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Abstract

Let G be a semiabelian variety and C a curve in G that is not contained in a proper
algebraic subgroup of G. In this situation, conjectures of Pink and Zilber imply that
there are at most finitely many points contained in the so-called unlikely intersections
of C with subgroups of codimension at least 2. In this note, we establish this assertion
for general semiabelian varieties over Q. This extends results of Maurin and Bombieri,
Habegger, Masser, and Zannier in the toric case as well as Habegger and Pila in the
abelian case.
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1 Introduction

Let G be a semiabelian variety defined over Q and X C G an algebraic subvariety. In
this article, we study the intersections of X with algebraic subgroups H C G having
codimension at least dim(X) + 1. For reasons of dimension, one does not expect that
such a subgroup H intersects X at all. However, such “unlikely intersections” can
appear and interesting phenomena arise when intersecting X € G with the countable
union G+ of a]] algebraic subgroups having codimension > dim(X) + 1. For
example, it is not clear a priori whether the intersection X NG4m(X)+11 s Zariski-dense
in X or not. However, conjectures of Pink [43] and Zilber [63] imply the following.

Conjecture (Unlikely Intersection Conjecture, (UIC)). If X is not contained in a proper
algebraic subgroup of G, then X N GU™XO+1 o ot Zariski-dense in X.

One immediately realizes that, in the case X is a hypersurface, this statement is
exactly the Manin—-Mumford conjecture which was proved by Laurent [33], Ray-
naud [46] and Hindry [26] in the multiplicative, abelian and general semiabelian case
respectively.

Some special cases of the above conjecture have been already mentioned in a
pioneering work of Bombieri et al. [10], in which they proved that a curve C in
G = G/, has finite intersection with G'?! under the stronger assumption that C is
not contained in any translate of a proper algebraic subgroup of G. Maurin [35] gave
a general proof with the weaker necessary assumption that C is not contained in a
proper algebraic subgroup, using the generalized Vojta inequality of Rémond [48]. An
alternative proof has been given by Bombieri et al. [9], relying on Habegger’s proof
of the Bounded Height Conjecture for algebraic tori [25].

After several partial results [14, 20, 45, 47, 56] in this direction, Habegger and Pila
[27] eventually proved (UIC) for curves in abelian varieties, using o-minimal counting
techniques.

The main purpose of this note is to establish the following generalization of the
results in [27, 35], which amounts to the full (UIC) in case X is an algebraic curve.

Theorem 1.1 Let G be a semiabelian variety and C C G an irreducible curve not
contained in a proper algebraic subgroup of G. Suppose C and G are defined over a

number field K. Then C N G is finite.

If C is contained in a proper algebraic subgroup H of G, the intersection of C
with G[?] can be infinite. This is easy to see in the toric case G = G!,. Passing to the
component of H containing C, which can be assumed to be & qu; possibly after raising
C to an appropriate power, this reduces to the well-known fact that the intersection of
acurve C' C Gﬁ,/, with ((Gf?;)m is infinite. Indeed, any non-constant rational function
f on C’ attains infinitely many roots of unity as values, the preimages of which are
elements of C' N (Gﬁ,;)[” if f is the restriction of a standard coordinate function on
Gﬁ,/l. In conclusion, our result is essentially optimal.

We also note that the above theorem implies the Mordell-Lang conjecture for
curves in semiabelian varieties [42, Theorem 5.3], yielding hence a special case of a
well-known result of McQuillan [37]. However, we make use of the Mordell-Lang
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conjecture—in the proof of Lemma 3.1—for the intersection of curves in abelian
varieties with their Mordell-Weil group. This is also a source of non-effectivity in our
main result.

Our main Theorem and most of the above-mentioned results concern semiabelian
varieties defined over the algebraic numbers due to the arithmetical methods employed
in the proofs. Of course, one might look at curves and semiabelian varieties defined
over larger fields. In [13], the authors show that Maurin’s Theorem holds for complex
curves, while the first author, in collaboration with Dill, extended the work of Habegger
and Pila to curves and abelian varieties over the complex numbers in [5]. Finally, in
[4], they extended our Theorem 1.1 to complex curves lying in semiabelian varieties
over Q.

Our proof of Theorem 1.1 follows the strategy employed by Bombieri et al. in [9],
relying on the Bounded Height Conjecture proved for semiabelian varieties by the sec-
ond author [30]. However, new difficulties arise in its implementation for semiabelian
varieties instead of algebraic tori.

First, semiabelian varieties lack Poincaré reducibility, which is true for tori as well
as for abelian varieties. This makes it often necessary to avoid its usage by other tools,
mostly through auxiliary quotient constructions.

Second, we have to prove that the points in C N G!?! satisfy a Northcott property
(i.e., there are only finitely many such points of height < B for any constant B); see
Proposition 4.1. In the toric case G = Gfﬂ, this was proven in [11, Lemma 1], but as
this approach does not seem to generalize to semiabelian varieties, we adapt instead
a counting argument from the proof of (UIC) for curves in abelian varieties given by
Habegger and Pila [27]. The proof of this counting argument involves linear forms in
logarithms on semiabelian varieties [21, 60] as well as Pila and Wilkie’s o-minimal
counting Theorem [44] and its refinement [27] and Ax’s Theorem [1].

Third, technical difficulties related to semiabelian varieties appear throughout the
argument. A rather unexpected complication comes from the mixed structure of semi-
abelian varieties. In order to establish a close relation between the algebraic degree
of a subgroup H € G and the covolume of the associated period lattice Q2 in its
R-linear span Vg (Lemma 2.2), it is necessary to choose a specific metric on the Lie
algebra of G(C).

Our result has applications in the context of Pell equations over polynomial rings.
In fact, Masser and Zannier [39] had the astonishing insight that there is a connection
between (UIC) and the (local) solvability of families of such Pell equations over a
base curve. As an example, let us consider the two equations

A — (TP + DX 437X +3TX>+ X)B> =X — 1 (1)

and
A2 (X —1/A=TH>(T? + DX*+3T>X> +3TX>+ X)B?=X -1 (2)
where we consider T as the coordinate on the base curve A(lc\{l} and seek solutions

(A, B) € C[X]? after the specialization T = ¢, t € C\{1}. Consider the family of
curves
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C: Y2 =T+ DX*+3T?>X> +3TX>+X
over U = A}C\{(—l)m, 1} and, for each t € U(C), the points
Pi—<1 + (t+1)3+1>
[ - 9

of C;. Denote by oo,jE the two points at infinity of a projective non-singular model C;
of C;. Following the argument in [2, Section 9], it can be seen that we have a solution
(A, B) € C[X]?> of (1, T = t) if and only if P, = [P;* — oo, ] is a multiple of
0, = [c>o;F — oo; ] on the Jacobian Jac(C)). Looking at the degree of T in (1), it
is clear that the equation is not identically solvable and thus P; is not a multiple of
Q; identically. On the other hand, one can show using Siegel’s Theorem for integral
points on curves over function fields (see the end of Section 10 of [2] or p. 68 of [61])
that there are infinitely many ¢ € C for which P; is a multiple of Q;. Thus the equation
(1, T = t) is solvable for infinitely many ¢ € C.

In contrast to this, our Theorem 1.1 implies that there are at most finitely many
t € C such that the other equation (2, T = ) admits a solution (A, B) € C[X]>.
However note that the polynomial in front of B2 in (2) is not square-free. This forces
one to consider not just abelian varieties but also linear extensions of those. See [7]
or [49] for a short description and some examples involving multiplicative as well as
additive extensions. The generic fiber of the family C is birationally equivalent to the
elliptic curve

E: Y =X>+1,
inducing an isomorphism between the Jacobians of their projective non-singular mod-
els.

We write g7 : C --» E for the birational map over Q(T). It is explicitly given by
sending (X, Y) to (1/X + T, Y/X?) and we first compute that

w( ! ,+ V2 ):(1,if2).

1—-T ~ (1-T)2
Note that
or (PE) = (1 YT, im) and g7 (0ok) = (T, i\/m).
Write Jacy, (E) for the generalized Jacobian of E with respect to the modulus
m = (1,v/2) + (1, =v2).

From Lutz—Nagell for number fields [52, VIII, Exercise 8.11], it follows that (1, :tﬁ)
is not torsion on E. Consulting the references cited above, we conclude that Jacy, (E)
is isomorphic to a fixed non-split extension G of E by G,,. We write

W Birkhauser



Unlikely intersections of curves with algebraic... Page50f37 18

Pr=[0(PF) = 0i(00])] o O = [01(00]) — 0 (00])],, € Jacm (E).

Now suppose we have a solution of (2, T = t). Then we get a rational function
f on E whose divisor is a linear combination of the divisors [gpt(P,Jr) — @ (00; )]
and [, (00;") — ¢;(00;)]. Moreover f(1,+/2) = f(1, —/2) # 0. This implies that
P;, O, satisfy a linear relation over Z. As ¢ varies over the points of the base curve
U, the point (P;, Q,) defines an irreducible curve C in G* and each linear relation
defines a subgroup of G? of codimension 2. Clearly, both G and C are defined over
the algebraic numbers. In addition, we can check that the point <p,2(Pf2) =(-—1,0)
is torsion on E while, again using Lutz—Nagell, one can check that (p_z(oofz) is
not torsion. Thus P;, 5, € Jacy (E) satisfy no constant linear relation and C is not
contained in a subgroup of G2 of positive codimension. This reduces the finiteness
assertion to our Theorem 1.1.

Another application of this kind of results has recently appeared in [3] and concerns
multiplicative dependence of values of rational functions and linear dependence of
points of elliptic curves after reduction modulo primes. There are three main results
in [3] respectively for G, E® and G/, x E&, where E is an elliptic curve over Q,
and they use the appropriate special case of the statement of Theorem 1.1. While for
the first two cases, the desired results were already in the literature [20, 35, 56], for
the third the authors prove a weaker case of Theorem 1.1 where the projections of the
curve on the multiplicative and the elliptic factors cannot both be contained in proper
coset. In this way, the bounded height results contained in [10, 55] are sufficient and
the use of the strategy of [9] can be avoided. With the result of this article we can
remove that superfluous hypothesis in Theorem 2.8 of [3] and in its corollaries.

2 Preliminaries

Throughout this section, G is a semiabelian variety defined over a field k. Recall that
this means that G is a connected smooth algebraic k-group that is the extension

0 s T > G > A

~
o

of an abelian variety A of dimension g by an algebraic torus 7. We always assume
that T = G/, ; such an identification can always be made if k = C or after base change
to a finite extension of k.

In this section we collect and prove several basic results that we are going to need
later.

2.1 The open anomalous locus
A coset in G is the translate H 4 p of a connected algebraic subgroup H by a closed
point p of G. We usually write cosets of G in the form p + H. Let V be an irreducible

subvariety of G. A positive-dimensional irreducible subvariety W C V is called G-
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anomalous (or simply anomalous) in V if it is contained in a coset p + H with
dmV —dimW < dim G —dim H.

