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Abstract
We develop a tropical intersection formalism of forms and currents that extends clas-
sical tropical intersection theory in two ways. First, it allows to work with arbitrary
polyhedra, also non-rational ones. Second, it allows for smooth differential forms as
coefficients. The intersection product in our formalism can be defined through the
diagonal intersection method of Allermann–Rau or the fan displacement rule. We
prove with a limiting argument that both definitions agree.
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1 Introduction

For their “Tropical approach to non-archimedean Arakelov theory” [9], Gubler–
Künnemann combine tropical intersection theory and smooth differential forms into
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their formalism of so-called δ-forms. They use these to develop a calculus of Green
currents on non-archimedean spaces that is related to intersection theory on formal
models. The strength of their approach is that δ-forms are simpler to work with than
formal models, leading to a computationally accessible handle for certain arithmetic
intersection problems.

The present paper contributes to these ideas through the development of a more
general and concise theory of δ-forms. This is a purely tropical endeavor: δ-Forms
are a natural generalization of tropical cycles and have the same formal properties.
For example, they admit pull-backs, push-forwards and a tropical intersection product
called the ∧-product. δ-Forms also encompass Lagerberg’s smooth forms [11] and
obey the same kind of differential calculus. They furthermore come with a boundary
operator that generalizes the frequently used corner locus constructions of Esterov [5]
and Francois [6], also cf. Gubler–Künnemann [9]. Moreover, our formalism allows
non-rational polyhedra throughout. For tropical cycles, this generalization had already
been obtained by Esterov [5].

We now provide a more detailed description of δ-forms and our results. Smooth
forms are always meant in the sense of Lagerberg in the following, cf. [11] or §2.1.
Recall that a current is a continuous linear form on the space of smooth forms with
compact support. A smooth form α on Rn and a polyhedron σ ⊆ R

n define a current
of integration (α ∧ σ)(η) := ∫

σ
α ∧ η. (The polyhedron really needs to be weighted

for this to work which will be explained below.) A current is called polyhedral if it is a
locally finite sum

∑
i∈I αi ∧ σi of such integration currents. In particular, polyhedral

currents are entirely combinatorial objects. The following is our main definition.

Definition 1.1 A δ-form on Rn is a polyhedral current T on Rn such that both deriva-
tives d ′T and d ′′T are again polyhedral.

The differentials d ′ and d ′′ here are taken in the sense of currents, i.e. as the duals of
d ′ and d ′′ for smooth forms. δ-Forms turn out to be stable under d ′ and d ′′. Additional
structure is then provided by defining a δ-form T = ∑

i∈I αi ∧ σi to be of tridegree
(p, q, r) if the αi may be chosen of bidegree (p, q) and the σi of codimension r . Then
d ′ naturally decomposes as d ′ = d ′

P − ∂ ′, where d ′
P is trihomogeneous of tridegree

(1, 0, 0) and ∂ ′ trihomogeneous of tridegree (0,−1, 1). The first summand d ′
P is the

so-called polyhedral derivative d ′
P (α ∧σ) = (d ′α)∧σ of Gubler–Künnemann, while

∂ ′ is the above-mentioned boundary operator. The latter is closely related to boundary
integration of differential forms and to the corner locus construction, cf. (4.13). A
similar decomposition d ′′ = d ′′

P − ∂ ′′ exists for d ′′.
Next, we come to the combinatorial description of δ-forms.

Theorem 1.2 A polyhedral current T = ∑
i∈I αi ∧ σi is a δ-form if and only if the

datum (αi , σi )i∈I is balanced in the sense of tropical geometry.

We formulate the relevant balancing condition in (1.1) below. Note that Theorem 1.2
has precursors in the literature: Lagerberg [11, Proposition 4.7], Gubler [8, Proposition
3.8] and Gubler–Künnemann [9, Proposition 2.16] (in successive level of generality)
essentially prove it whenever theαi are smooth functions. Cast in our terminology, they
show that the tropical cycles of codimension r with smooth coefficients are exactly
the δ-forms of tridegree (0, 0, r).
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Theorem 1.2 makes δ-forms behave like tropical cycles and we show that
Allermann–Rau’s construction of an intersection product [1] goes through without
substantial change. This leads to our main result which is clearly inspired by Gubler–
Künnemann’s [9, Proposition 4.15].

Theorem 1.3 There is a graded-commutative∧-product of δ-forms that extends the∧-
product of smooth forms and the intersection product of tropical cycles. The derivatives
d ′, d ′′, the polyhedral derivatives d ′

P , d
′′
P and the boundary derivatives ∂ ′, ∂ ′′ all satisfy

the Leibniz rule for ∧.
A more precise characterization of the ∧-product may be found in the main text, cf.
Theorem 4.1. We also show that the ∧-product can be computed by the fan displace-
ment rule, cf. Proposition 4.21. Recall that for intersections of tropical cycles, this rule
goes back to Fulton–Sturmfels [7] and Mikhalkin [12]. Its equality with Allermann–
Rau’s intersection product was shown independently by Rau [14] and Katz [10]. Our
proof is similar to the combinatorial one of Rau and based on the observation that the
∧-product suitably commutes with limits, cf. §4.3.

