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Abstract
Westudy three graph complexes related to the higher genusGrothendieck–Teichmüller
Lie algebra and diffeomorphism groups of manifolds. We show how the cohomology
of these graph complexes is related, and we compute the cohomology as the genus
g tends to ∞. As a byproduct, we find that the Malcev completion of the genus g
mapping class group relative to the symplectic group is Koszul in the stable limit,
partially answering a question of Hain.
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1 Introduction

Letm be a fixed positive integer. In this paper we study three related graph complexes
that arise in connection to the diffeomorphism groups of the manifolds

Wg = #g(Sm × Sm) and Wg,1 = Wg \ D2m .

More precisely, we consider graph complexes GC(g), GC(g),1 and GC(g),1 as follows.
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• Elements ofGC(g),1 areQ-linear series of isomorphismclasses of connected graphs
whose vertices are decorated by zero or more elements of the reduced homology
H̄•(Wg,1). We require that each vertex has valence at least 3, with the valence of
a vertex being defined as the number of incident half-edges plus the number of
decorations. As the superscript indicates, the graphs may have tadpoles, that is
edges connecting a vertex to itself.

γ

αβ

with α, β, γ ∈ Hm(Wg,1)

The differential on these complexes has two terms, δ = δspli t + δglue. The piece
δspli t is defined by summing over vertices, and splitting the vertex,

δspli t� =
∑

v vertex

±� split v �→
∑

(1)

Here one sums over all ways of distributing the decorations and incident half-
edges between two newly created vertices, that produce at least trivalent graphs.
The piece δglue� is defined on a graph � by summing over all pairs (α, β) of
H̄•(Wg,1)-decorations in the graph�, replacing the pair of decorations by an edge,
and multiplying the graph with the numeric prefactor 〈α, β〉, using the canonical
pairing 〈−,−〉 : H̄•(Wg,1) × H̄•(Wg,1) → Q.

• The complex

GC(g),1 = GC(g),1/Ig

is the quotient obtained by setting all graphs with tadpoles to zero.
• The complex GC(g) is defined similarly to GC(g),1, except for three differences.
First, one decorates vertices by H̄•(Wg) instead of H̄•(Wg,1). Second, the piece
of the differential δglue uses the pairing

〈−,−〉 : H•(Wg) × H•(Wg) → Q (2)

instead.
Third, there is an additional piece of the differential δZ that glues a new vertex to
a decoration with the top class ω ∈ H2m(Wg). The new vertex is then decorated
by the canonical diagonal element �1 ∈ Hm(Wg) ⊗ Hm(Wg).

δZ : ω �→

�1
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We refer to Sect. 3 below for more precise definitions, including signs, prefactors
and degrees. We note that these complexes depend on the chosen integer m, although
this dependence is kept implicit in the notation. All three of the complexes above are
in fact dg Lie algebras, with the Lie brackets defined similarly to δglue above, just
operating on a pair of decorations on two distinct graphs.

One has natural maps between the above complexes for various g that fit into a
commutative diagram of dg Lie algebras

· · · GC(g−1),1 GC(g),1 GC(g+1),1 · · ·

· · · GC(g−1),1 GC(g),1 GC(g+1),1 · · ·

· · · GC(g−1) GC(g) GC(g+1) · · ·

.

Furthermore, one has a natural action of the symplectic or orthogonal group

OSpg =
{
Sp(2g) for even m

O(g, g) for odd m

on all three dg Lie algebras considered. Moreover, GC(g) may naturally be extended
by a nilpotent, negatively graded Lie algebra ospnilg of endomorphisms of H•(Wg)

that respect the pairing (2), and we will define below an extended dg Lie algebra

GCex(g) := (ospnilg � GC(g), δ).

All the graph complexes above carry a natural grading by weight, with the weight
of a graph with e edges, v vertices and total (homological) decoration degree Dm
defined to be the number

W = 2(e − v) + D.

This positive integer valued quantity is preserved by the differentials and Lie brackets.
In particular our graph complexes split into a direct product of finite dimensional
subcomplexes according to weight. We shall denote the graded piece of the complexes
or cohomology of given weight W by the prefix grW (· · · ).

The purpose of this paper is two-fold. First, we describe the relation between the
three dg Lie algebras above, with the following result.

Theorem 1

(i) The projection GC(g),1 → GC(g),1 defined by setting graphs with tadpoles to zero
induces an isomorphism

grW H(GC(g),1) → grW H(GC(g),1) (3)
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for all W ≥ 2 and g ≥ 0.
(ii) For g ≥ 2 one has a short exact sequence of graded Lie algebras

0 → πQSTWg → H(GC(g),1) → H(GCex(g)) → 0.

with πQSTWg being the rational homotopy groups of the unit sphere bundle of
the tangent bundle to Wg.

We note that the weight 1 part of the cohomology of all our graph complexes may
be explicitly computed for all genera g, see Sect. 4.1 below.

The second main topic of this paper is the study of the cohomology of our three dg
Lie algebras above for large g. To this end we have the following vanishing result.

Theorem 2

(i) For all g ≥ 0, W ≥ 1 and k < (1 − m)W we have that

grW Hk(GC(g),1) = grW Hk(GC(g),1) = 0.

(ii) (partially contained in [15, Theorem 82]) For all g ≥ 2, W ≥ 1 and k <

(1 − m)W

grW Hk(GCex(g)) = 0.

(iii) For all W ≥ 1, g ≥ W + 2 and k > (1 − m)W we have that

grW Hk(GC(g),1) = grW Hk(GC(g),1) = grW Hk(GCex(g)) = 0.

In other words, for g ≥ W + 2, the cohomology of the weight W part of all three
graph complexes becomes concentrated in degree −(m − 1)W . From this, one also
obtains that all three dg Lie algebras become formal in the limit g → ∞.

A similar result can be obtained for the Chevalley-Eilenberg cohomology HCE (−)

of all three dgLie algebras.Moreprecisely,wedefine theChevalley-Eilenberg complex
of any of the three Lie algebras above (say g collectively) as the cobar construction of
the graded dual

CCE (g) = Bcgc.

Then CCE (g) is a differential graded commutative algebra. It is equipped with an
additional grading by weight, inherited from g. We denote by grW HCE (−) the weight
W piece of the Chevalley-Eilenberg cohomology.

Theorem 3 For any g ≥ 3W and k 
= mW we have that

grW Hk
CE (GC(g),1) = grW Hk

CE (GC(g),1) = grW Hk
CE (GCex(g)) = 0.
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In other words, for large g the cohomology of the weight W piece becomes con-
centrated in cohomological degree mW . It follows from Theorem 3 in particular that
in the limit g → ∞ the Chevalley-Eilenberg complex becomes formal as a differ-
ential graded commutative algebra. Furthermore, it follows from Theorems 2 and 3
together that as g → ∞ the cohomology and Chevalley-Eilenberg cohomology of our
dg Lie algebras form Koszul pairs. We refer to Sects. 7 and 8 below for more precise
formulations of these statements as well as refined degree bounds.

The final question is then to compute the non-vanishing cohomologies for high
genera. For this introduction we shall restrict ourselves to the case m = 1 and the
complex GCex(g) for brevity. Analogous results for the other cases can be found in
Sect. 8 below. We shall give an explicit presentation of the stable cohomology of
the Lie algebra. The answer is closely related to Hain’s presentation of the Malcev
completion of the Torelli group [18, 19].

Note that for m = 1 the cohomology of GCex(g) becomes concentrated in degree 0
as g → ∞, and furthermore OSpg = Sp(2g). Fix a system of fundamental weights
λ1, . . . , λg of Sp(2g). Denote byV (λ) the irreducible Sp(2g)-representation of highest
weight λ. In particular V (λ1) ∼= H1(Wg) ∼= H1(Wg,1). We note that one has the
following decomposition into irreducible Sp(2g)-representations, for g ≥ 3.

∧3(V (λ1)) ∼= V (λ1) ⊕ V (λ3)

The projection to V (λ1) is obtained by the contraction of two of the three factors
V (λ1) with the given bilinear form. We may easily identify

gr1 H0(GCex(g)) ∼= V (λ3),

by identifying∧3V (λ1)with the space of graphswith one vertex and three decorations.

αβγ
with α, β, γ ∈ Hm(Wg)

We may furthermore decompose, for g ≥ 6,

∧2V (λ3) ∼= V (0) ⊕ V (λ2) ⊕ V (λ4) ⊕ V (λ6) ⊕ V (2λ2) ⊕ V (λ4 + λ2).

Let R(g) be the Sp(2g)-invariant complement of V (2λ2) in ∧2V (λ3). Denote by

t(g) = FreeLie(V (λ3))/R(g)

the Lie algebra generated by V (λ3) with the quadratic relations R(g) ⊂ ∧2V (λ3). We
equip t(g) with a grading by assigning the generators degree 1.

Theorem 4 The inclusion V (λ3) ∼= gr1 H0(GCex(g)) ⊂ H0(GCex(g)) extends to a Lie
algebra homomorphism

t(g) → H0(GCex(g)).
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This Lie algebra homomorphism induces an isomorphism on the graded components

grW t(g)
∼=−→ grW H0(GCex(g)).

as soon as g ≥ 3W ≥ 6.

To study the Chevalley-Eilenberg cohomology let us next define a graded commu-
tative algebra A(g) as the Koszul dual commutative algebra of the Lie algebra t(g).
Concretely, one has a presentation

A(g) = S(V (λ3)[−1])/(R(g))
⊥,

where V (λ3) ∼= V (λ3)
∗ is identified with the dual space of the space of genera-

tors of t(g) and (R(g))
⊥ ∼= V (2λ2) is the annihilator of R(g) in S2(V (λ3)[−1]) ∼=

∧2V (λ3)
∗[−2]. Note also that A(g) inherits an additional grading by weight.

Theorem 5 One has a zigzag of morphism of dg commutative algebras

CCE (GCex(g)) ← • → A(g)

that induces an isomorphism in cohomology

grW HCE (GCex(g)) ∼= grW (A(g))

as soon as g ≥ 3W ≥ 6.

The Lie and commutative algebras above appear in various contexts and places in
the literature. For example, in [15] it is shown that in the case m = 1 one has that
spg�H0(GCex(g)) is identifiedwith a genus-g-version of theGrothendieck–Teichmüller

Lie algebra. The Chevalley-Eilenberg cohomology of GC(g) appears as the cohomol-
ogy of the space X1(g) of [22, section 4.3] (for large g), that captures the major part
of the cohomology of the Torelli subgroup of the boundary preserving framed diffeo-
morphism group ofWg,1. Finally the Lie algebra t(g) (in our notation) can be identified
with a relative Malcev completion ug (in Hain’s notation) of the mapping class group
(for g ≥ 6) as computed by Hain in [19, Theorem 7.7]. One may then reformulate a
less precise version our results above as follows.

Corollary 6 The Malcev completion ug ∼= t(g) of the genus g mapping class group
relative to the symplectic group as computed by R. Hain in [19, Theorem 7.7] is
Koszul in the limit g → ∞.

This means more precisely that the Koszulness condition for t(g) is satisfied in a
range of weights that tends to ∞ as g → ∞.
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2 Notation and preliminaries

2.1 Notation

Unless otherwise stated all vector spaces are taken over the rationalsQ. We abbreviate
the term differential graded by dg. We always use cohomological conventions, that is,
differentials have degree +1, and we use Z-gradings unless otherwise stated. For V
a graded vector space we denote by V [k] the same graded vector space with degrees
shifted downwards by k units. For example, if V is concentrated in degree 0, then V [k]
is concentrated in degree −k. To condense the notation we denote the cohomology of
a manifold M by H(M) := H•(M), i.e., we omit the •, while we keep the notation
H•(M) for the homology. The latter will however be less frequently needed.

Almost all objects we consider will be graded objects in dg vector spaces or similar
categories. That is, these objects come with two gradings, the cohomological grading
and an additional (“weight") grading. Concretely, we will consider two incarnations
of the additional grading, namely a graded dg vector space V may be written either as
a direct sum

V =
⊕

k

grk V

or as a direct product

V =
∏

k

grk V

of dg sub-vector spaces grk V ⊂ V . We will call the second type of grading complete
gradings. For example, the dual vector space V ∗ of a dg vector space with additional
grading V = ⊕

k gr
k V has a complete grading

V ∗ =
∏

k

(grk V )∗.

Often it is hence helpful to consider instead the graded dual dg vector space

V c :=
⊕

k

(grk V )∗.

If V is equipped with further algebraic structure, for example a dg Lie or dg com-
mutative algebra structure, then we will say that the additional grading is compatible
with that algebraic structure if the defining algebraic operations (say the Lie bracket
or commutative product) restrict to morphisms of dg vector spaces

grk V × grl V → grk+l V .
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We shall consider several forms of truncations of dg objects with additional grading.
For α an integer, we denote by

H [α]V =
⊕

k

grk Hkα(V )[−kα] (4)

the bigraded vector space whose part of additional degree k is concentrated in coho-
mological degree αk and agrees with the cohomology of grk V there. We define for a
dg vector space the truncation

(tr≤k V ) j =

⎧
⎪⎨

⎪⎩

V j for j < k

{x ∈ V k | dx = 0} for j = k

0 for j > k

.

Here V j refers to the part of V of cohomological degree j . Furthermore, for a dg
vector space V with additional grading and α an integer we set

tr[α] V =
⊕

k

grk tr≤kα(V ). (5)

We note that if V carries further algebraic structure (say a dg Lie or dg commutative
algebra structure), compatible with the additional grading, then tr[α] V and H [α](V )

inherit that structure. Furthermore, one always has a zigzag of dg vector spaces with
additional grading

V ← tr[α] V → H [α](V )

given by the natural inclusion and projection. This zigzag also preserves the given
algebraic structure on V if present.

Finally, wewill use (co)chain homotopies for computing cohomology groups.More
specifically we shall use the following convenient result.

Lemma 7 Let (V , d) be a dg vector space. Let h : V → V be a linear map of degree
−1 such that A := dh + hd is diagonalizable. Then ker A ⊂ V is a dg subvector
space and the inclusion is a quasi-isomorphism.

Proof Diagonalizability of A means that V decomposes into eigenspaces Vλ of A,

V =
⊕

λ

Vλ.

Since d A = Ad this is in fact an isomorphism of dg vector spaces, i.e., dVλ ⊂ Vλ. It
follows that the inclusion V0 = ker A → V induces an injective map on cohomology.

Define the linear map A′ such that for v ∈ Vλ,

A′(v) =
{

1
λ
v if λ 
= 0

0 if λ = 0
.
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Then d A′ = A′d and π0 = id − A′A is the projector onto V0. Let h′ = A′h, then

dh′ + h′d = A′(dh + hd) = A′A = id − π0.

Hence any cocycle v ∈ V is cohomologous to a cocycle in V0, namely

π0v = v − dh′v ∈ V0.

Hence the map on cohomology induced by the inclusion V0 → V is also surjective.
��

2.2 Representation theory of the symmetric and orthogonal groups

We use the notation

OSpg =
{
Sp(2g) for even m

O(g, g) for odd m

to either denote the symplectic group, or the orthogonal group associated to the non-
degenerate bilinear form of signature (g, g). We understand OSpg as an algebraic
group over Q, and we denote by OSpg(K) the K-points for a field K ⊃ Q. We shall
recall some standard facts on the representation theory of these groups. We refer to
[21, section 2] for a beautiful overview that is perfectly suited for the present paper.

Every finite dimensional representation ofOSpg decomposes into irreducible repre-
sentations (cf. [27, Proposition 22.41]). Let Vg := Q2g be equipped with the standard
symplectic form form odd or the standard non-degenerate symmetric formof signature
(g, g) form even. Slightly abusively, we also denote by Vg the defining representation
of OSpg . Every finite dimensional irreducible representation of OSpg is contained
in a tensor product V⊗n

g for some n (see [27, Theorem 4.14]). We will say that a
finite dimensional representation V of OSpg is of order n if it is a subquotient of the
representation V⊗n

g ⊗ U , for U some finite dimensional vector space, considered as
a trivial representation. Equivalently, this means that in the decomposition of V into
irreducibles only those irreducibles appearing in V⊗n

g are present. We say an algebraic
representation V of OSpg is of order ≤ n if it is a direct sum of representations of
order 0, 1, 2, . . . , n.

Lemma 8 Let V be a representation of OSpg of order n. Then V = 0 iff the space of
invariants

(V ⊗ V⊗n
g )OSpg = 0

vanishes.

Proof We need to check that for V non-zero the invariant space above is non-zero.
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We may pick a surjective map of representations π : V⊗n
g ⊗ U → V . This is a

non-zero element in

((V⊗n
g ⊗U )∗ ⊗ V )OSpg ∼= (V⊗n

g ⊗ V )OSpg ⊗U∗,

using that Vg is self-dual due to the presence of the non-degenerate pairing. But the
presence of a the non-zero element π implies that the first factor in the tensor product
on the right-hand side is not zero. ��

Note that we allow the zero vector space to be a (necessarily trivial) representation
by convention. We will use the above Lemma in the following form.

Lemma 9 Let

C = · · · d−→ Ck−1 d−→ Ck d−→ Ck+1 d−→ · · ·

be a dg vector space with a compatible action of OSpg. Suppose that the degree k-
subspace Ck is a finite dimensional representation of order ≤ n (in the sense above).
Then Hk(C) = 0 iff

Hk
(
(C ⊗ V⊗M

g )OSpg
)

= 0

for any M ≤ n.

Proof By the assumption Hk(C) is of order ≤ n, and hence by the previous Lemma
we need to check that

0 = (Hk(C) ⊗ V⊗M
g )OSpg = Hk(C ⊗ V⊗M

g )OSpg .

Using Schur’s Lemma one can see that taking invariants of a complex of completely
reducible representations commutes with taking cohomology. Hence

Hk
(
C ⊗ V⊗M

g

)OSpg = Hk
(
(C ⊗ V⊗M

g )OSpg
)

and we are done. ��
Let us also remark that OSpg(Q) ⊂ OSpg(C) is Zariski dense (this can be seen

from [10, Corollary 18.3]). Hence the complexification of the space of invariants of a
(rational) representationV can be identifiedwith the invariants of the complexification,
so that one has isomorphisms

VOSpg ⊗ C = VOSpg(Q) ⊗ C ∼= (V ⊗ C)OSpg(Q)
∼=←−↩ (V ⊗ C)OSpg(C).