We let V& (or simply V°?) to be the complement in V of the union of all anomalous
subvarieties of V.
The following theorem is a generalization of Theorem 1.4 of [12].

Theorem 2.1 (Structure Theorem). Let V C G be an irreducible subvariety of positive
dimension.

(a) For any proper semiabelian subvariety H of G, the union 2y of all subvarieties
W of V contained in any coset of H with

dim W > max{0, dim V 4+ dim H — dim G} 3)

is a closed subset of V, and the set H + 2y is not dense in G.

(b) There is a finite collection @y of such proper semiabelian subvarieties H such
that every maximal anomalous subvariety W of V is a component of VN (p + H)
for some H in @y satisfying (3) and some p in Zy,; and V°® is obtained from V
by removing the %y for all H in @vy. In particular V°® is open in V.

Proof This is essentially contained in the proof of [15, Corollary 2.4] and follows from
work of Kirby [29] and the Fiber Dimension Theorem (see, e.g., [12, p. 8]).

Let us first prove part (a). Consider the projection ¥ : G — G/H and its restriction
Yy :V—>yY(V)toV.Then, VN (p+ H) = w;l(lﬂv(p)) for all p € V. Now, the
set 2 consists of the fibers of yry of dimension

> max{0, dim V — dim(G/H)}.

and is therefore closed in V by the Fiber Dimension Theorem. The set H + 2 is
nothing but the union of all cosets of H that give rise to an anomalous component in
V. We have Y(H + Zy) = v(Zy) C v (V). If H + %y were dense in G, then
¥ (Zy) would be dense in G/ H. This is only possible if ¢ (V) is dense in G/H. This
implies that

dim(G/H) = dim G — dim H = dim ¢/ (V) < dim V.

But now the Fiber Dimension Theorem gives an open dense U C (V) whose points
q satisfy

dim(lﬂ_l(q)) =dimV —dimy (V) =dimV — dim(G/H) > 0.
The set U must then be disjoint from v (2%) and therefore the latter cannot be dense
inG/H.

We now turn to part (b). We recall [15, Theorem 2.3], which is a corollary of the
theorem on [29, p. 449]. If V is an irreducible subvariety of G then there exists a

W Birkhauser



Unlikely intersections of curves with algebraic... Page70f37 18

finite family @y of proper semiabelian subvarieties such that for all cosets p + K of
a semiabelian subvariety K and all anomalous components W of V N (p + K) there
existsan H € ®y andg € G sothat W C g + H and

dim H + dim W = dim K + dim W', 4)

where W' is the irreducible component of V N (¢ + H) containing W. Now, let W be
a maximal anomalous component arising from an intersection V N (p 4+ K). We can
suppose that K is the smallest semiabelian subvariety so that W € p + K. We will
show that K € @y, where @y is as in the above statement. The statement actually
givesan H € @y with (4). We show that K = H. By assumption we have K € H.Let
W’ be the irreducible component of V N (¢ + H) containing W and suppose H # K
so W C W'. By the maximality of W, W’ cannot be anomalous and we have

dim W < dimV + dim H — dim G.
So, by (4), we have
dimW <dimV +dim K — dim G,

which contradicts the fact that W was an atypical component of the intersection V N
(p + K). O

2.2 Degrees of subgroups and periods

In this subsection, we consider a semiabelian variety G defined over C. We identify
smooth subvarieties X C G with the complex analytic manifolds associated to them
through analytification [50].

For the degree computations in this subsection, it is convenient to work with an
explicit compactification Go of G and a specific ample line bundle Ly on Go. Nev-
ertheless, the results obtained are independent of this specific choice. Let us consider
the compactification Go of G, the maps [n]: Gy — Goand7 : Go — A, and the line
bundle M = MEO from [30, Construction 5]. Furthermore, we choose a very ample
symmetric line bundle N on the abelian quotient A of G. We then choose the line
bundle Ly = M @ T*N on Gy. Indeed, this is an ample line bundle by [30, Lemma 3].
As2'M = M®2 and [2]'N = N®*, we can endow both M and N with canonical
hermitian metrics /s and hy by using [62, Theorem 2.2]. These metrics are unique
up to a non-zero scalar.

Let expg : Lie(G) — G be the (complex) Lie group exponential of G and write
Qg = expgl({OG}) for the periods of G. It is well known that Q¢ is a discrete
subgroup of Lie(G) of rank 2g + ¢ and we write Vs C Lie(G) for its R-linear span,
which coincides with the preimage of the maximal compact subgroup Kg € G under
expg; we use analogous notations for other semiabelian varieties.

) Birkhauser
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The exact sequence

~
=
~

o

0 — G, > G
induces an exact sequence
0 — Lie(G!,) — Lie(G) — Lie(A) — 0

restricting to a sequence

0 >QG,’,1 > Qg > Q4 > 0

between the respective period lattices. Finally, we obtain an exact sequence

0 > VG;n > Vg > Vg — 0 (®)]

of R-vector spaces.

Starting from the (1, 1)-form ¢ (N, hy), we can define a symmetric, positive def-
inite, R-bilinear form on Vj,; in fact, the pullback exp";‘ c1(N, hy) is an invariant
positive definite (1, 1)-form on the C-vector space Lie(A) = V4. We can hence use
the one-to-one correspondence between Hermitian forms and symmetric R-bilinear
forms (see e.g. [30, Section 4]). Write g1, for the invariant Riemannian metric obtained
on V4 in this way. We also describe an invariant Riemannian metric gy on Ve, as
follows: The standard product decomposition G/, = G,, x --- x G,, gives rise to a
product decomposition

Qg = Qui)Z x -+ x (27i)Z C Lie(Gy)' = Lie(Gl,)

of the period lattice. We let gior be the unique invariant Riemannian metric on Vg
such that

2ri,0,...,0),(0,27i,...,0),...,(0,0,...,27i),

form a gior-orthonormal basis of Vg .

In order to obtain a metric gg on Vg from g, and gior, We next describe a canonical
splitting o : Vg — Vg of (5). Consider the additive homomorphisms Ay, ..., A; :
G(C) — R afforded by [30, Lemma 14]. We recall also that

{x e GO : 1(x) =) =+ = A(x) =0}
coincides with the maximal compact subgroup K¢ of G (C). In addition, the functions

A1, ..., As satisfy a certain functoriality: Let ¢ : H — G be a homomorphism of
. . . . . . . / . .
semiabelian varieties inducing a homomorphism @y : (Gin — Gﬁn of their maximal

tori. Write X; (resp. Y;) for the standard algebraic coordinates on Gin (resp. (Gﬁ,;) SO
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that we have ¢ (X,) = Y ...Yﬁ“” with integers a,, (1 <u <t,1 <v <t).

Let A}, ..., A, : H(C) — R be given by invoking [30, Lemma 14] for H. On H(C)
there is then an identity

i 0@ = auih] + andy + -+ ayry; (6)

all these facts can be found with proofs in [30, Section 5.1].

The compositions A; o expg : Lie(G) — R, j =1,...,t, are R-linear and their
common zero locus is precisely Lie(K ). As G is acomplex Lie group, multiplication-
by-i (i = +/—1) induces an R-linear map / : Lie(G) — Lie(G). (Note that I does
not preserve Lie(K¢).) Foreachu € {1, ..., t}, we set

ky = (—iky)oexpgol: Vg — (2mi)R.
Lemma 2.1 Identifying 2miR)" with Vg, in the obvious way, the R-linear map
0 =K1 XXk Vg — (2rD)R) = Vg @

splits the exact sequence (5) on the left.
This splitting is compatible with passing to subgroups: If H C G is an algebraic

subgroup with maximal torus T C an, then we have o (Vy) C Vr in VG,’,,-

Proof Writing ¢ : Ve, — Vi for the inclusion from (5), we have to show that o o ¢
is the identity on Vg . By functoriality (6), we can reduce to the case G = G!, for
this. We can furthermore restrict to the case t = 1 because of the product structure. In
this case, we have 1| (z) = log |z| where z is the standard complex coordinate on G,
(compare again [30, Section 5.1]). In addition, exp is just the ordinary exponential
function. For each real number r, we have thus

k1(2rmi -r) = —ilog|exp(—2nr)| =2mi - r,

which completes the proof of the first assertion.

The second assertion follows from functoriality (6): Let X1, ..., X; be the standard
algebraic coordinates on G/,. If X{" ... X" — 1 vanishes on the subtorus 7 C G/,
(6) guarantees that ajA; + - - - + a, A, vanishes on H(C). This yields a corresponding
linear relation on the image of o'|y. Varying the binomial X" ... X;" — 1 vanishing
on T, the subspace V7 is precisely cut out by these linear relations. Thus we deduce

o(Vy) C Vr. O

The splitting (7) induces an R-linear isomorphism Vg = Vg x V4. Using this
isomorphism, we obtain a Riemannian metric g6 = gior X gab On V. This allows us
to consider the covolume covolg, (2 C V) of a discrete subgroup 2 of Vg inside its
R-span V.

In what follows, for a semiabelian subvariety H of G, H indicates the closure of
H in G. Furthermore, we fix an arbitrary ample line bundle L on G once and for all.
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Lemma 2.2 Let H C G be a semiabelian subvariety with maximal torus T C an and
maximal abelian quotient B C A. Then,

c1deg; (H) < covoly, (R2y C Vi) < cadeg; (H)

for constants c1, co > 0 that depend only on dim(G) and L.

If G is an abelian variety, the above inequalities can be sharpened to an equal-
ity [27, Lemma 3.1]. In the toric case, this is unfortunately not possible. In fact,
the one-dimensional subtorus 77 C G,zn determined by the equation X?'ng =1,
gcd(ay, az) = 1, in standard coordinates X1, X on G%l has degree |ai| + |az|
with respect to the line bundle priO(1) ® pr;O(1) on the standard compactification
G; — P! x P!, whereas covol(Q7 C V7) = (la1]? + |a2|>) /2.

Proof of Lemma 2.2 Without loss of generality, we can assume that G = Gy and
L = L for the proof of the lemma.

The corresponding diagram of algebraic groups induces a commutative diagram
with exact rows

0 > Vr > Vy > Vp > 0
! ! !
0 > Ve, > Vg > Va > 0

consisting of R-linear vector spaces. By Lemma 2.1, the restriction o|y, : Vg —
Vr is a splitting of the upper row. It hence induces a gg-orthogonal decomposition
Vg = Vr x Vg so that

covoly; (2 C Vg) = covolg, (27 C Vr) - covolg, (2 C VB).