We next explain the tropical formalism for possibly non-rational polyhedra. For a
polyhedron σ ⊆ R

n , denote by Nσ ⊆ R
n the linear space spanned by all the elements

x − y, x, y ∈ σ . Given a facet τ ⊂ σ , the subspace Nτ ⊂ Nσ is of codimension 1. If
σ is rational, then (Nτ ∩ Z

n) ⊂ (Nσ ∩ Z
n) is a sublattice of corank 1 and a normal

vector for τ ⊂ σ is any vector nσ,τ ∈ Nσ ∩ Z
n that generates (Nσ ∩ Z

n)/(Nτ ∩ Z
n)

and points in direction of σ . For the general situation, we considerweighted polyhedra
instead. A weight for σ is simply a generator μσ ∈ det Nσ up to sign. Equivalently,
it is a choice of Haar measure on Mσ . Given a facet inclusion τ ⊂ σ and respective
weightsμτ andμσ , a normal vector is any nσ,τ ∈ Nσ that satisfiesμσ = μτ ∧nσ,τ and
points in direction of σ . The two definitions are linked by the observation that every
rational polyhedron σ has a natural weight, namely the unique-up-to-sign generator of
detZ(Nσ ∩Z

n). The balancing condition (1.1) in Theorem 1.2 is now a literal adaption
of the classical balancing condition.

Definition 1.4 Consider a polyhedral complex T , weights (μσ )σ∈T for its polyhedra
and smooth forms (ασ )σ∈T , ασ ∈ A(σ ). Here, A(σ ) denotes the smooth forms on σ .
This datum is called balanced if for all τ ∈ T ,

∑

σ∈T , τ⊂σ a facet

ασ |τ ⊗ nσ,τ lies in A(τ ) ⊗R Nτ . (1.1)

We next elucidate on the intersection theory of weighted polyhedra. Recall that given
two properly intersecting rationally defined subspaces N1, N2 ⊆ R

n , one defines their
intersection multiplicity as the lattice index

[
Z
n : (N1 ∩ Z

n) + (N2 ∩ Z
n)

]
. In the not

necessarily rational case, still assuming proper intersection, one instead considers
weights μ1, μ2 for N1, N2 and endows the intersection N1 ∩ N2 with the unique
weight ν such that μ1 ⊗ μ2 = ν ⊗ μstd under the canonical-up-to-sign identification
det(V1 ⊕ V2) = det ((V1 ∩ V2) ⊕ R

n). Here μstd is the standard weight on R
n . This

rule extends to a full description of the∧-product of transversally intersecting δ-forms
and underlies the fan displacement rule.
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Finally, a weight μ for σ is also the precise datum needed to define the integral∫
[σ,μ] η of a (compactly supported) form η over σ . So in the definition of polyhedral
current above, all polyhedra were silently weighted. For this natural reason, weights
implicitly occur in Lagerberg [11] and Chambert-Loir–Ducros [3]. In fact, the cali-
brages from [3] are the same as our weights with an additional sign.

Tropical intersection theory has also been extended from R
n to more general com-

binatorial spaces. We will not address such questions here but take them up in our
related work [13]. More precisely, we develop there a theory of δ-forms on so-called
tropical spaces with applications to non-archimedean Arakelov theory.

Layout

Section 2 contains a summary of Lagerberg’s theory of differential forms and intro-
duces the formalism of weights, normal vectors and fiber integration. Section 3 is
dedicated to the definition of δ-forms and to the proof of Theorem 1.2. Section 4
contains the main result Theorem 1.3 and some additional properties of δ-forms. The
fan displacement rule is Proposition 4.21 and will be proved in Section 4.3.

2 Forms and currents

2.1 Smooth forms

Let C∞(Rn) and 	p(Rn) denote the smooth functions and “usual” real smooth p-
forms on Rn . We fix the hosting space Rn for now and simply write C∞ and 	p. The
smooth forms in this paper, whose definition is due to Lagerberg [11], are the elements
of the exterior algebra

A := A(Rn) :=
∧∗

C∞
(
	1 ⊕ 	1). (2.1)

There is a bigrading A = ⊕
p,q Ap,q , where Ap,q is the piece 	p ⊗C∞ 	q . Elements

α ∈ Ap,q are called bihomogeneous of bidegree (p, q) and homogeneous of degree
degα = p + q.

Being an exterior algebra, A is endowed with a natural ∧-product. It is bihomo-
geneous in the sense that Ap,q ∧ As,t ⊆ Ap+s,q+t . It is also graded-commutative,
meaning that

α ∧ β = (−1)degα degββ ∧ α (2.2)

whenever α and β are homogeneous.
We use the terminology of [3] for differential operators. Write dstd : C∞ → 	1 for

the usual differential. Given f ∈ C∞, we put

d ′ f = (dstd f , 0) , d ′′ f = (0, dstd f ) ∈ 	1 ⊕ 	1. (2.3)

Denoting by x1, . . . , xn the standard coordinates on R
n , any α ∈ Ap,q is now in a

unique way of the form
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α =
∑

I ,J⊆{1,...,n}, |I |=p, |J |=q

ϕI ,J (x1, . . . , xn)d
′xI ∧ d ′′xJ

with ϕI ,J ∈ C∞. The above d ′ : C∞ → A1,0 and d ′′ : C∞ → A0,1 extend to A in a
unique way that satisfies the Leibniz rule

d(α ∧ β) = dα ∧ β + (−1)degαα ∧ dβ, d ∈ {d ′, d ′′}. (2.4)

Concretely, this extension is given as

d(ϕd ′xI ∧ d ′′xJ ) =
n∑

i=1

∂ϕ

∂xi
dxi ∧ d ′xI ∧ d ′′xJ , d ∈ {d ′, d ′′}.

