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Abstract
Gentle algebras are in bijection with admissible dissections of marked oriented sur-
faces. In this paper, we further study the properties of admissible dissections and we
show that silting objects for gentle algebras are given by admissible dissections of the
associated surface. We associate to each gentle algebra a line field on the correspond-
ing surface and prove that the derived equivalence class of the algebra is completely
determined by the homotopy class of the line field up to homeomorphism of the sur-
face. Then, based on winding numbers and the Arf invariant of a certain quadratic
form over Z2, we translate this to a numerical complete derived invariant for gentle
algebras.
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1 Introduction

Derived categories play an important role in many different areas of mathematics,
in particular in algebra and geometry. However, classifying varieties or algebras up
to derived equivalence is, in general, a difficult undertaking. In representation theory,
different tools have been developed to handle this problem and have led to tilting theory
[4]. Even if two derived equivalent algebras share a lot of homological properties, they
can be of a very different nature. Moreover, even for small families of algebras that
are closed under derived equivalence, it is difficult to establish a complete derived
invariant.

In this paper, we give a complete derived invariant for a certain class of algebras
called gentle algebras. Gentle algebras have been introduced in the early 1980’s by
Assem and Happel [8, 9] (see also [10]) and their representation theory is well-studied
[18, 22, 34]. Recenlty, gentle algebras have been associated to triangulations or dis-
sections of surfaces, in connection with cluster algebras [7], with ribbon graphs [43,
44] or with Fukaya categories of surfaces [28]. It turns out that any gentle algebra can
be obtained from a dissection of a surface; this has led to geometric models for their
module categories [32] (building on [41]) and τ -tilting theory [39] (see also [15, 40]).

From the point of view of homological algebra, the class of gentle algebras is of
particular interest, since it is closed under derived equivalence [45]. Their derived
categories are well-understood [6, 13, 16, 17, 19, 20, 31]. Moreover, in [12], Avella-
Alaminos and Geiss introduced a numerical derived invariant distinguishing between
many derived equivalence classes of gentle algebras. This invariant has sparked a lot
of activity on the subject [2, 3, 11, 14, 23, 30, 36]. However, the invariant of Avella-
Alaminos and Geiss is not complete, in the sense that it does not distinguish between
all derived equivalence classes of gentle algebras.
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The derived categories of gentle algebras also enjoy a geometric model enconding
their indecomposable objects and the morphisms between them [38]. This model
allows for a natural geometric interpretation of the derived invariant of Avella-
Alaminos and Geiss. In this paper, we use this interpretation to refine this invariant
into a complete derived invariant for gentle algebras.

More precisely, to a gentle algebra, using the geometric description given in [38],
one can associate a marked surface (S, M, P) together with a dissection �. The data
of the dissection � allows to construct a line field η(�∗) on the surface S. The main
result of the paper is then the following.

Theorem 1.1 (6.1) Let A and A′ be two gentle algebras associated with dissected
surfaces (S, M, P,�) and (S′, M ′, P ′,�′) respectively. Then A and A′ are derived
equivalent if and only if there exists an orientation-preserving homeomorphism of
marked surfaces � : (S, M, P) → (S′, M ′, P ′) such that the line fields �∗(η(�∗))
and η(�′∗) are homotopic.

The idea of associating a line field to a dissected surface comes from the recent
connections of the derived categories of gentle algebras with Fukaya categories of
surfaces with boundaries and stops [28, 35]. In [28], it is shown that the partially
wrapped Fukaya category of a surface with stops can be thought of as the derived
category of a differential graded gentle algebra (with zero differential). The Fukaya
category only depends on the data of the surface with stops and the homotopy class
of the line field up to homeomorphism. Hence, one direction of this result can be
directly deduced in the homologically smooth case from [28], and the case of finite-
dimensional non-homologically smooth algebras can be obtained by applying Koszul
duality.

However, the proof given in the present paper uses arguments from representation
theory instead of the machinery of Fukaya categories. The main ingredient used here
is the complete characterisation of silting and tilting objects of the derived category
in terms of graded curves (see Theorem 5.2 and Corollary 5.8). This characterisation
of silting objects also allows us to give short new proofs of two well-known results on
gentle algebras: Namely, of the fact that the class of gentle algebras is closed under
derived equivalence (Theorem 8.1), originally proved in [45], and that gentle algebras
are Gorenstein (Theorem 8.3), originally proved in [26].

We note that Theorem 1.1 has been independently proved in [37, Theorem B]. Our
methods of proof for one of the implications are similar, in that both methods rely on
the description of tilting objects. For the other direction, the approaches are different.

However, the main result as stated above is not concretely useful since the com-
putation of the subgroup of homeomorphisms of a marked surface preserving the
homotopy class of a given line field is not a realistic task. To make the result more
concrete, we use the description of the orbits of homotopy classes of line fields under
the action of the mapping class group given in [35]. This allows us to give a numerical
derived invariant for gentle algebras which is much easier to compute. This invariant
is computed using winding numbers of a basis of the fundamental group of the sur-
face. In the case of gentle algebras coming from surfaces of genus zero, this invariant
is precisely equivalent to the Avella-Alaminos-Geiss invariant, while in the case of
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higher genus, it is a generalisation of it. In genus ≥ 2 it uses in particular the Arf
invariant of some quadratic form over Z/2Z.

For a dissected marked surface (S, M, P,�) we define simple closed curves G =
{α1, β1, . . . , αg, βg} and B = {c1, . . . , cb+p} as in the following picture:

α1

β1

α2

β2

c1

∂1	

c2

∂2	

c3c4

It is then enough to compute the winding number w�∗
with respect to the line field

η(�∗) (which can be combinatorially computed using the dissection and its dual, see
Lemma 3.18) of each curve γ ∈ B ∪G in order to know the derived equivalence class
of the algebra A. More precisely, denoting by n( j) the number of ◦ marked points
on the boundary component ∂ j S, for each j = 1, . . . , b + p, we have the following
result.

Theorem 1.2 (7.4) Let A and A′ be two gentle algebras with associated dissected
surfaces (S, M, P,�) and (S′, M ′, P ′,�′), respectively. Let G = {α1, . . . , βg}, B =
{c1, . . . , cb+p} (resp. G′ = {α′

1, . . . , β
′
g′ }, B′ = {c′

1, . . . , c
′
b′+p′ } ) subsets of simple

closed curves on S\P (resp. S′\P ′) as before. Then the algebras A and A′ are derived
equivalent if and only if the following numbers coincide:

(1) g = g′, b = b′, �M = �M ′, �P = �P ′;
(2) there exists a permutationσ ∈ Sb+p such that n(σ ( j)) = n′( j)andw�∗

(cσ( j)) =
w�′∗

(c′
j ), for any j = 1, . . . , b;

(3) for g = g′ ≥ 1 one of the following holds

(a) for g = g′ = 1, we have

gcd{w�∗
(γ ), w�∗

(c) + 2, γ ∈ G, c ∈ B}
= gcd{w�′∗

(γ ′), w�′∗
(c′) + 2, γ ′ ∈ G′, c′ ∈ B′}

(b) for g = g′ ≥ 2 one the following occurs:
(i) there exist γ ∈ G ∪B and γ ′ ∈ G′ ∪B′ such that w�∗

(γ ) and w�′∗
(γ ′)

are odd, or
(ii) for any γ ∈ G ∪B and γ ′ ∈ G′ ∪B′, the numbers w�∗

(γ ) and w�′∗
(γ ′)

are even and there exists an i with w�∗
(ci ) = 0 mod4, or

(iii) for any γ ∈ G ∪B and γ ′ ∈ G′ ∪B′, the numbers w�∗
(γ ) and w�′∗

(γ ′)
are even and, for any i = 1, . . . , b + p we have w�∗

(ci ) = 2 mod 4
and
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g∑

i=1

(
1

2
w�∗

(αi ) + 1

)
(
1

2
w�∗

(βi ) + 1)

=
g∑

i=1

(
1

2
w�′∗

(α′
i ) + 1

) (
1

2
w�′∗

(β ′
i ) + 1

)
mod2

Therefore the invariant is easily computable once we have a good description of the
generators of the fundamental groups of the surface associated to the algebras. How-
ever, devising an algorithm to compute the invariant from the quiver with relations of a
gentle algebra would require an algorithm to find walks on the quivers corresponding
to the curves in G; our methods do not provide such an algorithm. We note that the
curves in B are computed implicitly by the algorithm in [12].

The plan of the paper is the following. In Sect. 3 we recall several basic geometric
definitions of line fields and winding numbers, and explain the construction of the line
field η(�∗). In Sect. 4, we recall the results of [38] that are used in the paper. The
description of silting and tilting objects is done in Sect. 5, while the main theorem is
proved in Sect. 6. The concrete criterion using [35] is explained in Sect. 7. In Sect.
8, we use the geometric description to reprove some well-known results on gentle
algebras. Examples are presented in Sect. 9. Finally, Sect. 10 is dedicated to the special
case of certain gentle algebras of global dimension 2. These algebras, called surface
cut algebras, have another, slightly different, geometric model coming from cluster
combinatorics, therefore it may be useful to explicitly translate the new invariants in
terms of this other model.

2 Conventions

In this paper, all algebras will be assumed to be over a base field k. All modules
over such algebras will be assumed to be finite-dimensional left modules. Arrows in a
quiver are composed from left to right as follows: for arrows a and b we write ab for
the path from the source of a to the target of b. Maps are composed from right to left,
that is if f : X → Y and g : Y → Z then g f : X → Z .