8tor

By Lemma 2.3 below, we have

dim(H)

deg, (H) = <dim(T)

) deg,,(T) degy (B).
Therefore, it suffices to prove

c1degy (T) < covolg, (Qr C Vr) < c2degy, (T) 8)
and

(dim B)!covolg,, (2p C Vp) = degy (B). )

We first prove the inequalities in (8). Choose an isomorphism 7" & Gﬁ,/, so that the
inclusion ¢ : T < G/, is described by

KX =YY we (1.t

W Birkhauser
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in standard coordinates X1, ..., X; (resp. Y1, ..., Yy) on (Gin (resp. Gf,;). The period
lattice 27 C Qg has the basis

airi ayy

arl Ay

and hence covolg, (Q7 C Vr) = [det(AT.A)Y/2 where A = (a,y) € Z'*" and AT
is its transpose. Alternatively, the torus T € G, is cut out by (+ — ¢) equations

xhexbhe xbr — 1 ve{l,... -1}, (10)

Writing B for the matrix (byy) € Z'*~) the columns of B are a Z-basis of the
sublattice in Z" that is spanned by all elements orthogonal to the columns of A. We
hence have | det(B' B)| = | det(A' .A)| by [34, Theorem 1.9.10]. By the Cauchy-Binet
formula, we have

T d 2
| det(BT B)| < (t_t/) e }{|det(8£)| |

.....

where B, € 2,~1)%=1) is the y-minor of B. We claim that each | det(B,)] is less
than deg,, (T). After renaming, we may and do assume that u = {1,2,...,t —t'}
for this purpose. Let C, = (cup) € ZU%0=) be an upper triangular matrix arising
from B, by successive elementary row transformations. Then det(B,) = det(Cy) =
C1,1€2,2 - - Co—t/ 1—1'- This is the same as the number of simple points one obtains by
1ntersect1ng T C (P! with the linear hyperplanes

Xt—t’+1 =3681,..., Xy =y,
for sufficiently generic 41, ..., §;. This means nothing else than
C1,1€2,2 -+ - Co—t/ 1—1 —6‘1( r,_ t+IOP1(1)) ~ﬂcl(prf0p1(l))ﬂ[f]. (11
By nefness, this is clearly bounded by
deg,,(T) = 2’,(c1 (priOpi (D) + -+ - + 1 (pr} Opi (1)))t NI[T].

This concludes the proof of the right inequality in (8).

For the left inequality in (8), we know from above that we may represent T as
being cut out by Eq.(10) with | det(BT B)|'/? = covol(Q7 C V7). Furthermore, the
Cauchy-Binet formula shows as well that

|det(BTB)| > | det(B,)|?,

) Birkhauser
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which bounds the intersection number in (11). The degree is just the sum of such
numbers, whence the other inequality in (8).
For the equality (9), we note that

_ degy (B) )

N,h Adim B — ;
cttN. i) (dim B)!

1
covolg, (2 C VB) :/ vol(gab) = 7/
g B(C) ¢ (dim B)! J(c)

the second equality is [58, Lemma 3.8] and the third equality follows from the compat-
ibility between algebraic and topological Chern classes acting on singular homology
[19, Proposition 19.1.2] and the fact that the topological Chern class of a hermitian
line bundle is given by its Chern form (see e.g. [22, Proposition on p. 141]). O

The following is a straightforward application of basic intersection theory. In its
proof, we use the notations from [19, Chapters 1 and 2]. We also use the specific
compactification Gy and the line bundle Ly = M®T* N from above. This is admissible
because the lemma is only invoked in the proof of Lemma 2.2.

Lemma 2.3 Let H C G be a semiabelian subvariety with maximal torus T C an and
maximal abelian quotient B C A. Then,

dim(H)

dim(T)) deg ), (T) degy (B).

deg; ,(H) = (

Proof A straightforward computation yields that

deg; (H) = deg(c1 (L)™' N [H])
= deg(ci(M @ T*N)™H) 0 [H])
dim(H) , .
=2 <dlmi(H)) deg(c1 (M) N ey (T N) =T N [H)).
i=0

We show next that all addends in this sum are zero except the one for i = dim(7).
As the restriction m|ﬁ : H — H has degree 2dim(T)+2dim(B)) ' we have m* [H] =
2dim(T)+2dim(B)[F] . An iterated application of the projection formula [19, Proposition
2.5 (c)] to m|ﬁ and the line bundles M and T*N yields hence

2L (1 @1 M) e @17 V) (1))
— odim(7)+2dim(B) (cl(M)i n cl(ﬁ*N)dim(H)fi N [ﬁ]) )
Taking the degree of these O-cycles, we obtain

2 F2AMHE) ) Geo (0 (M) N ¢y (7 N)EME =1 A [H])
= 20mDH2ANE) deg e (M) N ey (TN N [H]),
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making also use of the homogeneities [2] M ~ M®? and [2] (*N) ~ (T*N)®*.
This implies that

deg(ci (M) Ney(@* NI~ 0 [H]) =0
unless i = dim(7"). We deduce that

dim(H)

deg, (H) = ( dim m) deg(c) (M)I™T) A ¢y 7* N)IME) A [H])).

The restriction 7|7 : ‘H — B is flat of relative dimension dim(7'). We can there-

fore pull back cycle classes on B to cycle classes on . H. In particular, we have
@l)*((B) = [H] and @l)*(p]) = [ "(p) N H] for every point p € B.
Since N is ample, we can choose points p1, ..., p, € A, m = degy (B), such that

cl(NHI™E) N [B] = [p1]1+ [p2] + - + [pm] € Ao(B).
Using [19, Proposition 2.5 (d)], we obtain
@ NI N [H] = @p*cM™ P n[B) =) THnx ' (p)]l. (12)
i=1

By construction,_there exists a non-canonical isomorphism betweeﬁ each fiber
@7 "' (p) and T such that the restriction of M to (Tg)~'(p) = H N7 '(p)
corresponds to the restriction of M to 7. We infer that

deg(c1 (M) N [H N7~ (p)]) = deg(er M)P™ T N [T]) = degy (T).
Combining this with (12), we deduce

deg(c; (M) D 0 ¢y @ NYEB) N [H]) = (m — n) deg ), (T) = degy (B) degy, (T),

whence the assertion. O
In preparation for the next lemma, we need to fix anorm | - || : Lie(G) — RZ% such
that ||v|| = g (v, v)/? forall v € Vg (i.e., we fix a norm | - || on Lie(G) extending

the norm induced by the Riemannian metric g on V). For this purpose, let us note
that the canonical decomposition Vg = Vg X Vy4 introduced above extends to a
canonical decomposition

Lie(G) = IVg:, x Vg x Va =1V x Vg (13)
that is compatible with passing to subgroups H € G by Lemma 2.1. For the sequel, we
keep fixed an arbitrary norm || - || such that the decomposition Lie(G) = Vg x Vi

is orthogonal with respect to the associated bilinear form.
The following is an analog of Lemma 3.2 of [27].
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Lemma 2.4 There exist constants c3, ¢4, depending only on G and L, such that the
following two assertions are true:

(1) For each semiabelian subvariety H C G, the period lattice Qg C Vy has a basis
W1, ... g4 With ||| < c3 degL(ﬁ) (ie{l,...,2¢g +1'}).

(2) Foreachv € Qg—+Lie(H), there exists aperiod w € Qg suchthatv—w € Lie(H)
and ||w|| < |[v]| 4 c4 deg; (H).

Proof Again, we can assume that G = G and L = L without loss of generality.

Given Lemma 2.2 above, the first part is a simple application of Minkowski’s
Theorem (see [27, Lemma 3.2 (i)] for details).

For the second part, consider the orthogonal projection ¥ : Lie(G) = IVg: %
Ve — Vi and note that ¢ (Lie(H)) = Vg for any semiabelian subvariety H C G.
Let now wy € ¢ such that v — wp € Lie(H) and let further wy, ..., wyg 1y be a
basis of Qp C Vg asin (1). There exist 1, ..., 7244y € R such that

W(U - CUO) =rw;+---+ Mg/ 41/ W2g’ 41

Foreachi € {1,...,2¢ + '}, let n; be the unique integer such that 0 < r; — n; < 1.
Setting w = wp + n1wy + -+ + Ry gy € Vi, we have v — w € Lie(H),
Y (w) = w and thus

lol = ¥ @) < Iy + v - o)
2¢/+1'
<lvll+ > I —nil -l
i=1

< vl + c32¢" +t') deg; (H).

2.3 Heights on semiabelian varieties

In this subsection, we let G be a semiabelian variety over a number field K € C.
Let iy, be an arbitrary Weil height associated to L. In this general setting, the second
author proved the following theorem, which constitutes a proof of the bounded height
conjecture for semiabelian varieties. We write G5! for the countable union of all
algebraic subgroups having codimension > s in G for some fixed integer s. Recall
that, for a subvariety V C G, we have defined V¢ right before Theorem 2.1.

Theorem 2.2 [30] For any subvariety V. C G the height hy, is bounded from above on
the set V°4(Q) N GAMWI(@).

We conclude this subsection with a further lemma.

Lemma2.5 Let || - || be the norm on Lie(G) introduced in the previous subsection.
Then, there exists a constant cs = ¢5(G) > O such that each p € G(Q) has a preimage
v € Lie(G) satisfying
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vl < es[K(p) : Kmax{L, hr(p)}.

Proof Without loss of generality, we can assume G = Gg and L = L where G and
Lo =M ® T*N are as in the previous subsection. Since the line bundle 7*N is nef
with empty base locus, there exists a constant ¢ = ¢¢(G, N) > 0 such that

hp(x) > hy(x) —ce

for all x € G(Q) [28, Theorem B.3.6 (b)]. Let hy : G(Q) — R be the canonical
height associated with M by means of the homogeneity relation R2I'M = M®2. By
[28, Theorem B.4.1], we have

hy(x) > B (x) — ¢

for some constant ¢; = c7(M) > 0.

It is well known that the canonical height hum decomposes into non-negative local
heights such that the local height associated with the archimedean place encoded by
the embedding K C C equals Zle [Ai] : G(C) — R (see e.g. [6, Proposition 4]).
Writing

t
K‘v={xeG(C):Z|xi|ss :

i=1
for some real number s, we conclude that p € Ky, with

so = [K(p) : Klhy (p) <c.n [K(p) : Klmax{1, hz(p)}.

Note that each Ky, s > 0, is compact since it is a closed subset of the compact
space G (C). Consequently, the preimage expa1 (K1) is contained in a subset K’ + Q¢
with K’ C Lie(G) compact. Choose a point p’ € G(Q) such that [[so]]1(p") = p.
As each 2; is a homomorphism, we have p’ € K. By compactness, p’ € K; has a
preimage v’ € exp~!'(p’) with ||v'|| «¢ 1.Hence v = [so]- v’ is the desired preimage
of p. m|

2.4 Subgroups of semiabelian varieties

We could not find a reference for the following lemma, but it should be well known
to experts.

Lemma 2.6 Let G be a semiabelian variety over a field k. Then there exists a finite
extension k' /k such that all connected algebraic subgroups of G are defined over K
(i.e., all connected subgroups of G are invariant under Gal(k/k’)).

Note that the assertion of the above lemma is false for the finite subgroups generated
by torsion points, hence requiring connectedness is necessary.