One may use this observation to almost always work with complex representations
of the complex semisimple Lie group OSpg(C) if desired, forgoing the need to use
results from algebraic group theory.
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Second,we shall need the classical invariant theory for the groupsOSpg .Wedirectly
state a version with the appropriate degree shifts appearing in our application. To this
end let�1 ∈ (Vg[−m]⊗Vg[−m])S2 be the symmetric element that is dual to the given
canonical bilinear form on Vg . Next consider the action of the symmetric group S2N
on the tensor product Vg[−m]⊗2N by permuting factors. The action on the element
�⊗N

1 then gives a map

S2N → Vg[−m]⊗2N

σ �→ σ · �⊗N
1 .

This map factorizes over the cosets S2N/(S2 �SN ) (with � denoting the wreath product).
Furthermore, the image is obviously OSpg-invariant, since so is �1.

Theorem 10 (A version of the First and Second Fundamental Theorems of Classical
Invariant Theory) The map

Q[S2N/(S2 � SN )][−2Nm] →
(
Vg[−m]⊗2N

)OSpg

is surjective for all g, N , and an isomorphism for g ≥ N.

The statement can be found in the present form as [21, Theorem 2.6]. The statement
for Sp(2g, Q) is also [24, Theorems 9.5.9, 9.5.11], going back to [31]. One also finds
the analogous statement for O(2g) in [24, Theorems 9.5.2, 9.5.5], from which the
statement for O(g, g) may be obtained via complexification.

2.3 Bar and cobar construction and Koszul duality for Lie and commutative
algebras

The bar and cobar construction form a pair of adjoint functors between the category of
augmented algebras over a Koszul operad P , and the category of conilpotent coaug-
mented dg coalgebras over the Koszul dual cooperad, see [25, chapter 11]. We shall
only need the casewhereP is either the operad Lie governingLie algebras or the operad
Com governing (non-unital, or equivalently augmented unital) commutative algebras,
with the Koszul dual cooperads those governing cocommutative or Lie coalgebras. In
this case we have adjoint pairs

BLie : dgLieAlg � dgComAlgc : BcCom
BCom : dgComAlg � dgLieAlgc : BcLie

between the category of dg Lie algebras (resp. augmented dg commutative algebras)
on the left-hand side and the category of conilpotent coaugmented dg cocommutative
coalgebras (resp. conilpotent dg Lie coalgebras) on the right-hand side. Concretely,
one has that for a dg Lie algebra g

BLieg = (Fc
Com(g[1]), d) ∼= (S(g[1]), d)



23 Page 12 of 72 M. Felder et al.

is the free cocommutative coalgebra cogenerated byg[1], with theChevalley-Eilenberg
differential. Similarly, for a coaugmented dg cocommutative coalgebraC one has that

Bc
ComC = (FLie(C̄[−1]), d)

is the free Lie algebra generated by the degree shifted coaugmentation coideal C̄ ,
equipped with the Harrison differential. The other two cases are obtained by swapping
the role of Com and Lie. If no confusion can arise we will often omit the subscript
of the bar/cobar functors and just write BA which shall mean BLieA if A is a dg Lie
algebra and BComA if A is an augmented dg commutative algebra.

It is known that the adjunction units and counits BcBA → A and C → BBcC
are quasi-isomorphisms, see [34, Proposition 2.5 and Theorem 2.6]. Furthermore, the
functor B sends quasi-isomorphisms to quasi-isomorphisms [25, Proposition 11.2.7].
The functor Bc does not preserve quasi-isomorphisms in general. However, it does
preserve quasi-isomorphisms in most "good cases". For example if, as in all relevant
cases for us, the quasi-isomorphism preserves an additional grading, and domain and
codomain are degree-wise finite-dimensional, then BcX ∼= (BXc)c, so that one can
use that B preserves quasi-isomorphisms.

Next we consider a (non-differential) graded Lie algebra g defined by a homoge-
neous quadratic presentation

g = FLie(V )/〈R〉

with the generating graded vector space V , the space of relations

R ⊂ ∧2g

and 〈R〉 the ideal generated by R. Such a graded Lie algebra automatically has an
additional grading by the number of generators, i.e., we declare any k-ary bracket
of generators to live in additional degree k. This grading is then inherited by the bar
construction Bg.

For simplicity, and since this is true in all our cases, we assume that the generators
V are concentrated in the single cohomological degree α. Then grW g is concentrated
in degree αW . Furthermore grW Bg is concentrated in cohomological degrees

(α − 1)W , . . . , αW − 1.

In particular, one has a map of dg cocommutative coalgebras

H [α−1](Bg) → Bg,

using the notation of Sect. 2.1. The graded cocommutative coalgebraC = H [α−1](Bg)
is called the Koszul dual of g. Looking at the definition of the bar construction, C also
has a homogeneous quadratic presentation, with the space of cogenerators V [1], and
the space of quadratic corelations given by the annihilator R⊥ of R. We also consider
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the graded dual dg commutative algebraCc, and call it theKoszul dual dg commutative
algebra of g. It then has the quadratic presentation

Cc = FCom(V ∗[−1])/〈R⊥〉
The same reasoning applies also if we invert the roles of the commutative and Lie

operads.
We will usually consider only finite dimensional spaces of generators V . In this

case the relation of being the Koszul dual is clearly reflexive, that is, the Koszul dual
of Cc above is again g.

Definition 11 Let g = FLie(V )/〈R〉 be a graded Lie algebra with space of generators
V concentrated in cohomological degree α and the homogeneous quadratic space of
relations R. Then we say that g is Koszul if the canonical map from the Koszul dual
cocommutative coalgebra

C = H [α−1](Bg) → Bg

is a quasi-isomorphism.
Likewise, a commutative algebra A = FCom(V )/〈R〉 given by a homogeneous

quadratic presentation with V concentrated in cohomological degree α isKoszul if the
canonical morphism of dg Lie coalgebras

c := H [α−1](BA) → BA

from the Koszul dual graded Lie coalgebra c is a quasi-isomorphism.

Note that, trivially, if g is Koszul thenBg is formal as a dg cocommutative coalgebra.

Lemma 12 Let g = FLie(V )/〈R〉 be a quadratically presented Lie algebra as above,
with V finite dimensional, and A = FCom(V ∗[−1])/〈R⊥〉 the Koszul dual graded
commutative algebra. Then the following are equivalent:

• g is Koszul.
• A is Koszul.

Proof We only show one direction, the other follows by symmetry. Koszulness of g
means that

H [α−1](Bg) → Bg

is a quasi-isomorphism. Taking graded duals (−)c on both sides and using the finite
dimensionality of V this is equivalent to

Bcgc → A

being a quasi-isomorphism. Taking the bar construction, and using that the bar con-
struction preserves quasi-isomorphisms, we find that

BBcgc → BA
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is a quasi-isomorphism. But hence so is the composition

gc → BBcgc → BA,

so that A is Koszul. ��
In the case that A is the Koszul dual of g and either (and hence both of) g and A

are Koszul, we will call (g, A) a Koszul pair.
We will encounter Koszul objects in the following form, except for the additional

complication that quasi-isomorphisms only hold in a range of additional degrees. (See
also Proposition 41 below.)

Proposition 13 Suppose that g is a dg Lie algebra with an additional positive grading
with the property that there is an α such that grW H(g) is concentrated in cohomo-
logical degree αW for any W. Then g is formal.

Suppose in addition that the cohomology grW H(Bg) of the graded pieces of the
bar construction is concentrated in degree (α − 1)W for any W, and that the grW g
are finite dimensional. Then H(g) is Koszul with Koszul dual graded commutative
algebra A := H(Bg)c. Furthermore, A and H(g) have quadratic presentations of the
form

H(g) ∼= FLie(gr
1 H(g))/〈gr2 Ac〉

A ∼= FCom(gr1 A)/〈gr2 H(g)c〉 .

Proof For the first statement note that under the assumptions the zigzag

g ← tr[α] g → H [α](g) = H(g)

realizes the formality.
For the second statement, we can show in exactly the same way that (Bg)c is formal

as a dg commutative algebra. Hence we find that

H(g)
∼←− BcBH(g) → • ← Bc Ac

is connected by a zig-zag of quasi-isomorphisms to the cobar construction of Bc Ac,
and all arrows preserve the additional grading. By assumption grW Ac is concentrated
in degree (α − 1)W , and by the assumption that the additional grading is positive
(i.e., W ≥ 1) one has that grW Bc Ac is concentrated in cohomological degrees
(α − 1)W , . . . , αW . But grW H(g) is concentrated in degree αW and hence must
be identified with the top piece of the cohomology of grW Bc Ac. But this top piece
is (by the definition of the cobar construction) the graded Lie algebra generated by
gr1 Āc[−1] ∼= gr1 H(g), with relations being the image of gr2 Āc under the coproduct

gr2 Āc[−2] → S2(gr1 Āc)[−2] ∼= ∧2(Ac[−1]). (6)
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We may proceed in the same manner for A and see that A is connected to BcH(g)c

by a zigzag of quasi-isomorphisms preserving the additional gradings

A
∼←− BcBA → • ← BcH(g)c,

and that A also has a quadratic presentation as indicated. This also shows that A is
generated by gr1 A, so that in particular the map (6) is injective. (...and likewise the
analogous map realizing gr2 H(g)c as the space of generators for the presentation of
A.)

Finally, Koszulness of H(g) means that grW H(BH(g)) is concentrated in degree
(α−1)W , and that follows from the fact that BH(g) is quasi-isomorphic to Ac as seen
above, and the assumption on A. ��
Remark 1 The material in this section is standard, and can be found in the literature
in some form. A general account of Koszul duality for algebras over operads can be
found in [5, 17, 26], and for the special case of Koszul duality of commutative and
Lie algebras we also refer to [7].

More classically, one considers Koszul duality for associative algebras instead of
commutative and Lie algebras. Concretely, onemay just replace Com and Lie above by
the associative operad Assoc to recover the standard notion of Koszulness of associa-
tive algebras. Furthermore, if a commutative algebra A with a homogenous quadratic
presentation (and say degree-wise finite dimensional) is Koszul in our sense then it is
Koszul as an associative algebra. To see this, note that the associative cobar construc-
tion and the commutative cobar construction are related by the universal enveloping
algebra construction U , i.e., BcAssocA

c = U (BcComAc). Furthermore, U (−) preserves
quasi-isomorphisms and the grading. (Since on the level of complexes U is just the
symmetric product by the Poincaré-Birkhoff-Witt Theorem.) Hence grW H(BcAssocA

c)

is concentrated in degree (1 − α)W iff so is grW H(BcComAc).

2.4 Remarks on the cobar construction, and Lie algebra actions

For later use we shall note that a dg Lie (co)algebra is completely determined by its
(co)bar construction. Concretely, let c be a dg Lie coalgebra with differential dc and
cobracket � : c → 2c. The cobar construction Bcc = S(c[−1]) is a free graded
commutative algebra. For x ∈ c let sx ∈ c[−1] denote the same element in c[−1], and
let

P : (2g)[−2] → S2(g[−1])
P(x ∧ y) := (−1)|x |(sx)(sy)

be the natural isomorphism between the exterior square of g and the symmetric square
of g[−1]. Then the differential d on Bccmay be defined as the unique graded commu-
tative algebra derivation such that for x ∈ c

d(sx) = −s(dcx) + P�x .
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The identity d2 = 0 is then equivalent to the co-Jacobi identity for the Lie cobracket
and the identites

d2c = 0 δdc = (dc ⊗ id + id ⊗ dc)�. (7)

Conversely, suppose we are given some derivation D of degree +1 on the free
graded commutative algebra S(c[−1]) such that D2 = 0. Suppose furthermore that
the image of a generator under D has only linear and quadratic terms. Then, the linear
term uniquely defines a differential dD on c, and the quadratic term defines a cobracket
�D , such that (S(c[−1]), D) is the cobar construction of (c, dD,�D) as above. The
identity D2 = 0 ensures that�D satisfies the co-Jacobi identity and the compatitibilty
relations (7) hold. In practice, this trick will later allow us to define a dg Lie coalgebra
structure by defining only one operation D and verifying only one identity D2 = 0,
instead of three.

Next, we will use that the dual Lie algebra c∗ acts on the bar construction, and can
in particular be used to twist the differential. We shall however provide an elementary
description of this twisting procedure, on the commutative algebra Bcc = S(c[−1]).
To this end, let ξ ∈ (c[−1])∗ and split the differential d on the cobar construction Bcc
into its linear and quadratic part, d = d1 + d2. Extend ξ to a derivation of S(c[−1]),
which we denote by the same letter. Then we define the action of ξ on S(c[−1]) to the
derivation given by the commutator

Lξ = [d2, ξ ].

Lemma 14 For ξ, ν ∈ (c[−1])∗ one has that

[d2, Lξ ] = 0

[d1, Lξ ] = −L [d1,ξ ]
[Lξ , Lν] = (−1)|ξ |L [[d2,ξ ],ν].

In particular, if ξ is of degree 0, then one has

(d + Lξ )
2 = L−[d1,ξ ]+ 1

2 [[d2,ξ ],ξ ].

Proof The equation d2 = 0 implies d21 = [d1, d2] = d22 = 0, fromwhich all equations
follow by elementary formula manipulation. ��

In particular, if ξ satisfies the Maurer-Cartan equation

[d1, ξ ] + 1

2
[[d2, ξ ], ξ ] = 0,

then (d + Lξ )
2 = 0, and one calls d + Lξ the twisted differential.
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3 Graph complexes

In this section we shall introduce the various graph complexes we consider. All of
these complexes, or at least close variants thereof, have appeared in the literature
before [11, 15, 20]. However, since the conventions differ, and since some results are
scattered, we shall present here a relatively detailed construction, including several
standard computations for graph complexes.

We note that the signs and prefactors in graph complexes are to a large extent
conventional, and might differ from definitions elsewhere, even though the resulting
complexes are isomorphic. Outside of this section, signs and prefactors will not be
important for any argument, beyond the fact that there is a consistent choice, rendering
the graph complexes well-defined.

3.1 Definitions of the fundamental graph complex fGV,2m

We say that a (directed) graph with n vertices and k edges is an ordered set of k pairs
(i, j) of numbers i, j ∈ {1, . . . , n}. We say that these k elements are the edges of the
graph, with the edge (i, j) pointing from vertex i to vertex j . At this point we allow
arbitrary sets of edges, in particular tadpoles (or short cycles), that is edges of the
form (i, i), and we do not ask that the graph is connected. We denote the set of such
graphs with n vertices and k edges by gran,k . This set carries an action of the group
Sn × (S2 � Sk), with Sn acting by renumbering vertices, Sk by reordering edges and
the S2 by changing the directions of the edges, i.e., by flipping the two members of
the pairs.

Let furthermore V be any finite dimensional graded vector space and m an integer.
We then define a graded vector space of coinvariants

fGV ,2m :=
⊕

n≥0,k≥0

(
Qgran,k[2mn] ⊗ Q[1 − 2m]⊗k ⊗ (S(V ))⊗n

)

Sn×(S2�Sk)
. (8)

Here the group Sn acts diagonally on the vector space Qgran,k generated by the set
gran,k and the n symmetric product factors S(V ), and Sk acts diagonally on Qgran,k
and by permuting the factors Q[1 − 2m], with appropriate Koszul signs. We may
interpret elements of fGV ,2m as linear combinations of isomorphism classes of graphs,
each of whose vertices j is decorated by one element p j ∈ S(V ). It is furthermore
natural and advantageous to think of each factor V in the symmetric product as con-
tributing one decoration. In particular, if a vertex is decorated by the unit 1 ∈ S(V )

then we intepret this is no decoration (in V ). Generally, if vertex j is decorated by
p j = α1 · · · αr ∈ Sr (V ), then we think of this vertex as carrying r decorations in V .
In pictures, we also use this combinatorial interpretation, that is:

j means p j = 1 ∈ S(V ) j

αβγ

means p j = αβγ ∈ S3(V ) ⊂ S(V ), for α, β, γ ∈ V .
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We say that the valence of a vertex in a graph is the number of incident half-edges,
plus the number of decorations in V . For example, a vertex with 3 incident half-edges
and decoration in S2(V ) has valence 5. Note also that we include the empty graph as
the single element of gra0,0 by convention.

We define on fGV ,2m a differential d ′
c as follows. Let � ∈ fGV ,2m be a graph with

an ordered list of k edges and with n vertices. Mind that elements of fGV ,2m are in fact
equivalence classes of linear combinations of graphs with additional tensor factors,
and “... a graph� ∈ fGV ,2m" shall mean that we take a representative of an equivalence
class with only one term. We then set

d ′
c� =

k∑

j=1

(−1) j+1�/( j),

with the graph �/( j) obtained by contracting the j-th edge. Specifically, if the j-th
edge is e j = (u, v) between vertices u and v the graph �/( j) is defined as follows:

1. If u = v the edge is a tadpole and we define�/( j) = 0. Otherwise wemay assume
without loss of generality that u < v, due to having taken S2-coinvariants.

2. Then remove the edge e j and replace all occurrences of “v” by u in the list of edges,
i.e., merge vertices u and v. We renumber the vertices again by 1, 2, . . . , n − 1
and order the edges, preserving the original order.

3. Finally we alter the decorations by multiplying the decorations corresponding to
u and v in S(V ). That is, we apply the natural map

S(V )⊗n → S(V )⊗n−1

A1 ⊗ · · · ⊗ Au ⊗ · · · ⊗ Av ⊗ · · · ⊗ An �→ (−1)|Av |(|Au+1|+···+|Av−1|)

A1 ⊗ · · · ⊗ Au Av ⊗ · · · ⊗ Âv ⊗ · · · ⊗ An

on the decorations.

It is an elementary exercise to check that for 1 ≤ i < j ≤ n we have

(�/( j))/(i) = (�/(i))/( j − 1).

From this we easily compute that

(d ′
c)

2� =
n−1∑

i=1

n∑

j=1

(−1)i+ j (�/( j))/(i)

=
∑

1≤i< j≤n

(−1)i+ j (�/( j))/(i) +
∑

1≤ j≤i≤n−1

(−1)i+ j (�/( j))/(i)

=
∑

1≤i< j≤n

(−1)i+ j (�/(i))/( j − 1) +
∑

1≤ j≤i≤n−1

(−1)i+ j (�/( j))/(i)

=
∑

1≤i≤ j≤n−1

(−1)i+ j+1(�/(i))/( j) +
∑

1≤ j≤i≤n−1

(−1)i+ j (�/( j))/(i) = 0

(9)
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Next we assume that we have an element (the “diagonal") of degree 2m

� ∈ S2(V ⊕ Q1) ⊂ S(V ) ⊗ S(V ),

with 1 a symbol that we shall interpret as the unit in S(V ).1

We then define a second differential dcut such that

dcut� =
k∑

j=1

(−1) j+1cut(�, j)

where the sum is again over edges and cut(�, j) is defined as follows:

(1) We again assume that the j-th edge is (u, v)with u ≤ v. Then we remove the edge
(u, v) from the graph, preserving the relative ordering of the other edges.