All surfaces with boundary and punctures in the paper are considered as open
surfaces. They are defined by removing closed discs and points froma compact surface.
As such, a surface with boundary 	 does not contain its boundary; however, by
construction, the boundary exists on a surface containing 	.

3 Line fields and admissible dissections

3.1 Line fields and winding numbers

Most of the material of this section is classical geometry. We recall the definitions and
basic properties for the convenience of the reader. We refer to [21].
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Let 	 be a smooth oriented open surface of genus g with b 	= 0 boundary com-
ponents and p punctures (that is to say, 	 is obtained by removing b disjoint closed
discs and p distinct points from a compact surface of genus g). We denote by T	 its
tangent bundle.

Definition 3.1 A line field η on 	 is a continuous section of the projectivized tangent
bundle. So it is a continuous map η : 	 → P(T	) such that for any x ∈ 	, η(x) is
in P(Tx	).

Note that any vector field on 	 (i.e. a continuous section of the tangent bundle)
yields a line field, but not all line fields come from vector fields.

For x ∈ 	, define the map D : P(T	) → P(T	) by D(x, 
) = (x, 
⊥), where 
⊥
is the (unique) line orthogonal to 
 in Tx	. Note that D is smooth.

Let η be a line field on 	. Fix x0 ∈ 	 and v0 ∈ Tx0	 such that [v0] = D ◦ η(x0).
Let f be a C1-map from S

1 ⊂ C to 	 such that f (1) = x0 and T1 f (1) = v0. In
what follows, we give a definition of the winding number of f relative to the line field
η. This mainly follows [21], but here the definition is given for line fields instead of
vector fields.

The fiber above x0 of the projection p : P(T	) → 	 is a circle so we get the
following long exact sequence:

π2(	, x0) π1(S
1, 1)

ι∗
π1(P(T	), [v0]) p∗

π1(	, x0) π0(S
1, 1) = 1

The universal cover 	̃ of 	 is contractible (it is a disk if g ≥ 1 or g = 0, b ≥ 3
and the plane for g = 0 and b = 2) and so π2(	̃, x̃0) = 1. Thus the isomorphism
π2(	̃, x̃0) � π2(	, x0) implies that ι∗ is injective.

Associated to f we define Z f ∈ π1(P(T	), [v0]) as

Z f (z) := [Tz f (1)] ∀z ∈ S
1.

In other words, for any z ∈ S
1 the element Z f (z) is the tangent line to the curve f at

the point f (z). Since Z f (z) is in P(T f (z)	), we have the equality p∗{Z f } = { f } in
π1(	, x0).

Associated to f and η we define X f ,η ∈ π1(P(T	), [v0]) as

X f ,η(z) := D ◦ η ◦ f (z) ∀z ∈ S
1.

Since η ◦ f (z) ∈ P(T f (z)	), we also have the equality p∗({X f ,η}) = { f }.
Hence the element {Z f }−1{X f ,η} is in the kernel of p∗, and so has a unique prede-

cessor in π1(S
1, 1). The orientation of	 induces an orientation of each tangent space,

hence gives a basis element e of π1(S
1, 1) and a bijection π1(S

1, 1) � Z. This leads
to the following.

Definition 3.2 The winding number wη( f ) is the unique integer such that

{Z f }−1{X f ,η} = wη( f ) · e.
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Remark 3.3 (1) It is more common to define the winding number for a curve starting
tangentially to the line field instead of normally to the line field as defined here.
We note that extending the definition to any curve, the two definitions coincide
and in this paper, it will be more convenient to consider curves starting and ending
normally to the line field.

(2) The winding number computes the number of U-turns the η line makes relatively
to the tangent field of f .

(3) In the case where the line field η comes from a vector field X , we have the equality
wη( f ) = −2ωX ( f ) where ωX is the winding number defined in [21].

The following is proved in [21] in the case of a vector field, and can easily be
generalized to the case of a line field.

Proposition 3.4 (1) The map wη factors through a map π free
1 (	) → Z. This map

sends the free homotopy class of any curve γ that has no contractible loops
to wη(γ ).

(2) Two line fields η and η′ are homotopic if and only if for any γ ∈ π free
1 (	), we

have wη(γ ) = wη′(γ ).

(3) A line field comes from a vector field if and only if for each γ ∈ π free
1 (	), the

winding number wη(γ ) is even.
(4) The map wη factors through an element of H1(	,Z/2Z).
(5) Denote by LF(	) the set of homotopy classes of line fields on 	. Then the map

� : LF(	) × LF(	) → HomSet(π
free
1 (	),Z) defined by �(η, η′) := wη − wη′

factors through a map

� : LF(	) × LF(	) → HomZ(H1(	,Z),Z) = H1(	,Z)

making LF(	) a H1(	,Z)-affine space.

We need to extend the definition of winding number to non-closed curves. Let γ

be a smooth map from the open interval (0, 1) to 	 such that, for x sufficiently close
to 0 or 1, the tangent line at γ (x) is orthogonal to η(γ (x)). Let s, t ∈ (0, 1) be such
that γ is orthogonal to η on (0, s] and [t, 1). As before, define

Zγ (z) := [Tzγ (1)] ∀z ∈ [s, t]

and

Xγ,η(z) := D ◦ η ◦ γ (z) ∀z ∈ [s, t].

Then {(Zγ )−1Xγ,η} is a well-defined element of π1(P(T	), D ◦ η(γ (s))). It is in the
kernel of p∗, and hence has a unique predecessor in π1(S

1, 1) ∼= Z · e.
Definition 3.5 The winding number wη(γ ) is the unique integer such that

{(Zγ )−1Xγ,η} = wη(γ ) · e.

The following is an easy consequence of the definition.
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Proposition 3.6 Let γ1 and γ2 be two smooth maps from (0, 1) to the surface. Assume
that there are t1, t2 ∈ (0, 1) such that γ1|(t1,1) and γ2|(0,t2) coincide and are orthogonal
to the line field η.

Then the concatenation γ of γ1 and γ2 is a well-defined smooth curve, andwη(γ ) =
wη(γ1) + wη(γ2).

3.2 Admissible dissections

In the following, we define a particular type of marked surface with two distinct types
of marked points, ◦-points and •-points. Going forward, we will always denote such
a surface by S. If we consider a marked surface in general, as we did in Sect. 3.1, then
we will denote it by 	.

Definition 3.7 A marked surface is a triple (S, M, P), where

• S is an oriented open smooth surface whose boundary is denoted by ∂S;
• M = M◦ ∪ M• is a finite set of marked points on ∂S. The elements of M◦
and M• will be represented by symbols ◦ and •, respectively. They are required
to alternate on each connected component of ∂S, and each such component is
required to contain at least one marked point;

• P = P◦ ∪ P• is a finite set of marked points in S, called punctures. The elements
of P◦ and P• will be represented by symbols ◦ and •, respectively,

If the surface has empty boundary, then we require that both P◦ and P• are non-empty.

Definition 3.8 A ◦-arc (or •-arc) is a smooth map γ from the open interval (0, 1)
to S\P such that its endpoints limx→0 γ (x) and limx→1 γ (x) are in M◦ ∪ P◦ (or
in M• ∪ P•, respectively). The curve γ is required not to be contractible (at the limit)
to a point in M◦ ∪ P◦ (or M• ∪ P•, respectively).

We will usually consider arcs up to homotopy or isotopy. Two arcs are said to
intersect if any choice of homotopic representatives intersect.

Definition 3.9 A collection of pairwise non-intersecting and pairwise different ◦-
arcs {γ1, . . . , γr } on the surface (S, M, P) is admissible if the arcs γ1, . . . , γr do
not enclose a subsurface containing no punctures of P• and with no boundary seg-
ment on its boundary. A maximal admissible collection of ◦-arcs is an admissible
◦-dissection.

The notion of admissible •-dissection is defined in a similar way.

Example 3.10 The following is an admissible ◦-dissection of a discwith one puncture ◦
and two punctures •.
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Proposition 3.11 Let � be collection of admissible ◦-arcs. Then � is a ◦-dissection
if an only if the complement of the ◦-arcs of � in S\P is a disjoint union of subsets
homeomorphic to one of the following forms:

(1) an open disc with precisely one •-vertex in its boundary, or
(2) an open punctured disc with no •-vertices on its boundary, and where the puncture

corresponds to a •-vertex in P•.
The above statement also holds if one replaces the ◦ symbols by • and vice versa.

Proof Assume first that all connected components of the complement of the arcs of �

in S\P are of the forms (1) or (2). If � were not maximal, then there would exist
a ◦-arc γ such that � ∪ {γ } is admissible. Then γ is contained in the closure of
a connected component P of the complement of the arcs of �. By assumption, P
is a disc, so γ splits it into two parts, only one of which can contain in its closure
the •-puncture or •-marked point contained in P . This contradicts the admissibility
of � ∪ {γ }. Thus � is maximal, and so it is a ◦-dissection.

Assume now that � is a ◦-dissection. Let P be a connected component of the
complement of the ◦-arcs of � in S\P . By the admissibility condition, P contains at
least one •-puncture or one •-marked point on its boundary.

If it has two or more, then it is possible to add a ◦-arc separating two of them while
still satisfying the admissibility condition. This contradicts the maximality of �.

Thus P contains exactly one •-puncture or •-marked point. If the genus of P were
greater than 0, then a non-separating ◦-arc could be added to P without violating
the admissibility condition, thus contradicting the maximality of �. Therefore, P has
genus 0.