) Birkhauser



18 Page 16 of 37 F. Barroero et al.

Proof We first consider the (well-known) case where G is an abelian variety A. We
start with proving that every connected algebraic subgroup B C A appears as the
component containing 04 of the kernel of an endomorphism of A. In fact, there exists
aconnected algebraic subgroup C € A such that B+C = A and BNC is finite. Write
¢ : C/(BNC) — C for the isogeny dual to the quotientmap C — C/(BNC) = A/B,
t : C — A for the inclusion, and 7 : A — A/B for the quotient map. Then the kernel
oftopom : A — A has connected component B.

The endomorphism ring of Az is a finitely generated Z-module [38, Theorem 3 on
p. 176], hence there exists a finite extension k" of k such that every endomorphism of
Ay is defined over k’. By the above, any connected algebraic subgroup B C A is the
connected component containing 04 of an algebraic subgroup B’ C A invariant under
Gal(k/k’) and hence likewise Gal(k/k’)-invariant. This settles the case of abelian
varieties.

For a general semiabelian variety G, we can reduce to this case. Note that we can
assume that the maximal subtorus of G is split (i.e., equals G',) by replacing k with a
finite extension. By the above, we also assume that all connected algebraic subgroups
of A are defined over k. Under this assumption, we prove that the same is true for G.
Let H C G be a connected algebraic subgroup with maximal subtorus 77 € G/, and
maximal abelian quotient B C A. Note that T’ is split as a subtorus of a split torus
so that we can arrange that 7/ = G,ﬁ; Recall that a semiabelian variety G defined
over k is described by an extension class ng € Ext,l (A, T) where A is its maximal
abelian quotient and 7T is its maximal subtorus (see e.g. [30, Subsections 1.1 and
1.2] and [51, Chapter VII]). Furthermore, the Weil-Barsotti formula (see [41, Section
II1.18] or the appendix to [36]) gives a canonical identification Ext,l(A, Gn) = AV (k).
This means that we can decompose 1 = (NG.1,---,NG.1) € AV (k)" and ny =
MH1, .- NHy) E Bv(@)’/.Writingt : B — Afortheinclusionand:" : AY — BY
forits dual, each g ; is a Z-linear combination of some (¥ (g,;) € BV (k),1 <i <t.
Consequently, all ng ;, 1 <i <1, are contained in A (k) and thus H is defined over
k. O

2.5 An auxiliary lemma

The following assertion generalizes [9, Lemma 6].

Lemma 2.7 Let G be a semiabelian variety over a number field K such that all its
connected subgroups are defined over K.

(a) Letp € G(Q)ando € Gal(K/K) be such that p® — p is contained ina coset g+ H,
q € G(K). Then there exists a torsion point g’ € G(Q) such that p° —p € ¢+ H
(i.e., p° — p is contained in a torsion coset of H ).

(b) There exists an integer e = e¢(K) > 1 such that the following is true: If p € G(Q)
satisfies p° — p € G(K) forallo € Gal(K/K), then [e](p) € G(K).

Proof (a) Let IL be a finite normal extension of K such that p € G(IL). Consider the
image x(g) € (G/H)(K) under the quotient homomorphism x : G — G/H. We
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have to prove that x (g) = x (p° — p) is torsion. In fact, its [ : K]-th multiple equals

Yooax@T=-pT= > x®™)— Y. x(p")=06/u.

teGal(L/K) teGal(L/K) teGal(L/K)

(b) The argument of (a), applied to the trivial group H = 1, shows that p® — p €
G(K) is a torsion point. We can take e¢(K) to be the exponent of the finite group
Tors(G) N G(K). Indeed, we have [e](p® — p) = 0 for all 0 € Gal(K/K), which is
equivalent to ([e](p))° = [e]p forallo € Gal(K/K). Thus, we have [e]p € G(K).O

3 An auxiliary proposition

In this section, we establish an important finiteness proposition needed in the course
of our main proof. It generalizes Lemma 4 of [9], except for effectivity.

Proposition 3.1 Let G be a semiabelian variety defined over a number field K and
C C G an irreducible algebraic curve defined over Q that does not lie in G (i.e.,
is not contained in a proper subgroup of G). For any integer e > 1 and any number
field K, there are at most finitely many p € (C N G2N(Q) such that [e](p) € G(K).

Before being able to prove the proposition, we have to start with some preparatory
lemmas. In the following, G is a semiabelian variety defined over a number field K
and we assume that G is the extension of the abelian variety A by a split torus G/,.
Furthermore, C C G is an irreducible subcurve defined over @ We consider the
compactification G of G and the line bundles M, N on G as in Sect. 2.2. In addition,
we recall the decomposition

<
I

) (00)
® (Mé,i ® Mﬁ,i )

i=1

from [31, Section 2.2] and set M; = Mg))l_ ® Méo? foreachi € {1, ..., t}. Finally,
we write X for the set of places of K and 2K, f for the finite ones.

In the following lemma we use the Weil functions A; ,,fori = 1,...,fandv € Xk,
given by [59, Proposition 2.6].

Lemma 3.1 There exists a finite set of places S C Xk y and a finite set of rank (t — 1)
matrices M@ e ZU=Dxt o e T, with the following property: For eachv € g\ S
and x € C(K), there exists some og = ag(v, x) € L such that

Aw(x) 0
Mo =) (14)
A (X) 0
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Proof We start with some geometric constructions. Let
nG = (P1, ..., P1) € Picy(A)(K)'

be the extension class describing the semiabelian variety G. By [38, Theorem 1 on p.
77], there exist points xi, ..., x; € A(K) such that P, = TN ® N® 1 (1<i<p
where T, : A — A denotes the translation by x € A(K). As N is very ample and thus
base-point free, there exist global sections s, | < k < ko, of N such that the divisors
Dy = divy (sg) satisfy O(Dg) ~ N, and

supp(D1) Nsupp(D2) N - -+ N supp(Dy,) = 0. (15)
We furthermore assume 'that 04,x; ¢ supp(Dy) for alli € {1,...,¢t} and k €
{1, ..., ko). Let us set E,i'), = T} Dy — Dy and notice that

04 ¢ supp(E{},) € (supp(Dx) — xi) U supp(Dy)
and

O(E],

k,k,) ~ O(Txf Dy) ® O(—Dy) ~ TiN ® N® 1~ p,

foralli e {1,...,t}and k, kK’ € {1, ..., ko}.

With each divisor Dy, 1 < k < ko, and each place v € X, we can assign a Néron
function

ADgv: (A \ supp(D)(C)) — R
(compare [32, Theorem 11.1.1]); the Néron functions (Ap, ,)vesy are only unique
up to X-constants and we make here a choice once and for all. By [32, Corollary

10.3.3], the disjointness property (15) implies that there exists a finite set So C X, ¢
such that

min{Ap,; v (x), Ap, v(x), ..., Apy v(x)} =0 (16)

forallv € Xk ¢ \ So and all x € A(C,). By [32, Theorem 11.1.1 (1) and (4)], the
function

A = (Apgv © T, — Ay ) (A \ supp(EQ)))(Cy) — R

is a Néron function for the divisor E,Eli, = Tx"; Dy — Dy, k, k' € {1, ..., ko). Define

the open subsets U ,g’,)(, = A\ supp(E ,((l;(,) By applying (15) twice, we obtain
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(M suwp(E{}) S () (upp(De) — x;) U supp(Dy))
1<k,k’ <kg 1<k,k’ <kg

N

(N | [ Gupp(Dr) — xi) Usupp(Dyr)

1<k<ko \1<k’<ko
[ (supp(Dx) — x1)
1<k<kg

=0.

N

In other words, Ul <k k' <ko U ,fl,){, = Aforall 1 <i < t.Furthermore, the restriction of

the line bundle P; to U,ii,)c/ is trivial, so that we can fix isomorphisms d),ii;{, o g
) ’ k,k/
U ,fl,)(, x Al. Projecting to the second factor induces “toric coordinates”
@ . _—1p®D 1
G 7 (Up) > A
(1<i<t 1<k, k' <kpy). There exists a finite subset S; < Yk, r such that

log |21 (06)|y = 0 = 24y ,(0a)
kK

forall v € Tk s \ Si.! From the definition of A; ,, | < i < ¢, in [59, (2.6.3)], we
know that

Aiw(x) = (— log (|24} ()], “E;ifiw““”)
- (— log (|Z,(<l;)k/(OG)|v) + )»EIEIZL/YV(OA)>
forall x € 7! (U k(f,)c,)((CU). Consequently, we have
hiw() = —log (|2 ()],) + Ay, (7))

forallx € 7~ (U))(C,) and v € Ex 7 \ Si.
For every point p € C(K), everyi € {1,...,t} and every v € Xk 7 \ So, we can
use (16) to pick k;, kl’ e {l1,..., ko}, which may depend on p, i, v, such that

Ay, v (T (p) 4+ xi) = Ap, (7@ (p)) = 0;

! Indeed, z]({l;(, (0¢) is an algebraic number so the first equality is clear. For the second equality, note that if
Apv: (X\ éupp(D))(C\)) — R, v € X, is the collection of Weil functions associated with an arbitrary
Néron divisor D on a K-algebraic variety X, then for every point x € (X \ supp(D))(K) we have 1,(x) =0
for almost all places v of K (see [32, Section 10.2]). A closer look at the Néron—Tate limit process reveals

that the same is then also true for the canonical heights on abelian varieties (see [16, Equation (19)]).
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in particular, this means w(p), m(p) + x; € U @) Tt follows that

ki
)»EX;(“V(H(P)) = Ap w(m(p) +xi) = Ap, v (T (p)) =0,
so that
hiw(p) = —log (2 (P)],)

forallv € g s\ (So U S1). Set U = n_l(Ulfll)k/) N---N rr_l(U]:t)k,) and consider
i | 1SRy

the map

(1

2
L X —> (Zkl,kj (), z,(cz?ké(x), o z,(ci?k;(x)> .

vp U — G,
Note that, although ¢, depends on p, there are at most finitely many choices for this
map. Therefore, there is a finite set {pi, ..., p;} € G}, (K) of points and subcurves
Ci,...,Cs C (Gi,,, independent of p and vy such that the Zariski closure of ¢,(C N
U) C Gin is among the elements of {py, ..., p;, C1, ..., Cs}. By Lemma 3.2 below,
we obtain a finite set $> € X r and matrices M@ e 70=DXt of rank (r — 1), € Z,
such that for each x = (x1, ..., x;) € ¢,(C NU), there exists ag € 7 satisfying

10g |X] |v 0
M (@) . : =1:
log [x:y 0

for every v € g s \ (So U St US2) and all x € ¢,(C N U). Applying this for

x = @,(p), we obtain the assertion of the lemma, as A; , = —log |z](jj<, ly. O

Lemma3.2 Let C C G%‘K be an irreducible curve. There exist finitely many places
S C X, r and a finite set of rank (t — 1) matrices M@ e 70=DXt o o T with the
following property: For eachv € Xk s\ Sandz = (z1, ..., z;) € C(K), there exists
some ag = oo(v, z2) € T such that

log [z1]y 0
M (@) =1:| (17)
log |z¢]v 0

Proof Let us first consider the case t = 2. (The case t = 1 is evidently trivial.) The
curve C C an can be written as the the zero set of a non-zero polynomial

ny np
F(Xi.X2)= Y Y aip,X{'X7 €KX\, Xa].

ij=—nji=—ny
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Let § C Xk, s be a finite subset such that |a;, ;,|, € {0, 1} forall v € Xg s\ S and
all iy, i € Z.Fixz=(z1,22) e C(K)and v € X s \ S. As

n ny
i _i>
F(z1,22) = Z Z diyinZy 2y =0,

ij=—ny ip=—n3

there exist distinct pairs (j1, j2) and (k1, k2) such that

|a./l»j2|v 7& 07 |ak1,k2|v 7& 07

and

i ; 1 ky _k k k
|21l =2l = |ajy. 2] 2|, = Jar k2 252, = |21l |22 ]2

We infer a non-trivial relation

(j1 — k1) -log|z1lv + (j2 — k2) - log|z2], = 0.