The so-defined d ′, d ′′ : A → A are bihomogeneous of bidegree (1, 0) resp. (0, 1).
Given an affine-linear map f : Rn → R

m , there is a natural pull-back map
f ∗ : Ap,q(Rm) → Ap,q(Rn) which stems from usual pull-back of differential forms.
It commutes with ∧, d ′ and d ′′.

The integral of an (n, n)-form η with compact support is defined as follows. Write
η = ϕd ′x1 ∧ d ′′x1 ∧ . . . ∧ d ′xn ∧ d ′′xn and put

∫

Rn
η :=

∫

Rn
ϕ (2.5)

where the right hand side is defined in terms of the Lebesgue integral for the standard
volume on R

n . It is immediate that, for an affine linear map f : Rn → R
n ,

∫

Rn
f ∗η = | det f |

∫

Rn
η. (2.6)

There is, in particular, no implicit choice of orientation involved. This also reflects in
the fact that the forms d ′xi ∧ d ′′xi have degree 2, hence pairwise commute, so the
function ϕ in (2.5) is independent of coordinate ordering.

Let D = D(Rn) denote the space of currents, i.e. the topological dual of compactly
supported forms Ac, cf. [11, Sect. 1.1]. The topological aspect of the definition will
never play a role in this paper.Write D = ⊕

p,q Dp,q where Dp,q is dual to An−p,n−q
c .

Currents T ∈ Dp,q are said to be of bidegree (p, q) and of degree deg T = p + q.
There is an injective map Ap,q → Dp,q , α 
→ [α], defined by

[α](η) :=
∫

Rn
α ∧ η.

With the following sign conventions one defines derivatives d ′ : Dp,q → Dp+1,q ,
d ′′ : Dp,q → Dp,q+1 as well as a product ∧: Ap,q × Ds,t → Dp+s,q+t :

(dT )(η) = (−1)deg T+1T (dη), d ∈ {d ′, d ′′},
(α ∧ T )(η) = (−1)degα deg T T (α ∧ η).

(2.7)
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Then it follows that, for homogeneous α, β, T and d ∈ {d ′, d ′′},

(d[α])(η) = (−1)degα+1
∫

α ∧ dη =
∫

dα ∧ η = [dα](η),

(α ∧ [β])(η) = (−1)degα degβ

∫
β ∧ α ∧ η =

∫
α ∧ β ∧ η = [α ∧ β](η),

(2.8)

for every compactly supported test form η, so the inclusion A → D commutes with
∧, d ′ and d ′′. Furthermore, the Leibniz rule extends:

d(α ∧ T ) = dα ∧ T + (−1)degαα ∧ dT , d ∈ {d ′, d ′′}. (2.9)

Let f : Rn → R
m be an affine linear map. Then there is a push-forward map

Dp,q
c (Rn) → Dp+m−n,q+m−n(Rm) from currents with compact support. It is defined

by

( f∗T )(η) = T ( f ∗η). (2.10)

Since f ∗(dη) = d( f ∗η) for η ∈ Ac(R
m) and d ∈ {d ′, d ′′}, one obtains the identity

f∗(dT ) = d( f∗T ) by duality, cf. (2.7).

2.2 Polyhedral currents

By polyhedron in R
n we mean a subset σ that may be written as the intersection of

finitely many (not necessarily rational) half-spaces. Denote by Nσ the linear space
spanned by all x − y, x, y ∈ σ and by Mσ := N∨

σ its R-dual. The dimension of σ is
the dimension of Nσ .

A polyhedral complex is a locally finite set of polyhedra T which is stable under
taking faces and is such that σ1 ∩ σ2 is a face of both σ1 and σ2 for every σ1, σ2 ∈ T .
The d-dimensional (resp. r -codimensional in Rn) polyhedra of a polyhedral complex
are denoted by Td (resp. T r ).

Let C∞(σ ) denote the smooth functions on σ , i.e. all ϕ : σ → R such that there
is some smooth function ϕ̃ ∈ C∞(Rn) with ϕ̃|σ = ϕ. Smooth (p, q)-forms on σ

are defined by an analogous restriction process. Let Lσ = x + Nσ , x ∈ σ, be the
smallest affine linear space containing σ . There is a well-defined space of (p, q)-forms
Ap,q(Lσ ) because (p, q)-forms transform naturally under affine linear maps. Then

Ap,q(σ ) := C∞(σ ) ⊗C∞(Lσ ) A
p,q(Lσ ).