(2) Furthemore, we multiply� from the left into the decorations S(V )⊗n , at positions
u and v of the tensor product. To make this precise, including the signs, let us
write � = ∑

α �′
α ⊗ �′′

α ∈ S(V ) ⊗ S(V ). Then if the decorations on � are
A1 ⊗ · · · ⊗ An ∈ S(V )⊗n , then the decorations on cut(�, j) are defined to be

∑

α

(−1)(|A1|+···+|Au−1|)|�′
α |+(|A1|+···+|Av−1|)|�′′

α |

A1 ⊗ · · · ⊗ �′
αAu ⊗ · · · ⊗ �′′

αAv ⊗ · · · ⊗ An ∈ S(V )⊗n,

taking into account the appropriate Koszul signs.

One then checks that for 1 ≤ i < j ≤ n

cut(cut(�, j), i) = cut(cut(�, i), j − 1),

cut(�/( j), i) = cut(�, i)/( j − 1)

cut(�/(i), j − 1) = cut(�, j)/(i).

Analogously to (9) one then computes that d2cut = 0, and furthermore

dcutd
′
c� =

n−1∑

i=1

n∑

j=1

(−1)i+ jcut(�/( j), i)

=
∑

1≤i< j≤n

(−1)i+ jcut(�/( j), i) +
∑

1≤ j≤i≤n−1

(−1)i+ jcut(�/( j), i)

1 Specifically, the inclusion we use is

S2(V ⊕ Q1) ∼= ((V ⊕ Q1) ⊗ (V ⊕ Q1))S2 ⊂ (V ⊕ Q1) ⊗ (V ⊕ Q1)

= (V ⊗ V ) ⊕ (V ⊗ Q) ⊕ (Q ⊗ V ) ⊕ (Q ⊗ Q) ⊂ S(V ) ⊗ S(V ).
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=
∑

1≤i< j≤n

(−1)i+ jcut(�, i)/( j − 1) +
∑

1≤ j≤i≤n−1

(−1)i+ jcut(�, i + 1)/( j)

= −
∑

1≤i≤ j≤n−1

(−1)i+ jcut(�, i)/( j) −
∑

1≤ j<i≤n

(−1)i+ jcut(�, i)/( j)

= −d ′
cdcut�.

Hence also (−d ′
c + dcut )2 = 0.

3.2 Algebra structure, and twist of the differential

We also note that fGV ,2m is naturally a graded commutative algebra, with the product
given by disjoint union of graphs. Since the differentials act by derivations, we have
that (fGV ,2m,−d ′

c+dcut ) is a dg commutative algebra. Furthermore, since every graph
decomposes uniquely into connected components,

fGV ,2m ∼= S(GV ,2m)

is the free graded commutative algebra generated by the subspace GV ,2m ⊂ fGV ,2m
spanned by the non-empty connected graphs. Since our differential−d ′

c+dcut changes
the number of connected components by zero or one, it defines a dg Lie coalgebra
structure on GV ,2m[1], see Sect. 2.4. Concretely, let us split

dcut = d ′
cut + d ′′

cut

into a part d ′
cut that leaves the number of connected components invariant and one

part d ′′
cut that increases that number by one. Then, −d ′

c + d ′
cut determines the internal

differential on the Lie coalgebra GV ,2m , and d ′′
cut the cobracket.

We now specialize further to the situation at hand and let V = H̄•(Wg), and
� ∈ S2(H•(Wg)) be the canonical diagonal element. More precisely, an orientation
on Wg defines a canonical map

ε : H2m(Wg) → Q

that we extend to a map ε : H(Wg) → Q of degree −2m. Then � = ∑
α �′

i ⊗ �′′
i is

uniquely determined by the property that for any homogeneous α, β ∈ H(Wg)

ε(αβ) =
∑

i

(−1)|�′′
i ||α|ε(�′

iα)ε(�′′
i β). (10)

To be concrete we may fix basis elements

a1, . . . , am, b1, . . . , bm ∈ Hm(Wg) ω ∈ H2m(Wg)
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such that ε(ω) = 1 and aib j = δi jω. Then

� = 1 ⊗ ω + ω ⊗ 1 + (−1)m
g∑

i=1

(ai ⊗ bi + (−1)mbi ⊗ ai )

︸ ︷︷ ︸
=:�1

. (11)

We note that ε also defines a map

ε : S(H̄(Wg)) → Q

by precomposition with the cup product, that we denote by the same letter.
We need a final piece to the differential, which we obtain by twisting as in Sect. 2.4.

To this end define two derivations

λ,μ : fGH̄(Wg),2m → fGH̄(Wg),2m

such that for a connected graph � ∈ GH̄(Wg),2m we have

λ(�) =
⎧
⎨

⎩
ε(A) if � = A

with A ∈ S(H̄(Wg))

0 otherwise
,

μ(�) =
⎧
⎨

⎩
1 if � = with A ∈ S(H̄(Wg))

0 otherwise
.

In particular, λ and μ are zero on all connected graphs with more than one vertex. The
degree of λ is zero, that of μ is +1.

Then we define the operation dmul (the third and final part of the differential) as

dmul := [λ, d ′′
cut ] = λd ′′

cut − d ′′
cutλ.

We furthermore consider the degree 1 derivation

d := −d ′
c + dcut + dmul

on fGV ,2m .Wewould like tomake d into a differential, but unfortunately, by Lemma 14
we have that

d2 = (−dc + dcut + dmul)
2 = [[λ,−d ′

c + d ′
cut ] − 1

2
[λ, [λ, d ′′

cut ]]
︸ ︷︷ ︸

=:X

, d ′′
cut ].

The defect X can be evaluated as follows:

Lemma 15 The derivation X as above is equal to (2 + (−1)m2g)μ.
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Proof Since X and μ are derivations it is sufficient to show that X(�) = (2 +
(−1)m2g)μ(�) for each connected graph � ∈ GH̄(Wg),2m . Since λ maps connected
graphs to scalars we have

X(�) = −λ(d ′
c�) + λ(d ′

cut�) − 1

2
λ(λ(d ′′

cut�)).

Suppose first that � = is the graph with one undecorated (i.e., decorated by 1)
vertex and one tadpole edge. Then d ′

c� = d ′′
cut� = 0 and

X(�) = λ(d ′
cut�) =

∑

i

ε(�′
i�

′′
i ) = 2 + (−1)m2g = (2 + (−1)m2g)μ(�).

We hence only need to check that for all other connected graphs X(�) = 0. Since
λ is zero on graphs with more than one vertex or with an edge, and since d ′

c (resp.
dmul ) decrease the number of vertices by one and edges by one (respectively vertices
by zero and edges by one), X(�) = 0 if � has more than two vertices, or two vertices
and more than one edge, or one vertex and no edge. If � has exactly one edge and one
vertex with a decoration of positive degree, then X(�) = 0 by degree reasons already.
That leaves only the case of � of the form

� = A B

with A, B ∈ S(H̄(Wg)). We then have

d ′
c� = AB

and hence

λ(d ′
c�) = ε(AB).

On the other hand

d ′′
cut� =

∑

i

(−1)|�′′
i ||A|

�′
i A�′′

i B

And hence

1

2
λ(λ(d ′′

cut�)) =
∑

i

(−1)|�′′
i ||A|ε(�′

i A)ε(�′′
i B)

(10)= ε(AB) = λ(d ′
c�).

Hence the Lemma is shown. ��
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To go further, it is helpful to consider the combinatorial form of dmul = [λ, d ′′
cut ]

and the defect [μ, d ′′
cut ]. In each case d ′′

cut cuts a connected graph into two connected
components, and then λ (or μ) picks up one of them. In the case of λ this connected
component must be an isolated vertex to produce a non-zero result.

A

d ′′
cut−−→

∑

i

�′
i A

�′′
i A

λ−→
∑

i

ε(�′
i A) �′′

i A for A ∈ S(H̄(Wg))

We also note that the expression
∑

i ε(�
′
i A)�′′

i equals the image of A under the
cup product map S(H̄(Wg)) → H(Wg), as follows from the defining relation of the
diagonal (10)

Hence dmul acts via the formula

dmul� =
∑

v

(−1) jv+1mul(�, v),

with the sum being over vertices with a single attached edge, which is the jv-th in the
ordering, and mul(�, v) is obtained by the following procedure:

• Replace the decorations of v in H̄(Wg) by their cup product in H̄(Wg).
• Contract the edge adjacent to v as in the definition of d ′

c.

Note that by degree reasons we obtain a nonzero contribution only if v has at most
two decorations. We shall furthermore split

dmul = d ′
mul + d ′′

mul

with d ′
mul containing the contributions for which v has 0 or 1 decorations, and d ′′

mul
those forwhich v has two decorations. Note that the term d ′

mul is identical to some sum-
mands of the contraction differential d ′

c, while d
′′
mul creates at least one ω-decoration.

Similarly, the operation d2 = (2−(−1)m2g)[μ, d ′′
cut ] acts on a graph� by summing

over all tadpoles with a single adjacent edge, and replacing the tadpole by an ω-
decoration, multiplied by 2 + (−1)m2g. Pictorially:

d2 : �→ (2 + (−1)m2g) · ω

We may then obtain from fGV ,2m a complex on which d2 = 0 in one of three ways.

• We define the quotient

fG(g),1 = fGV ,2m/I
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by dividing by the ideal formed by graphs that contain an ω-decoration, or a vertex
of valence ≤ 2. On this quotient d2 = 0 since d2 creates one ω-decoration.

• We define the subcomplex

fG(g),1 ⊂ fG(g),1

that furthermore contains no tadpoles.
• We define the subquotient of fGV ,2m

fG(g)

by taking the subcomplex containing no tadpoles, and quotienting by the graphs
that contain at least one vertex of valence ≤ 2.

Lemma 16 The above subquotients of (fGV ,2m, d) are well-defined and in particular
the differential squares to zero on these subquotients.

Proof We first claim that I as in the definition is closed under d, that is, d I ⊂ I . (It is
clear that I is an ideal.) First we note that the differential d cannot remove a decoration
byω on a graph in fGV ,2m . We then have to check that the differential d cannot remove
vertices of valence ≤ 2. Since d acts “locally” on only two vertices, it is clear that for
a graph � with three or more vertices of valence ≤ 2, d� contains no graphs that have
no vertices of valence ≤ 2. Furthermore, if � contains exactly two vertices of valence
≤ 2 then in the worst case the differential can contract an edge between them, and
hence still produce a vertex of valence≤ 2. So we are left with the case that� contains
a unique vertex v of valence ≤ 2, and we need to consider the parts of d affecting
v. The piece dcut cannot increase the valence of vertices anyway. But the terms of
the piece d ′

c that would remove a single vertex v of valence ≤ 2 are cancelled by the
contribution d ′

mul since d
′
c and dmul enter the differential with opposite signs. Hence

we conclude that d I ⊂ I as desired. Furthermore, since d2 creates an ω-decoration,
we have that d2� ⊂ I for all � ∈ fGV ,2m , and hence fG(g),1 = fGV ,2m/I is a well
defined dg vector space.

Next, the differential can clearly not create tadpoles: The only piece that potentially
could is the contraction part d ′

c acting on an edge of a double edge. But graphs with
multiple edges have odd symmetries by permuting these edges, and hence are zero.
Hence no tadpoles can be created by the differential and fG(g),1 ⊂ fG(g),1 is indeed a
subcomplex.

For fG(g) one notes that if a graph � has no tadpole, then d2� = 0. So the subspace
of fGV ,2m spanned by graphs without tadpoles is a complex. One then shows in the
same way as above that the quotient by the subspace spanned by graphs with vertices
of valence ≤ 2 is well-defined, to see that fG(g) is a well-defined dg vector space. ��

For later use we shall also define

dc = d ′
mul − d ′

c,

thus removing the pieces from d ′
c that are cancelled by d ′

mul .
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Suppose that � is a graph in one of the three graph complexes fG(g),1, fG(g),1 or
fG(g) above, with e edges, v vertices and a total decoration degree mD. (In other
words, � has D decorations if we count the top class ω as two decorations.) Then the
cohomological degree of � is

k = (2m − 1)e − 2mv + mD.

We furthermore define the weight of � as

W = 2(e − v) + D.

The weight is preserved by the differential, and hence the graph complexes split into
a direct sum of pieces of fixed weight.

All three graph complexes are equipped with a commutative product by taking
disjoint union of graphs. This product is compatible with the differential and the
weight grading, since the weight is additive. Furthermore, any graph splits uniquely
as a union of connected graphs. It follows that our three graph complexes above are
quasi-free as (non-unital) graded commutative algebras, so that we can write

fG(g),1 ∼= S(G(g),1[−1]) fG(g),1
∼= S(G(g),1[−1]) fG(g) ∼= S(G(g)[−1]). (12)

Here we denoted by G(g),1[−1] ⊂ fG(g),1 the subcomplex spanned by connected
graphs, and similarly for the other complexes. Since the differential is compatible
with the commutative algebra structure (i.e., a derivation) in each case, it endows the
degree shifted connected parts G(g),1, G(g),1 and G(g) with dg Lie coalgebra structures
as in Sect. 2.4.

3.3 Dual graph complexes

The dual spaces of graph complexes can themselves be understood as graph complexes
as well. For example, from (8) one sees that

(fGV ,2m)∗ ∼=
∏

n≥0,k≥0
r1,...,rn≥0

(
Qgran,k[−2mn] ⊗ Q[2m − 1]⊗k

⊗Sr1(V ∗) ⊗ · · · ⊗ Srn (V ∗)
)
Sn×(S2�Sk ) . (13)

This graded vector space is similar to fGV ∗,2m , but note that the cohomological degrees
are inverted and direct products replace direct sums. We shall hence think of elements
(fGV ,2m)∗ as formal series of graphs with decorations in V ∗. The adjoint of the dif-
ferential on fGV ,2m yields a differential on (fGV ,2m)∗. This dual differential also has a
pretty combinatorial description, see also the discussion in the introduction. To derive
this description it is convenient to fix a basis B = {e1, . . . , eN } of V . Then elements
of fGV ,2m can be understood as linear combinations of graphs with decorations in the
set B. The graphs come with an ordering of the set of edges and decorations, and we
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identify two such orderings up to sign. We furthermore identify isomorphic graphs up
to sign, an isomorphism being a bijection on the sets of vertices, half-edges and deco-
rations, preserving all incidence relations. A basis of fGV ,2m is then given by chosing
one B-decorated graph in each isomorphism class, with some ordering of edges and
decorations.

Dually, generators of fG∗
V ,2m can be seen as graphs with decorations in the dual

basis B∗ = {e∗
1, . . . , e

∗
N }, also with an ordering of the sets of edges and decorations.

More precisely, let �∗ be such a B∗-decorated graph. Then we associate to it the linear
map fGV ,2m → Q that sends a basis element (B-decorated graph) � ∈ fGV ,2m to the
rational number

�∗(�) =
∑

f :�∗ ∼−→�

sgn( f ).

Here the sum is over all bijective maps of graphs �∗ → �, i.e., all bijections of the
sets of vertices, half-edges and decorations preserving the incidence relations, that
send each decoration e∗

j to e j . We shall call such bijections isomorphisms, slightly
abusing the term. The sign sgn( f ) is the sign of the permutation that relates the given
ordering of edges and decorations on � with the one pushed forward from �∗ via f .
Formulated differently, �∗(�) is zero if the graphs are not isomorphic, and otherwise
is ± the order of the automorphism group of �.

Next, one can derive the combinatorial form of the dual differential. For v a vertex of
�∗ let Splits(�, v) the set of partitions of the sets of half-edges and decorations incident
at v into two disjoint subsets. For S ∈ Splits(�, v) such a partition let split(�∗, v, S)

be the graph formed by replacing vertex v by two vertices v and v + 1, connected
by one new edge, and reconneting the previous half-edges and decorations at v to v

and v + 1 according to the partition S. The newly added edge becomes the first in the
ordering of edges. Then we define

split(�∗, v) := 1

2

∑

S∈Splits(�,v)

split(�∗, v, S)

and

δ′
spli t�

∗ =
∑

v

split(�∗, v),

with the sum running over all vertices v of �.

Lemma 17 The operation δ′
spli t is the dual of the edge contraction differential d

′
c, that

is, for �,�∗ as above we have

�∗(d ′
c�) = (δ′

spli t�
∗)(�).

3age
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Proof Inserting the definitions:

�∗(d ′
c�) =

∑

j

(−1) j+1
∑

f :�∗ ∼−→�/( j)

sgn( f ) (14)

with the sum over j running over the indices of edges of �. Similarly,

(δ′
spli t�

∗)(�) = 1

2

∑

v

∑

S∈Splits(�∗,v)

∑

g:split(�∗,v,S)
∼−→�

sgn(g). (15)

Let (v, S ∈ Splits(�∗, v), g : split(�∗, v, S)
∼−→ �) be a tuple occurring in the sum-

mation in (15). To it we associate a tuple ( j, f : �∗ ∼−→ �/( j)) occurring in the
summation in (14) by taking for j the (index of the) image under g of the edge
produced by the splitting, and for f the isomorphism naturally induced by g. This
association is 2:1, in that from the tuple ( j, f ) the tuple (v, S, g) may be uniquely
recovered, up to the ordering of the two subsets of the partition S. Furthermore, we
have that sgn(g) = (−1) j+1 sgn( f ), since the permutations on edges and odd dec-
orations induced by f and g are the same, except that g sends the edge created by
splitting from the first to the j-th position, introducing the sign (−1) j+1. ��

In this paper, we shall mostly be interested in the smaller dual graph complexes (cf.
(12))

GC(g),1 := G∗
(g),1 GC(g),1 := (G(g),1)

∗ GC(g) := G∗
(g).