Varying z € C(K), we obtain at most finitely many different equations of this form,
one of which has to be satisfied for every point z € C(K) and every v € Xk ¢ \ S.
Thus we obtain (17) in case t = 2.

For the case ¢ > 2, we can assume that there exists an integer tp € {1, ..., t}, such
that the projections pr;|c : C — ]P’]%, 1 <i < ty, are dominant, and each image
pr;(C), to + 1 <i < t,is a point. We can enlarge § C X, s such that log |z, =0,
fo+ 1<t <t forall z e C(K).

Letz € C(K) be an arbitrary point as in the assertion of the lemma. There is nothing
to prove iflog |z;|, = Oforalli € {1, ..., #p}. After renaming the first #y coordinates,
we can therefore assume that log|zi|, # 0. For each ¢’ € {2,...,t}, applying the
above to the projection pry ,,(C) C G,zn, we conclude that

by -loglzily + b2 - loglzy]y =0

for one of finitely many pairs (b1, b2) # (0, 0). In fact, we can and do assume that
by # 0 for each of these pairs.
For each point z € C(K), we combine these ¢ — 1 relations to a matrix relation

log |z1 |y 0
M- =]
10g|ZZ|u 0

where M € Z~D*? has rank (r — 1). Clearly, we obtain only finitely many matrices
M in this process, which concludes the proof of the lemma. O
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Lemma 3.3 For every finite subset S C Xy, the subgroup

I'(K, S) ={x € GQ) |7(x) € AK) and Vv € Tx s \ S : A1y (x)

= =Ax) =0}

has finite rank.

Proof By the Mordell-Weil theorem (see e.g. [38, Appendix II]), the group A(K) is
finitely generated. Let y1, ..., y, be generators of A(K). Foreachy;,1 < j <n, we
can find a preimage y]f en! (¥j) € G(K).Possibly enlarging S, we may additionally
assume that )\i,v(y]’.) =0forallv € ¥g,r\S,1 <i <tand1 < j < n. Let

additionally I''(S) € G/, (@) be the S-units in the maximal torus of G. By Dirichlet’s
S-unit theorem [40, Corollary 1.11.7], the group I'/(S) is finitely generated. As

FEK,S$) ST +Z -y +--+Z- vy,

the group I'(K, S) is likewise finitely generated. O

With the preceding preparations, we can finally come back to the main result of
this subsection.

Proof of Proposition 3.1 Replacing C with [¢](C), we may assume that e = 1. This
means that we have to show that the set (C N G[z])(K) is finite. We can also assume
that C is not a translate Hy + p where Hy € G is a subgroup (of dimension 1)
and p € G(Q). In fact, if such a translate Hy + p intersects a subgroup H C G of
codimension 2, then Hy+p C Hy+H C G, By Lemma 3.3 and the Mordell-Lang
conjecture for semiabelian varieties that was proven by Faltings [18], McQuillan [37],
and Vojta [59], the set C(K) N I'(K, ) is finite for every finite subset § C Xk .
Furthermore, the proposition follows from Faltings’ proof of the Mordell conjecture
[17]if r = O (i.e., G is an abelian variety).

We prove the general case of the proposition by induction on ¢. For the inductive
step, it remains to prove that (C N G2 (K) \ I'(K, §) is finite.

Let S € Xk r and M@ ¢ 7@=Dxt o ¢ T be as in Lemma 3.1 above. Each
matrix M@ determines a 1-dimensional subgroup H® C G!_ of the maximal torus
and thus a quotient homomorphism ¢©@ : G — G/H® to a semiabelian variety
G@ = G/H®. The image ¢®(C) is an irreducible algebraic subcurve of G®;
for else C is a translate of the subgroup H®. In addition, the curve ¢® (C) is not
contained in (G®)[11 or else C € G, which contradicts our assumptions. By our
inductive assumption, we already know that the set (¢*)(C) N (G@)21(K) is finite.

Consider now a subgroup H C G of codimension > 2 containing a point x €
CEK)\I'(K, S). There exists some vy € X, ¢ \ S such that (A1, (x), ..., Ay (X))
is non-zero. Note that this implies that the subgroup H has a non-trivial maximal
subtorus 7" C Gﬁn; in fact, otherwise every point x € H (K) would satisfy A1 ,,(x) =
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- = Ar,u(x) = 0. There exists some o« € Z such that

A (%) 0
M@ : =1:
At g (%) 0
As M@0 has maximal rank 7 — 1, any (ai, ..., a;) € Z' such that
)"l,vo(x)
(alv'-~7al)' =0
)"I,vo(-x)

is a Q-linear combination of rows in M@0, In particular, this is true for the equations
describing the subtorus 7' C Gﬁn. We deduce that H@) C T C H so that go(o‘O)(H )is
a subgroup of codimension > 2 in G®) . Thus, there are only finitely many possible
choices for 9@ (x) € @) (C)(K) N (G))[2l—independent of the subgroup H <
G.As @) |c 1 C — ¢@)(C) is finite, this leaves only finitely many possibilities for
x € C(K). We conclude that (C N G21)(K) \ I'(K, ) is finite. O

4 Unlikely intersections of bounded height

In this section, we prove the following intermediate result towards Theorem 1.1. Its
proof is based on o-minimal counting techniques and modeled after [27].

Proposition 4.1 Let C be an irreducible curve in G not contained in G, Then there
are at most finitely many points in (C N G121)(Q) of bounded height.

In the sequel, ¢y, ¢, ... denote positive constants that only depend on the semia-
belian variety G and on the curve C. We also assume throughout this section that the
number field K is sufficiently large such that all connected algebraic subgroups of G
are invariant under Gal(K/K), which we may do by Lemma 2.6.

4.1 Some complexity estimates

For each point p € G(Q), we write ( p) = g + H), for the smallest torsion coset of G
containing p, where H), is a connected algebraic subgroup of G and g € Tors(G).
We define the complexity of a torsion coset g + H to be

A(g + H) = max{min{ord(qo) : g0 — g € H, qo € Tors(G)}, deg; (H)}
for later use. We recall that L is an ample line bundle on G that we have fixed before
Lemma 2.2.

The following two lemmas will allow us to bound A((p)) in terms of the degree of
p and its height.
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Lemma 4.1 For each point p € G(Q), there is a torsion point q € Tors(G) of order
ord(¢) < c1[K(p) : K]

such that p € q + H),.

Proof There is a commutative diagram of homomorphisms

0 > T > H, > B > 0
I ]

0 sy G G —2 5 A > 0
J; l‘pﬁp l‘ﬂB

0 — G /T — G/H, - A/B — 0

with exact rows and columns (compare [30, Lemma 1]). By definition, (pHp( p)isa
torsion point, and we have to bound its order in terms of [K(p) : K]. By [27, Lemma
9.3], we know that ¢ (tg(p)) is a torsion point of order

mi < c3lK(mg (p) : KI* < e3[K(p) : K.

Consider the point p’ = [m1](p) € G(Q). Its image @n,(p') is a torsion point in
G/H,. Furthermore, it is contained in the maximal torus G}, /T of G/H,, as

76/u,(pu(P) = e (G (p")) = [m11(p (w6 (p))) = 0a/B.

Being a quotient of a K-split torus G/,,, the torus G/, /T is also K-split (i.e., isomorphic
over K to some Gi,/,). Using the elementary structure of cyclotomic fields, we infer
hence that the torsion point ¢, ( p’) has order

my < ¢s[K(pn, (p) 1 KI < es[K(p) : KI*.
As ®H, (p) has order < mmy, this concludes the proof. O
Lemma 4.2 For each point p € G(Q), we have

deg; (Hp) < ¢7[K(p) : K] max({l, hz(p)“}

The assertion of the lemma is well known from the transcendence theory of
commutative algebraic groups. For abelian varieties, it is proven in [8, Théoreme
1.4]—with completely explicit constants c¢7, cg, co—relying on a theorem of Bertrand
[6, Théoreme 2], polarization estimates due to Gaudron and Rémond [23], as well
as other tools from transcendental number theory. Unfortunately, such a result does
not seem to be in the literature for semiabelian varieties. Therefore, we derive the
lemma directly from linear forms in logarithms of semiabelian varieties. In this way,
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the asserted degree bound follows from the bound on the degree of an obstruction
subgroup.

Proof We first fix a basis wy, ..., wyg4, of the period lattice Q.

Letp € G (Q). We recall that ( p) = q + H), for some g € Tors(G) which implies
(p—q) = H),. Using Lemma 4.1 and easy estimates for the height (recall that torsion
points have uniformly bounded height) we may replace p by p — ¢ and therefore
assume (p) = H),,s0 p € Hp(@).

By the assumption on K, all connected algebraic subgroups of G are defined over
K. The tangent space Lie(H),) is hence defined over K. Lemma 2.5 yields a preimage
v of p under the group exponential exp; such that

vl <6 [K(p) : Klmax{l, hr(p)}.

We do not necessarily have v € Lie(H)), but there exists a period w = njwy +-- - +
n2g+1@2g+1 € Q¢ such that v — w € Lie(H ). We consider the homomorphism

VG x G¥T — G, (X0, X1, ..+, X2g41)

> xo + [—n1](x1) + -+ - + [—n2g4 1 (x2g41).
Our choice of v is such that
Lie()(, w1, ..., 0541) =V —R{@W| — -+ — N2g11g 4t = V — @ € Lie(H)p).

We now let U be the K-subspace Lie(y)~! (Lie(Hp)) of Lie(G x G281"). Then, we
can find K-subspaces Wy, ..., W, C Lie(G x G281y each of codimension 1 such
that U = miﬂ=l W;.