Equivalently, it is the space of smooth (p, q)-forms on the interior σ ◦ of σ in Lσ that
come by restriction from Ap,q(Lσ ). Note that Ap,q(σ ) = 0 if dim σ < max{p, q}
and that there is a restriction map Ap,q(σ ) → Ap,q(τ ), α 
→ α|τ for every inclusion
of polyhedra τ ⊆ σ which commutes with ∧, d ′ and d ′′. The following definition of
weight is inspired by Chambert-Loir–Ducros’ definition of a calibration, cf. [3, Sect.
1.5].
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Definition 2.1 A weight for a polyhedron σ is a generator μ ∈ det Nσ up to sign. The
convention for 0-dimensional polyhedra here is that the determinant of the 0-space
is R itself and that a weight is a positive scalar. The pair [σ,μ] is called a weighted
polyhedron. A weighted polyhedral complex is the datum of a polyhedral complex T
together with weights (μσ )σ∈T for all its polyhedra.

Equivalently, a weight for σ is the choice of a Haar measure for Mσ . The bijection
is defined as follows: Given 0 �= μ ∈ det Nσ , choose a family of xi ∈ Nσ such
that μ = x1 ∧ . . . ∧ xdim σ up to sign. Then endow Mσ with the Haar measure
Vol(U ) = Vol

(
(x1, . . . , xdim σ )(U )

)
, where the volume on the right hand side is taken

for the standard Lebesgue (Haar) measure on R
dim σ .

We denote by μ∨ ∈ det Mσ the dual of μ.

Example 2.2 Every rational polyhedron σ ⊆ R
n has a natural weight with respect to

the lattice Zn ⊆ R
n . Namely Nσ ∩ Z

n is a lattice in Nσ and the choice of a generator
μ0 ∈ detZ(Nσ ∩ Z

n) is unique up to sign. Every other weight is in a unique way of
the form λμ0, λ > 0.

Let [σ,μ] be a weighted polyhedron of dimension d and let η ∈ Ad,d
c (σ ). Pick

any coordinates x1, . . . , xd ∈ Mσ such that μ∨ = x1 ∧ . . . ∧ xd and write η =
ϕd ′x1 ∧ d ′′x1 ∧ . . . ∧ d ′xd ∧ d ′′xd . (The xi are defined up to translation on Lσ , so
their differentials d ′xi and d ′′xi are canonical.) Then set

∫

[σ,μ]
η :=

∫

σ

ϕ (2.11)

where the right hand side is the Lebesgue integral with respect to the volume defined
by the choice of isomorphism (x1, . . . , xd) : Nσ

∼= R
d . The transformation rule (2.6)

ensures that this is well-defined. In this way, [σ,μ] is viewed as element of Dr ,r ,
where r = n − d is the codimension of σ .

The following definitions are due to Gubler–Künnemann, cf. [9, Definition 2.3].
A polyhedral current is a current that is a locally finite sum of currents of the form
α ∧ [σ,μ]. Deviating from their notation, we write P ⊆ D for the space of all
polyhedral currents and P p,q,r ⊆ Dp+r ,q+r for those which are locally finite sums
of α ∧ [σ,μ] with σ of codimension r and α ∈ Ap,q(σ ). One easily checks the direct
sum decomposition P = ⊕

p,q,r P
p,q,r . We also say that elements of P p,q,r are

trihomogeneous of tridegree (p, q, r).

Remark 2.3 When presenting a polyhedral current T as a locally finite sum T =∑
i∈I αi ∧ [σi , μi ], the datum of all (αi , σi , μi )i∈I is unique up to locally finitely

many operations of the following kinds: Subdividing the σi , adding/removing terms
with α = 0, replacing (α, σ, μ) by (λα, σ, λ−1μ) for some λ > 0, and exchanging
(α1, σ, μ) + (α2, σ, μ) and (α1 + α2, σ, μ).

Definition 2.4 Let T be a polyhedral current, say T = ∑
i∈I αi ∧ [σi , μi ]. Its polyhe-

dral derivatives are the polyhedral currents

d ′
PT :=

∑

i∈I
(d ′αi ) ∧ [σi , μi ], d ′′

PT :=
∑

i∈I
(d ′′αi ) ∧ [σi , μi ].
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It has been remarked before, cf. [9, Remark 2.4 (iii)], that d ′
PT and d ′T resp. d ′′

PT and
d ′′T need not coincide. The derivatives d ′T and d ′′T may even be non-polyhedral, cf.
Example 2.10 below.

A polyhedral complex T is subordinate to T if there is a presentation of the form
T = ∑

σ∈T ασ ∧ [σ,μσ ]. With such T fixed, the ασ and μσ are uniquely determined
up to the replacement of (ασ , μσ ) by (λασ , λ−1μσ ), where λ > 0.

2.3 Functoriality

For an exact sequence of finite dimensional R-vector spaces

0 → N1 → N2 → N3 → 0,

there is a canonical isomorphism det N2 = det N1 ⊗ det N3. So given weights μi for
Ni for two out of {N1, N2, N3}, they uniquely determine a weight for the third space
through the relation

μ2 = μ1 ∧ μ3 := μ1 ∧ μ̃3 (2.12)

where μ̃3 ∈ ∧dim N3 N2 is any lift of μ3.
There is a space PS(σ ) of piecewise smooth forms on a polyhedronσ . By definition,

a piecewise smooth form is the datum of a polyhedral complex T with σ = ∪ρ∈T ρ

and smooth forms αρ ∈ A(ρ), ρ ∈ T , such that αρ |τ = ατ for all τ ⊆ ρ; up to
subdivision. We write PSp,q(σ ) for those with all αρ of bidegree (p, q). If μ is a
weight for σ and α = (αρ)ρ∈T ∈ PS(σ ) as before, we define the polyhedral current

α ∧ [σ,μ] =
∑

ρ∈T , dim ρ = dim σ

αρ ∧ [ρ,μ]. (2.13)

Here μ defines a weight for ρ because Nρ = Nσ for dimension reasons. For fixed μ,
this defines an embedding PS(σ ) ⊆ D(Rn).