All three of these carry dg Lie algebra structures, since they are duals of dg Lie
coalgebras. We denote the differential by

δ = d∗ = d∗
c + d∗

cut + (d ′′
mul)

∗ = δspli t + δglue + δZ ,

with δZ := 0 for GC(g),1 and GC(g),1.
As explained above the dual graph complexes above may also be thought of as

generated by graphs but in this case decorated by elements of (H̄(Wg))
∗ ∼= H̄•(Wg)

in place of H̄(Wg) := H̄•(Wg). The different pieces of the differential then have
combinatorial interpretations as explained in the introduction. The verification that
the given combinatorial formulas indeed yield the dual operators is similar to the
argument for the base case, Lemma 17, and is left to the reader.

Let us also record that the cohomological degree of a graph � in GC(g),1, GC(g),1
or GC(g) with v vertices, e edges and total (homological) degree of dcorations mD is
computed by the formula

− (2m − 1)e + 2mv − mD + 1. (16)
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3.4 Action of the orthogonal or symplectic group

All graph complexes considered carry a natural action of the orthogonal or symplectic
group OSpg of linear endomorphisms of Vg := Hm(Wg,1) = Hm(Wg) that preserve
the natural pairing on Vg . The action is by transforming the decorations in H̄(Wg,1)

on vertices of graphs. Accordingly, one has an action of the Lie algebra of OSpg , that
we denote by osp0g .

In the case of the graph complexes fG(g), G(g) and GC(g) the action of osp0g may be
enlarged to an action of a graded Lie algebra

ospg := osp0g � ospnilg ,

of graded endomorphisms of H(Wg) := H•(Wg) that preserve the pairing and kill
the unit element 1 ∈ H0(Wg). To be specific, any element ospnilg is an endomorphism

φc : H(Wg) → H(Wg)

defined for c ∈ Hm(Wg) such that

φc(ω) = c

φc(x) = −〈c, x〉 1 for x ∈ Hm(Wg)

φc(1) = 0.

Here ω is again the cohomology class represented by the unit volume form on Wg .
The endomorphisms φc preserve the Poincaré-duality pairing in the sense that

〈φc(x), y〉 + (−1)m|x |〈x, φc(y)〉 = 0

for any homogeneous x, y ∈ H(Wg). As an OSpg- (and ospg-)representation ospnilg
is equivalent to the 2g-dimensional defining representation, concentrated in cohomo-
logical degree −m. Furthermore, by degree reasons ospnilg ⊂ ospg is an abelian Lie
subalgebra, i.e, the commutators [φc, φd ] = 0 vanish.

We let ospnilg act on fGH̄(Wg),2m as follows. First note that we may write S(H̄(Wg))

as a quotient

S(H̄(Wg)) ∼= S(H(Wg))/ ∼= S(H(Wg)) ⊗S(H0(Wg))
Q

of S(H(Wg)) by the ideal generated by difference between the unit in the symmetric
algebra and the unit in H0(Wg). Since the action of ospnilg on H(Wg) sends the unit
element in H(Wg) to zero, it descends to this quotient. Hence ospnilg also acts on the

graded vector space fGH̄(Wg),2m by transforming the decoration in S(H̄(Wg)) on each

vertex. Note that this action can generally reduce the number of decorations in H̄(Wg).
The action of ospnilg on fGH̄(Wg),2m clearly descends to an action on (the graded

vector space) fG(g), since the action cannot create tadpoles in graphs, nor can it increase
the valence of vertices.
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The action intertwines with the differentials d ′
c and dcut (and in fact d

′
cut , d

′′
cut sepa-

rately) on fGH̄(Wg),2m , since osp
nil
g preserves the diagonal element � by construction.

Writing φc· for the action of φc ∈ ospnilg we hence have

[φc·, d ′
c] = [φc·, d ′

cut ] = [φc·, d ′′
cut ] = 0.

However, φc· does a priori not commute with the operation dmul . Instead we have

[φc·, dmul ] = [φc·, [λ, d ′′
cut ]] = [[φc·, λ], d ′′

cut ] ± [λ, [φc·, d ′′
cut ]︸ ︷︷ ︸

=0

] = [[φc·, λ], d ′′
cut ].

Here the derivation [φc·, λ] corresponds to an element Yc ∈ GCH̄(Wg),2m of degree
1−m, which is obtained by restricting [φc·, λ] to connected graphs. I. e., on connected
graphs � ∈ fGH̄(Wg),2m we have [φc·, λ](�) = −λ(φc · �) =: Yc(�). If we think of

elements of GCH̄(Wg),2m as H̄•(Wg)-decorated graphs as explained in the previous
subsection, we have more concretely

Yc = −1

2

c∗�∗
1

with �∗
1 ∈ Hm(Wg) ⊗ Hm(Wg) the diagonal element Poincaré dual to �1 as in (11)

and c∗ = 〈c,−〉 ∈ (Hm(Wg))
∗ ∼= Hm(Wg) the Poincaré dual element to c.

By duality we have an action of ospnilg on the dual space fG∗
(g), and also on GC(g).

As discussed, action does not commute with the differential. Instead the commutator
with the differential δ is the Lie bracket with the element Yc, i.e.,

[δ, φc·] = [Yc,−].

Mind that the [−,−] on the left-hand side denotes the commutator of operators,
whereas the [−,−] is the Lie bracket on GC(g). We now extend the dg Lie algebra
GC(g) to the dg Lie algebra GCex(g), defined as a graded vector space as

GCex(g) := ospnilg ⊕ GC(g).

We endow GCex(g) with a graded Lie algebra structure by extending the Lie bracket

on GC(g) to a Lie bracket on GCex(g) such that for φc ∈ ospnilg and � ∈ GC(g) [φc, �]
is obtained by acting with φc on the decorations as discussed before. We extend the
differential such that

δφc := Yc.

This ensures that GCex(g) is a dg Lie algebra, despite the action of ospnilg on GC(g) not
respecting the differential, because for � ∈ GC(g),

δ[φc, �] = δ(φ · �) = [Yc, �] + (−1)mφ · δ� = [δφc, �] + (−1)m[φc, δ�].
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We may also extend the weight grading on GCex(g) by declaring the elements of ospnilg
to have weight 1. Note that this is necessary so that the differential and Lie bracket
still preserve the weight.

For notational convenience we will define for α ∈ Hm(Wg)

φα := φα∗

using the identification of Hm(Wg) and Hm(Wg) by Poincaré duality.
Finally, we also introduce the following notation: We denote the graded dual Lie

coalgebra by

Gex
(g) := (GCex(g))

c.

As a graded vector space this is G(g) ⊕ ospnil,cg . Furthermore, we consider the version
with disconnected graphs fGex

(g) defined as the cobar construction (Chevalley-Eilenberg
complex)

fGex
(g) = BcGex

(g).

This complex also has a graphical interpretation, see Sect. 7.1 below.

3.5 Auxiliary graph complexes SG(g) and SGC(g)

In [11] Campos and the third author define graphical dg cocommutative coalgebra
models for framed configuration spaces of n points on surfaces (i.e., for Wg if m = 1
in our notation). As auxiliary objects in some proofs below, we will need to use closely
analogous graph complexes defined for general m, but only n = 1, which we denote
by SG(g) and SGC(g).

The graph complex SG(g) is a variant of the complex G(g) of connected graphs
defined above. Elements of SG(g) are linear combinations of connected graphs with
exactly one distinguished vertex, which we call "external", and the other vertices
"internal". All vertices carry decorations in H̄(Wg) as for G(g). The internal vertices
must be at least trivalent and cannot carry tadpole edges. The external vertex may have
any valence, and is allowed to support a tadpole edge. Here are some examples, with
the white vertex the external vertex and α j ∈ H̄(Wg).

, α1 , α3

α1α2

∈ SG(g)

The cohomological degree of a graph � with v internal vertices, e edges and degree
of decorations Dm is

(2m − 1)e − 2mv + Dm.
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As for G(g), one fixes an ordering of the edges and odd decorations and identifies two
such orderings up to sign.

The differential d = dc + d ′
cut + d ′′

mul from G(g) also readily adapts to SG(g). The
pieces d ′

cut + d ′′
mul remain well defined by the same combinatorial formulas as before.

For the edge contraction differential dc one just has to clarify that if the edge connects
the external with some internal vertex, then the new vertex created in the contration
remains external:

dc : �→ −

Furthermore, the dg vector space SG(g) is a quasi-free dg commutative algebra, with
the commutative product defined by gluing together graphs at the external vertex:

A

∧

B

=

A B

The dgca SG(g) is a model for the unit sphere bundle STWg of Wg . To see this,
consider the much smaller model for the unit sphere bundle

C•(STWg) = H•(Wg)[ϑ] = H•(Wg) ⊕ ϑH•(Wg)

with ϑ of degree 2m − 1 and differential dϑ = (2 + (−1)m2 g)ω ∈ H2m(Wg).
We then a define map of dgcas

F : SG(g) → C•(STWg) (17)

as follows:

• Any graph � ∈ SG(g) that has an internal vertex is sent to zero.
• The general graph � ∈ SG(g) without internal vertices is of the form

α1 · · · αk
or

α1 · · · αk
, (18)

that is, it consists of the external vertex, possibly carrying one tadpole, and deco-
rations α1, . . . , αk ∈ H̄(Wg). In case there is no tadpole, the graph is sent to the
cup product α1 · · · αk ∈ H(Wg). If there is a tadpole, the graph is similarly sent to
ϑα1 · · ·αk ∈ ϑH(Wg).

Lemma 18 The map (17) defined above is a map of dg commutative algebras.
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Proof The map (17) clearly intertwines the commutative products. Let us check that
it intertwines the differentials. Let � ∈ SG(g) be a graph. Note that the differential
reduces the number of edges by exactly one. Hence, if� has more than two edges, then
trivially dF(�) = F(d�) = 0. If � has no edge, then again dF(�) = F(d�) = 0
since d� = 0 and the image of graphs with no edges contains no ϑ and is hence
closed in C•(STWg). Next suppose that � has exactly one edge, forming a tadpole,
see the right-hand graph in (18). If the number k of other decorations is positive, then
by degree reasons dF(�) = F(d�) = 0, so we can assume k = 0. Then we have

d� = d ′
cut� =

∑

j

�′
j�

′′
j
.

Hence

F(d�) =
∑

j

�′
j�

′′
j = (2 + (−1)m2g)ω = dF(�) ∈ H2m(Wg),

with the products being cup products in H(Wg). Finally suppose that � has one edge
and one internal vertex,

� =
α1 · · · αk

β1 · · · βl

.

Then F(�) = 0, while

d� = dc� + d ′′
mul� = −

α1 · · · αkβ1 · · · βl +
α1 · · ·αk(β1 ∪ · · · ∪ βl)

.

with the two terms being produced by the edge contraction part dc and the part d ′′
mul

of the differential, and we understand that the cup product in H̄(Wg) is taken for the
term in brackets. But then F(d�) = 0 as required.

Finally suppose that � has exactly two edges. By compatibility of F with the
products we can furthermore assume that� cannot be written as a product. This means
that � is internally connected in the sense that deleting the external vertex leaves the
graph connected. Furthermore, graphs with multiple edges are zero by symmetry.
These constraints leave only the following case to be considered:

� =
α1 · · ·αk

β1 · · · βl
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However, since this graph has two internal vertices and the differential can remove at
most one, we again have dF(�) = F(d�) = 0. ��
Lemma 19 The map (17) is a quasi-isomorphism.

Proof We filter SG(g) by the total degree of the decorations in H̄(Wg). The pieces
dc and d ′′

mul of the differential leave this degree the same, while d ′
cut increases it by

2m. Hence the associated graded complex is identified with (SG(g), dc + d ′′
mul). In

particular, the differential cannot create or remove the tadpole and hence this complex
splits into a direct sum of complexes

(SG(g), dc + d ′′
mul)

∼= (SG′
(g), dc + d ′′

mul) ⊕ (SG′′
(g), dc + d ′′

mul)

with SG′
(g) (resp. SG

′′
(g)) spanned by the graphs without (resp. with) a tadpole at the

external vertex, and furthermore (SG′
(g), dc + d ′′

mul)
∼= (SG′′

(g)[2m − 1], dc + d ′′
mul).

We claim that (SG′
(g), dc + d ′′

mul)
∼= H(Wg). To this end we write

(SG′
(g), dc + d ′′

mul)
∼= U1 ⊕ U2

f

with U1 ⊂ SG′
(g) the subspace spanned by graphs in which the external vertex has

valence ≤ 1 and U1 ⊂ SG′
(g) spanned by graphs in which the external vertex has

valence ≥ 2. (Mind that decorations in H̄(Wg) count towards valence.) The arrows
indicate the pieces of the differential. In particular, the map f : U1 → U2 is the part
of dc that contracts the unique edge at the external vertex if present,

f :

. . .

�→ −

This map f is clearly surjective. In this situation it is elementary to check that the
complex (SG′

(g), dc + d ′′
mul) is quasi-isomorphic to ker f , see [30, Lemma 2.1]. The

kernel of f is spanned by graphs with no edge and at most one decoration in H̄(Wg)

at the external vertex. But those are identified with H(Wg), so the claim is shown.
It follows that the E1-page of our spectral sequence is isomorphic toC•(STWg).We

may endow C•(STWg) with a similar filtration by the degree in H(Wg). Then the E1

page agrees with C•(STWg) trivially. Furthermore, the map F respects the filtrations
and induces an isomorphism on the E1-pages. Hence F is a quasi-isomorphism by
standard spectral sequence comparison results. ��

Recall that the piece d ′′
cut of the cutting differential that creates an additional con-

nected component gives rise to the Lie cobracket on the dg Lie coalgebra G(g). In the
same manner, we may define an operation d ′′

cut on SG(g) that then gives rise to a Lie
coaction of G(g) on SG(g).
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For later use we shall prefer to work with the dual complex

SGC(g) := SG∗
(g),

that we may again interpret as a graph complex, see Sect. 3.3 above. By Lemma 19
we then have that

H(SG∗
(g))

∼= H•(STWg).

Furthermore, SGC(g) carries an action of the dg Lie algebra GC(g).
Finally, let us also mention the following versions corresponding to STWg,1 and

Wg,1. Namely, we can consider the dg subcoalgebra SGC(g),1 ⊂ SGC(g) consisting
of graphs that do not contain any decorations with the top homology class ω. In
this case, the action above induces an action of GC(g),1. The same proof as above

shows that SGC(g),1 is a model for STWg,1. Finally taking the quotient SGC(g),1 =
SGC(g),1/SGC

≥1
(g),1, where SGC

≥1
(g),1 is the subcomplex of graphs having a tadpole at the

external vertex gives a model forWg,1 with an induced action of GC(g),1. In particular,
there is a quasi-isomorphism of dg algebra

C•(Wg,1) → SGC(g),1. (19)

4 Proof of part (i) of Theorem 1

As defined aboveGC(g),1 = GC(g),1/Ig , with Ig being the (closed) subspace spanned

by graphs with at least one tadpole. We will check that H(Ig ) is 2g-dimensional,
concentrated in degree 2 − m, spanned by graphs of the form

�α =
α

, (20)

with α ∈ Hm(Wg,1). The graphs �α have weight 1, hence H(Ig ) is zero in weights
≥ 2, and part (i) of Theorem 1 follows.

To compute H(Ig ) we proceed analogously to the proof of [35, Proposition 3.4],

but we shall streamline the proof a bit. First we filter Ig by the number of loops, i.e.,
we define the bounded above, descending complete filtration

Ig = F1 Ig ⊃ F2 Ig ⊃ · · ·

with F p Ig ⊂ Ig spanned by graphs with first Betti number at least p. The (com-

plete) associated graded complex may be identified with (Ig , δspli t ). We claim that

H(Ig , δspli t ) is 2g-dimensional, concentrated in degree 2 − m, and spanned by the
classes of the graphs �α above. If we assume this claim the proof concludes, since the
spectral sequence must converge at this point by degree reasons.
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To show the claim, let us call a long tadpole a tadpole at a trivalent vertex without
decorations

and the edge adjacent to the tadpole the long tadpole edge. We filter (Ig , δspli t ) again
by the number of edges that are not long tadpole edges. The associated graded complex
may then be identified with (Ig , δ′

spli t ), with δ′
spli t the piece of the differential that

creates one long tadpole edge,

δ′
spli t : �→

This differential has an obvious homotopy

h : Ig → Ig

Ig � � �→ h� =
∑

e

(−1)e+1�/e,

where the sum is over all long tadpole edges, and �/e is obtained by contracting the
edge. One easily computes that

(hδ′
spli t + δ′

spli t h)� = N (�)�,

with N (�) the number of tadpoles in the graph � that are either long tadpoles, or
attached to a vertex of valency ≥ 4 (including the two tadpole half-edges). But since
theremust be at least one tadpole in the graphbydefinition of Ig ,we see that N (�) > 0
for all graphs except for those of the form �α . Invoking Lemma 7 we thus finish the
computation of H(Ig ), and hence the proof that (3) is an isomorphism for W ≥ 2.

4.1 Comparison in weight 1

Note that part (i) of Theorem 1 excludes weights ≤ 1. Also note that our graph
complexes are concentrated in positive weight: Due to the trivalence condition (and
since decorations contribute to the valence) we have the inequality

3v ≤ 2e + D.

Rearranging, one obtains

W := 2(e − v) + D ≥ v ≥ 1.
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Hence the only nontrivial weight not covered by Theorem 1 is weight W = 1. In
this section we shall fill this gap and compute the weight 1 parts of our three dg Lie
algebras.

First consider gr1 GC(g),1. This complex is spanned by graphs with a single vertex
and three decorations

�αβγ :=
αβγ

with α, β, γ ∈ Hm(Wg,1), (21)

living in cohomological degree 1 − m. The differential is zero, and hence the coho-
mology is trivially identified with

H(gr1 GC(g),1) = gr1 GC(g),1 ∼= S3 H̄•(W(g),1)[−1 − 2m].

Next consider gr1 GC(g),1. This complex is spanned by the graphs �αβγ of (21),
and in addition the graphs �α of (20). The differential acts as

δ�αβγ = δglue�αβγ = 〈α, β〉�γ + 〈β, γ 〉�α + 〈γ, α〉�β,

with 〈−,−〉 the canonical pairing on H̄m(Wg,1). Note that the graphs �α span a 2g-
dimensional subspace equivalent to the defining (2g-dimensional) representation of
OSpg . Since this representation is irreducible, we know by Schur’s Lemma that δ must
be either surjective or zero. If g ≥ 2 one easily checks that δ is not zero, and hence
surjective. For g = 0 one has that trivially gr1 GC(g),1 = 0. For g = 1 and m odd one
has S3 H̄•(W(g),1) = 0, and hence δ is zero trivially. For g = 1 and m even one again
checks easily that δ is not zero and hence surjective.