We apply [21, Théoreme 1] m times with

(1) the semiabelian variety G therein being the product G x G287+,

(2) p being the point (p, 052¢+:) € G(K),

(3) u being its logarithm (v, w1, ..., w2g+4¢),

(4) W being one of the codimension-1 K-subspaces W;,i =1, ..., m, and
(5) the real parameters E, D, a being set such that

E=e¢ D=[K:Q]

(I + o>+ + ||w2g+,||2>}
D 9

log(a) = max {1, hr(p),

we obtain connected algebraic subgroups (~},- with (p, Og2e+:) € (N},- (K) € (G x
G?¢+1)(K) and

(1) (v, @, ..., 24) € Lie(Gy),
2) Lie(Gil C W;, and
(3) deg;/(Gi) < c1o[K(p) : K]V hp (p)12 where L' = priL ® - -- ® pr§g+,L.
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Since (p, 0g2g+) € (i, Gi (K) and H, = (p) we have H) x {0gae+} € [(iL, Gi.
But (2) implies that (', Lie(G;) € (., Wi = Lie()~(Lie(H,)) = U and thus

i=1

[\ Lie(Gi) NLie(G x {0g2+}) € U NLie(G x {Og2e+}) S Lie(Hy x {Oge+})

i=1

Thus, Hj, x {Og2e+} is the identity component of the algebraic subgroup ()i, Gin
(G x {0g2¢+:}). Using Bézout’s Theorem (see e.g. [57, Corollary 2.26]) for the Segre
embedding, we can hence deduce that

deg; (H)p) = deg; (H), x {0g2g+:})

m
< HdegL/(Gi) deg; /(G x {0g2g+:})
i=1

<G [K(p) : K18 max{1, hy(p)}®.

By Lemmas 4.1 and 4.2 , we have
A((p) < ci3[K(p) : K max{1, h (p)“'%} (18)

for each point p € G(Q).

4.2 Definability of the exponential map

The following lemma prepares our application of o-minimal counting techniques, for
which we need that a suitable restriction of the exponential map exp; : Lie(G) —
G(C) is definable in the o-minimal structure Ryp exp [54]. To make this precise, we
need to fix some additional notations and identifications first.

A definable manifold is a pair (M, {¢; : U; — R"}1<;<k) consisting of a real-
analytic manifold M and a collection {¢; : U; — R"}1<;j<k of finitely many real-
analytic charts covering M such that the sets ¢;(U; NU;) (1 < i, j < K) and the
transition maps

giop  tgiUiNU)) — ¢;(UiNU)), 1<i,j <K,

are definable in Ryp exp. In this situation, a subset X C M is called definable if every
@i (Ui N X) € R" is definable. A map f : M — N between definable manifolds
is called definable if the associated graph manifold is definable as a subset of the
definable manifold M x N.

We endow Lie(G) with the structure of a definable manifold by taking a fixed R-
linear isomorphism ¢ : Lie(G) — R>@* such that 1(Qg) € Q*¢*" as a (global)
chart. Let F; C V( beafundamental parallelepiped of the lattice @ C V. Recalling
the decomposition / VG;” x Vg from (13), we set Fg = 1 Ver x .7-"0. It is easy to see
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that ]—'é; and F¢ are definable (as subsets of the definable manifold Lie(G)); they are
also canonically definable manifolds.

Furthermore, we can choose a projective embedding « : G — ]P’H’z associated with
the global sections of the very ample line bundle L. To endow the real-manifold G (C)
with the structure of a definable manifold, we use the (N + 1) charts induced from the
standard covering of IP’]%’ by open affine subsets.

With these preparations, we can finally state the next lemma.

Lemma 4.3 Considering F and G(C) as definable manifolds in the sense above, the
restriction expg | 7 : Fc — G(C) is definable.

Proof We use again the decomposition Lie(G) = I Vg x Vg. For each x € IV
and y € Vg, we have expg (x + y) = expg(x) + expg(y) as G is commutative. As
the group law G(C) x G(C) — G(C) is algebraic and hence definable, it suffices to
prove that the restrictions of expg to I Vg: and to Fi; are definable. By compactness,
the restriction of exp to 3’-'2; is definable (even in Ryy).

It hence remains to prove the definability of expg | Ve and using the fact that

the group law is algebraic once again, we can even assume ¢ = 1 without loss of
generality. In this situation, the identification Qg,, = Z - (27i) yields I Vg, = R and
expg |1vg, = exp(c - x) for some real constant c. In any case, we see that expg | Vg

is definable. O

4.3 O-minimal counting

Recall that Lemma 4.3 provides us with a fundamental domain g < IVg: x Vg so
that expg | 7, : F¢ — G(C) is definable in the o-minimal structure Ry exp.
We are also going to identify / Vg x Vg with R?+28 by choosing a basis so that

the period lattice Q¢ corresponds to Z’ +2¢ in V.
We let

log(C) = (expg | 74) ™ (C(C)).
This is a definable set of dimension 2 (see [27, Lemma 6.2]).

We have an induced embedding of End(Lie(G)) in M2, 2, (R), which we identify

with R*+22 This will allow us to see each Lie(H) C Lie(G) as the kernel of a
matrix.
We consider the definable set

Z ={(¥, x,2) € May25(R) x R¥T28 5 R¥+28 : 7 ¢ log(C), ¥(z — x) = O}.
We see it as a family with parameters in M2, (R) and fibers

Zyo = {(x,2) € R¥T28 5 R¥F28 : 7 € log(C), Yo(z — x) = 0}.
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We moreover set, for some 7 > 1,
_ . 2t+2g
Zyo(Q,T) ={(x,2) € Zyy : x €Q ,H(x) < T},

where H (-) is the exponential height on Q28

Finally, we let 771 and 75 be the projection maps from R* 28 x R**2¢ to the first
and the second factor respectively.

The following statement is a special case of [27, Corollary 7.2].

Lemma 4.4 For every € > O there exists a constant ¢ = c(Z, €) > 0 that satisfies the
following property. If T > 1 and ¥ C Zy,(Q, T) with |m2(2)| > cT*, there exists a
continuous and definable function B : [0, 1] — Zy,, such that

(1) the composition ity o B is semialgebraic and its restriction to (0, 1) is real analytic;
(2) the composition wy o B is non-constant;
(3) we have m(B(0)) € m(X).

We are also going to need the following consequence of Ax’s Theorem [1].

Lemma4.5 Let y : [0,1] — Lie(G) be real semialgebraic and continuous with
v1,1) real analytic. The Zariski closure in G of the image of expg oy is a coset of G.

Proof In [27, Theorem 5.4] Habegger and Pila formulated and proved this statement
for abelian varieties. The exact same proof works in our case as Ax’s Theorem holds
for semiabelian varieties. O

4.4 Conclusion

In order to prove Proposition 4.1 we suppose there is a real number B and infinitely
many points p € (CN G[zl)(@) with 71\L (p) < B. Note that, by Northcott’s Theorem,
we have that the degree over K of such points must tend to infinity.

Let p be one of these points. Then, p € (p) = H), + g for some g € Tors(G) and
dim H, < dim G — 2. We assume that ¢ is of minimal order.

By our assumption on K we have that all Gal(K/K)-conjugates of p lie in an
algebraic subgroup of G of codimension at least 2. Actually we have (p°) = H, +¢°
for all 0 € Gal(K/K) and thus A((p®)) = A({(p)).

We let z5, 75 € logs(C) be the logarithms of p° and ¢ in our fundamental
domain, i.e., exp;(z5) = p° and exp;(rs) = ¢°. Since we have identified Q¢ with
Z!%28 in Vg and ry € Fg, we have that r, € {0} x Q'72¢ and H (ry) = ord(¢?).

Now, Lemma 2.5 provides us with a v, € Q¢ + Lie(H)) such that expgs (vs) =
p° —¢q° and

v |l < c16lK(p?, ¢7) : Klmax{l, i (p°)} < c17[K(p) : KIA({p)),
ashr(p) < B.

We compare ||vg || and ||z5 —7¢ [|. Since their image via exp; coincide, the difference
between v, and z, — ro is a period, which must project to the identity on IV .
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Therefore, the projections of these two elements on [ Vg;n coincide. Moreover, the
projection of z; — rs on Vg is bounded, therefore

lzo — 1ol < cigllvell < c19[K(p) : K]A({p)).

Moreover, Lemma 2.4(2) guarantees that there exists w, € Qg with z, — (rs +
wy) € Lie(H)) and

los |l < lzo — 75|l + c20deg, (Hp) < c21[K(p) : KIA((p)).
We conclude
H(wo +ro) = co[K(p) : KIA((p)),
and therefore we have
H(wo +ro) < c23[K(p) : K|
by (18). Set d, := [K(p) : K]. Then,
Ty = {re + 0o, 20) : 0 € Gal(K/K)} C Zy, (Q, c23d),

where v is a matrix whose kernel is Lie(H).
We now apply Lemma 4.4 with € = 1/(2c24), T = ¢p3d,** and £ = X,. For d,

large enough, we have c(c3d;**)€ < d,, and therefore

|2 (2,) =dp > cTC.

Lemma 4.4 then ensures the existence of a continuous and definable function g :
[0, 1] — Zy, satisfying

(1) the composition 71 o B is semialgebraic and its restriction to (0, 1) is real analytic;
(2) the composition 7> o § is non-constant;
(3) we have m5(8(0)) € m(Z).

We now consider the quotient ¢ : G — G/H, and the corresponding Lie(¢) :
Lie(G) — Lie(G/H)) whose kernel is the kernel of .
We note that by definition

eXPG/H, oLie(¢p)omofB = eXPG/H, oLie(¢p) om0 f = ¢ oexpg om0 B.

We apply Lemma 4.5 with y = Lie(¢) o 1 o B. The Zariski closure of the image of
eXpG/H, © ¥ is a coset of G/ Hp,. On the other hand, the Zariski closure of the image
of expg o m o B is contained in C. This containment cannot be strict because 7 o
is non-constant.
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Therefore, the Zariski closure of the image of ¢ o exp; o 72 o B equals ¢ (C) and
is a one dimensional coset that must be a torsion coset because it contains the torsion

point ¢ (m2(8(0))).

Since G/H) has dimension at least 2 it follows that C is contained in a proper
algebraic subgroup of G. This contradicts our hypothesis and therefore d,, must be
uniformly bounded and Proposition 4.1 is proved.

5 Proof of Theorem 1.1

5.1 Preparations

We recall that G is a semiabelian variety defined over a number field K, which is given
by an exact sequence

1 s T y G =5 A

V
e

We recall that L is an ample line bundle on G that we have fixed before Lemma 2.2.

We prove the theorem by induction on dim(G). If dim(G) = 1, then G?! = ¢ and
there is nothing to prove. If dim(G) = 2, then G'?] = Tors(G) and the theorem is a
consequence of the Manin—-Mumford conjecture for semiabelian varieties proven by
Hindry [26]. These two cases serve as the basis of our induction.

For the induction step, we assume now that the theorem is already proven for
all semiabelian varieties of dimension strictly less than dim(G) > 2. Let pg 4+ Gy,
po € C(Q), be the smallest coset containing C. Although C is by assumption not
contained in any proper algebraic subgroup of G, we may have Go # G.

We make an elementary observation on the dimension of Gg.

Lemma5.1 Let H C G be a semiabelian subvariety of codimension at least 2 and
q € Tors(G). If the intersection C N (g + H) is non-empty, then Go + H = G. In
particular, it holds that dim(Gg) > 2 if C N G is non-empty.