Let f : Rn → R
m be an affine linear map and σ ⊆ R

n a polyhedron. Then
f (σ ) is again a polyhedron. Let μ be a weight on σ and ν a weight on f (σ ). Then
K := ker

(
( f − f (0))|Nσ : Nσ → N f (σ )

)
acquires a canonical weight δ through

(2.12) and there is a natural fiber integration map for forms with compact support,
fδ,∗ : Ap,q

c (σ ) → PSp−k,q−k( f (σ )), where k = dim K . It satisfies the projection
formula

∫

[σ,μ]
α ∧ f ∗η =

∫

[ f (σ ),ν]
( fδ,∗α) ∧ η

which determines it uniquely. In otherwords, fiber integration provides a representative
for the push-forward from (2.10),

f∗(α ∧ [σ,μ]) = ( fδ,∗α) ∧ [ f (σ ), ν]. (2.14)
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In particular, the push-forward of a polyhedral current (with relatively compact sup-
port) is polyhedral again. Note that if α ∧ [σ,μ] ∈ P p,q,r

c and dim K = k as before,
then f∗(α ∧ [σ,μ]) ∈ P p−k,q−k,r+m−n+k . So f∗ is not trihomogeneous, but only
bihomogeneous.

Example 2.5 If T = ϕ ∧ [σ,μ] ∈ P0,0,r is a weighted polyhedron with smooth
coefficient (cf. [9, Sect.1]), then f∗T �= 0 only if f |σ is injective. In this case we find
f∗(ϕ ∧ [σ,μ]) = (ϕ ◦ f −1) ∧ [ f (σ ), f (μ)], which is precisely the classical push-
forward of weighted polyhedra in tropical geometry that underlies e.g. the Sturmfels–
Tevelev multiplicity formula [15].

Given a surjective affine linear map f : Rn → R
m and a current T on Rm , we may

now also define a pull-back current f ∗T ∈ D(Rn). Namely the fiber integral f∗η of
a smooth form η ∈ Ap,q

c (Rn) (with respect to the standard weights on Rn and Rm) is
again smooth and we put

( f ∗T )(η) := T ( f∗η), η ∈ Ac(R
n).

If T = α ∧ [σ,μ], then one easily finds f ∗T = f ∗α ∧ [ f −1σ, ν], where ν = δ ∧ μ

for the natural weight δ on ker( f − f (0)). Since f∗(dη) = d( f∗η) for η ∈ Ac(R
n)

and d ∈ {d ′, d ′′}, it follows by duality that f ∗(dT ) = d( f ∗T ) for any current T .

Example 2.6 Assume f : Rn → R
n is bijective and affine linear. Letμ be the standard

weight on Rn . Then f (μ) = | det f | μ. The fiber weight δ on ker( f − f (0)) = {0} is
thus | det f | and fiber integration is given by

fδ,∗(α) = | det f | f −1,∗(α). (2.15)

The transformation rule (2.6) implies that this satisfies the projection formula:

∫

[Rn ,μ]
α ∧ f ∗η =

∫

[Rn ,μ]
f ∗( f −1,∗(α) ∧ η)

(2.6)= | det f |
∫

[Rn ,μ]
f −1,∗(α) ∧ η

=
∫

[Rn ,μ]
fδ,∗(α) ∧ η.

Interchanging the roles of α and η, the equality of leftmost and rightmost term shows

f ∗(α ∧ [Rn, μ]) = f ∗(α) ∧ [Rn, μ]. (2.16)

2.4 Stokes’ theorem

By its very definition, a (p, q)-form α on Rn may be viewed as an alternating form in
p + q variables on Rn ×R

n with values in C∞. Given w ∈ R
n ×R

n , the contraction
(α,w) of α with w (interior derivative) is defined as the multilinear form resulting
from inserting and fixing w as the first entry of α. This operation is characterized by
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the Leibniz rule

(α ∧ β,w) = (α,w) ∧ β + (−1)degαα ∧ (β,w) (2.17)

and the identities

(d ′ϕ,w) = ∂ϕ

∂w1
, (d ′′ϕ,w) = ∂ϕ

∂w2
, ϕ ∈ C∞, w = (w1, w2). (2.18)

Recall that a facet of a polyhedron is a face of codimension 1.

Definition 2.7 Let [σ,μ] be a weighted polyhedron and τ ⊂ σ a facet that is endowed
with a weight ν. Then there is a unique vector nσ,τ ∈ Nσ /Nτ that points in direction
of σ and is such that μ = ν ∧ nσ,τ in the sense of (2.12). A normal vector for τ ⊂ σ

is any choice of lift nσ,τ ∈ Nσ .

