullback (see [23]). From this we can read off that

K (R) ∼= K (An
k ) ⊕ K (k)

22 the same analysis works for n = 1, which isn’t covered in Example 5.14.
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where again the comparisonmapπ0R → R induces the inclusion of the left summand.
�

In the previous two examples the K -theory of R and its connective cover differed,
but R was still regular (in the sense of Definition 3.4). Our next example will show that
it is possible for π0R to be regular while R is non-regular. To do this we use an affine
nodal cubic curve C over a field k, which has non-vanishing K−1 (see [27, III.4.4]).
The main result of [1] then implies that the category of perfect coherent sheaves on C
is not regular.

Example 5.16 Consider the nodal cubic curve C := Spec(k[x, y]/y2 − x2(x − 1)) and
let R denote the pullback below

R k[x±1]

C C[x−1].

�

Geometrically, the bottom horizontal arrow corresponds to removing the nodal point
from Spec(C) and the right vertical arrow corresponds to the quotient of C minus the
node by the C2 action that sends y to −y. The homotopy groups of R are

πs R =

⎧⎪⎨
⎪⎩

k[x] s = 0

(yx−1)k[x−1] s = −1

0 otherwise

.

As in the previous example, since the top horizontal arrow is a localization the
induced square on K -theory is a pullback [23]. SinceC[x−1] is regular andNoetherian
its negative K -groups vanish. This implies that K−1(R) ∼= K−1(C) �= 0. On the other
hand π0R = k[x] has vanishing K−1. Since K−1(R) is non-zero, the category of
compact R-modules cannot be regular. �

This example demonstrates that when the tor condition is violated, Mod(R)ω can
fail to be regular in addition to the K -theories of R and π0R differing. In essence
what we have done in Example 5.16 is taken a singularity and hidden it in degree
−1. The fact that this can be done implies that the tor condition in Theorem 1.1 and
the condition that π0R be left regular coherent cannot be disentangled—an idea we
explore further in the next example.

Example 5.17 Suppose that R is a regular, discrete, Noetherian, commutative algebra.
Using Theorem 1.3, Example 4.9, Example 4.10 and Proposition 5.1 we obtain K -
theory equivalences

K (R[x0, x−1]/(x0x−1)) � K (R) ⊕ K (N0 ⊗ R) ⊕ K (N−1 ⊗ R) ⊕ �−1K (N1 ⊗ R)

� K (R[x0]) ⊕ K (R[ε0]) � K (R[ε0]).

�
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What distinguishes this example is that R[x0, x−1]/(x0x−1) is coconnective, has
Noetherian, regular π0, but violates the tor condition, while R[ε0] is discrete (and
therefore satisfies the tor condition), but is non-regular. This suggests that at the level
of nc motives regularity of π0R and the tor condition are not individually particularly
meaningful. Instead we should think of the combination of these two conditions, i.e.
unipotence, as a meaningful single condition.

5.4 An example we do not cover

We end the paper by giving a simple example of a ring R such that the connective
cover map π0R → R induces an equivalence on nc motives, but R does not satisfy
the hypotheses of Theorem 1.1.

Example 5.18 Let R be the ring EndFp[x,y]((x, y))op. As a module over Fp[x, y],
(x, y) has three cells, two in degree 0, and one in degree 1 with attaching maps x and
y. From this we can compute the homotopy groups of R

πs R ∼=

⎧⎪⎨
⎪⎩

k[x, y] s = 0

(x, y)/(x, y)2 s = −1

0 otherwise

.

Fp[x, y] is regular, but (x, y)/(x, y)2 has tor dimension 2 over Fp[x, y], so R does
not satisfy the conditions of Theorem 1.1.

Now we proceed to show that R is regular and the connective cover map induces
an equivalence of nc motives. In working with perfect R-modules we identify this
category with the thick subcategory of Mod(Fp[x, y])ω generated by (x, y). To see
that R is regular, first observe that Fp is connective in the standard t-structure for R
since it is a retract of (x, y)⊗Fp[x,y]Fp. From the extension (x, y) → Fp[x, y] → Fp

we can then conclude that Fp[x, y] is connective in this t-structure as well. This then
implies that Mod(R)ω≥0 is equivalent to Mod(Fp[x, y])ω≥0. Since (x, y) represents the
class 1 in K0(Fp[x, y]), base-change along the map π0R = Fp[x, y] → R, which
can be identified with the functor ⊗Fp[x,y](x, y), induces multiplication by 1 on the
nc motive of Mod(Fp[x, y])ω. �

In this example the natural map K (π0R) → K (R) is an equivalence despite the
fact that R doesn’t satisfy the conditions of Theorem 1.1. The essential issue here is
that (x, y) is not flat, i.e. the base-change functor π0R → R is not t-exact. Since, at
its core Theorem 1.1 operates using Quillen’s devissage theorem it cannot be used for
examples of this type. The equivalence of K -theories in this example arises because R
is Morita equivalent to its connective cover, which is a different (and less interesting)
reason for them to agree. As noted above, this implies that the connective cover map
induces an equivalence of nc motives in this case, something which rarely happens for
rings to which one can apply Theorem 1.1.