Finally, if P has one •-puncture, then it has no boundary arcs, and thus is of type
(2). Otherwise, P has one •-marked point in its boundary and no puncture, and it is
of type (1). ��
Proposition 3.12 Let (S, M, P) be a marked surface, with S a surface of genus g such
that ∂S has b connected components. Then an admissible collection of ◦-arcs is an
admissible ◦-dissection if and only if it contains exactly |M◦|+ |P|+b+2g−2 arcs.
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Proof The Euler characteristic of S is 2 − 2g − b (see, for instance, [24, Section
1.1.1]1). Let � be a ◦-dissection of (S, M, P). By Proposition 3.11, � endows S with
a structure of a CW-complex whose faces are as follows:

(0) 0-dimensional faces are the marked points and punctures of (S, M, P). There
are |M | + |P◦| of them (the points of P• do not appear here, since there are not
joined by any arc and do not play a role in the CW structure).

(1) 1-dimensional faces are either arcs in� or boundary segments joining two adjacent
marked points. There are |�| + |M | of them.

(2) 2-dimensional faces are the discs described in Proposition 3.11. Since each of these
discs contains exactly one •-marked point or puncture, their number is |M•|+|P•|.

Since the Euler characteristic of a CW complex is the alternating sum of the number
of faces in each dimension, we get that

2 − 2g − b = (|M | + |P◦|) − (|�| + |M |) + (|M•| + |P•|).

Rearranging, and using the fact that |M•| = |M◦|, we get the desired equality.
��

To any admissible ◦-dissection,we can associate a dual •-dissection in the following
sense.

Proposition 3.13 ( [38, Prop. 1.16] and [39, Prop. 3.6]) Let (S, M, P) be a marked
surface, and let � be an admissible ◦-dissection. There exists a unique admissible •-
dissection �∗ (up to homotopy) such that each arc of �∗ intersects exactly one arc
of �.

Definition 3.14 The dissection � and �∗ are dual dissections.

Example 3.15 Below is the dissection of Example 3.10 and its dual.

1 In [24], the authors use the word “puncture” in a different sense than in this paper. In the book, a puncture
is a point removed from the surface, whereas in this paper, what we call “punctures” are part of the surface.
Thus we apply the Euler characteristic formula of the book for “unpunctured surfaces”.
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3.3 The line field of an admissible dissection

Let � be an admissible ◦-dissection of a smooth marked surface (S, M, P). The aim
of this subsection is to associate (the homotopy class of) a line field η(�) to �.

In order to do so, we need the following basic lemma.

Lemma 3.16 Let P ⊂ R
2 be a polygon with smooth oriented sides γ1, . . . , γs , and

vertices A1 = γ1(0) = γs(1), . . ., As = γs(0) = γs−1(1) that are not necessarily
pairwise distinct. Denote by Bi = γi (

1
2 ) for i = 1, . . . , s, and let C be a point in the

interior of P .
For i = 1, . . . , s denote by αi a smooth simple curve in the interior of P\{C} from

Bi to Bi+1, normal to γi and γi+1 in its endpoints, and so that C is on the left.
Then we have the following two statements.

(1) There exists a line field θ1 defined on P\{A1, . . . , As, γs} such that

(a) θ1 is tangent to γ1, . . ., γs−1, and normal to γs\{Bs};
(b) for all i = 1, . . . , s − 1, we have wθ1(αi ) = 1.

Moreover such a line field is unique up to homotopy of line fields satisfying (a)
and (b).

(2) There exists a line field θ2 defined on P\{A1, . . . , As,C} such that

(a) θ2 is tangent to γ1, . . . , γs ;
(b) for all i = 1, . . . , s we have wθ2(αi ) = 1.

Moreover such a line field is unique up to homotopy of line fields satisfying (a)
and (b).

Proof The foliations corresponding to θ1 and θ2 are drawn in the following pictures.
The uniqueness is a direct consequence of Proposition 3.4 (2).

As

A2

A1
Bs

αs−2

the line field θ1

As

A2

A1

C
αs−2

the line field θ2

��
Let � be an admissible dissection. The dissection �∗ is also an admissible dissec-

tion, thus by Proposition 3.11, the dissection �∗ cuts the surface S\P into a union of
polygons with precisely one ◦ in their boundary and once-punctured polygons with
no ◦ on their boundary where the puncture corresponds to a ◦ in P◦. We define a line
field η(�∗) on each of these polygons, following Lemma 3.16. It is defined as θ1 if
the polygon has no puncture, and it is defined as θ2 if the polygon has one puncture.
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Since it is tangent to the sides of each polygon, it defines a line field on the surface
S\P . It is then unique up to homotopy.

Remark 3.17 The line field defined above is different from the one defined in [35].
Indeed, the line field considered in [35] is tangent to the ◦-dissection.

We denote by w�∗
the winding number of the line field η(�∗). It can be easily

computed using the following rule.

Lemma 3.18 Let η be a line field satisfying the conditions in Lemma 3.16. Let γ be a
smooth closed curve on S\P. Assume that γ intersects the arcs of �∗ orthogonally.
Let t0, t1, . . . , tn = t0 be ordered on S1 so that for each i , γi := γ|(ti ,ti+1)

is in one of the
polygons or punctured polygons Pi bounded by the arcs of �∗ (see Proposition 3.11).
Assume that each γi is simple. Let

wi =
{
1 if the ◦ is to the left of γi in Pi ,

−1 if the ◦ is to the right of γi in Pi .

Then w�∗
(γ ) = ∑n−1

i=0 wi .

Proof The result follows from Proposition 3.6. ��
Remark 3.19 Any ◦-arc is homotopic to a ◦-arc which is orthogonal to the line field η

of Lemma 3.16 near its endpoints.

For any pair of ◦-arcs γ and δ such that the ending point of γ is the starting point of δ,
define their concatenation γ δ as follows: let u, v ∈ (0, 1) be such that γ is orthogonal
to η on [u, 1) and δ is orthogonal to η on (0, v]. Let γ0 and δ0 be the parts of γ

and δ defined on (0, u] and [v, 1), respectively. Let ε be a simple curve that smoothly
joins γ (u) to δ(v). Then the concatenation γ δ is defined to be the concatenation of
paths γ0εδ0.

Proposition 3.20 Let (S, M, P) be a marked surface and let �∗ be an admissible •-
dissection. Let γ be a ◦-arc or closed curve.

(1) We have that w�∗
(γ −1) = −w�∗

(γ ).
(2) The integer w�∗

(γ ) only depends on the regular homotopy class of γ (where a
regular homotopy is a homotopy for which all intermediate curves are smooth).

(3) Assume that γ is a ◦-arc, and let δ be another ◦-arc whose starting point is the
ending point of γ . Then

w�∗
(γ δ) = w�∗

(γ ) + w�∗
(δ) + ε,

where

ε =
{
1 if the ending point of γ lies to the left of γ δ;
−1 if the ending point of γ lies to the right of γ δ.
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(4) Assume that γ is a ◦-arc whose starting point and ending point are the same, and
let γ̊ be the corresponding closed curve. Then

w�∗
(γ̊ ) = w�∗

(γ ) + ε,

where

ε =
{
1 if the ending point of γ lies to the left of γ̊ ;
−1 if the ending point of γ lies to the right of γ̊ .

(5) Assume that γ1, . . . , γb are simple closed curves that enclose a compact subsur-
face S′ of S, so that the γi are the boundary components of S′ and S′ has genus g′.
Assume that the γi are oriented in such a way that S′ lies to the right of each γi .
Then

b∑

i=1

w�∗
(γi ) = 4 − 2b − 4g′.

Proof Points (1)-(4) directly follow from the definitions and Lemma 3.18 adapted to
arcs. Point (5) is a re-statement in terms of line fields of [21, Lemma 5.7].

��

4 Admissible dissections, gentle algebras and derived categories

4.1 The locally gentle algebra of an admissible dissection

In this section, we recall some results of [38] that are needed for our main results.

Definition 4.1 Let � be an admissible ◦-dissection of a marked surface (S, M, P).
The k-algebra A(�) is the quotient of the path algebra of the quiver Q(�) by the ideal
I (�) defined as follows:

• the vertices of Q(�) are in bijection with the ◦-arcs in �.
• for each marked point ◦ and for any ◦-arcs i and j meeting at ◦, add an arrow from
i to j in Q(�) every time i precedes j in the counter-clockwise order around ◦
with no other arc coming to ◦ between i and j ;

• the ideal I (�) is generated by the following relations: whenever i and j meet at a
marked point as above, and the other end of j meets k at a marked point as above,
then the composition of the corresponding arrows i → j and j → k is a relation.
Note that, in particular, the endpoints of i, j and k could all be the same.
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Example 4.2 Below is the quiver with relations of the ◦-dissection of Example 3.10.

1

5

6 4

7 3

2

8

The dotted lines in the figure represent relations.

Theorem 4.3 ([38] [39])Theassignment
(
(S, M, P),�)

) �→ A(�)defines abijection
from the set of homeomorphism classes of marked surfaces (S, M, P) with an admis-
sible dissection to the set of isomorphism classes of locally gentle algebras. Under
this bijection, gentle algebras (that is the finite dimensional locally gentle algebras)
correspond to the case where P◦ = ∅.

4.2 The surface as amodel for the derived category

We recall some of the results of [38] on the correspondence between certain curves on
(S, M, P) and objects in the triangulated category K−,b(projA(�)) of complexes of
finitely-generated projective A(�)-moduleswhich are bounded on the right andwhose
total homology is bounded. We will only recall those definitions which are needed in
what follows and we refer to [38] for a complete description of K−,b(projA(�)) in
terms of curves and intersections of curves in the associated surface.