Assumem = dim σ . The (first) boundary integral of α ∈ Am−1,m
c (σ ) over τ is defined

as
∫

∂ ′
τ [σ,μ]

α := −
∫

[τ,ν]
(α, n′′

σ,τ )|τ . (2.19)

The convention in notation here is v′ = (v, 0) and v′′ = (0, v) for any vector v ∈ R
n .

The restriction (α, n′′
σ,τ )|τ is independent of the choice of normal vector and the whole

expression is independent of the choice of ν. Define the (first) boundary integral of σ

as
∫

∂ ′[σ,μ]
α :=

∑

τ⊂σ a facet

∫

∂ ′
τ [σ,μ]

α. (2.20)

The definition of the (second) boundary integral differs by a sign which is motivated
by Example 2.9 below. For β ∈ Am,m−1

c (σ ), put

∫

∂ ′′
τ [σ,μ]

β :=
∫

[τ,ν]
(β, n′

σ,τ )|τ ,
∫

∂ ′′[σ,μ]
β =

∑

τ⊂σ a facet

∫

∂ ′′
τ [σ,μ]

β. (2.21)

Proposition 2.8 ([3, Lemma 1.5.7], Stokes’ Theorem) Let [σ,μ] be an m-dimensional
weighted polyhedron and let α ∈ Am−1,m

c (σ ) and β ∈ Am,m−1
c (σ ). Then

∫

[σ,μ]
d ′α =

∫

∂ ′[σ,μ]
α,

∫

[σ,μ]
d ′′β =

∫

∂ ′′[σ,μ]
β.

Example 2.9 Proposition 2.8 is essentially just the following statement. For every
smooth function ρ : [0, 1] → R,

∫ 1

0
ρ′(x)d ′x ∧ d ′′x = ρ(1) − ρ(0) = −

∫ 1

0
ρ′(x)d ′′x ∧ d ′x .
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The differing signs explain the sign change from (2.19) to (2.21).

Example 2.10 Proposition 2.8 says d ′[σ,μ] = −∂ ′[σ,μ] and d ′′[σ,μ] = −∂ ′′[σ,μ]
as currents, but these derivatives are never polyhedral if dim σ > 0. (The difference
in sign with Stokes’ Theorem comes from (2.7).) Namely they have support on the
union of facets ∂σ of σ . If dim σ = m, then ∂σ is an (m − 1)-dimensional polyhedral
set, so η|∂σ = 0 for every η ∈ Am−1,m(σ ) resp. η ∈ Am,m−1(σ ), but not necessarily

∫

∂ ′[σ,μ]
η = 0 resp.

∫

∂ ′′[σ,μ]
η = 0.

3 ı-Forms

We consider forms, currents and polyhedra on R
n in the following.

Definition 3.1 A δ-form is a polyhedral current T such that both d ′T and d ′′T are
again polyhedral.

This definition turns out to be equivalent to the familiar concept of balancing for T .

Definition 3.2 Let T be a polyhedral complex, μσ , σ ∈ T , a family of weights for
its polyhedra and ασ ∈ A(σ ), σ ∈ T a family of smooth forms. This datum is called
balanced, if the following two equivalent conditions are met.

(1) For all polyhedra τ ∈ T , the sum

∑

σ∈T , τ⊂σ a facet

ασ |τ ⊗ nσ,τ ∈ A(τ ) ⊗R R
n . (3.1)

lies in the subspace A(τ )⊗RNτ . The normal vectors nσ,τ here are taken for theweights
μσ and μτ .
(2) For every polyhedron τ ∈ T , every affine linear function z with constant restric-

tion z|τ and normal vectors nσ,τ as before,

∑

σ∈T , τ⊂σ a facet

∂z

∂nσ,τ

ασ |τ = 0. (3.2)

Since z|τ is constant, this expression does not depend on the choices of the nσ,τ .

Proof (Proof of the equivalence of (1) and (2).) Assume z|τ to be constant and consider
the pairing

A(Rn) ⊗R R
n −→ A(τ ), α ⊗ v 
−→ (d ′z ∧ α, v′)|τ .

It follows from the Leibniz rule that

(d ′z ∧ α, v′)|τ = (∂z/∂v) · α|τ ,
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so the pairing factors through A(τ ) ⊗R R
n and is simply the A(τ )-linear extension of

v 
→ ∂z/∂v. The proof is now the statement that a vector v lies in Nτ if and only if
∂z/∂v = 0 for every affine linear function z with constant restriction z|τ . ��

Formulation (1) is closer to the usual condition of balancing in tropical geometry
but makes implicit use of the existence of the ambient space Rn . Formulation (2) in
turn is more suitable for generalizations to abstract polyhedral complexes, cf. [13].

Being balanced is stable under the four operations in Remark 2.3, so only depends
on the current T = ∑

σ∈T ασ ∧ [σ,μσ ]. Also note that (3.1) and (3.2) are trihomo-
geneous in α and that only polyhedra of a fixed dimension occur. One obtains that
T = ∑

p,q,r T
p,q,r , with T p,q,r of tridegree (p, q, r), is balanced if and only if each

T p,q,r is.