Finally we turn to gr1 GCex(g). This complex is spanned by the graphs �αβγ for

α, β, γ ∈ Hm(Wg), and the elements φα ∈ ospnilg . The differential is defined such
that

δφα = 1

2

∑

i j

gi j�ci c jα,

with �∗
1 = ∑

i, j gi j ci ⊗ c j ∈ Hm(Wg) ⊗ Hm(Wg) a representation of the diagonal

element in some basis {ci } of the homology. The space ospnilg is equivalent to the
defining OSpg-representation, and hence the differential is either zero or injective by
Schur’s Lemma. If g ≥ 2 the differential is non-zero as one checks on an element, and
hence injective. For g = 0 we have gr1 GCex(g) = 0 trivially. For g = 1 and m odd all
�αβγ are zero and hence the differential is zero. For g = 1 and m even the differential
is again injective as one checks by explicit computation.

Overall we have the following table of cohomologies for m odd, as Sp(2g)-
representations
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g = 0 g = 1 g = 2 g ≥ 3

gr1 H(GC
(g),1) 0 V (λ1)[m − 2] 0 V (λ3)[m − 1]

gr1 H(GC(g),1) 0 0 V (λ1)[m − 1] (V (λ1) ⊕ V (λ3))[m − 1]
gr1 H(GCex

(g)) 0 V (λ1)[m] 0 V (λ3)[m − 1]

Here V (λ) denotes a representation of highest weight λ, and λ1, λ2, . . . is a system
of fundamental weights.

For m even we similarly have the following table.

g = 0 g ≥ 1

gr1 H(GC
(g),1) 0 V (3λ1)[m − 1]

gr1 H(GC(g),1) 0 (V (λ1) ⊕ V (3λ1))[m − 1]
gr1 H(GCex

(g)) 0 V (3λ1)[m − 1]

Here one shall remark that providing highest weights only describes a representa-
tion of SO(g, g) a priori, but the representations here extend to O(g, g). Concretely,
V (λ1) ∼= Vg shall be the defining 2g-dimensional representation of O(g, g) and
V (3λ1) the kernel of the canonical map

S3V (λ1) → V (λ1)

defined by contraction with the pairing.
In all cases the canonical maps GC(g),1 → GC(g),1 → GCex(g) send the summands

V (λ3) (resp. V (3λ1)) isomorphically onto themselves, as the corresponding coho-
mology classes are always represented by graphs of the form �αβγ that exist in all
complexes.

5 Comparing GC(g),1 and GC(g), and the proof of part (ii) of Theorem 1

In this section we will need a natural action of GCex(g) on SGC(g), defined in a similar
manner to the Lie algebra structure on GCex(g). More precisely, recall that SGC(g) has
an action of GC(g) (by dualizing the coaction of G(g) on SG(g) defined by the operation
d ′′
cut ). The action of ospnilg is on decorations (including decorations on the external
vertex) in the same manner as for GCex(g).

Recall that SG(g) is a quasi-free dg commutative algebra on generators given by
graphs which remain connected after deletion of the external vertex. Dually, SGC(g) is
cofree as a coalgebra. We denote the space of cogenerators by ICG(g)[1], i.e. SGC(g) =
Sc(ICG(g)[1]). In other words, ICG(g) is an L∞-algebra whose cobar construction is
SGC(g). Graphs in ICG(g) also satisfy the connectivity property above and are referred
to as “internally connected”. The cohomological degree of a graph with v internal
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vertices, e edges and (non-positive) degree of decorations Dm is

1 + 2mv − (2m − 1)e + Dm.

The action of GCex(g) on SGC(g) is compatible with the coalgebra structure on SGC(g)

and thus we obtain a morphism of dg Lie algebras

GCex(g) = ospnilg � GC(g) → Der(SGC(g)),

where Der(SGC(g)) is the dg Lie algebra of coalgebra coderivations of SGC(g).
The coalgebra SGC(g) is coaugmented by the inclusion of the “empty” graph con-

sisting of the external vertex and no further vertices, edges or decorations. However
this coaugmentation is not preserved by the action ofGCex(g) (since the action of a graph
with ω-decorated vertices on the “empty” graph is generally non-zero). We thus get a
non-trivial chain map induced by the action on the coaugmentation

f : GCex(g) → ICG(g)[1].

The map can be described as follows:

• Elements � ∈ GC(g) act on the “empty” graph with one external vertex and no
internal vertices or edges. Namely, we sum over all ways of connecting an ω-
decoration to the external vertex.

• If φci ∈ ospnilg is an element that sends 1 ∈ H0(Wg) to ci ∈ Hm(Wg) then we map
it to the graph with one external vertex and decoration ci .

From this description it follows that the dg Lie subalgebra GC(g),1 ⊂ GC(g) pre-
serves the coaugmentation (i.e. gluing any graph of GC(g),1 to the "empty" graph gives
0), since none of the vertices carry ω-decorations.

Proposition 20 The sequence

GC(g),1 → GCex(g)
f−→ ICG(g)[1]

where the first map is the inclusion, is a fiber/cofiber sequence, i.e. the composition of
the two maps is zero and the corresponding total complex is acyclic.

Proof The two maps compose to zero by the description of the map f as gluing ω-
decorations to the external vertex and GC(g),1 not having any ω-decorations. Thus we
obtain a chain map

GC(g),1 → cone( f [−1]) = GCex(g) ⊕ ICG(g)[1][−1].

which we will show is a quasi-isomorphism. Denote by ICG•
(g) ⊂ ICG(g) the sub-

complex consisting of diagrams having at least one internal vertex, and by ICG0
(g) the

subspace spanned by diagrams with no internal vertices. The latter does not define
a subcomplex. By the description of the map f given above, we have f (GC(g)) ⊂
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ICG•
(g)[1], while f (ospnilg ) ⊂ ICG0

(g)[1]. Next, we equip GC(g),1 with the complete
descending filtration given by

# internal vertices + # edges ≥ p.

and similarly the mapping cone with the complete descending filtration

# internal vertices + # internal edges ≥ p

where by an internal edge we mean an edge connecting two internal vertices. On the
level of the associated graded complexes we have, on the one hand, (gr GC(g),1, 0),
whereas gr cone( f [−1]) splits into the direct sum of subcomplexes

gr cone( f [−1]) ∼= gr(ospnilg ⊕ ICG0
(g)) ⊕ gr(GC(g) ⊕ ICG•

(g)).

Let us first show that the first subcomplex is acyclic. As a vector space ICG0
(g)

∼=
Hm(Wg) ⊕ H2m(Wg) ⊕ Q . The associated graded differential sends

1
ω

�→ 1

Recall that ospnilg has a basis {φci }, i.e. is isomorphic to Hm(Wg) and we have defined
the map f such that it is the inclusion ospnilg

∼= Hm(Wg) ⊂ Hm(Wg) ⊕ H2m(Wg) ⊕
Q ∼= ICG0

(g),

ospnilg � (φci : 1 �→ ci ) �→ 1
ci

Thus gr(ospnilg ⊕ ICG0
(g)) is identified with the cone of the identity on Hm(Wg) ⊕

H2m(Wg) and hence contractible.
For the summand gr(GC(g) ⊕ ICG•

(g)) we notice that the only remaining differential
is given by replacing ω-decorations with an edge connected to the external vertex.

gr d : ω

1

�→
1

Here we think of graphs in GC(g) as having an external vertex but not being connected
to it. This differential has an obvious homotopy

h : gr(GC(g) ⊕ ICG•
(g)) → gr(GC(g) ⊕ ICG•

(g))
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given by replacing edges connected to the external vertex by an ω-decoration at the
respective internal vertex. It satisfies

(gr dh + h gr d)(�) = N (�)�

where N (�) is the number of ω-decorations plus the number of edges incident at
the external vertex. Using Lemma 7 we obtain that the inclusion of the diagrams
with N (�) = 0 is a quasi-isomorphism. But N (�) = 0 means exactly graphs with
no ω-decorations and no edges connected to the external vertex, i.e. diagrams in
gr GC(g),1 ⊂ gr(GC(g) ⊕ ICG•

(g)). Thus

(gr GC(g),1, 0) → gr cone( f [−1])

is a quasi-isomorphism, and so is

GC(g),1 → cone( f [−1]).

��
We obtain a long exact sequence on cohomology groups

· · · → Hk(GC(g),1) → Hk(GCex(g))
H( f )−−−→ Hk+1(ICG(g)) → Hk+1(GC(g),1) → · · · .

(22)

By the equivalence of quasi-cofree dg cocommutative coalgebras and L∞-algebras
we obtain that ICG(g) is an L∞-algebra (see for instance [25, Proposition 10.1.20]).
More concretely, the k-ary bracket [�1, . . . , �k] is obtained by applying the differential
to �1∨· · ·∨�k and keeping the internally connected component, where �1∨· · ·∨�k

is the union of the graphs �1, . . . , �k glued together at their external vertex. The 1-ary
bracket defines a differential on ICG(g) such that the 2-ary bracket induces a Lie bracket
on H(ICG(g)).

Lemma 21 The image of

H( f ) : H•(GCex(g)) → H•+1(ICG(g))

lies in the center of the graded Lie algebra H(ICG(g)).

The proof will follow from the following more general lemma. Let Sc(h[1]) be a
quasi-cofree dg coalgebra (i.e. the bar construction of an L∞-algebra).

Lemma 22 Let F : Sc(h[1]) → Sc(h[1]) be a coderivation of the coalgebra structure
commuting with the differential. Then F(1) lies in the center of H(h).

Since �(1) = 1 ⊗ 1 and F is a coderivation we obtain that F(1) is primitive,
hence F(1) ⊂ h[1]. Let π : Sc(h[1]) → h[1] be the projection onto cogenerators.
The coderivation F is completely determined by its composition with the projection
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onto cogenerators φ = π ◦ F : Sc(h[1]) → h[1] and we have F(1) = φ(1) and
F(x) = φ(x)+φ(1)∨ x for all x ∈ h (with the same proof as [25, Proposition 1.2.9]).
Since F commutes with the differential we obtain that

F(dx) = dF(x) = dφ(x) + d(φ(1) ∨ x).

Suppose now that x ∈ h such that dx = 0 (in h and hence also in Sc(h[1])) and thus
the left-hand side is 0. Projecting the right-hand side onto cogenerators we obtain

0 = dφ(x) ± [φ(1), x],

since the projection onto cogenerators of (.φ(1) ∨ x) is the definition of the 2-ary
bracket (up to a conventional sign). Thus we have obtained that φ(1) = F(1) lies in
the center of H(h).

Proof of Lemma 21 The action of GCex(g) on SGC(g) is in particular compatible with the
differential. Thus any γ ∈ H•(GCex(g)) defines a coderivation of SGC(g) that commutes
with the differential. The statement is then a direct application of Lemma 22. ��

Let us also note the following general fact about the situation above

Lemma 23 Let g be a dg Lie algebra acting on the bar construction B(h) of an L∞-
algebra h by coalgebra-coderivations preserving the coaugmentation. Such an action
is determined by its composition with the projection onto the cogenerators and thus
given by linear maps

φk : g ⊗ Sk(h[1]) → h[1]

for k ≥ 1. Then the map φ1 induces an action of H(g) on H(h) by Lie algebra
derivations

H(g) → Der(H(h)).

Proof By functoriality (with respect to coaugmentation preserving maps) of the bar
construction we obtain a dg-action

g → Derdg−Lie(B
cB(h)),

which descend to

H(g) → DerLie(H(BcB(h))).

Finally, bar-cobar adjunction gives us the identification H(BcB(h)) = H(h). ��
The lemma can be applied to the following situation. Recall that GC(g),1 acts on the

quasi-free coalgebra SGC(g),1 by coaugmentation-preserving coalgebra coderivations.
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Let us denote by ICG(g),1[1] the L∞-algebra of cogenerators. Thus by the above lemma
we obtain an action

H(GC(g),1) → DerLie(H(ICG(g),1)). (23)

Wewill see shortly that ICG(g),1 is Quillenmodel forWg,1 and hence a free Lie algebra.

5.1 Rational homotopy Lie algebra ofWg

We define the graded Lie algebra wg to be the Koszul dual Lie algebra to the graded
commutative algebra H•(Wg). Concretely,wg has the following presentation. It is gen-
erated as a graded Lie algebra by symbols c1, . . . , c2g of degree 1−m, corresponding
to a basis of Hm(Wg). Let us denote the matrix of the non-degenerate pairing with
respect to the given basis by gi j . Then

wg = FreeLie(c1, . . . , c2g)/

⎛

⎝
2g∑

i, j=1

gi j [ci , c j ] = 0

⎞

⎠ .

It is clear thatwg is the quadratic dual to the quadratic commutative algebra H•(Wg).
To see that it is the Koszul dual it suffices to show that either H•(Wg) or U (wg) is
a Koszul algebra. Note that U (wg) is a quadratic algebra with generators ci and the
single relation

2g∑

i, j=1

gi j [ci , c j ] = 0

and it is Koszul by [25, Theorem 4.1.1] since in particular there are no critical mono-
mials on which to test the confluence condition,2 We also set

wg,1 = FreeLie(c1, . . . , c2g) = FreeLie(H̄(Wg,1))

and note that it is the Koszul dual Lie algebra to H•(Wg,1).
Moreover, consider a central extension of the graded Lie algebra wg with central

element c of degree 2 − 2m.

w
f r
g = FreeLie(c, c1, . . . , c2g)/

⎛

⎝
2g∑

i, j=1

gi j [ci , c j ] − (2 + (−1)m2g)c = [c, c1]

= · · · = [c, c2g] = 0
)
.

2 We remark that Koszulness has also been shown in [5, section 5] [7, Proposition 2.7], [6, Theorem 4.2].
The description of the rational homotopy groups of Wg has also been obtained earlier in [29].
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This is a Quillen model for the sphere bundle STWg . One has a map of graded Lie
algebras

w
f r
g → wg

by setting c = 0. Both Lie algebras above carry an additional grading, assigning the
generators ci degree +1 and the generator c degree +2. We denote by ŵ

f r
g , ŵg and

ŵg,1 the respective completions. (They only differ fromw
f r
g ,wg andwg,1 in the case

m = 1, in fact.)
We shall need the following result, which can be deduced from [4, Proposition A’]

(see also [15, Lemma 74] for a different proof).

Proposition 24 ([4, Proposition A’], see also [8, Proposition 5.10]) For g ≥ 2 the
center of wg is trivial, and the center of w f r

g is one-dimensional, spanned by c.

There is a morphism of L∞-algebras

φ(g) : ICG(g) → ŵ
f r
g

which is given as follows.

• If a graph� ∈ ICG(g) contains either a loop, a≥ 4-valent vertex or anω-decoration,
then φ(g)(�) = 0.

• If � ∈ ICG(g) is a trivalent tree with no ω-decorations, it can be inter-
preted as a Lie tree and determines an element in the free Lie algebra L� ∈
FreeLie(c1, . . . , c2 g) → ŵ

f r
g . In that case φ(g)(�) = [L�] ∈ ŵ

f r
g .

The same description also gives a morphism of L∞-algebras

φ(g),1 : ICG(g),1 → ŵ(g),1.

Lemma 25 The morphisms φ(g) : ICG(g) → ŵ
f r
g and φ(g),1 : ICG(g),1 → ŵ(g),1 are

quasi-isomorphisms.

Proof In both cases, by bar-cobar duality it suffices to show that the inducedmorphisms
on the respective bar complexes

SGC(g) → B(ŵ
f r
g )

and

SGC(g),1 → B(ŵ(g),1)

are quasi-isomorphisms.
Equivalently,wewill show that the following compositions are quasi-isomorphisms

ψ(g) : C•(STWg) → SGC(g) → B(ŵ
f r
g )
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ψ(g),1 : C•(W(g),1) → SGC(g),1 → B(ŵ(g),1)

where C•(STWg) → SGC(g) and C•(W(g),1) → SGC(g),1 are the dual maps to the
quasi-isomorphisms (17) and (19). The map ψ(g),1 is exhibiting ŵ(g),1 as Koszul dual
of C•(W(g),1) and is hence a quasi-isomorphism. We will now treat the case ψ(g).

Since all the maps are maps of coalgebra, SGC(g) and B(ŵ
f r
g ) are freely cogen-

erated by ICG(g) and ŵ
f r
g , respectively, and the second map is induced by a map on

cogenerators, we obtain that ψ is determined by its projection

g : C•(STWg) → ICG(g) → ŵ
f r
g ,

whichwe can see as an element g ∈ C•(STWg)⊗ŵ
f r
g . Tracing through the definitions

of the maps we obtain that

g = ci ⊗ ci + ϑ ⊗ c

where ci ⊗ ci is the identity in Hm(Wg)⊗ Hm(Wg) (i.e. ci is a dual basis to ci ). From
this description we see that the diagram

C•(STWg) B(ŵ
f r
g )

H•(Wg) B(ŵg)

ψ(g)

commutes, where the upper horizontal arrow is the canonical map exhibiting ŵg as
the Koszul dual of H•(Wg) and hence a quasi-isomorphism. It remains to show that
ψ(g) is a quasi-isomorphism on the vertical kernels. Let us for simplicity again dualize
and take vertical cokernels

C•(STWg) B(ŵ
f r
g )∗

H•(Wg) B(ŵg)
∗.

ψ∗
(g)

The cokernels are H•(Wg)- and B(ŵg)
∗-modules, respectively. Moreover, they are

both freely generated by ϑ on the left hand side and a class dual to c on the right
hand side. But these classes are sent to each other under ψ∗

(g). Thus we also obtain a
quasi-isomorphism on the cokernels and henceψ∗

(g) andψ(g) are quasi-isomorphisms.
��

Proposition 26 For g ≥ 2, we have H( f ) = 0. In particular, the long exact sequence
(22) splits into

0 → ŵ
f r
g → H(GC(g),1) → H(GCex(g)) → 0. (24)
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For g = 1, the sequence splits into

0 → Kc → H(GC(1),1) → H(GCex(1))
H( f )→ Kc1 ⊕ Kc2 → 0, if m is odd,

0 → Kc ⊕ Kc1 ⊕ Kc2 → H(GC(1),1) → H(GCex(1))

H( f )→ K[c1, c1] ⊕ K[c2, c2] → 0, if m is even.