Definition 4.4 Let (S, M, P) be a marked surface with admissible ◦-dissection �.
Recall from Definition 3.8 that a ◦-arc is in particular a smooth map from (0, 1)
to S\P . In this definition, we assume that all arcs intersect the arcs of �∗ minimally
and transversally. A graded ◦-arc (γ, f ) is a ◦-arc γ , together with a function

f : γ ∩ �∗ −→ Z,

where γ ∩ �∗ is the totally ordered set of intersection points of γ with �∗. The
function f is required to satisfy the following: if p and q are in γ ∩ �∗ and q is
the successor of p, then γ enters a polygon enclosed by •-arcs of �∗ via p and
leaves it via q. If the ◦ in this polygon is to the left of γ , then f (q) = f (p) + 1;
otherwise, f (q) = f (p) − 1.

Remark 4.5 If (γ, f ) is a finite graded ◦-arc whose endpoints are not punctures, and
if p and q are the first and last intersection points of γ with arcs of �∗, respectively,
then by Lemma 3.18 w�∗

(γ ) = f (q) − f (p), where w�∗
is as in Definition 3.2.
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In [38, Theorem 3.3], a complete description of the indecomposable objects in
K−,b(projA(�))was given in terms of graded curves; in particular, homotopy classes
of graded ◦-arcs are in bijection with certain indecomposable objects called (finite)
string objects. We denote by P•

(γ, f ) the object associated to the graded curve (γ, f ).
Furthermore, the morphisms between P•

(γ1, f1)
and P•

(γ2, f2)
correspond to the inter-

sections of γ1 and γ2 such that the gradings f1 and f2 agree locally. More precisely,
suppose that we have the following local configuration in S depicted in the figure
below,

where the four rounded curves are arcs of the dual dissection �∗ which are not nec-
essarily pairwise distinct, the three ◦ represent the allowed location of the ◦-marked
point in the polygon in which the two curves intersect, and where the intersection
point of γ1 and γ2 may be on the boundary. The two empty circles designate points
v ∈ γ1 ∩ �∗ and w ∈ γ1 ∩ �∗ such that f1(v) = f2(w). Then there is a morphism
from P•

(γ1, f1)
to P•

(γ2, f2)
.

The shift of a graded curve (γ, f ) is the graded curve (γ, f [1]), where f [1] = f −1.
It follows directly that if the intersection of γ1 and γ2 lies in the interior of S then there
is a morphism (γ2, f2) to (γ1, f1[i]) for some integer i .

5 Silting objects

Let (S, M, P) be a marked surface with P◦ = ∅, and let � be an admissible ◦-
dissection. Our aim in this section is to classify the silting objects in the bounded
derived category of Db(mod A(�)) in terms of graded curves on (S, M, P).

First, let us recall the definition of a silting object.

Definition 5.1 Let A be a finite-dimensional k-algebra. An object X of Db(mod A) is
presilting if

• X is isomorphic to a bounded complex of finitely generated projective A-modules;
• for any integer i > 0, HomDb(X , X [i]) = 0;

The object X is silting if, moreover, X generates the perfect derived category per A ∼=
Kb(projA).

The object X is tilting if it is silting and for any integer i < 0,HomDb (X , X [i]) = 0.

Our main result in this section is the following.
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Theorem 5.2 Let (S, M, P) be a marked surface, and let � be an admissible ◦-
dissection. Let X be a basic silting object in Db(mod A(�)). Then X is isomorphic
to a direct sum

⊕n
i=1 P

•
(γi , fi )

, where {γ1, . . . , γn} is an admissible ◦-dissection
of (S, M, P).

Lemma 5.3 The number of indecomposable direct summands of any silting object
in Db(mod A(�)) is |M◦| + |P| + b + 2g − 2.

Proof All silting objects have the same number of indecomposable summands [1,
Corollary 2.28]. The algebra A(�) viewed as an object of Db(mod A(�)) is a basic
silting object, and its number of indecomposable direct summands is the number of ◦-
arcs in �. By Proposition 3.12, this number is |M◦| + |P| + b + 2g − 2. ��
Lemma 5.4 Any indecomposable summand of a presilting object in Db(mod A(�))

is isomorphic to an object of the form P•
(γ, f ), where (γ, f ) is a graded ◦-arc.

Proof This is a consequence of [38, Theorem 2.12]. More precisely, if γ is an infinite
arc, then P•

(γ, f ) is not in Kb(projA(�)). If γ is a closed curve, then any band object
associated to it has self-extensions, and thus cannot be a direct summand of a presilting
object. ��
Lemma 5.5 Let (γ, f ) and (δ, g) be two graded ◦-arcs, and let P•

(γ, f ) and P•
(δ,g) be the

corresponding objects. If P•
(γ, f ) ⊕ P•

(δ,g) is presilting, then γ and δ may only intersect
at their endpoints.

Proof Assume that γ and δ intersect in the interior of the surface. Consider the local
picture around such an intersection point.

If f (p) < g(q), then HomDb(mod A(�))(P
•
(γ, f ), P

•
(δ,g)[g(q) − f (p)]) 	= 0, con-

tradicting the assumption that P•
(γ, f ) ⊕ P•

(δ,g) is presilting. Thus f (p) ≥ g(q).
In a similar way, we prove that g(q) ≥ f (p′) ≥ g(q ′). But the picture implies
that f (p′) = f (p) + 1 and g(q ′) = g(q) + 1, a contradiction.

��
Lemma 5.6 Let (γ1, f1), . . . , (γr , fr ) be pairwise distinct graded ◦-arcs such that the
object P•

(γ1, f1)
⊕ . . . ⊕ P•

(γr , fr )
is basic presilting. Then {γ1, . . . , γr } is an admissible

collection of ◦-arcs.
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Proof By Lemma 5.5, the arcs γ1, . . . , γr are pairwise non-intersecting, except possi-
bly at their endpoints. It remains to be shown that they do not enclose any unpunctured
surface. Assume that arcs γ1, . . . , γs do enclose an unpunctured surface S′. We can
orient the arcs so that the surface S′ lies to the right of each γi . Say that S′ has b bound-
ary components. Let us re-index the γi in such away that the j-th boundary component
consists of the arcs γ j,1, . . . , γ j,s j , and let δ j be the concatenation of the γ j,i .

Then by Proposition 3.20(5), we have that

b∑

j=1

w�∗
(δ j ) = 4 − 2b − 4g′.

Now, let p j,i and q j,i be the first and last intersection points of γ j,i with arcs of�∗,
for all j ∈ {1, . . . , b} and all i ∈ {1, . . . , s j }. Using Proposition 3.20(3) and (4), we
have that

b∑

j=1

w�∗
(δ j ) =

b∑

j=1

(
s j +

s j∑

i=1

w�∗
(γ j,i )

)

=
b∑

j=1

(
s j +

s j∑

i=1

(
f j,i (q j,i ) − f j,i (p j,i )

))
.

Finally, by the definition of a silting object and the description of morphisms
between the objects P•

(γi , fi )
(see [38, Theorem 3.3]), we have that for all j ∈ {1, . . . , b}

and all i ∈ {1, . . . , s j } (taken modulo s j ), f j,i+1(p j,i+1) ≤ f j,i (q j,i ), otherwise
there would be a non-zero morphism in HomDb (P•

(γ j,i , f j,i )
, P•

(γ j,i+1, f j,i+1)
[
]) for

some 
 > 0. Hence

4 − 2b − 4g′ =
b∑

j=1

w�∗
(δ j ) =

b∑

j=1

(
s j +

s j∑

i=1

(
f j,i (q j,i ) − f j,i (p j,i )

)) ≥
b∑

j=1

s j ≥ b.

Since the right-hand side is positive, we must have that g′ = 0 and b = 1, so S′
is a disc. Moreover, we deduce that s ≤ 2. But s = 1 is impossible, otherwise S′
would be a monogon, so the only curve on its boundary would be contractible in S,
a contradiction. Thus s = 2. But then γ1 and γ2 enclose an unpunctured digon,
so γ2 = γ −1

1 . Thus P•
(γ1, f1)

and P•
(γ2, f2)

are isomorphic up to shift, and the only way
for P•

(γ1, f1)
⊕ P•

(γ2, f2)
to be presilting is for the two objects to be isomorphic. This

contradicts the fact that the graded ◦-arcs are pairwise distinct.
Thus the ◦-arcs γ1, . . . , γr do not enclose any unpunctured surface, and they form

an admissible ◦-dissection.
��

Proof of Theorem 5.2 Let X be a basic silting object. By Lemma 5.3, it has n =
|M◦| + |P| + b+ 2g− 2 indecomposable direct summands. By Lemma 5.4, there are
graded ◦-arcs (γ1, f1), . . . , (γn, fn) such that X is the direct sum of all the P•

(γi , fi )
. By
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Lemma 5.5, {γ1, . . . , γn} is an admissible collection of ◦-arcs. By Proposition 3.12,
this collection is an admissible ◦-dissection. ��

A converse of Theorem 5.2 can be stated by using the following result.

Proposition 5.7 Let A be a basic gentle algebra, and let X be a basic presilting
object in Db(mod A). Let n be the number of indecomposable summands in any
decomposition of A. Then X is silting if and only if its number of indecomposable
summands in any decomposition is n.

Proof Anybasic silting object has n indecomposable direct summands by [1, Corollary
2.28]. We need to prove the converse for gentle algebras. Let (S, M, P) be the marked
surface associated to A. Assume that X has n indecomposable direct summands. We
need to show that X generates Kb(proj(A)). Using Lemma 5.4, we can write

X =
n⊕

i=1

P•
(γi , fi ).