Theorem 3.3 A polyhedral current T is a δ-form if and only if it is balanced. In
particular, it is a δ-form if and only if T p,q,r is a δ-form for all (p, q, r).

Furthermore, T is already a δ-form if one out of d ′T , d ′′T is again polyhedral.

Proof
(1) We first assume that T is of tridegree (p, q, r). Let T be a weighted polyhedral

complex subordinate to T , say

T =
∑

σ∈T r

ασ ∧ [σ,μσ ], ασ ∈ Ap,q(σ ),

and let η ∈ An−p−r ,n−q−r
c be a test form. One obtains from the Leibniz rule and

Stokes’ Theorem that

(d ′T − d ′
PT )(η) =

∑

τ∈T r+1

∫

[τ,μτ ]
∑

σ∈T r , τ⊂σ

(ασ ∧ η, n′′
σ,τ )|τ

=
∑

τ

[
∑

τ⊂σ

(
(ασ , n′′

σ,τ ) ∧ [τ, μτ ])(η) +(−1)degα
∫

[τ,μτ ]
∑

τ⊂σ

ασ ∧ (η, n′′
σ,τ )|τ

]

.

(3.3)

The individual contractions (ασ , n′′
σ,τ ) and (η, n′′

σ,τ ) depend on the choices of normal
vectors, but the total expression does not. We henceforth fix the choices nσ,τ . The
terms

(
(ασ , n′′

σ,τ ) ∧ [τ, μτ ]
)
(η) always define polyhedral currents. So the statement

to prove is that T is balanced if and only if the following is a polyhedral current,

η 
−→ (−1)degα
∑

τ

∫

[τ,μτ ]

∑

τ⊂σ

ασ ∧ (η, n′′
σ,τ )|τ .

(2) Assume first that T is balanced, fix some τ and write

∑

τ⊂σ

ασ |τ ⊗ nσ,τ =
∑

i∈I
βi ⊗ vi , βi ∈ Ap,q(τ ), vi ∈ Nτ , (3.4)
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according to (3.1). Then

∑

τ⊂σ

ασ ∧ (η, n′′
σ,τ )|τ =

∑

i∈I
βi ∧ (η, v′′

i )|τ . (3.5)

By the Leibniz rule,

βi ∧ (η, v′′
i ) = (−1)degβ(βi ∧ η, v′′

i ) + (−1)degβ+1(βi , v
′′
i ) ∧ η. (3.6)

Sinceβi∧η is of bidegree (dim τ, dim τ +1), the first summand vanishes. The (integral
over [τ, μτ ] of the) second summand defines a polyhedral current in η. Taking the sum
over i and τ shows that d ′T is a polyhedral current. The same argument works for
d ′′T , proving that a trihomogeneous balanced polyhedral current is a δ-form.

(3) Conversely assume that T is not balanced, our claim being that d ′T is not
polyhedral. (We still assume that T has tridegree (p, q, r) currently.) Generally, if S is
a polyhedral current,C some polyhedral sets with Supp S ⊆ C and η ∈ Ac a test form,
then η|C = 0 implies S(η) = 0. In the situation at hand, we have already seen that
Supp(d ′T − d ′

PT ) is contained in the codimension r + 1 skeleton
⋃

τ∈T r+1 τ and our
approach is to construct a test form η with η|τ = 0 for all τ but (d ′T − d ′

PT )(η) �= 0.
Pick τ and z such that (3.2) is not satisfied, i.e. z is an affine linear function with
constant restriction z|τ and such that

β :=
∑

τ⊂σ

∂z

∂nσ,τ

ασ |τ �= 0. (3.7)

There exists a bump test form η ∈ Adim τ−p,dim τ−q
c with the two properties that

Supp η ∩ τ ′ �= ∅, τ ′ ∈ T r+1, only for τ ′ = τ and

∫

[τ,μτ ]
β ∧ η �= 0.

Then the τ -contribution to (3.3) for the test form η = (−1)degαd ′′z ∧ η is simply

∑

τ⊂σ

(d ′′z ∧ ασ ∧ η, n′′
σ,τ )|τ = β ∧ η.

Here we combined the Leibniz rule for ( , n′′
σ,τ ) with the properties d ′′z|τ = 0 and

(d ′′z, n′′
σ,τ ) = ∂z/∂nσ,τ . Thus (d′T −d′PT )(d ′′z∧η) �= 0 even though d ′′z∧η|τ ′ = 0

for every τ ′ ∈ T r+1. So d ′T cannot be polyhedral and hence T is not a δ-form. Note
that arguments (2) and (3) show the stronger statement that a trihomogeneous T is
balanced if and only if one out of d ′T and d ′′T is polyhedral, i.e. they prove the last
statement of Theorem 3.3 for trihomogeneous T .