Proof Let us first treat the case g ≥ 2. By Lemma 21 and Proposition 24 it suffices to
show that the connecting homomorphism q : ŵ f r

g → H(GC(g),1) from the sequence

(22) is injective on the center Z(ŵ
f r
g ) = Kc. The central element c has the following

representative in H(ICG(g))

�1

1

where �1 ∈ Hm(Wg)
⊗2 is the diagonal element. The connecting homomorphism q

maps this element to

�1 �1 ∈ GC(g),1. (25)

In order to prove injectivity, we will show that the image of (25) under the action 23
given by Lemma 23 is non-zero. That is, using Lemma 25 we obtain a natural action

H(GC(g),1) → Der(ŵ(g),1) = Der(FreeLie(H̄(Wg,1))). (26)

Concretely this is obtained by projecting onto the trivalent tree part before performing
the gluing operation onto any Lie tree. The element (25) above is sent to the inner
derivation determined by the element

2
2g∑

i, j=1

gi j [ci , c j ]

and is hence non-zero in H(GC(g),1). Note that the last statement also holds for g = 1,
namely the image of the central element c is always non-zero in H(GC(g),1). Let us

now consider the case g = 1. In this case, ŵ f r
1 is finite-dimensional and given by

ŵ
f r
1 =

{
Kc ⊕ Kc1 ⊕ Kc2 for m odd,

Kc ⊕ Kc1 ⊕ Kc2 ⊕ K[c1, c1] ⊕ K[c2, c2] for m even.



23 Page 46 of 72 M. Felder et al.

For m odd, ospnil1 is two-dimensional, both generators are closed in GCex(1) and their

images in ŵ f r
1 are precisely Kc1 ⊕ Kc2. For m even, H( f ) maps the closed graphs

c1c1ω
and

c2c2ω ∈ GCex(1)

to [c1, c1] and [c2, c2], respectively, while the connecting homomorphism ŵ
f r
1 →

H(GC(1),1) sends c1 and c2 to

c1c1c2
and

c2c2c1

respectively. From this we get the following description of the images of c1 and c2
(and c) under the map ν : ŵ f r

1 → H(GC(1),1) → Der(FreeLie(H̄(W1,1))). Namely,

ν(c1) =
{
c1 �→ [c1, c1]
c2 �→ 2[c1, c2], ν(c2) =

{
c1 �→ 2[c1, c2]
c2 �→ [c2, c2],

ν(c) =
{
c1 �→ 2[c1, [c1, c2]]
c2 �→ 2[c2, [c1, c2]].

Note that these three derivations have different bidegrees if we give ŵ(1),1 the bigrad-
ing where c1 has bidegree (1, 0) and c2 has bidegree (0, 1). Thus they are linearly
independent and we get that Kc ⊕ Kc1 ⊕ Kc2 maps injectively into H(GC(1),1). ��

The connecting homomorphism q : ŵ f r
g → H(GC(g),1) from the sequence (22)

sends generators c j of ŵ
f r
g to

c j�1 ∈ GC(g),1,

with �1 ∈ Hm(W(g),1)
⊗2 being the diagonal element. This completely determines it

by the following.

Proposition 27 The connecting homomorphism q : ŵ f r
g → H(GC(g),1) is a homo-

morphism of Lie algebras.

Proof The statement is equivalent to showing that the identification of the cocone
of GC(g),1 → GCex(g) with ŵ

f r
g given in Proposition 26 can be made into a quasi-

isomorphism of dg Lie algebras. Notice that cocones of dg Lie algebras are again dg
Lie algebras and the natural projection (which is the connecting homomorphism from
above) is a map of dg Lie algebras. We have the following commuting diagram of dg



Stable cohomology of graph complexes Page 47 of 72 23

Lie algebras

GC(g),1 GCex(g)

Der+(SGC(g)) Der(SGC(g)))

Der(Bc(SGC(g))) Bc(SGC(g))[1] � Der(Bc(SGC(g)))

where Der+(SGC(g))) are derivations preserving the coaugmentation and the mor-
phisms going from the second to third row are as in [16, Theorem 1]. It induces
quasi-isomorphims of dg Lie algebras between the horizontal cocones. To see this, we
take the cone of the morphism of the first row and the cokernel of the two other, to
obtain the sequence of quasi-isomorphisms of dg vector spaces

cone(GC(g),1 → GCex(g)) → ICG(g)[1] → Bc(SGC(g))[1].

The cocone of the last row may be identified via the adjoint action with Bc(SGC(g)).

By Lemma 25, Bc(SGC(g)) is quasi-isomorphic to ŵ f r
g as dg Lie algebras. ��

In particular, this concludes the proof of part (ii) of Theorem 1. We end this section
with the following remark indicating a possible technical application of Proposition 26.
It is not used in the rest of the paper and can safely be skipped.

Remark 2 We briefly sketch how the g = 1 case of Proposition 26 allows to deduce
the conjecture stated in the introduction of [2] and in [32] from the results of [15].
Details thereof will appear elsewhere.

The conjecture asks about a genus one version of Alekseev and Torossian’s theorem
[3] which states that there is a Lie algebra homomorphism

grt1 → krv. (27)

where grt1 is Drinfeld’s Grothendieck–Teichmüller Lie algebra and krv is the
Kashiwara-Vergne Lie algebra (appearing as the symmetry group of the Kashiwara-
Vergne problem in Lie theory).

The genus one version asks whether the natural formula proposed in [1, 2, 32] (see
[28] for partial results) indeed defines a map

grtell → krvell

where grtell and krvell are genus one analogues of the above defined in [13] and [2,
32], respectively. Enriquez [13] shows that grtell = grt1 � rell and [2, 32] show that
the natural formula works for the grt1-part. Thus it remains to show that the proposed
formula defines a map

rell → krvell .
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The strategy to prove this is to imitate the proof for the genus zero case in [33] that
goes through Kontsevich’s graph complex GC. In detail, [35, Theorem 1.1] computes
grt1 = H0(GC), whereas [33] show that the one-loop approximation of the latter is
identified with krv.

In the genus one case, [15, Corollary 3] gives a calculation of H0(GCex,(1) ) and

shows that it can be identified with the Lie algebra rell . The arguments of [33] can be
adjusted to show the ≤ 1-loop part of GC(1),1 coincides with krvell as defined in [1, 2,
32], i.e.

krvell = H0(GC≤1
(1),1),

where GC≤1
(1),1 is the quotient of GC(1),1 by graphs of loop order > 1. Proposition 26

together with Theorem part (i) of 2 tell us that H0(GCex,(1) ) and H0(GC(1),1) agree up
to finitely many classes. Treating those classes by hand one constructs a map

rell → krvell .

Going through all those identifications in detail one checks that this map coincides
with the one proposed in [1, 2, 32].

6 Degree bounds and proof of Theorem 2

6.1 Degree bounds on the "ordinary" graph complex

We shall make use of degree bounds on the hairy graph cohomology that are shown in
[12, Theorem 1.6]. The hairy graph complexes are defined similarly to the graph com-
plexes considered in this paper, but they are not the same. More precisely, analogously
to the definitions in Sect. 3 above, we may consider a complex HGC[h]

0,2 of (isomor-
phism classes of) connected at least trivalent graphs with h hairs labeled 1, . . . , h and
no tadpoles at vertices. The cohomological degree of such a graph � ∈ HGC[h]

0,2 is

(2#vertices) − (#edges). (28)

Here we count the hairs as edges, but without a vertex at the end of the hair. For
example, the graph

1

2

3

has three vertices, 6 edges and cohomological degree 0. The differential δ = δspli t

is again given by splitting vertices. The graph complex HGC[h]
0,2 appears at various
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places in the literature, in particular in the embedding calculus, and it also computes
(up to degree shifts) the top weight cohomology of the moduli spaces of curves. The
following degree bound is known.

Proposition 28 (Chan-Galatius-Payne, [12, Theorem1.6])The cohomology ofHGC[h]
0,2

is concentrated in cohomological degrees ≥ −1.

Proof To account for different degree conventions, let us briefly recall the argument
of [12]. There the authors show that the part of the graph cohomology with k internal
(i.e., non-hair) edges, h hairs and of loop order g computes the weight 0 part of
the compactly supported cohomology Hk

c (Mg,h) of the moduli space of curves. But
Mg,h has real dimension 6g − 6 + 2h, and by a computation of Harer it has vcd
4 g − 4 + h + δ0,g − δ0,h . Hence we need to have k ≥ 2 g − 2 + h − δ0,g + δ0,h .
Converting back to the degree d in our graph complex we find

d = k − 2g − h + 2 ≥ −δ0,g + δ0,h ≥ −1.

��
In fact, one sees from the proof that the bound is saturated for tree graphs only.

Remark 3 The statement of Proposition 28 can alternatively be deduced from the
proof of [36, Lemmas 1.2, 1.4]. More precisely, in [36] only the part of HGC[h]

0,2 that
is symmetric or antisymmetric under the interchange of labels 1, . . . , h is considered.
However, the argument in that paper does not use the symmetrization, and goes through
for the non-symmetrized complex as well. Furthermore, in [36] graphs are allowed to
have tadpoles, but this does not alter the result, as can be seen by the arguments of
Sect. 4 above.

6.2 Lower bound and proof of part (i) of Theorem 2

In view of part (i) of Theorem 1, that we have already proven and the weight 1
computation in Sect. 4.1, it suffices to show part (i) of Theorem 2 for GC(g),1.

Filter GC(g),1 by loop order, as in Sect. 4 above. Considering the associated spectral
sequence, it then suffices to show that H(GC(g),1, δspli t ) is concentrated in the degree
range stated in part (i) of Theorem 2.

Consider first the case m = 1, and pick some basis c1, . . . , c2g of H1(Wg,1). Then
(GC(g),1, δspli t ) splits into a direct product of subcomplexes according to the number of
decorations c1, . . . , c2g in graphs. Concretely, fix somemulti-index n = (n1, . . . , n2g)
and denote the respective subcomplex by GCn(g),1 ⊂ GC(g),1. (It is spanned by graphs
with n1 decorations c1, n2 decorations c2 etc.) This subcomplex is then identified with
a summand of the complex HGC[|n|]

0,2 , concretely

GCn(g),1
∼= (HGC[|n|]

0,2 )Sn1×···×Sn2g
[−1], (29)

with the symmetric groups acting by permuting hair labels. The additional degree
shift in (29) reflects the shift by +1 in the definitions (16) and (28) of the degrees
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on GC(g),1 and HGC[|n|]
0,2 respectively. Invoking Proposition 28 this then shows that

H(GCn(g),1, δspli t ) is concentrated in non-negative degrees. Hence the same holds
for H(GC(g),1), finishing the proof for the case m = 1. Note that the complexes
grW GC(g),1 are isomorphic for any odd m, up to overall degree shifts. Concretely,
changing m by +2 reduces the degree of a given graph by 2W . Hence the vanishing
statement of 2 (i) follows for odd m.

For evenm one has to mind that the decorations by Hm(Wg,1) are now even objects.
However, the same proof as above goes through, except that one has to antisymmetrize,
instead of symmetrize over hair labels in (29).

In fact, in either case one sees from the proof of Proposition 28 that the degree
bound is saturated (only) by trees, and in fact only trivalent such trees.

6.3 Proof of part (ii) of Theorem 2

By part (ii) of Theorem 1 we know that for g ≥ 2 we have that H(GCex(g)) is a
summand (as a graded vector space) of H(GC(g),1), in a way preserving the weight
grading. Hence part (ii) of Theorem 2 follows immediately from part (i).

6.4 Graph complex with two-colored edges: recollection from [9]

Let � be a graph with vertex set {1, . . . , N } and k (ordered) edges. Consider the
complex

C⊗k

with C a two-dimensional acyclic complex,

C = (Q[1] → Q).

we interpret the natural basis elements of C⊗k as assignments of “colors"3 to edges
of �, say the Q[1] corresponding to a solid edge, and Q to a dashed edge. Hence C⊗k

has a natural basis that can be identified with colorings of the edges of � such as the
following.

1 2

3 4

The differential acts by summing over edges, and replacing a solid edge by a dashed
one. It is clear that the complex C⊗k is acyclic if k ≥ 1, i.e., if � has at least one edge.

3 Or rather dash-patterns, for compatibility with grayscale printing.
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Let Idisc ⊂ C⊗k be the subcomplex spanned by all colored graphs for which the
subgraph comprised of the vertices and the solid edges is not connected. We define

C� = C⊗k/I

to be the quotient complex obtained by setting to zero all such solid-disconnected
graphs. We note that, obviously, C� is bounded and concentrated in cohomological
degrees −k, . . . , 1 − N .

Lemma 29 (Lemma 8.8 of [9]) The cohomology of C� is concentrated in the top
degree 1 − N.

The cohomology is hence given by linear combinations of solid trees, modulo the
differential of solid one-loop graphs.

Proof We proceed by induction on the number N of vertices and the number k of
edges. The base cases (either N = 1 or k = 0) are trivial. Suppose we know the
statement for all graphs with < N vertices or with N vertices and < k edges.

Pick some edge (i, j). We may assume i 
= j for clarity, for otherwise C� is
obviously acyclic. We have a splitting of graded vector spaces

C� = V0 ⊕ V1 ,

where V0 ⊂ C� is spanned by graphs in which the edge (i, j) is solid, and V1 spanned
by graphs where it is dashed. The arrows indicate the pieces of the differential. We
hence interpret C� accordingly as a (quite trivial) two-column double complex, with
V0 constituting the first column and V1 the second. We take the associated column-
wise spectral sequence, which converges to the cohomology by finite dimensionality
of our complexes. The first page is given by the column-wise cohomology, i.e.,

H(V0) ⊕ H(V1).

But the complex V0 is isomorphic to C�/(i, j), with �/(i, j) the graph obtained by
contracting the edge (i, j). Similarly V1 is isomorphic to C�\(i, j), with � \ (i, j)
obtained by removing edge (i, j) from �. Invoking the induction hypothesis we are
hence done. ��

6.5 Upper bound and proof of part (iii) of Theorem 2

We next want to show the vanishing statement Theorem 2 (iii), thus finishing the proof
of Theorem 2. By using Theorem 1 it is sufficient to show the statement for GC(g),1,
and for the other two complexes it then follows. More precisely, By Theorem 1 (i) we
know that grW GC(g),1 = grW GC(g),1 for weights W ≥ 2. But the weight one-part

gr1 GC(g),1 is concentrated in degree 1−m. Similarly, by Theorem 1 (ii) we have that
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grW H(GCex(g)) is a summand of grW H(GC(g),1) as long as g ≥ 2, and by assumption
we have g ≥ W + 2 ≥ 3.

Hence we need to show part (iii) of Theorem 2 only for GC(g),1. In fact, we will

equivalently show the dual vanishing statement for the graded dual complex G(g),1.
Concretely we need to show that

grW Hk(G(g),1) = Hk(grW G(g),1) = 0

for k < (m − 1)W and g ≥ W + 2. Let us filter grW G(g),1 by the total number of

vertices by setting F p grW G(g),1 to be the subspace spanned by graphs with ≤ p
vertices. By finite dimensionality of the complex the associated spectral sequence
converges to the cohomology. The differential on the associated graded is just the part
dcut of the full differential. Hence it suffices to show that

Hk(grW G(g),1, dcut ) = 0 for k < (m − 1)W and g ≥ W + 2. (30)

To go further, we would like to apply Lemma 9. To this end we check:

Lemma 30 Let mD be the total degree of decorations appearing in a graph � in
grW G(g),1, grW G(g),1 or gr

W G(g). Then

D ≤ W + 2.

The bound is saturated for tree graphs.

Proof For a graph with e edges, v vertices and decorations of degreemD the weight is
by definitionW = 2(e−v)+ D, and hence D = W −2(e−v). Since for a connected
graph e − v ≥ −1, with equality precisely for tree graphs, the result follows. ��

We hence find that the OSpg-representation gr
W G(g),1 is of order ≤ W + 2, in the

notation of Sect. 2.2, as is clear from the definition, see in particular (8).
But by Lemma 9 it then suffices to check that

Hk((grW G(g),1 ⊗ V⊗M
g )OSpg , dcut ) = 0

for all M = 0, 1, . . . ,W + 2 and k < (m − 1)W . Suppose next that g ≥ W + 2.
Then we may apply classical invariant theory in the form of Theorem 10. This then
identifies

((grW G(g),1 ⊗ V⊗M
g )OSpg , dcut ) (31)
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with a complex of graphs with no decorations, but two types of edges, say solid and
dashed, and M external dashed legs. Here is an example graph for M = 3 andW = 6:

1 2 3

(32)

Each dashed edge represents a copy of the diagonal as in Theorem 10. The differential
dcut acts by replacing a solid edge by a dashed edge, as long as this leaves the solid
subgraph connected.

dcut = (33)

Note that the differential dcut does not alter the core graph, by which we mean the
graph obtained by forgetting the color (solid or dashed) of edges. Hence ((grW G(g),1⊗
V⊗M
g )OSpg , dcut ) splits as a direct sum of subcomplexes according to core graphs �,

each of which has the form

(C�′ ⊗ K (�))Aut(�), (34)

with �′ obtained from � by removing the legs, C�′ the two-colored (solid-dashed)
complex from the previous subsection, Aut(�) the (finite) automorphism group of
the core graph � and K (�) some one-dimensional representation of Aut(�) taking
care of signs and degrees. But by Lemma 29 we know that H(C�′) is represented by
two-colored graphs whose solid subgraph is a spanning tree. The same is hence true
for any direct summand of C�′ , and in particular for (34). But a graph in G(g),1 of
weight W with e edges has cohomological degree

k = mW − e − 1.

For tree graphs one has furthermore that D = W + 2, and also e ≤ D − 3 = W − 1
from the condition that all vertices need to be at least trivalent. It follows that

k ≥ (m − 1)W ,

thus finishing the proof of part (iii) of Theorem 2. ��
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7 The Chevalley Eilenberg complex, and proof of Theorem 3

7.1 Definition, and graphical interpretation

We define the Chevalley-Eilenberg complexes of the three dg Lie algebras considered
in this paper as the cobar constructions of the respective graded dual Lie coalgebras

CCE (GC(g),1) = BcG(g),1 CCE (GC(g),1) = BcG(g),1 CCE (GCex(g)) = Bc(Gex
(g)).