By Lemma 5.6, we get that γ1, . . . , γn form an admissible collection of ◦-arcs. By
Proposition 3.12, this collection is an admissible ◦-dissection, since n is the number
of arcs in the admissible dissection associated with A.

Write A = ⊕m
i=1 P

•
(δi ,gi )

. It suffices to show that a shift of each P•
(δi ,gi )

is in
the triangulated category generated by X . This is achieved as follows. Any δi is the
concatenation of some of the γ j . To see this, note that the γ j cut the surface into
discs by Proposition 3.11. An arc crossing a disc is homotopic to a concatenation of
some of the segments forming the boundary of this disc; applying this to all discs
crossed by δi , we get that δi is a concatenation of the γ j . Finally, by [38, Theorem
4.1], concatenation of arcs corresponds to taking the cones of morphisms between the
associated objects (up to a shift) in Db(mod A). Thus the P•

(δi ,gi )
are in the triangulated

category generated by the P•
(γi , fi )

. ��
Corollary 5.8 Let A be a gentle algebra with associated marked surface (S, M, P)

and ◦-dissection �. Let (γ1, f1) . . . , (γr , fr ) be graded ◦-arcs such that γ1, . . . , γr
form an admissible ◦-dissection �′ of (S, M, P).

For any ◦-marked point, let γi1 , . . . , γis be the arcs of �′ ending in that marked
point in counter-clockwise order, and let pi1 , . . . , pis be their respective intersection
with the dual •-dissection �∗ closest to the ◦-marked point.

(1) If, for every ◦-marked point, we have that

fi1(pi1) = . . . = fis (pis ),

then
⊕r

i=1 P
•
(γi , fi )

is a tilting object.
(2) If, for every ◦-marked point, we have that

fi1(pi1) ≥ . . . ≥ fis (pis ),

then
⊕r

i=1 P
•
(γi , fi )

is a silting object.
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6 Derived invariants for gentle algebras

In this Section, combining the results of the previous sections, we show when two
gentle algebras are derived equivalent. Namely, we prove the following.

Theorem 6.1 Let A and A′ be gentle algebras, and let (S, M, P) and (S′, M ′, P ′) be
marked surfaces with no ◦ punctures and with admissible •-dissections �∗ and �′∗
associated to A and A′, respectively. Then A and A′ are derived equivalent if and only if
there exists anorientation-preservinghomeomorphism� : (S, M, P) → (S′, M ′, P ′)
such that for any simple closed curve δ on (S, M, P), we have

w�′∗(
�(δ)

) = w�∗
(δ).

Proof Assume that A and A′ are derived equivalent. Then by Rickard’s theorem [42],
there exists a tilting object T in Db(A)whose endomorphism ring is isomorphic to A′.
By Theorem 5.2, there are graded curves (γ1, f1), . . . , (γn, fn) on (S, M, P) such
that T ∼= ⊕n

i=1 P
•
(γi , fi )

. By Theorem 5.2, the curves γ1 . . . , γn form an admissible ◦-
dissection �T of (S, M, P). Moreover, using the description of the morphisms in
the derived category given in [38, Theorem 3.3], one obtains that the algebra A(�T )

(see Definition 4.1) is isomorphic to A′. By Theorem 4.3, there exists an orientation-
preserving homeomorphism � : (S, M, P) → (S′, M ′, P ′) sending �T to �′.

Let δ be any closed curve on (S, M, P). Then δ is isotopic to a concatenation of
arcs δ1, . . . , δs from the dissection �. By Proposition 3.20, we have

w�∗
(δ) = 
 − r +

s∑

i=1

w�∗
(δi ),

where 
 and r are the number of i ∈ {1, . . . , s} (takenmodulo s) such that the endpoint
of δi is to the left or to the right, respectively, of the concatenation δiδi+1. Note that
for each i , we have thatw�∗

(δi ) = 0, since the δi are part of the initial ◦-dissection�.
Thus

w�∗
(δ) = 
 − r .

Similarly, δ is isotopic to a concatenation of arcs γ j1, . . . , γ ju from the dissec-
tion �T . Let pi and qi be the first and last intersection point of γ ji with arcs of �∗

T .
By Proposition 3.20, we get that

w�∗
(δ) = 
T − rT +

u∑

i=1

w�∗
(γ ji )

= 
T − rT +
u∑

i=1

(
f ji (qi ) − f ji (pi )

)
,

where 
T and rT are the number of i ∈ {1, . . . , u} (taken modulo u) such that the
endpoint of γ ji is to the left or to the right, respectively, of the concatenation γ ji γ ji+1 .
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Since T is tilting, we have that f ji (qi ) = f ji+1(pi+1) for all i . Thus
∑u

i=1

(
f ji (qi )−

f ji (pi )
) = 0, so

w�∗
(δ) = 
T − rT .

Finally, consider the simple closed curve�(δ) on (S′, M ′, P ′). It is a concatenation
of the ◦-arcs �(γ j1), . . . , �(γ ju ). Since these arcs are in the initial ◦-dissection �′
of (S′, M ′, P ′), a similar calculation yields

w�∗
(δ) = 
′ − r ′ +

u∑

i=1

w�′∗
(�(γ ji ))

= 
′ − r ′,

where 
′ and r ′ are the number of i ∈ {1, . . . , u} (taken modulo u) such that the
endpoint of �(γ ji ) is to the left or to the right, respectively, of the concatena-
tion�(γ ji )�(γ ji+1). Since� is a homeomorphism, we have that 
′ = 
T and r ′ = rT .
Thus

w�′∗
(�(δ)) = 
′ − r ′ = 
T − rT = w�∗

(δ).

Assume now that there exists a � as in the statement of the theorem. Denote
by τ ′

1, . . . , τ
′
n the ◦-arcs of �′, by τ1, . . . , τn their preimages by �, and let g′

1, . . . , g
′
n

be gradings such that A′ = ⊕n
k=1 P

•
(τ ′

k ,g
′
k )
.

It is clear that A(�−1(�′)) ∼= A′. Ifwe can show that there exist gradings g1, . . . , gn
on the ◦-arcs τ1, . . . , τn such that T = ⊕n

k=1 P
•
(τk ,gk )

is a tilting object, then we would
have that EndDb(A)(T ) ∼= A′ would be derived equivalent to A, and the theoremwould
be proved.

To construct such gradings, we first recursively associate an integer n(x) to each ◦
marked point x of (S, M, P) as follows. Let x0 be any ◦marked point, and let n(x0) :=
0. For any ◦ marked point x , there exists a path τ

ε1
i1

· · · τ εr
ir

from x0 to x (where each εi

is a ±1), since �′ is connected. Let

n(x) :=
r∑

k=1

w�∗
(τ

εk
ik

).

This integer does not depend on the choice of a path from x0 to x : if τ
η1
j1

· · · τηs
js

is

another such path, then let γ be the concatenation τ
η1
j1

· · · τηs
js

τ
−εr
ir

· · · τ−ε1
i1

. Then by
the hypothesis on �, we get that

w�∗
(γ̊ ) = w�′∗

(�(γ̊ )),
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where γ̊ is as in Proposition 3.20(4). Applying Lemma 3.18 on both sides of this
equation, we get that

s∑

k=1

w�∗
(τ

ηk
jk

) −
r∑


=1

w�∗
(τ

ε


i

) =

s∑

k=1

w�′∗
(τ

′ηk
jk

) −
r∑


=1

w�′∗
(τ

′ε


i

).

Notice that the right-hand side of this equation is zero: indeed, since the arcs τ ′
i are

part of the dissection �′, we have that w�′∗
(τ ′

i ) = 0 for all i ∈ {1, . . . , n}. Therefore

s∑

k=1

w�∗
(τ

ηk
jk

) =
r∑


=1

w�∗
(τ

ε


i

),

so the integer n(x) does not depend on the choice of path from x0 to x .
Using the integers n(x), define the gradings g1, . . . , gn on τ1, . . . , τn in such a way

that for all i ∈ {1, . . . , n}, if xi is the starting point of τi and pi is the intersection
point of τi with �∗ closest to xi , then gi (pi ) = n(xi ).

Let yi be the endpoint of τi , and let qi be the intersection point of τi with �∗
closest to yi . If we prove that gi (qi ) = n(yi ), then by Corollary 5.8, we would have
that

⊕n
i=1 P

•
(τi ,gi )

is a tilting object. But

gi (qi ) = gi (pi ) + w�∗
(τi )

= n(xi ) + w�∗
(τi )

=
r∑

j=1

w�∗
(τ

ε j
i j

) + w�∗
(τi ) (for any path

r∏

j=1

τ
ε j
i j

from x0 to xi )

= n(yi ).

Therefore
⊕n

i=1 P
•
(τi ,gi )

is a tilting object. This proves that A and A′ are derived
equivalent.

��

Remark 6.2 Restricting Theorem 6.1 to the closed curves circling boundary com-
ponents of (S, M, P), we reobtain the derived invariant of D. Avella-Alaminos
and C. Geiss [12] by using [38].

Indeed, if c is a curve surrounding a boundary component or a puncture (and having
the boundary on the left), then�(c) is also a curve surrounding a boundary component,
and the number of marked points on the respective boundary components coincide.
Then it is clear that the collections of pairs (n j , n j − w�∗

(c j )) for j = 1, . . . b + p
where n j is the number of ◦ marked points on the boundary component attached to
c j is a derived invariant. It is the AG invariant by [38].
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7 Numerical derived invariants via Arf invariants

7.1 Action of themapping class group

The following section recalls results of [35], that are a generalisation from vector fields
to line fields of results due to Kawazumi [33] that mainly follow from [5, 29]).