Proof Note that Go + H is a connected algebraic subgroup of G. Choose a point
pe(CN@+H)Q.AsCCp+Gyog<Cq+Go+ H,wehave G = Go+ H
because C is not contained in a proper torsion coset. O

In the sequel, we hence assume that dim(Gg) > 2.
5.2 An auxiliary surface

We consider the difference map

A:GxG — G,
(p1, p2) —> p1 — p2,

and the irreducible variety S that is the Zariski-closure of A(C x C) =C — C in G.
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It is easy to see that Go is the minimal coset containing S: In fact, any coset
containing S is a connected algebraic subgroup because of Og € S.If H C G is a
subgroup containing S, we have

CC(po+Go)N(po+H)=po+ (GoNH)

and thus Go € Go N H as Gy is the minimal subgroup that contains a translate of C.
In the next lemma, we collect some basic properties of S.

Lemma 5.2 S has dimension 2 and is not Gy-anomalous in itself.

Proof For the sake of contradiction, assume that S = C — C is an irreducible curve.
Then, the translated curve C’ = C — py satisfies C’ — C’ € C’ and is hence a one-
dimensional algebraic subgroup. As C is just a translate of this subgroup, this gives a
contradiction to our assumption that dim(Gg) > 2.

The second part of the statement was proven above. O

The Structure Theorem 2.1 applied to S in G gives a finite set @ 5 of proper abelian
subvarieties of G such that

s\s*= ) Zu.
Hedg

where each 2% is a finite union of subvarieties W C SN(p+ H), for some p € Go(@),
with dimW > 1 and dmW > dim S — codimH + 1 = 3 — codimH. Note that
Lemma 5.2, implies that all the W in the finite union above are curves. Moreover, all
the H that give a contribution to the above union have codimension at least 2.

We may then conclude that there exist finitely many irreducible algebraic curves
C; C §,1<1i < N, such that

S\S§®=C;U---UCy. (19)

Each curve C;, 1 <i < N, is contained in a coset p; + H; C Go with p; € C; (@)
and H; C Gy a subgroup of codimension at least 2; for the sequel, we stipulate that
each coset p; + H; is the minimal coset containing C;.

5.3 A height comparison

The restriction Alcxc : € x C — S is a dominant, generically finite map. The
following standard lemma allows us to bound the height of most Q-points on C x C
by the height of their images in S.

Proposition 5.1 Let X (resp. Y) be an irreducible algebraic variety defined over Q,
L (resp. M) an ample line bundle on X (resp. Y ). Assume furthermore that dim X =
dimY and let f : X — Y be a dominant morphism over Q. Set

Z(f) :={y €Y : the fiber Xy of f overy has dimension > 0}.

) Birkhauser



18 Page32o0f37 F. Barroero et al.

Then there exist constants ci, ¢y > 0 such that
hp(x) < cthy(f(x)) +c2 (20)

for all points x € X(@) with f(x) ¢ Z(f).

By upper semicontinuity of the fiber dimension [24, Théoréme 13.1.3], the set Z( f)
is closed. In addition, it is easy to show that Z( f) has codimension > 2 in Y. In our
application to surfaces X and Y, this means that Z( f) is a finite set of points.

Proof This follows from [53, Theorem 1]. The height inequality obtained in loc.cit.
is of the desired form (20), but only valid for all points in a (not determined) Zariski
open dense subset U C Y; we hence have to verify that we canensure Y \ U C Z(f).

Let W be an irreducible component of ¥ \ U that does not lie in Z( f). We have that
F~Y(W) consists of m irreducible components Vi, ..., V. If dim(V;) > dim(W),
then f(V;) € Z(f). So it suffices to consider points on the irreducible components
Vi such that dim(V;) = dim(W). For each of these, we can again apply [53, Theorem
I1to fly, : Vi — W. We get that (20) holds for all x € Vi(@) such that f(x) € U’
for some Zariski open dense U’ € W.If W \ U’ € Z(f) we are done, otherwise we
repeat the same argument with W \ U’ instead of W. We only need to do this finitely
many times as dim(W \ U’) < dim(W). O

Applying this lemma to the restriction Alcxc : C x C — §, we obtain a finite set
of Q-rational points Z C S(Q) and constants ¢, ¢; > 0 such that

hi(p)+hp(p') <cih(p—p)+c (1)

whenever p — p’ ¢ Z for points p, p’ € C(Q).

5.4 Enlarging the number field K

There exists a finite extension K’/K such that the following conditions are satisfied:

(1) all connected algebraic subgroups of G are defined over K’ (Lemma 2.6),

(2) wehave pg € G(K'), p; € GAK)(1 <i < N),and Z C S(K’), and

(3) the curve C C G as well as the curves C; C Go (1 <i < N) in (19), are defined
over K.

Replacing K with K’, we can assume that the above conditions are already satisfied
for K.

5.5 Some reductions

Recall that we have to show that the set (C N G'21)(Q) is finite. For this purpose, we
consider a point p € (C N G (Q). Denote by H C G a semiabelian subvariety of
codimension at least 2 and g € Tors(G) suchthat p € g+ H.Recallthat Go+H = G
by Lemma 5.1.
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Set p’ = p — po € S(Q). For each o € Gal(K/K), we define
rpo =) —p =p° —pe(Gon(q° —q+ H)Q.
Considering tangent spaces at Og, we obtain
dim(Go) — dim(Go N H) = dim(Go + H) — dim(H) = dim(G) — dim(H) > 2.

As the intersection Go N (¢° — g + H) is a torsion translate of Go N H in Gy, the
point rp  is contained in § N (Go)2l.

Lemma5.3 There are at most finitely many points p € (C N G (Q) such that
Ypo € Z for all o € Gal(K/K).

Proof Assume that p € (C N GI2))(Q) is such that 7, » = p® — p € Z C G(K) for
allo € Gal(K/ K). By Lemma 2.7(b), there exists an integer ¢ = ¢(K) > 1, which
is independent of p, such that [e](p) € G(K). By Proposition 3.1, there are at most
finitely many p € (C N G?1)(Q) with this property. O

Lemma 5.4 There are at most finitely many points p € (C N G (Q) such that there
exists an automorphism o € Gal(K/K) with r, » € $°*(Q) \ Z.

Proof Let p € (C N G (Q) and o € Gal(K/K) be such that r, , € S(Q) \
Z. Recall that we have also r,, € (Go)2/(@) as noted above. By the (proven)
bounded height conjecture for semiabelian varieties (Theorem 2.2), we conclude that
hp(rp,s) < c3 for some positive constant ¢3 = ¢3(S) that is independent of p. Using
(21), we obtain that 2h 1 (p) < cic3 + c2. The asserted finiteness follows hence from
Proposition 4.1. O

By these two above lemmas, it suffices to prove that there are at most finitely many
points p € (C N G[z])(@) such that there exists some o € Gal(K/K) satisfying
rpo € S(@Q) \ (5°(Q) U Z). By Lemma 2.7(a), the fact that r, , € C; implies
that p; + H; is a torsion coset; this means that there exists ptf € Tors(Gg) with
pi + H; = p; + H;. (Note that we cannot assume that p; € C; Q).

After relabeling, we may assume that p; + H;, 1 <i < N, is a torsion coset if and
only if 1 <i < N’.Foreach 1 <i < N’, we choose a torsion point p; € Tors(Go)
such that p; + H; = p; + H;.

Lemma5.5 There are at most finitely many points p € C(Q) contained in a torsion
coset ¢ + H where q € Tors(G) and H C G is a subgroup of codimension > 2
satisfying H 2 Hj foralli € {1,...,N'}.

Proof Let p € C(Q) be contained in a torsion coset ¢ + H as in the lemma. Using
Lemmas 5.3 and 5.4, we may assume that there exists some o € Gal(K/K) such that
Fpo € S(@Q)\ ($°%(Q) U Z). As observed above, we have r, , € C;(Q) for some
ief{l,...,N}.
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By the minimality assumption on H;, the translate C; = C; — p; € H; cannot
be H;-anomalous in C;. As H 2 H;, the intersection H N H; is a proper subgroup
of H;. Thus we infer r, , — p; € (C/ N Hi[”)(@) from the fact that r, , lies in
(p; + H)N(q° —q+ H).

An application of Theorem 2.2 for the curve C; C H; yields an upper bound on
the height /17 (r, » — p;) that is independent of p. As p is torsion we have a bound
on hy(rps), and rp s ¢ Z implies that the height of p is bounded. Proposition 4.1
yields the asserted finiteness. O

5.6 Applying the inductive hypothesis

We conclude the proof of Theorem 1.1 by dealing with the remaining points in C N G?]
by induction on dim(G). Note that this is the only part of the argument where the
inductive hypothesis is actually used.

Lemma5.6 Foreachi € {1, ..., N'}, there are at most finitely many points p € C(Q)
contained in a torsion coset q + H where q € Tors(G) and H C G is a subgroup of
codimension > 2 satisfying H 2 H;.

Proof Again,let p € C (Q) be contained in a torsion coset ¢ + H as in the lemma.
We consider the quotient map ¢; : G — G/ H; and note that ¢; (C) is not contained
in a proper algebraic subgroup of G/ H; because otherwise C would be contained in a
proper algebraic subgroup of G. Moreover, it is not a point. Indeed, this would imply
that C is contained in a coset of H; which would be strictly contained in a coset of
Gy, contradicting the minimality of Gy.

Now, as p is sent to ¢; (C) N (G/H,-)[z] and dim(G/H;) < dim(G), the lemma
follows from our inductive hypothesis. O

On combining Lemmas 5.5 and 5.6 , we obtain Theorem 1.1 immediately.

Acknowledgements The authors thank the referee for carefully reading the paper and providing several
suggestions that significantly improved the article. They moreover thank thank Eric Gaudron and Philipp
Habegger for comments and feedback. FB was supported by the Swiss National Science Foundation Grant
165525. LK was supported by an Ambizione Grant of the Swiss National Science Foundation. LK also
received funding from the European Union Horizon 2020 research and innovation programme under the
Marie Sklodowska-Curie Grant Agreement No. 101027237.

Funding Open access funding provided by Universitd degli Studi Roma Tre within the CRUI-CARE Agree-
ment.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

W Birkhauser


http://creativecommons.org/licenses/by/4.0/

Unlikely intersections of curves with algebraic... Page350f37 18

References

10.

11.

13.

14.

15.

16.

17.

18.

20.

21.

22.

23.
24.

25.
26.
27.

28.

. Ax, J.: Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups. Am.

J. Math. 94, 1195-1204 (1972)

. Barroero, F., Capuano, L.: Unlikely intersections in families of abelian varieties and the polynomial

Pell equation. Proc. Lond. Math. Soc. (3) 120(2), 192-219 (2020)

. Barroero, F., Capuano, L., Mérai, L., Ostafe, A., Sha, M.: Multiplicative and linear dependence in finite

fields and on elliptic curves modulo primes. Int. Math. Res. Not. 2022(20), 16094-16137 (2022)

. Barroero, F., Dill, G.A.: Distinguished categories and the Zilber—Pink conjecture (2021). submitted,

arXiv:2103.07422

. Barroero, F., Dill, Gabriel G.A.: On the Zilber—Pink conjecture for complex abelian varieties. Ann.