In particular, the Chevalley-Eilenberg complexes thus defined are dg commutative
algebras, and graphically the commutative product is given by the disjoint union of
graphs. They furthermore inherit the weight grading from the Lie algebras. The sum-
mands grW CCE (· · · ) of fixed weight are furthermore finite dimensional dg vector
spaces since the weight on the Lie algebras is positive.

In fact, by the very definition of the Lie bracket of our graphical dg Lie algebras,
we can identify the Chevalley-Eilenberg complexes with the respective complexes of
(possibly) non-connected graphs from Sect. 3,

CCE (GC(g),1) = fG(g),1 CCE (GC(g),1) = fG(g),1 CCE (GCex(g)) = fGex
(g).

Here we should remark that the interpretation of fGex
(g) as a complex of graphs requires

us to also provide a suitable graphical interpretation of the factors ospnil,cg
∼= Q2g[−m].

In fGex
(g) we shall represent such a factor by a special (crossed) univalent vertex with a

decoration in Hm(Wg):

α
with α ∈ Hm(Wg).

Here the special vertex formally carries degree +1 in the Chevalley-Eilenberg com-
plex, so that the cohomological degree of a graph � with v (“normal") vertices, c
crossed vertices, e edges and total decoration degree mD is

(2m − 1)e − 2mv + mD + c.

This formula applies to all three Chevalley-Eilenberg complexes, with c = 0 in the
cases fG(g),1 and fG(g),1.

We shall also give the combinatorial interpretation of the differential. The dif-
ferential on the Chevalley-Eilenberg complex consists of two pieces, induced from
the internal differential of the Lie coalgebra, and the Lie cobracket. These terms
neatly unite in the Chevalley complex to give a total differential of the form d =
dc + dcut + d ′′

mul + d×, with the three pieces as follows. The piece dc sums over
all edges, contracting the edge. The piece dcut sums over all edges, replacing the
edge by a pair of decorations. The piece d ′′

mul is only present in the third of our three
Chevalley-Eilenberg complexes (i.e., CCE (GCex(g))) and acts by multiplying two deco-
rations and contracting an adjacent edge as in Sect. 3. The piece d× is also only present
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in CCE (GCex(g)), and acts by creating a crossed vertex. There are two kinds of terms,
the first coming from the Lie cobracket:

d×
α = α

d×
ω =

2g∑

i, j=1

gi j
ci c j

The second type of term comes from the piece of the differential G(g) → ospnil,cg , and
this only acts on isolated vertices with exactly three decorations in Hm(Wg),

d×
αβγ

= 〈α, β〉
γ

+ 〈β, γ 〉 α + 〈γ, α〉
β

for α, β, γ ∈ Hm(Wg) .

Let us also introduce a second grading, the grading by E-number, on our complexes.
On CCE (GC(g),1) and CCE (GC(g),1) the E-number of some graph (in the graphical
interpretation of the Chevalley-Eilenberg complex) is simply the number of edges. For
CCE (GCex(g)) we define the E-number as the number of edges minus the number of
special vertices “×”. In any case, note that the cohomological degree is then expressed
through the weight W and E-number E as

mW − E .

In particular note that the differential is homogeneous of degree−1 with respect to the
E-number, and hence the cohomology inherits a grading by E-number. In fact, one
can think of the E number as an m-independent shifted version of the homological
degree, that will be convenient to use below. Note that Theorem 3 states that for g large
enough the cohomology of our Chevalley-Eilenberg complexes becomes concentrated
in E-number 0.

7.2 Proof of Theorem 3 in the first two cases

Let us turn to the proof Theorem 3 for the cases CCE (GC(g),1) and CCE (GC(g),1). We
will show the following refined version.

Proposition 31 We have that

grW Hk
CE (GC(g),1) = grW Hk

CE (GC(g),1) = 0

if either of the following conditions is satisfied:

(i) k > mW.
(ii) k < mW and g ≥ 2k − (2m − 3)W + 1.

In particular if g ≥ 3W and k 
= mW, then one of the two conditions above is always
satisfied.
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We first note that the E-number in CCE (GC(g),1) and CCE (GC(g),1) is just the
number e of edges in the graph, and hence non-negative. It follows that, trivially,

grW Hk
CE (GC(g),1) = grW Hk

CE (GC(g),1) = 0

if k > mW , and hence the first statement of Proposition 31 follows as well.
For the second statement we will need invariant theory and the following Lemma.

Lemma 32 The maximal number of decorations of a non-trivial graph � ∈
CCE (GC(g),1) (resp. � ∈ CCE (GC(g),1)) of weight W and E-number (i.e., number
of edges) e is

3W − 2e.

In particular the maximum number of decorations in any graph of weight W is 3W.
The bound is saturated by a graph with no edges, and all vertices carrying three
decorations.

Proof Let v be the number of vertices in a graph � and D the number of decorations.
We have that W = 2(e − v) + D and, by the trivalence condition, 3v ≤ 2v + D.
Eliminating v from this system of inequalities yields D ≤ 3W − 2e. ��

We return to the proof of statement (ii) of Proposition 31. In fact, we shall focus on
the case of GC(g),1, with the statements for GC(g),1 being shown analogously.

From Lemma 32 we see in particular that the representation grW CCE (GC(g),1) of
OSpg is of order ≤ 3W , and specifically the part of E-number e is a representation of
order ≤ 3W − 2e in the sense of Sect. 2.2. Equivalently, using that the cohomological
degree is k = mW − e, the degree k-part grW Ck

CE (GC(g),1) is of order ≤ 3W −
2(mW − k) = 2k − (2m − 3)W .

Let us define the complex of invariants

Jg,M,W :=
(
grW CCE (GC(g),1) ⊗ V⊗M

g

)OSpg
.

To show the part (ii) of Proposition 31, it suffices by Lemma 9 to check that

Hk(Jg,M,W ) = 0

for each k < mW and M ≤ 3W −2e = 2k−(2m−3)W , provided g ≥ 3W −2e+1.
Also note that one has natural maps of complexes

Jg+1,M,W → Jg,M,W .

Furthermore, it follows from Theorem 10 and Lemma 32 that these maps are isomor-
phisms on the degree k part

J kg+1,M,W → J kg,M,W



Stable cohomology of graph complexes Page 57 of 72 23

if 2g ≥ M + 3W − 2e = M + 2k − (2m − 3)W . We shall denote the stable limit by

J∞,M,W := Jg,M,W for any g such that 2g ≥ M + 3W .

Similarly to the proof in Sect. 6.5 the complex J∞,M,W is identified with a complex
of graphs with two kinds of edges, say “solid” and “dashed”, but without decorations,
such that each dashed edge represents a copy of the diagonal element�1 to be inserted
at its endpoints. There are precisely M external dashed legs. See (32) for a picture.
Note however that in contrast to Sect. 6.5 above the solid subgraph does now not need
to be connected.

The differential is d = dc + dcut with dc contracting an edge and dcut replacing it
by a dashed one as in (33).

Lemma 33 The cohomology of J∞,M,W is concentrated in degree k = mW.

Proof Using again a spectral sequence on the filtration by the number of vertices,
it suffices to show that the cohomology of (J∞,M,W , dcut ) is concentrated in degree
mW . However, note that in contrast to the proof in Sect. 6.5 there is no connectivity
requirement on the resulting graphs in the present case. We may hence introduce a
homotopy

h : Jg,M,W → Jg,M,W

� �→ h� =
∑

e

undashe(�),

where the sum is over all dashed edges e between two vertices (i.e., not external legs)
and undashe(�) is the graph obtained by replacing the dashed edge e by a normal one,
which becomes the first in the ordering of edges to fix the sign. One then verifies that

hdcut� + dcut h� = N (�)�

with N (�) the number of edges (dashed or normal alike) between two vertices of �.
Invoking Lemma 7 this implies in particular that the cohomology is concentrated in
E-number zero, or equivalently in cohomological degree k = mW . ��

We return to the proof of Proposition 31. We know (from Theorem 10) that the
map

J k∞,M,W → J kg,M,W

is an isomorphism for 2g ≥ M + 2k − (2m − 3)W . It follows that the induced map

Hk(J∞,M,W ) → Hk(Jg,M,W )

is an isomorphism for 2g ≥ M + 2k + 2 − (2m − 3)W . In particular, if g ≥ 2k −
(2m − 3)W + 1 then

Hk(Jg,M,W ) = Hk(J∞,M,W ) = 0
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for each k < mW and M ≤ 2k − (2m − 3)W . This shows Proposition 31 for the case
CCE (GC(g),1).

Note that the argument is agnostic of whether or not the graphs have tadpoles, and
so the same proof goes through for the case CCE (GC(g),1). ��

7.3 Proof of Theorem 3 forGCex(g)

We shall proceed analogously to the previous subsection, with some additional com-
plications. For simplicity, we shall also restrict to showing Theorem 3 and not the
refined genus bounds as in Proposition 31 in this case.

Lemma 34 Let � ∈ grW CCE (GCex(g)) be a graph of weight W with total degree of
decorations mD. Then D ≤ 3W. If � has E-number E then D ≤ 3W − 2E.

The bound D ≤ 3W is again saturated by a graph with no edges, and all vertices
carrying three decorations.

Proof Let v be the number of (non-crossed) vertices in a graph �, c the number of
crossed vertices, e the number of edges and D the number of decorations. To be
concrete, a factor in osp

(nil)
g counts as zero non-crossed vertices, one crossed vertex,

zero edges, and one decoration. Then the weight of � is W = 2(e − v) + D. By the
trivalence condition we have 3v + c ≤ 2v + D. Eliminating v from this system of
inequalities yields D ≤ 3W − 2e − 2c = 3W − 2E − 4c, and this is ≤ 3W and
≤ 3W − 2E since e, c ≥ 0. ��

As before, to show Theorem 3 it suffices to show that

Kg,M,W :=
(
grW CCE (GCex(g)) ⊗ V⊗M

g

)OSpg

has cohomology concentrated in E-number 0, for all M ≤ 3W . Furthermore, for
2g ≥ 3W +M we can again invoke Theorem 10 to compute Kg,M,W explicitly. Again
Kg,M,W may be interpreted as a complex of graphs with two kinds of edges, solid
and dashed, with the dashed edges corresponding to copies of the "reduced" diagonal
element

�1 =
2g∑

i, j=1

gi j ci ⊗ c j ∈ Hm(Wg) ⊗ Hm(Wg),

or graphically

=
∑

i, j

gi j ci c j
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In the following we always quietly assume that 2g ≥ 3W + M , so that we are in the
“stable” situation.4 On Kg,M,W the differential is then d = dc + dcut + d ′′

mul + d×
with the pieces acting as follows

• dc sums over (solid) edges contracting them as before.
• dcut sums over solid edges, replacing them by a diagonal� = ω⊗1+1⊗ω+�1
(with ω being again the top cohomology class). If the cutting procedure produces
a vertex v of valence less than three (and hence necessarily of valence two), then
the graph is set to zero.

• d ′′
mul removes a vertex with precisely 2 incident dashed half-edges and one solid
half-edge, by contracting the solid edge, adding one ω-decoration, and fusing the
two dashed half-edges. If the dashed half-edges form a tadpole then they are instead
removed and the graph is multiplied by (−1)m2g.

d ′′
mul = ω d ′′

mul = (−1)m2g ω

• The piece d× comes from the ospnil,cg -coaction on G(g) and the part of the differ-

ential G(g) → ospnil,cg . The former piece replaces an ω-decoration by a dashed
edge towards a crossed vertex. Furthermore, it replaces a dashed edge between
internal vertices by a crossed vertex and one dashed edge, attached to either side.
Pictorially

d× ω = (35)

d× = + (36)

Similarly, d× acts on dashed edges that are not between two internal vertices in the
same manner, and one drops the respective graphs if they are not in the complex.
More explicitly, the complete list of cases is as follows, with an empty endpoint
of the edge denoting an external leg.

d× = (37)

d× = 0 (since = 0 by symmetry) (38)

d× = 0. (39)

4 Note that we do not have a meaningful comparison map between the complexes GCex
(g) and GCex

(g+1).
Hence we cannot take a limit g → ∞ at this point as in the previous section.
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All the above terms, coming from the Lie cobracket, introduce a new crossed
vertex but do not alter the number of vertices otherwise. The terms stemming from
the differential read:

d× = ± + + d× = (2 + (−1)m2g)
ω

Here open dashed edges can be connected to internal vertices, or be external legs.

To go further define the subspace K̃g,M,W ⊂ Kg,M,W to be spanned by graphs that
contain one of the following features:

• A crossed vertex.
• An ω-decoration.
• A connected component that is of the form

,

that is, the connected component contains a single vertex with a dashed tadpole
and a dashed external leg. We will temporarily call such connected components
islands in the following.

We will temporarily call the features above the forbidden features.

Lemma 35 The subspace K̃g,M,W ⊂ Kg,M,W is closed under the differential.

Proof One just goes through the list of pieces of the differential and checks that no
piece can remove one of the forbidden features above without introducing another.
In other words the number of forbidden features is left the same or increased by the
differential. ��
Lemma 36 The projection to the quotient

Kg,M,W → Kg,M,W /K̃g,M,W

is a quasi-isomorphism.

Proof We introduce a descending filtration on Kg,M,W by the number of forbidden
features.Concretely, letF pKg,M,W be spannedbygraphswith≥ p forbidden features.
In particularF1Kg,M,W = K̃g,M,W . It then suffices to check that the associated graded
pieces gr p Kg,M,W (with respect to the filtration by the number of forbidden features)
are acyclic for p ≥ 1. Considering the above description of the differential, the pieces
contributing to the associated graded are dcut , dc, and the pieces (35) and (37) of
d×. Let us denote these latter pieces of d× by d ′×. We hence have to show that the
complex (K̃g,M,W , dc + dcut + d ′×) is acyclic. By taking a further associated graded
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with respect to the increasing filtration by the number of solid edges it in fact suffices
that (K̃g,M,W , d ′×) is acyclic.

But this can be achieved by introducing the homotopy

h : K̃g,M,W → K̃g,M,W

h(�) =
∑

x

Gx (�)

with the sum running over all crossed vertices x , andGx (�) being defined by replacing
the vertex x according to the following rule:

• If x is connected to an internal vertex, remove x and place a decoration ω at the
internal vertex.

• If x is connected to an external leg, remove x , glue in an island instead, andmultiply
the graph by 1

2+(−1)m2g . Note that since W ≥ 1 and g ≥ 3W we automatically
have 2 + (−1)m2g 
= 0.

One then checks by explicit computation that

(d ′×h + hd ′×)(�) = N (�)�,

with N (�) being the number of forbidden features. Since by construction N (�) > 0
for any graph � ∈ K̃ L we are done, using Lemma 7. ��

Note that the remaining pieces of the differential on Kg,M,W /K̃g,M,W are
dc + dcut , since the d×-terms produce a crossed vertex, and d ′′

mul creates an ω-
decoration. We may now proceed similarly to the previous subsection to compute
the cohomology of Kg,M,W /K̃g,M,W . We define a filtration on Kg,M,W /K̃g,M,W

by defining F pKg,M,W /K̃g,M,W to be spanned by graphs with ≤ p edges (solid
or dashed). The associated graded is identified with (Kg,M,W /K̃g,M,W , dcut ). As in
the previous subsection this differential has a homotopy and we conclude that the
inclusion F0Kg,M,W /K̃g,M,W → Kg,M,W /K̃g,M,W is a quasi-isomorphism. Since
F0Kg,M,W /K̃g,M,W is concentrated in E-number zero (since it is spanned by graphs
with no solid edges and no crossed vertices), we find that the spectral sequence abuts by
degree reasons. Overall we have shown that H(Kg,M,W ) is concentrated in E-number
zero, thus showing the remaining piece of Theorem 3. ��

7.4 Formality and presentation

Let C temporarily denote any of the three Chevalley-Eilenberg complexes above.
Denote by tr[m](C) the truncation as defined in (5). Note that tr[m](C) consists of the
elements ofC of positive E-number, and the closed elements of E-number zero. Using
the notation H [m](C) (see (4)) for the part of the cohomology of C of E-number zero
we have a zig-zag of dg commutative algebras

C ← tr[m](C) → H [m](C) ⊂ H(C). (40)
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Theorem 3 then implies that this zigzag of dg commutative algebramorphisms induces
an isomorphism on the pieces of the cohomology of weightW ≤ g

3 . In particular C is
formal up to weight g/3. Furthermore note that since the E-number for the cases of
C = CCE (GC(g),1) andC = CCE (GC(g),1) is nonnegative, we have that tr

[m](C) = C
in these cases. Together we find the following Corollary of Theorem 3.

Corollary 37 The morphisms of dg commutative algebras

CCE (GC(g),1) → H [m](CCE (GC(g),1)) =: Ã(g),1

CCE (GC(g),1) → H [m](CCE (GC(g),1)) =: Ã(g),1

CCE (GCex(g)) ← tr[m] CCE (GCex(g)) → H [m](CCE (GCex(g))) =: Ã(g)

induce isomorphisms on the weight W-pieces of the cohomology for g ≥ 3W.

In particular, the E = 0-parts

Ã(g),1 = H [m](CCE (GC(g),1)) and Ã(g),1 = H [m](CCE (GC(g),1))

of the cohomology are given by graphswithout edges,modulo the differential of graphs
with exactly one edge. Note also that any graph without edges is just a union of single
vertices carrying at least three decorations. A graph with a single edge in addition
either has a pair of vertices connected by that edge, or the edge forms a tadpole. In
particular, one has the following presentations

• Ã(g),1 is generated as a graded commutative algebra by the graded vector space

S≥3(Hm(Wg,1)[−m]). We denote the generator corresponding to a monomial
a1 · · · ak ∈ S≥3(Hm(Wg,1)[−m]) by c(a1 · · · ak). Then the relations read, for
(ei ) a basis of Hm(Wg,1) and (e∗

i ) the Poincaré dual basis,

c(a1 · · · ak) =
2g∑

i=1

c(a1 · · · alei )c(e∗
i al+1 · · · ak) for l = 2, . . . k − 2 (41)

2g∑

i=1

c(a1 · · · akei e∗
i ) = 0. (42)

• Ã(g),1 is also generated as a graded commutative algebra by the graded vector
space S≥3(Hm(Wg,1)[−m]), but only with the relation (41), but not (42).

7.5 Stabilization and degrees

We note that one has the following lower degree bounds on the complexes above.