Define the mapping class group of 	 as

MCG(	) = Diff+,∂	(	)/Diff+,∂	
0 (	)

where Diff+,∂	(	) is the group of orientation-preserving diffeomorphisms on 	 that
are the identity pointwise on the boundary, and Diff+,∂	

0 (	) is the subgroup of those
isotopic to the identity.

The mapping class group acts on the set LF(	) (see Proposition 3.4). Indeed, to a
line field η and to a diffeomorphism �, one can define the pullback of η by � as

�∗(η)(x) = [(Tx�)−1](η ◦ �(x)) ∀x ∈ 	.

If � is isotopic to the identity, then η and �∗(η) are homotopic line fields, hence the
action is well-defined.

Lemma 7.1 Let η be a line field on 	, and � ∈ Diff+,∂	(	). For any f ∈ C1(S1, 	)

we have w�∗(η)( f ) = wη(�∗( f )).

Proof An immediate computation gives for each z ∈ S
1

Z�∗( f )(z) = [T f (z)� ◦ Tz f (1)], X�∗( f ),η(z) = η ◦ � ◦ f (z),

Z f (z) = [Tz f (1)] and X f ,�∗(η)(z) = [(T f (z)�)−1](η ◦ � ◦ f (z)).

Hence we have X�∗( f ),η = [T�]∗(X f ,�∗(η) and Z�∗( f ) = [T�]∗(Z f ). Since the
following diagram is commutative we get the result.

1 π1(S
1, 1)

ι∗
π1(P(T	), [v0]) p∗

[T�]∗

π1(	, x0)

�∗

1

1 π1(S
1, 1)

ι∗
π1(P(T	), [Tx0�(v0)]) p∗

π1(	,�(x0)) 1

��
Remark 7.2 Combining the above result together with Proposition 3.4 (2), Theorem
6.1 can be reformulated as Theorem 1.1, that is, two gentle algebras A(�) and A(�′)
are derived equivalent if and only if there exists a homeomorphism of marked surfaces
� : (S, M, P) → (S′, M ′, P ′) such that the line fields �∗(η(�∗)) and η(�′∗) are
homotopic.
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Let	 be a smooth surface of genus g, withb boundary components and p punctures.
We denote by ∂1	, . . . , ∂b	 the boundary components of 	.

Denote by B = {c1, . . . , cb+p} a set of simple closed curves such that for j =
1, . . . b, c j is homotopic to the boundary component ∂ j	 (being on the left of the
curve), and so that cb+k is homotopic to a circle around the k-th puncture for k =
1, . . . , p. Let denote 	 the closed surface with empty boundary obtained by adding
closed discs to each bounday component. Let G = {α1, β1, . . . , αg, βg}be a set of
closed simple curves, such that their image in H1(	,Z) is a symplectic basis (with
respect to the intersection form).

α1

β1

α2

β2

c1

∂1	

c2

∂2	

c3c4

The following result provides criterion to check wether two line fields are in the
same MCG(	)-orbit.

Theorem 7.3 [35, Theorem 1.2.4] Let 	 be a surface with boundary, and punctures
and let B and G as above. Let η and η′ be two line fields on 	. Then η and η′ are in
the same MCG(	)-orbit if and only if one the following occurs:

(1) (for g = 0) for any j = 1, . . . , b we have wη(ci ) = wη′(ci ).
(2) (for g = 1) for any j = 1, . . . , b we have wη(ci ) = wη′(ci ) and

gcd{wη(γ ),wη(c) + 2, γ ∈ G, c ∈ B} = gcd{wη′(γ ), wη(c) + 2, γ ∈ G, c ∈ B}

(3) (for g ≥ 2) for any j = 1, . . . , b we havewη(ci ) = wη′(ci ) and one the following
occurs:

(a) there exist γ and γ ′ in G ∪ B such that wη(γ ) and wη′(γ ′) are odd, or
(b) for any γ in G ∪ B, the numbers wη(γ ) and wη′(γ ) are even and there exists

an i with wη(ci ) = 0 mod4, or
(c) for any γ in G ∪ B, the numbers wη(γ ) and wη′(γ ) are even, for any i =

1, . . . , b + p we have wη(ci ) = 2 mod4 and

g∑

i=1

(
1

2
wη(αi ) + 1)(

1

2
wη(βi ) + 1) =

g∑

i=1

(
1

2
wη′(αi ) + 1)(

1

2
wη′(βi ) + 1) mod2.
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7.2 Application to derived equivalences

Let S,M = M◦∪M• and P = P• be as in Section 4.1.Denote by g the genus of	,b the
number of boundary components of S and p the cardinality of P . Define the following
sets of simple closed curves on S\P as the previous section B = {c1, . . . , cb+p} and
G = {α1, β1, . . . , αg, βg} .

For each j = 1, . . . , b, we denote by n( j) the number of ◦ marked points on ∂ j S;
for j = b + 1, . . . , b + p, we let n( j) = 0.

Combining Theorems 6.1 and 7.3, we obtain a numerical criterion to decide when
two gentle algebras are derived equivalent.

Theorem 7.4 Let A and A′ be two gentle algebras with associated dissected sur-
faces (S, M, P,�) and (S′, M ′, P ′,�′), respectively. Let G = {α1, . . . , βg}, B =
{c1, . . . , cb+p} (resp. G′ = {α′

1, . . . , β
′
g′ }, B′ = {c′

1, . . . , c
′
b′+p′ } ) subsets of simple

closed curves on S\P (resp. S′\P ′) as before. Then the algebras A and A′ are derived
equivalent if and only if the following numbers coincide:

(1) g = g′, b = b′, �M = �M ′, �P = �P ′;
(2) there exists a permutation σ ∈ Sb+p such that n(σ ( j)) = n′( j) for any j =

1, . . . , b + p and w�∗
(cσ( j)) = w�′∗

(c′
j ), for any j = 1, . . . , b;

(3) for g = g′ ≥ 1 one of the following holds

(a) for g = g′ = 1, we have

gcd{w�∗
(γ ), w�∗

(c) + 2, γ ∈ G, c ∈ B} = gcd{w�′∗
(γ ′),

w�′∗
(c′) + 2, γ ′ ∈ G′, c′ ∈ B′}

(b) for g = g′ ≥ 2 one the following occurs:
(i) there exist γ ∈ G ∪B and γ ′ ∈ G′ ∪B′ such that w�∗

(γ ) and w�′∗
(γ ′)

are odd, or
(ii) for any γ ∈ G ∪B and γ ′ ∈ G′ ∪B′, the numbers w�∗

(γ ) and w�′∗
(γ ′)

are even and there exists an i with w�∗
(ci ) = 0 mod4, or

(iii) for any γ ∈ G ∪B and γ ′ ∈ G′ ∪B′, the numbers w�∗
(γ ) and w�′∗

(γ ′)
are even and, for any i = 1, . . . , b + p we have w�∗

(ci ) = 2 mod 4
and

g∑

i=1

(
1

2
w�∗

(αi ) + 1

) (
1

2
w�∗

(βi ) + 1

)

=
g∑

i=1

(
1

2
w�′∗

(α′
i ) + 1

) (
1

2
w�′∗

(β ′
i ) + 1

)
mod2.
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The first step in the proof of this theorem consists of showing that the different numbers
computed from the winding numbers of the curves in G above are independent of the
choice of the set G.

In order to prove it we need the following lemma:

Lemma 7.5 In the set up above, assume that for any γ ∈ G ∪ B, the winding number
w�∗

(γ ) is even. Then there exists a unique quadratic form q�∗ : H1(S\P,Z2) → Z2
satisfying:

• for all x and y in H1(S\P,Z2),

q�∗(x + y) = q�∗(x) + q�∗(y) + (x, y)

where (−,−) is the intersection form on H1(S\P,Z2) and
• for any simple closed curve γ in S\P

q�∗([γ ]) = 1

2
w�∗

(γ ) + 1.

If moreover for all i = 1, . . . , b + p we have w�∗
(ci ) = 2 mod 4, the form q�∗

descends to a quadratic form q�∗ on H1(S,Z2). Its Arf invariant is given by the
formula

Arf(q�∗) =
g∑

i=1

q�∗([āi ])q�∗([b̄i ])

for any symplectic geometric basis (ā1, b̄1, . . . , āg, b̄g) of H1(S,Z2).

Proof First note that by Proposition 3.4 (4) and (3), if all winding number of the basis
are even, then the winding number of any curve is even, and the line field comes from
a vector field.

The unicity of the map is clear. The fact that q�∗ is well-defined comes from [29]
[Theorem 1.A] adpated to the case where the surface has boundary components and
punctures (see [35][Proposition 1.2.2]).

The equality w�∗
(ci ) = 2 mod 4 is equivalent to q�∗(ci ) = 0. Hence the second

statement is clear.
The computation of the Arf invariant goes back to [5].

��
Proof of Theorem 7.4 We first show that all numbers associated to the surface S′
involved in the statement can be replaced by the image of the curves G and B through
a homeomorphism S → S′.

The item (1) together with the fact that there exists a permutation σ with n(σ ( j)) =
n( j) is equivalent to the existence of a orientation-preserving homeomorphism � :
S → S′ sending M to M ′ and P to P ′. Moreover for any homeomorphism for any
i ∈ {1, . . . , b + p}, �(ci ) is a curve isotopic to c′

j where n′( j) = n(i), so up to
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renumbering the boundary components and the punctures of S′, we can assume that
�(ci ) = c′

i for any i = 1 . . . , b + p.
Now if the genus g′ is 1, it is proven in [33], that

gcd{w�′∗
(γ ′), w�∗

(c′) + 2, γ ∈ G′, c ∈ B′} = gcd{w�∗
(γ ), γ non separating closed curve}.