Sci. Ec. Norm. Supér. (4) 55(1), 261-282 (2022)

. Bertrand, D.: Minimal heights and polarizations on group varieties. Duke Math. J. 80(1), 223-250

(1995)

. Bertrand, D.: Generalized Jacobians and Pellian polynomials. J. Théor. Nombres Bordx. 27(2), 439-

461 (2015)

. Bosser, V., Gaudron, E.: Logarithmes des points rationnels des variétés abéliennes. Can. J. Math. 71(2),

247-298 (2019)

. Bombieri, E., Habegger, P., Masser, D., Zannier, U.: A note on Maurin’s theorem. Atti Accad. Naz.

Lincei Rend. Lincei Mat. Appl. 21(3), 251-260 (2010)

Bombieri, E., Masser, D., Zannier, U.: Intersecting a curve with algebraic subgroups of multiplicative
groups. Int. Math. Res. Not. 20, 1119-1140 (1999)

Bombieri, E., Masser, D., Zannier, U.: Intersecting curves and algebraic subgroups: conjectures and
more results. Trans. Am. Math. Soc. 358(5), 2247-2257 (2006)

. Bombieri, E., Masser, D., Zannier, U.: Anomalous subvarieties—structure theorems and applications.

Int. Math. Res. Not. IMRN 19, 33 (2007)

Bombieri, E., Masser, D., Zannier, U.: On unlikely intersections of complex varieties with tori. Acta
Arith. 133(4), 309-323 (2008)

Carrizosa, M.: Petits points et multiplication complex. Int. Math. Res. Not. IMRN 16, 3016-3097
(2009)

Chambert-Loir, A.: Relations de dépendance et intersections exceptionnelles, Astérisque (2012),
no. 348, Exp. No. 1032, viii, 149-188, Séminaire Bourbaki: Vol. 2010/2011. Exposés 1027-1042
Call, G.S., Silverman, J.H.: Canonical heights on varieties with morphisms. Compos. Math. 89(2),
163-205 (1993)

Faltings, G.: Endlichkeitssitze fiir abelsche Varietiten iiber Zahlkorpern. Invent. Math. 73(3), 349-366
(1983)

Faltings, G.: The general case of S. Lang’s conjecture. Barsotti Symposium in Algebraic Geometry.
Abano Terme. Perspect. Math., vol. 15, pp. 175-182. Academic Press, San Diego, CA (1991)

. Fulton, W.: Intersection theory, 2nd edn. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.

A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series.
A Series of Modern Surveys in Mathematics], vol. 2. Springer-Verlag, Berlin (1998)

Galateau, A.: Une minoration du minimum essentiel sur les variétés abéliennes. Comment. Math. Helv.
85(4), 775-812 (2010)

Gaudron, E.: Mesures d’indépendance linéaire de logarithmes dans un groupe algébrique commutatif.
Invent. Math. 162(1), 137-188 (2005)

Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York
(1994). Reprint of the 1978 original

Gaudron, E., Rémond, G.: Polarisations et isogénies. Duke Math. J. 163(11), 2057-2108 (2014)
Grothendieck, A.: Eléments de géométrie algébrique. IV. Etude locale des schémas et des morphismes
de schémas. I11, Inst. Hautes Etudes Sci. Publ. Math. 28, 255 (1966)

Habegger, P.: On the bounded height conjecture. Int. Math. Res. Not. IMRN 5, 860-886 (2009)
Hindry, M.: Autour d’une conjecture de Serge Lang. Invent. Math. 94(3), 575-603 (1988)

Habegger, P, Pila, J.: O-minimality and certain atypical intersections. Ann. Sci. Ec. Norm. Supér. (4)
49(4), 813-858 (2016)

Hindry, M., Silverman, J.H.: Diophantine Geometry. Graduate Texts in Mathematics. An introduction,
vol. 201. Springer, New York (2000)

) Birkhauser


http://arxiv.org/abs/2103.07422

18

Page 36 of 37 F. Barroero et al.

29.
30.
31.
32.
33.
34.

35.
36.

37.

38.

39.

40.

41.

42.

43.

44.
45.

46.

47.

48.
49.

50.

S1.

52.

53.

54.

55.

56.

57.

Kirby, J.: The theory of the exponential differential equations of semiabelian varieties. Sel. Math.
(N.S.) 153, 445-486 (2009)

Kiihne, L.: The bounded height conjecture for semiabelian varieties. Compos. Math. 156(7), 1405-
1456 (2020)

Kiihne, L.: Points of small height on semiabelian varieties. J. Eur. Math. Soc. JEMS) 24(6),2077-2131
(2022)

Lang, S.: Fundamentals of Diophantine Geometry. Springer, New York (1983)

Laurent, M.: Equations diophantiennes exponentielles. Invent. Math. 78(2), 299-327 (1984)
Martinet, J.: Perfect Lattices in Euclidean Spaces. Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], vol. 327. Springer, Berlin (2003)

Maurin, G.: Courbes algébriques et équations multiplicatives. Math. Ann. 341(4), 789-824 (2008)
Moret-Bailly, L.: Familles de courbes et de variétés abéliennes sur P'. I. Descente des polarisations,
no. 86, Seminar on Pencils of Curves of Genus at Least Two, pp. 109-124 (1981)

McQuillan, M.: Division points on semi-abelian varieties. Invent. Math. 120(1), 143-159 (1995)
Mumford, D.: Abelian Varieties. Tata Institute of Fundamental Research Studies in Mathematics, No.
5, Published for the Tata Institute of Fundamental Research, Bombay. Oxford University Press, London
(1970)

Masser, D., Zannier, U.: Torsion points on families of simple abelian surfaces and Pell’s equation over
polynomial rings. J. Eur. Math. Soc. JEMS) 179, 2379-2416 (2015). With an appendix by E. V. Flynn
Neukirch, J.: Algebraic Number Theory. Grundlehren der Mathematischen Wissenschasten [Funda-
mental Principles of Mathematical Sciences], vol. 322. Springer, Berlin. Translated from the 1992
German original and with a note by Norbert Schappacher. With a foreword by G, Harder (1999)
Oort, F.: Commutative group schemes. Lecture Notes in Mathematics, vol. 15. Springer, Berlin-New
York (1966)

Pink, R.: A combination of the conjectures of Mordell-Lang and André—Oort, Geometric Methods
in Algebra and Number Theory. Progress in Mathematics, vol. 235, pp. 251-282. Birkhduser, Boston
(2005)

Pink, R.: A common generalization of the conjectures of André-Oort, Manin—-Mumford, and Mordell—
Lang (2005). Available from http://www.math.ethz.ch/~pink

Pila, J., Wilkie, A.J.: The rational points of a definable set. Duke Math. J. 133(3), 591-616 (2006)
Ratazzi, N.: Intersection de courbes et de sous-groupes et problemes de minoration de derniere hauteur
dans les variétés abéliennes C.M. Ann. Inst. Fourier (Grenoble) 585, 1575-1633 (2008)

Raynaud, M.: Courbes sur une variété abélienne et points de torsion. Invent. Math. 71(1), 207-233
(1983)

Rémond, G., Viada, E.: Probleme de Mordell-Lang modulo certaines sous-variétés abéliennes. Int.
Math. Res. Not. 35, 1915-1931 (2003)

Rémond, G.: Inégalité de Vojta généralisée. Bull. Soc. Math. France 133(4), 459-495 (2005)
Schmidt, H.: Pell’s equation in polynomials and additive extensions. Q. J. Math. 68(4), 1335-1355
(2017)

Serre, J.-P.: Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier Grenoble 6, 1-42 (1955-
1956)

Serre, J.-P.: Algebraic Groups and Class Fields. Graduate Texts in Mathematics vol. 117. Springer,
New York (1988). Translated from the French

Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, Vol. 106, Springer,
New York (1992). Corrected reprint of the 1986 original

Silverman, J.H.: Height estimates for equidimensional dominant rational maps. J. Ramanujan Math.
Soc. 26(2), 145-163 (2011)

van den Dries, L., Miller, C.: On the real exponential field with restricted analytic functions. Isr. J.
Math. 85(1-3), 19-56 (1994)

Viada, E.: The intersection of a curve with algebraic subgroups in a product of elliptic curves. Ann.
Sc. Norm. Super. Pisa Cl. Sci. (5) 21, 47-75 (2003)

Viada, E.: The intersection of a curve with a union of translated codimension-two subgroups in a power
of an elliptic curve. Algebra Number Theory 2(3), 249-298 (2008)

Vogel, W.: Lectures on Results on Bezout’s Theorem. Tata Institute of Fundamental Research Lec-
tures on Mathematics and Physics, vol. 74, Published for the Tata Institute of Fundamental Research,
Bombay. Springer, Berlin (1984). Notes by D. P. Patil

W Birkhauser


http://www.math.ethz.ch/~pink

Unlikely intersections of curves with algebraic... Page370of37 18

58.

59.

60.

61.

62.
63.

Voisin, C.: Hodge Theory and Complex Algebraic Geometry. I, english ed., Cambridge studies in
Advanced Mathematics, vol. 76. Cambridge University Press, Cambridge (2007). Translated from the
French by Leila Schneps

Vojta, P.: Integral points on subvarieties of semiabelian varieties. I. Invent. Math. 126(1), 133-181
(1996)

Wiistholz, G.: Algebraische Punkte auf analytischen Untergruppen algebraischer Gruppen. Ann. Math.
(2) 129(3), 501-517 (1989)

Zannier, U.: Some Problems of Unlikely Intersections in Arithmetic And Geometry. Annals of Mathe-
matics Studies, vol. 181. Princeton University Press, Princeton, NJ (2012). With Appendixes by David
Masser

Zhang, S.: Small points and Adelic metrics. J. Algebr. Geom. 4(2), 281-300 (1995)

Zilber, B.: Exponential sums equations and the Schanuel conjecture. J. Lond. Math. Soc. (2) 65(1),
27-44 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

) Birkhauser



	Unlikely intersections of curves with algebraic subgroups in semiabelian varieties
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The open anomalous locus
	2.2 Degrees of subgroups and periods
	2.3 Heights on semiabelian varieties
	2.4 Subgroups of semiabelian varieties
	2.5 An auxiliary lemma

	3 An auxiliary proposition
	4 Unlikely intersections of bounded height
	4.1 Some complexity estimates
	4.2 Definability of the exponential map
	4.3 O-minimal counting
	4.4 Conclusion

	5 Proof of Theorem 1.1
	5.1 Preparations
	5.2 An auxiliary surface
	5.3 A height comparison
	5.4 Enlarging the number field mathbbK
	5.5 Some reductions
	5.6 Applying the inductive hypothesis

	Acknowledgements
	References