Another point contrasting with Theorem 1.1 is the fact that the equivalence
K (π0R) ∼= K (R) is not visible at the level of the homotopy ring of R. Indeed, if
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R′ is the trivial square zero extension of Fp[x, y] by �−1(x, y)/(x, y)2, then its
homotopy ring agrees with R, but K (π0R′) → K (R′) is not an equivalence, because
the map π0R′ → R′ has the map Fp[x] → Fp[x] ⊕ �−1

Fp as a retract, which was
shown in Example 5.13 to not be a K -theory equivalence.

Acknowledgements We would like to thank Andrew Blumberg, Jeremy Hahn, Mike Hopkins, Haynes
Miller, Piotr Pstragowski, and Lucy Yang for helpful conversations related to this work. We would also like
to thank Andrew Blumberg for helpful comments on a draft of this paper. Our deepest thanks go to Markus
Land and Georg Tamme for many discussions about this work and its applications. It was they who first
asked us when the connective cover map of a coconnective E1-algebra induces a K -equivalence, which
was the origin of this work.

Funding Open Access funding provided by the MIT Libraries.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Antieau, B.: Gepner, David, Heller, Jeremiah: K -theoretic obstructions to bounded t-structures. Invent.
Math. 216(1), 241–300 (2019)

2. Barwick, C.: On exact∞-categories and the theorem of the heart. Compos. Math. 151(11), 2160–2186
(2015)

3. Blumberg, A.J., Gepner, D., Tabuada, G.: A universal characterization of higher algebraic K -theory.
Geom. Topol. 17(2), 733–838 (2013)

4. Bachmann, T., Khan, A.A., Ravi, C., Sosnilo, V.: Categorical Milnor squares and K-theory of algebraic
stacks. Selecta Math 28, 85 (2020)

5. Burklund, R., Levy, I.: Some aspects of noncommutative geometry, available online here and here
(2023)

6. Davis, J.F.: Some remarks on nil groups in algebraic K -theory, (2008)
7. Gersten, S.M.: K -theory of free rings. Comm. Algebra 1(1), 39–64 (1974)
8. Glaz, S.: Commutative Coherent Rings. Lecture Notes in Mathematics. Springer-Verlag, Berlin (1989)
9. Hesselholt, L.: On the K -theory of the coordinate axes in the plane. Nagoya Math. J. 185, 93–109

(2007)
10. Hesselholt, L., Madsen, I.: On the K-theory of nilpotent endomorphisms. Contemp. Math. 271, 127–

140 (2001)
11. Keller, B., Nicolás, P.: Weight structures and simple dg modules for positive dg algebras. Int. Math.

Res. Not. 2013(5), 1028–1078 (2013)
12. Land, M., Tamme, G.: On the K -theory of pullbacks. Annal. Math. 190(3), 877 (2019)
13. Land, M., Tamme, G.: On the K -theory of pushouts. (2022)
14. Lurie, J.: Rotation invariance in algebraic K -theory. available online (2015)
15. Lurie, J.: Higher Algebra. available online (2017)
16. Lurie, J.: Spectral Algebraic Geometry. available online (2018)
17. Mathew, A.: The Galois group of a stable homotopy theory. Adv. Math. 291, 403–541 (2016)
18. Mochizuki, S., Sannai, A.: Homotopy invariance of higher K -theory for abelian categories. (2013)
19. Neeman, A.: A counterexample to vanishing conjectures for negative K -theory. Invent. Math. 225(2),

427–452 (2021)
20. Orlov, D.: Smooth and proper noncommutative schemes and gluing of dg categories. Adv. Math. 302,

59–105 (2016)

http://creativecommons.org/licenses/by/4.0/


28 Page 30 of 30 R. Burklund, I. Levy

21. Quillen, D.: Higher algebraic K -theory: I. In: Bass, H. (ed.) Higher K-Theories, pp. 85–147. Springer,
Heidelberg, Berlin (1973)

22. Schlichting, M.: Negative K -theory of derived categories. Math. Z. 253(1), 97–134 (2006)
23. Tamme, G.: Excision in algebraic K -theory revisited. Compos. Math. 154(9), 1801–1814 (2018)
24. Thomason, R.W.: The classification of triangulated subcategories. Compos.Math. 105(1), 1–27 (1997)
25. Waldhausen, F.: Algebraic K -theory of generalized free products. Ann. Math. 108(1), 135–204 (1978)
26. Waldhausen, F.:Algebraic K -theory of topological spaces. I. In I. InAlgebraic andGeometric Topology

(Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part, vol. 1, pp. 35–60, (1978)
27. Weibel, C.A.: The K -Book: An Introduction to Algebraic K -Theory. American Mathematical Society

Providence, RI (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	On the K-theory of regular coconnective rings
	Abstract
	1 Introduction
	1.1 Notations and conventions

	2 The main theorem
	3 Complements
	3.1 Some nc geometry
	3.2 Other forms of the main theorem
	3.3 The noetherian case
	3.4 Negative K-theory

	4 K-theory of pushouts
	4.1 A review on the odot-product
	4.2 K-theory of pushouts

	5 Applications and examples
	5.1 Invariance theorems
	5.2 K-theory of unipotent representations
	5.3 Testing the limits of Theorem 1.1
	5.4 An example we do not cover

	Acknowledgements
	References