Therefore this number is independent of the choice of the set G and we have

gcd{w�′∗
(γ ′), w�∗

(c′) + 2, γ ′ ∈ G ′, c′ ∈ C ′, }
= gcd{w�′∗

(�(γ )), w�′∗
(�(c)) + 2, γ ∈ G, c ∈ B}.

The first item for genus g′ ≥ 2 is equivalent to the fact that the line field η(�′∗)
does not come from a vector field (see Proposition 3.4 (3) and (4)). Therefore it is
equivalent to the fact that there exists a γ ∈ G with w�′∗

(�(γ )) odd.
The second item is also clearly independent of the choice of G.
In the case of the item (iii), we have

g∑

i=1

(
1

2
w�′∗

(α′
i ) + 1

) (
1

2
w�′∗

(β ′
i ) + 1

)

=
g∑

i=1

(
1

2
w�′∗

(�(αi )) + 1

) (
1

2
w�′∗

(�(βi )) + 1

)
mod2

using Lemma 7.5.

We prove the statement for g = 1, the proof is similar for g = 0 and g ≥ 2.
Suppose that A and A′ are derived equivalent. Then by Theorem 6.1 there exists

an orientation preserving homeomorphism � : S → S′ inducing bijections from M
to M ′ and from P to P ′ and such that for any γ ∈ π free

1 (S\P), we have w�∗
(γ ) =

w�′∗
(�∗(γ )).

We can assume that � is a diffeomorphism. Indeed since S and S′ are homeomor-
phic, they are also diffeomorphic. Let� : S → S′ be a diffeomorphism. Then�−1◦�

is a homeomorphism of S, and there exists �̄ a diffeomorphism of S which is isotopic
to�−1 ◦�. Therefore �̄ and�−1 ◦� have the same action on the fundamental group.
Hence � ◦ �̄ is a diffeomorphism from S to S′ which have the same action as � on
the fundamental groups of S and S′.

Denote by η (resp. η′) the line fields corresponding to � (resp. �′) as defined in
Lemma 3.16. So we have that, for any simple closed curve γ ,

wη(γ ) = w�∗
(γ ) = w�′∗

(�∗(γ )) = wη′(�∗(γ )) = w�∗(η′)(γ ).

Hence the line fields η and �∗(η′) are homotopic by Proposition 3.4. Moreover, the
above equality implies that all the conditions of the theorem are satisfied.

Assume now that there exists a homeomorphism � : S → S′ (which can be again
assumed to be a diffeomorphism) satisfying the conditions of the theorem. As above,



A complete derived invariant for gentle algebras... Page 27 of 36 30

denote by η and η′ the line fields corresponding to � and �′, respectively, as defined
in Lemma 3.16. Then the line field �∗(η′) is such that for all c ∈ B,

w�∗(η′)(c) = w�′∗
(�∗(c)) = w�∗

(c) = wη(c).

Moreover, we have that

gcd{w�∗
(c′) + 2, γ ′ ∈ G ′, c′ ∈ C ′}

= gcd{w�′∗
(�(γ )), w�′∗

(�(c)) + 2, γ ∈ G, c ∈ B}

and the hypotheses of the theorem translate to the conditions of Theorem 7.3 applied
to η and �∗(η). Therefore, by Theorem 7.3, the line fields η and �∗(η) are in the
same MCG(S\P)-orbit.

Let ϕ a diffeomorphism of S\P be such that ϕ∗�∗(η′) is homotopic to η. Then for
all γ ∈ π free

1 (S\P), we have that

w�∗
(γ ) = wη(γ ) = wϕ∗�∗(η′)(γ ) = wη′(�∗ϕ∗γ ) = w�′∗

(�∗ϕ∗γ ).

Therefore, the homeomorphism�◦ϕ satisfies the hypotheses of Theorem 6.1. Thus A
and A′ are derived equivalent. ��
Remark 7.6 If one starts with a gentle algebras A, the marked surface as constructed in
[38] or [39] is given either by a thickening of a ribbon graph or by glueing polygons.
Finding the genus and number of boundary components and marked points of the
surface present no difficulty (see for instance [39, Remark 4.11]), and neither does
finding walks on the quiver corresponding to the curves ci (they are constructed in
[12]), but our methods do not provide an algorithm for finding walks corresponding
to elements in a geometric symplectic basis G.

8 Reproving known results on gentle algebras

8.1 The class of gentle algebras is stable under derived equivalences

The following result was first proved by J. Schröer and A. Zimmermann in [45]. Their
proof relies on the embedding of the bounded derived category of an algebra into the
stable module category of its repetitive algebra (see [27, Section II.2]). We provide
a new proof using the geometric model of the bounded derived category of gentle
algebras.

Theorem 8.1 ( [45]) Let A and B be two finite-dimensional k-algebras which are
derived-equivalent. If A is gentle, then so is B.

Proof Since A is gentle, Theorem 4.3 implies that there exists a marked sur-
face (S, M, P) and an admissible ◦-dissection � such that A ∼= A(�). By a theorem
of J. Rickard [42], there exists a tilting object T in Db(mod A) whose endomorphism



30 Page 28 of 36 C. Amiot et al.

algebra is isomorphic to B. ByTheorem5.2, the tiltingobjectT is isomorphic to adirect
sum

⊕n
i=1 P

•
(γi , fi )

, where {γ1, . . . , γn} is an admissible ◦-dissection of (S, M, P).
Using [38, Theorem 3.3], one sees that the endomorphism algebra of T has to be
gentle. Thus B is gentle. ��
Remark 8.2 While it is assumed in [45] that the field k is algebraically closed, the
proofs in that paper seems to be valid over any field. The above argument also works
for any field.

8.2 Gentle algebras are Gorenstein

The following result was first proved by C.Geiss and I. Reiten [26]. Recall that a
finite-dimensional algebra is Iwanaga–Gorenstein if the projective dimensions of its
injective modules and the injective dimensions of its projective modules are bounded.

We provide a new proof of the following result.

Theorem 8.3 ( [26]) Gentle algebras are Iwanaga–Gorenstein.

Proof Since the opposite algebra of a gentle algebra is gentle, it suffices to show that the
projective dimensions of its injective modules are bounded; the fact that the injective
dimensions of its projective modules are bounded is then obtained by applying duality.

Let A be a gentle algebra. By Theorem 4.3, there exists a marked surface (S, M, P)

and an admissible ◦-dissection � such that A ∼= A(�).
Let I be an indecomposable injectivemodule. Then I = νP for an indecomposable

projectivemodule P , where ν is the Nakayama functor. Note that P = P•
(γ, f ), where γ

is one of the arcs of �. By [38, Theorem 5.1], the Nakayama functor ν applied
to P•

(γ, f ) yields an object P•
(γ ′, f ′), where γ ′ is obtained from γ by moving both its

endpoints along their respective boundary components. Thus γ ′ is a finite ◦-arc, so
I = νP = P•

(γ ′, f ′) is in Kb(projA). This is equivalent to the statement that I has
finite projective dimension. ��

9 Examples

Consider the following two gentle algebras given by the following quivers and where
dotted arcs indicate zero relations:

• • •

�1

1

2

3

�2

Both corresponds to dissections of a torus with one boundary components with two
◦ and two • marked points.
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Here is the corresponding ◦ dissection �1 for �1 (where opposite sides of the
dotted square are identified), together with its dual • dissection �∗

1.

c

α

β

One easily computes the winding numbers of w�∗
1 (c) = −2, w�∗

1 (α) = 0 and
w�∗

1 (β) = 0. Hence the greatest common divisor of Theorem 7.4 is 0.
For �2 one gets the following picture for �2 and �∗

2.

One easily computes that w�∗
2 (c) = −2 = w�∗

1 , hence the algebras have the same
AG-invariant. However, we have w�∗

2 (α) = 0 and w�∗
2 (β) = 2 hence the greatest

common divisor is 2 	= 0 and the algebras�1 and�2 are not derived equivalent. Note
that this was already shown in [30].

Consider now the following two algebras:

•

•

•

•

• •

�1

•

•

•

•

•

•

�2

One can check that these two algebras both come from a dissection of a torus with
two boundary components, 3 ◦ marked points (hence 3 • marked points), and one •
puncture.
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The corresponding dual dissections �∗
1 and �∗

2 are as follows:

α

β

�∗
1

α

β

�∗
1

One computes that for both algebras the winding numbers of the curves c1, c2 and
c3 are respectively −3, 0 and −3. Therefore the algebras �1 and �2 have the same
AG-invariant. Moreover, since −3 + 2 = 1, both gcd are 1 and so the algebras are
derived equivalent.

10 Complete derived invariant for surface cut algebras

A theorem similar to Theorem 6.1 has been shown in [2] for surface cut algebras.
These algebras are gentle and appear in the theory of cluster categories [2, 23]. In
this context, they naturally arise with a slightly different model from the one in [38].
The purpose of this Section is to give a reformulation of Theorem 7.4 in terms of this
geometric model.

Let 	 be an oriented connected compact surface of genus g, with b boundary
components and M be a finite set of marked points on the boundary of 	, such that
there is at least one marked point on each component of the boundary. By an arc, we
mean the isotopy class of a simple curve with endpoints being in M that does not
cut out a monogon or a digon of the surface. Two arcs are called non intersecting if
there exist representatives in their respective homotopy class that do not intersect. A
triangulation of (	,M) is a maximal collection of non intersecting arcs.