Corollary 38 (i) The maximum E-number of a graph� of weight W in CCE (GC(g),1)

or CCE (GC(g),1) or CCE (GCex(g)) is
3
2W.
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(ii) The minimal cohomological degree of a graph � of weight W in CCE (GC(g),1)

or CCE (GC(g),1) or CCE (GCex(g) is (m − 3
2 )W.

Proof Let D be the number of decorations and E the E-number of �. Then by Lem-
mas 32 and 34 we have the inequality D ≤ 3W − 2E . Hence 2E ≤ 3W − D ≤ 3W
since D ≥ 0. This shows the first statement. The second follows from the formula for
the cohomological degree k, k = mW − E . ��

Using this result we see that for m ≥ 2 and each fixed k only finitely many weights
W contribute to the degree k piece of our Chevalley-Eilenberg complexes. Hence the
degree k cohomology also stabilizes (in the sense discussed) for g → ∞. Here we just
state for reference the corresponding stabilization result in degree that is an immediate
reformulation of Proposition 31.

Corollary 39 Suppose that m ≥ 2. Then the maps

Hk
CE (GC(g),1) → Ãk

(g),1

Hk
CE (GC(g),1) → ( Ã(g),1)

k

are isomorphisms as soon as g ≥ 2k.

Proof One just notes that (2m − 3)W ≥ W ≥ 1 in the statement of Proposition 31.
��

7.6 Invariant part

Setting M = 0 in the proofs of Sects. 7.2 and 7.3 we see that we have in particular
computed the cohomology of the OSpg-invariant piece of the Chevalley-Eilenberg
complex.

Proposition 40 (1) For 2g ≥ 2k − (2m − 3W ) + 2 or k > mW we have that
grW Hk

CE (GC(g),1)
OSpg = 0.

(2) Let κ j represent the graph

κ j =
�

j+1
1

Then the map

grW Q[κ1, κ2, . . . ] → grW HCE (GC(g),1)
OSpg

is an isomorphism in degree k if 2g ≥ 2k − (2m − 3W ) + 2 or k > mW.
(3) Similarly, the map

grW Q[κ1, κ2, . . . ] → grW HCE (GCex(g))
OSpg

is an isomorphism for 2g ≥ 3W.
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Proof One follows again the proofs of Sects. 7.2 and 7.3, but with M in these proofs
set to zero. The condition on g (for the cohomology to agree with the stable one) in
Sect. 7.2 then becomes 2g ≥ M + 2k − (2m − 3W ) + 2 = 2k − (2m − 3W ) + 2. For
the less refined argument of Sect. 7.3 it becomes 2 g ≥ 3W .

Hence it suffices to consider the stable cohomology for M = 0. Revisiting the
proofs above this is computed to be 0 for GC(g),1, and (freely) spanned by classes
without any edges (i.e., unions of the κ j ’s) for the other two cases. ��

8 Koszulness and quadratic presentations of the cohomology

We have shown so far that for large enough g the cohomology of the weight W part
of our dg Lie algebras GC(g),1, GC(g),1 and GCex(g) becomes concentrated in the single
degree (1−m)W .We have also shown that the cohomology of theChevalley-Eilenberg
complex becomes concentrated in degreemW . In this sectionwe shall derive quadratic
presentations of the cohomology in those degrees, and show that both cohomologies
(i.e., the cohomology of the Lie algebra, and that of its Chevalley-Eilenberg complex)
are Koszul dual (in a range, for g large).

8.1 A version of Proposition 13

We first formulate a slightly technical version of Proposition 13 that is appropriate for
our setting.

Proposition 41 Let W0 ≥ 2 and α be integers. Suppose that g is a dg Lie algebra with
an additional positive (“weight") grading, satisfying the following properties.

• Each graded piece grW g is finite dimensional.
• grW H(g) is concentrated in cohomological degree αW for any W ≤ W0.
• The cohomology of the weight W piece of the cobar construction grW Bcgc is
concentrated in cohomological degree (1 − α)W for any W ≤ W0.

Then the following hold:

(i) g is formal up to weight W0 in the sense that the zigzag of morphisms of dg Lie
algebras

g ← tr[α] g → H [α](g)

(see (5), (4) for the notation) induces a zigzag of quasi-isomorphisms of com-
plexes on the part of weight W for any W ≤ W0.

(ii) Similarly, the dg commutative algebra Bcgc is formal up to weight W0 in the
sense that the zigzag of morphisms of dg commutative algebras

Bcgc ← tr[1−α] Bcgc → H [1−α](Bcgc)

induces quasi-isomorphisms on the part of weight W ≤ W0.
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(iii) Let V := gr1 H(g) ∼= gr1 H(Bg)[−1], R := gr2 H(Bg) and S := gr2 H(gc).
Then the maps

R → ∧2V S → S2(V [−1]∗) (43)

given by the (reduced) coproduct and the cobracket are injections. We denote the
images by R and S as well, abusing notation. Furthermore, S is (up to degree
shift) the annihilator of R if we identify (∧2V )∗ ∼= S2(V [−1]∗)[2].

(iv) The graded Lie algebra t and graded commutative algebra A defined via the
quadratic presentations

t = FreeLie(V )/R A = S(V ∗[−1])/S.

are quadratic duals of each other.
(v) The maps of graded Lie, respectively graded commutative algebras

t → H(g) A → H(Bcgc) (44)

defined by the obvious inclusion of generators arewell-defined, respect theweight
grading and induce isomorphisms on the parts of weight W for each W ≤ W0.

(vi) The pair t and A are Koszul up to weight W0 in the sense that the cohomology of
grW Bt (respectively grW BA) is concentrated in cohomological degree (α−1)W
(respectively −αW) for W ≤ W0.

Proof Items (i) and (ii) are immediate by the assumptions on the cohomology in
weights W ≤ W0.

By (i) and (ii) we then know that the following zigzags of dg Lie or dg commutative
algebras

g
∼←− BcBg → Bc(tr[1−α] Bcgc)c ← Bc(H [1−α](Bcgc))c (45)

Bcgc → Bc((tr[α] g)c) ← Bc(H [α](g)c) (46)

are quasi-isomorphisms up toweightW0. By assumption the cohomology of theweight
W part of the left-hand sides is concentrated in degree αW (resp. (1 − α)W ) for
W ≤ W0.
Proof of (iii): Since W0 ≥ 2 by assumption this means in particular that
gr2 Bc(H [α](g)c) is concentrated in degree 2− 2α. But the complex gr2 Bc(H [α](g)c)
has the form

gr2 H(g)∗[−1] → S2(V ∗[−1]), (47)

with the differential given by the cobracket, the left-hand term living in degree 1−2α,
and the right-hand term living in degree 2−2α. Since the cohomology is concentrated
in degree 2 − 2α the differential must be injective. Similarly, one checks that the
coproduct map of (43) is injective. Furthermore, the cohomology of (47) is R∗, and
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is identified with the dual of the cokernel of the differential, that is the annihilator of
the image S. Hence the final statement of (iii) of the proposition follows.

(iv) is immediate from (iii).
(v) It is clear that the maps preserve the weight grading. To check that the maps

are well-defined we just have to check that the relations R (resp. S) are sent to zero,
and this can be checked in the part of weight 2. But the weight 2 part of H(Bcgc) is
the cohomology of (47), and hence the image of S is zero essentially by definition.
Similarly, the weight 2 part of H(g) is the cohomology of gr2 BcH(Bg) and again R
is identified with the image of the differential, and hence zero in cohomology.

Next, consider the cobar construction Bc(H [1−α](Bcgc)c). In weightW its piece of
top cohomological degree is identified with grW FreeLie(V ), in degree αW . The piece
of top-minus-1-degree has precisely one factor of R. The top degree cohomology is
hence identified with grW t, so that

t = H [α](BcH [1−α](Bcgc)c).

Since we know that the zigzag (45) of dg Lie algebra morphisms induces a zigzag
of isomorphisms in weight ≤ W0-cohomology, we obtain that grW t ∼= grW H(g) for
W ≤ W0. This isomorphism is the identity V ∼= V in weight 1 and the Lie brackets are
respected, at least up to weight W0. Hence it agrees with the fist map of (44), which
hence also is an isomorphism in weights ≤ W0. One argues similarly for the second
map of (44), which agrees with the top degree cohomology map induced by (46) in
weights ≤ W0, and is hence an isomorphism in these weights.

For (vi) note that by (v) Bg and Bt are quasi-isomorphic in weights ≤ W0. But the
statement follows directly from the assumption on the cohomology of Bg. Similarly,
BA is quasi-isomorphic to BH(Bcg) = BH [1−α](Bcg) in weights≤ W0 by (v). Hence,
since (45) consists of quasi-isomorphisms in weights ≤ W0, the remaining statement
of (vi) follows by the assumption on H(g). ��

8.2 Main results

Suppose that g ≥ 6. We can apply the general construction of the previous subsection
to the case of g being either of GC(g),1, GC(g),1 or GC

ex
(g). In each case it is shown in

Theorem 2 that the cohomology of grW g is concentrated in cohomological degree
αW with α = (1 − m), in the range W ≤ W0 = g/3 ≥ 2 (since 3W ≥ W + 2).
Furthermore, we know by Theorem 3 that in the same W -range the cohomology
of grW Bcgc is concentrated in degree (1 − α)W = mW . Hence Proposition 41 is
applicable and we find that H(g) and HCE (g) form a Koszul pair, in the given weight
range. The spaces of generators are then

V(g),1 = gr1 H(GC(g),1) = gr1 HCE (GC(g),1)
∗[1]

V(g),1 = gr1 H(GC(g),1) = gr1 HCE (GC(g),1)
∗[1]

V(g) = gr1 H(GCex(g)) = gr1 HCE (GCex(g))
∗[1].
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The spaces of relations can be identified with

R(g),1 = gr2 H(A(g),1)
∗

R(g),1 = gr2 H(A(g),1)
∗

R(g) = gr2 H(A(g))
∗

We hence find the following result, extending Theorem 4.

Theorem 42 The morphisms of graded Lie algebras

t(g),1 := FreeLie(V(g),1)/〈R(g),1〉 → H(GC(g),1)

t(g),1 := FreeLie(V(g),1)/〈R(g),1〉 → H(GC(g),1)

t(g) := FreeLie(V(g))/〈R(g)〉 → H(GCex(g))

and the morphisms of graded commutative algebras

A(g),1 := S(V ∗
(g),1[1])/〈R⊥

(g),1〉 → HCE (GC(g),1)

A(g),1 := S((V(g),1)
∗[1])/〈(R(g),1)

⊥〉 → HCE (GC(g),1)

A(g) := S(V ∗
(g)[1])/〈R⊥

(g)〉 → HCE (GCex(g))

defined on generators by the obvious inclusion induce isomorphisms on the parts
of weight W as long as g ≥ 3W ≥ 6. Furthermore, the pairs (t(g),1, A(g),1) and

(t(g),1, A(g),1) and (t(g), A(g)) are Koszul in the same range of weights, in the sense
of Proposition 41. ��

8.3 Computation of generators and relations

It remains to compute explicitly the spaces of generators and relations appearing in
Theorem 42. Concretely, in this section we will compute their decomposition into
irreducible representations of OSpg . We assume again that g ≥ 6. There will be 6
cases to be considered, namely each of the three dg Lie algebras we study, either
for odd or even m. However, to find the spaces of generators we may re-use the
computation of the weight-1-cohomology of Sect. 4.1.

As before, let λ1, . . . , λg be the usual system of fundamental weights. We shall use
the notation V (λ) to denote an irreducible representation of OSpg of highest weight
λ. Note that when m is even OSp(g) = O(g, g) is not connected, and the irreducible
representation is not uniquely determined by the highest weight. However, one may
construct irreducible representations of O(g, g) associated to Young diagrams by
using Weyl’s construction, see e.g. [14, 19.5] or [31, 11.6.5]. We shall eventually only
need the irreducible representations of O(g, g) of the form V ( jλ1 + kλ2), which we
define as the irreducible representation associated to a Young diagram with k columns
of length 2 and j columns of length 1.
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The decompositions of several tensor products of representations stated belowwith-
out proof have been computed using the SageMath computer algebra software.

Case GC(g),1: The complex gr1 GC(g),1 has the form

S3(Vg[m])[−2m − 1] → Vg[−2m − 2]

with Vg ∼= Hm(Wg,1) and the (surjective) differential obtained by contraction with the
canonical bilinear form. Graphically this corresponds to the differential

αβγ
→

δ
with δ = 〈α, β〉γ ± 〈α, γ 〉 ± β〈β, γ 〉α

The cohomology is easily computed, see Sect. 4.1, and in the notation of that section
we find that the space of generators of our graded Lie algebra t(g),1 is, as OSpg-
representation,

V(g),1 := gr1 H(GC(g),1) =
{
V (λ3)[m − 1] for m odd

V (3λ1)[m − 1] for m even
.

Next we turn to the relations. We first compute the cohomology of the complex
gr2 GC(g),1. There are four types of graphs contributing, and the complex is schemat-
ically depicted as

αβ γ δ

αβ

αβγ δ αβ

The right-hand column forms an acyclic subcomplex and can be omitted—cf. also
the proof of part (i) of Theorem 1 in Sect. 4. The left-hand column is, up to degree
shifts, given by the cocommutative coproduct

{
∧4V (λ1) → S2(∧2V (λ1)) for m odd

S4V (λ1) → S2(S2V (λ1)) for m even
,

that is an injective map. We record the decompositions

∧4V (λ1) = V (0) ⊕ V (λ2) ⊕ V (λ4)

S2(∧2V (λ1)) = V (0)2 ⊕ V (λ2)
2 ⊕ V (λ4) ⊕ V (2λ2)
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for odd m and

S4V (λ1) = V (0) ⊕ V (2λ1) ⊕ V (4λ1)

S2(S2V (λ1)) = V (0)2 ⊕ V (2λ1)
2 ⊕ V (2λ2) ⊕ V (4λ1).

for even m. Hence we find that, as OSpg-representations

gr2 H(GC(g),1)[2 − 2m] ∼=
{
V (0) ⊕ V (λ2) ⊕ V (2λ2) for m odd

V (0) ⊕ V (2λ1) ⊕ V (2λ2) for m even
. (48)

We compare this to the exterior square of the generators, which are up to degree shifts
obtained by the decompositions (for g ≥ 6)

{
∧2V (λ3) = V (0) ⊕ V (λ2) ⊕ V (λ4) ⊕ V (λ6) ⊕ V (2λ2) ⊕ V (λ2 + λ4) for m odd

S2V (3λ1) = V (0) ⊕ V (2λ1) ⊕ V (2λ2) ⊕ V (4λ1) ⊕ V (2λ1 + 2λ2) ⊕ V (6λ1) for m even
.

(49)

We hence find that the spaces of relations are, as OSpg-representations

R(g),1[2 − 2m] ∼=
{
V (0) ⊕ V (λ4) ⊕ V (λ6) ⊕ V (λ2 + λ4) for m odd

V (4λ1) ⊕ V (2λ1 + 2λ2) ⊕ V (6λ1) for m even

Case GC(g),1: One proceeds anologously, except that one omits all graphs with
tadpoles. We suppose that g ≥ 6 for simplicity. Concretely, the space of generators is

V(g),1 := gr1 H(GC(g),1) =
{
V (λ1)[m − 1] ⊕ V (λ3)[m − 1] for m odd

V (λ1)[m − 1] ⊕ V (3λ1)[m − 1] for m even
.

By Theorem 1 we have that gr2 H(GC(g),1) = gr2 H(GC(g),1), so we can re-use
the computations from above for that space. The exterior square of the generators
decomposes as

{
∧2(V (λ1) ⊕ V (λ3)) = V (λ2)

2 ⊕ V (λ4) ⊕ V (λ3 + λ1) ⊕ ∧2(V (λ3)) for m odd

S2(V (λ1) ⊕ V (3λ1)) = V (2λ1)2 ⊕ V (2λ1 + λ2) ⊕ V (4λ1) ⊕ S2V (3λ1) for m even
.

Hence we find that the space of generators is, as OSpg-representation

R(g),1[2 − 2m] ∼= R(g),1 ⊕
{
V (λ2)

2 ⊕ V (λ4) ⊕ V (λ3 + λ1) for m odd

V (2λ1)2 ⊕ V (2λ1 + λ2) ⊕ V (4λ1) for m even
.

Case GCex(g): The generating space

V(g) := gr1 H(GCex(g)).
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can again be copied from Sect. 4.1. We have

V(g)[1 − m] ∼= V(g),1[−m] ∼=
{
V (λ3) for m odd

V (3λ1) for m even
.

Next we consider the complex gr2 GCex(g) = gr2 GC(g). Graphically, it has the following
terms

αβω αβ γ δ

αβγ δ

The right-hand column is the complex computing gr2 H(GC(g),1), so we ca re-use
the computation from above. The graphs in the upper left have two decorations in
Hm(Wg) and one (ω) in H2m(Wg). Representation-wise, this contributes

{
V (0) ⊕ V (λ2) for m odd

V (0) ⊕ V (2λ1) for m even
.

The upper horizontal arrow replaces ω by an edge towards a new vertex decorated
by the reduce diagonal �1. One checks by a small computation that this map induces
an injection, and so (using (48)) we find that

gr2 H(GCex(g)) ∼= V (2λ2)[2m − 2],

and the formula is valid for both even and odd m. Using (49) for the exterior square
of the generators we determine that the relations are

R(g) ∼=
{
V (0) ⊕ V (λ2) ⊕ V (λ4) ⊕ V (λ6) ⊕ V (λ2 + λ4) for m odd

V (0) ⊕ V (2λ1) ⊕ V (4λ1) ⊕ V (2λ1 + 2λ2) ⊕ V (6λ1) for m even

8.4 Proofs of statements of the introduction

We finally turn to the remaining statements of the introduction. First, Theorem 4 is
one case of Theorem 42, if combined with the explicit computation of the relations in
this subsection. Next, the zigzag of Theorem 5 can be taken to be taken to be

CCE (GCex(g)) ← tr[m] CCE (GCex(g)) → H [m]
CE (GCex(g)) ← A(g).

This induces isomorphisms on the cohomology in weight W cohomology if g ≥
3W ≥ 6 by Theorem 42, so that Theorem 5 is shown. Finally, Corollary 6 is just a
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less precise rewording of statement (vi) of Proposition 41 applied to g = GCex(g) in the
case m = 1.
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