To each triangulation� it is possible to associate a quiver Q� as follows (see [25]):
the set of vertices Q�

0 of Q� is the set of internal arcs of �, and the set of arrows Q�
1

is in bijection with the set of oriented internal angles between two arcs of �. We also
denote by Q�

2 the set of oriented internal triangles of �, that are the triangles whose
three sides are internal arcs of the triangulation. The Jacobian algebra associated to �

has been introduced in [7]. It is defined as the quotient

Jac(�) := kQ�/〈αβ, βγ, γ α, ∀αβγ ∈ Q2〉.

Definition 10.1 [2, Def. 2.8] An admissible cut of � is a map d : Q1 → {0, 1} such
that

• for each internal triangle αβγ in Q2, we have d(α) + d(β) + d(γ ) = 1
• for each angle α in a triangle which is not internal, we have d(α) = 0 .
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An admissible cut defines a positive Z-grading on the Jacobian algebra Jac(�).
The surface cut algebra (first introduced in [23]) � := (�, d) associated to � and d,
is the degree zero subalgebra of Jac(�, d). In other words � := �(�, d) is the path
algebra of degree zero arrows of Q� divided by the ideal generated by the relation
αβ = 0 as soon as the arrows α and β correspond to angles of the same triangle.

Remark 10.2 One can show that the surface cut algebras are exactly the gentle algebras
of global dimension ≤ 2 such that the functor − ⊗� Ext2�(D�,�) is nilpotent (that
is τ2-finite). For example, the algebra �1 given in the first example of Section 9 has
global dimension 2, but the associated Jacobian algebra is an infinite dimensional
algebra. It comes from a triangulation of a surface with empty boundary, so it is not a
surface cut algebra in the sense of [2].

An admissible cut d of a triangulation � defines a map d : π free
1 (	) → Z that counts

with signs the number of times the loop γ intersects an angle of degree 1 of � (see
[3, section 2] for details).

In fact this map d has a geometric interpretation.

Lemma 10.3 Let (	,M) be a smooth orientable surface with marked points, and
let (�, d) be a triangulation of (	,M) together with an admissible cut. Then there
exists a unique element in LF(	) such that for any element γ ∈ π free

1 (	), we have
the equality wη(γ ) = d(γ ).

Proof Choose a smooth representatives of each arc of �. We define η on each triangle
of � so that it is the tangent field along each internal arc of �. The corresponding
foliation is drawn in the following picture depending on wether there is one, two or
three sides of the triangle that are internal arcs. This will define a line field on 	\M.

•

•

•

two boundary sides

•

•

•

one boundary side

•

•

•

no boundary side and d(α) = 1

α

It is then clear that the degree of any arrow of Q� is equal to the winding number of
the corresponding curve in the triangle. The proof is then similar to the one of Lemma
3.18.

��
The following result is the main theorem in [2].

Theorem 10.4 [2, Thm 3.13] Let � = (	,M,�, d) and �′ = (	′,M′,�′, d ′) be
surface cut algebras. Then the following are equivalent
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(1) � and �′ are derived equivalent;
(2) There exists an orientation-preserving homeomorphism � : 	 → 	′ with

�(M) = M′ such that for any loop γ ∈ π free
1 (	) we have d(γ ) = d ′(� ◦ γ ).

Combining this theoremwithLemma10.3,we obtain a result analogous to Theorem
6.1. However, it is interesting to note that the proof of Theorem 10.4 uses completely
different tools. Themain ingredient in the proof of the above result are (graded) cluster
mutations and cluster categorification.

Using Theorem 7.3, it is possible to translate this result into a numerical criterion
to check wether two surface cut algebras are derived equivalent.

Denote byG = {α1, β1, . . . , αg, βg} andB = {c1, . . . , cb} a basis of the fundamen-
tal group as in section 7. For each j = 1, . . . , b, we denote by n( j) = �(M ∩ ∂ j	)

the number of marked points on ∂ j	.

Theorem 10.5 Let � = (	,M,�, d) and �′ = (	′,M′,�′, d ′) be surface cut
algebras. Let B and G (resp. B′ and G′) be sets of simple closed curves on 	 (resp.
	′). Then�and�′ are derived equivalent if and only if the following numbers coincide

(1) g = g′, b = b′, �M = �M′;
(2) there exists a permutation σ ∈ Sb such that for any i = 1, . . . , b we have

n(σ (i)) = n′(i) and d(cσ(i)) = d ′(c′
i );

(3) and if the genus g(	) is positive, one of the following holds:

(a) for g(	) = 1, we have

gcd{d(γ ), d(c) + 2, γ ∈ G, c ∈ B} = gcd{d ′(γ ′), d ′(c′) + 2, γ ′ ∈ G′, c′ ∈ B′}

(b) for g(	) ≥ 2, one the following occurs

(i) there exist γ in G ∪ B and γ ′ in G′ ∪ B′ such that d(γ ) and d ′(γ ′) are
odd, or

(ii) for any γ in G∪B, for any γ ′ in G′ ∪B, the numbers d(γ ) and d ′(�(γ ))

are even and there exists an i with d(ci ) = 0 mod4, or
(iii) for any γ in G ∪ B and γ ∈ G ∪ B, the numbers d(γ ) and d ′(γ ′) are

even, for any i = 1, . . . , b we have d(ci ) = 2 mod4 and

g∑

i=1

(
1

2
d(αi ) + 1)(

1

2
d(βi ) + 1) =

g∑

i=1

(
1

2
d ′(α′

i ) + 1)(
1

2
d ′(β ′

i ) + 1) mod2.

Remark 10.6 The case g = 0 was already treated in [2], and the case g = 1 and b = 1
was stated in [3]. In this case the degree of the unique curve c ∈ B is always −2 (see
Proposition 2.9 in [2]), and so gcd{d(α), d(β), d(c) + 2} = gcd(d(α), d(β)) and we
recover Theorem 3.1 in [3].

We end this section with an example.
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Let (	,M) be a surface of genus 2 with one boundary component and one marked
point. A symplectic basis is drawn in blue.

>

>>

<

>>

�

>|

�

>|

•

• •

•

•

••

•

>

<

>

<

>

Consider the following triangulation with cuts, where the cuts are indicated in blue.
The quiver of the corresponding algebra is given in the picture to the right. The ideal
of relations is generated by the composition of two arrows belonging to the same
triangle.

•

• •

•

•

••

•

�0 = (�0, d0)

1

2

1

2

3

4

3

4

5 6 7

8
9 10

�0

One then easily computes the degree of each generator of the fundamental group
and gets:

d0(c) = −6, d0(α1) = 0, d0(β1) = 0, d0(α2) = 2 and d0(β2) = 0.

All the numbers are even, and d0(c) = 2 mod 4 so we are in the case (3)(c) of
the theorem. The derived equivalence class of this algebra is determined by the Arf
invariant, which is Arf(d0) = 1 in this case.



30 Page 34 of 36 C. Amiot et al.

Now take the algebras given by the following two triangulations with cuts:

•

• •

•

•

••

•

�1 = (�0, d1)

•

• •

•

•

••

•

�2 = (�2, d2)

In these two cases, we are again in case (c). One computes that Arf(d1) = 0 and
Arf(d2) = 0. Hence �1 and �2 are derived equivalent (even if they do not come from
the same triangulation), while �0 and �1 are not (even if they come from the same
triangulation).

Acknowledgements The first author would like to thank Pierre Dehornoy for interesting discussions on
winding numbers and for pointing us to reference [21]. We thank Bernhard Keller and Henning Krause for
interesting discussions. We also thank Gustavo Jasso and Sondre Kvamme for pointing our the necessity of
proving Proposition 5.7. Some results in this paper were presented at the ARTA 7 in México in September
2018 and at the workshop Stability conditions and representation theory of finite-dimensional algebras in
Oaxaca in October–November 2018. We would like to thank the organizers of both events.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Aihara, T., Iyama, O.: Silting mutation in triangulated categories. J. Lond. Math. Soc. (2), 85(3),
633–668 (2012)

2. Amiot, C., Grimeland, Y.: Derived invariants for surface algebras. J. Pure Appl. Algebra 220(9), 3133–
3155 (2016)

3. Amiot, C.: The derived category of surface algebras: the case of the toruswith one boundary component.
Algebr. Represent. Theory 19(5), 1059–1080 (2016)

4. Angeleri Hügel, L., Happel, D., Krause, H.: Handbook of tilting theory. LondonMathematical Society
Lecture Note Series, vol. 332. Cambridge University Press, Cambridge (2007)

5. Arf, C.: Untersuchungen über quadratische Formen in Körpern der Charakteristik 2. I. J. Reine Angew.
Math. 183, 148–167 (1941)

6. Arnesen, K.K., Laking, R., Pauksztello, D.: Morphisms between indecomposable complexes in the
bounded derived category of a gentle algebra. J. Algebra 467(1), 1–46 (2016)

http://creativecommons.org/licenses/by/4.0/


A complete derived invariant for gentle algebras... Page 35 of 36 30

7. Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.-G.: Gentle algebras arising from surface
triangulations. Algebra Number Theory 4(2), 201–229 (2010)

8. Assem, I., Happel, D.: Erratum: Generalized tilted algebras of type An” [Comm. Algebra 9 (1981),
no. 20, 2101–2125]. Comm. Algebra, 10(13):1475, 1982

9. Assem, I., Happel, D.: Generalized tilted algebras of type An . Comm. Algebra 9(20), 2101–2125
(1981)
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