(4) Now consider a general δ-form T = ∑
p,q,r T

p,q,r with T p,q,r of the indicated
tridegree. Our claim is that each T p,q,r is a δ-form. Since T p1,q1,r and T p2,q2,r lie in
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different bidegrees as currents for (p1, q1) �= (p2, q2) and since d ′ and d ′′ are biho-
mogeneous, it is enough to prove that all T r := ∑

p,q T
p,q,r are δ-forms. Polyhedral

currents may be added ad libitum, so it is sufficient to show that all (d ′T r − d ′
PT

r )

and (d ′′T r − d ′′
PT

r ) are polyhedral. Assume for the sake of contradiction that there
is some r0 with d ′T r0 not polyhedral and assume that r0 is chosen minimal. Then the
previous arguments imply that there is some point

x ∈ Supp(d ′T r0 − d ′
PT

r0) \ Supp
(

∑

r>r0

d ′T r − d ′
PT

r

)

that has no open neighborhood x ∈ U such that d ′T r0 |U is polyhedral. (Take some
x ∈ Suppβ where β is as in (3.7).) Using minimality of r0, we conclude that d ′T
cannot be polyhedral. The same argument applies with d ′′ instead of d ′. Thus we
obtain that T is a δ-form, if and only if each T p,q,r is a δ-form, if and only if each
T p,q,r is balanced, if and only if T is balanced. ��
Definition 3.4

(1) We denote by B p,q,r = B p,q,r (Rn) the space of δ-forms of the indicated
tridegree and by B = ⊕

p,q,r B
p,q,r the space of all δ-forms. Bidegrees and degrees

of δ-forms are meant in the sense of currents: A δ-form T of tridegree (p, q, r) is
of bidegree (p + r , q + r) and degree deg(T ) = p + q + 2r . We sometimes write
B p,q := ⊕

r B
p−r ,q−r ,r for the bigrading by bidegree.

(2) Since d ′d ′T = 0, Theorem 3.3 implies that d ′T is a δ-form. Similarly for d ′′,
so one obtains derivatives

d ′ : B p,q −→ B p+1,q , d ′′ : B p,q −→ B p,q+1.

The balancing condition (3.1) is stable under d ′
P and d ′′

P , so the polyhedral derivatives
restrict to operators

d ′
P : B p,q,r −→ B p+1,q,r , d ′′

P : B p,q,r −→ B p,q+1,r .

Define the boundary operators ∂ ′ := d ′
P − d ′ and ∂ ′′ := d ′′

P − d ′′. It will be explained
below, cf. (3.9), that these are trihomogeneous in the sense

∂ ′ : B p,q,r −→ B p,q−1,r+1, ∂ ′′ : B p,q,r −→ B p−1,q,r+1.

Lemma 3.5 (1) The boundary derivatives satisfy

0 = ∂ ′∂ ′ = ∂ ′′∂ ′′,
0 = ∂ ′∂ ′′ + ∂ ′′∂ ′,
0 = ∂ ′d ′

P + d ′
P∂ ′ = ∂ ′′d ′′

P + d ′′
P∂ ′′,

0 = ∂ ′d ′′
P + d ′

P∂ ′′ + ∂ ′′d ′
P + d ′′

P∂ ′.
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(2) Let f : Rn → R
m be an affine linear map. Assume that T ∈ B(Rn) has relatively

compact support with respect to f . Then f∗T ∈ B(Rm) is also a δ-form.
(3) Let f : Rn → R

m be a surjective affine linear map and S ∈ B(Rm). Then
f ∗S ∈ B(Rn) is also a δ-form.

Proof

(1) The necessary observation is that d ′
P , ∂ ′, d ′′

P and ∂ ′′ are all trihomogeneous
of different tridegrees. The stated relations then follow from the standard identities
(d ′)2 = (d ′′)2 = 0 and d ′d ′′ = −d ′′d ′.

(2) and (3) follow from the fact that f∗ and f ∗ both commute with d ′ and d ′′ and
preserve the property of being polyhedral, cf. Sect. 2.3. ��
Example 3.6 Every polyhedral current T of tridegree (n − r , q, r) or (p, n − r , r) is
a δ-form. This follows from the observation that then all terms ασ |τ in (3.1) vanish.
Alternatively, one argues that d ′T = 0 resp. d ′′T = 0 because T is of bidegree
(n, q + r) resp. (p + r , n) as current and applies Theorem 3.3.

Lemma 3.7 The δ-forms B p,q,0(Rn) are precisely the currents that are of the form
α ∧ [Rn, μstd] for a piecewise smooth (p, q)-form α ∈ PSp,q(Rn).

Proof Assume that T ∈ P p,q,0 and write T = ∑
σ∈T 0 ασ ∧ [σ,μσ ] for a weighted

subordinate polyhedral complex T . We may assume all occurring μσ = μstd because
Nσ = R

n for every n-dimensional σ . Any τ ∈ T 1 is then a facet of precisely two
σ1, σ2 ∈ T 0. One may choose nσ2,τ = −nσ1,τ . The balancing condition (3.1) is
then equivalent to ασ1 |τ = ασ2 |τ for all such τ ⊂ σ1, σ2, which is equivalent to the
(ασ )σ∈T 0 defining a piecewise smooth form. ��
Example 3.8 Let α ∈ PS(Rn) be piecewise smooth and T ∈ P(Rn) a polyhedral
current. Let T be a polyhedral complex that is subordinate to both T and α, say

α = (ασ )σ∈T 0 , T =
∑

ρ∈T
βρ ∧ [ρ,μρ].

Define their product as

αT :=
∑

ρ∈T
α|ρ ∧ βρ ∧ [ρ,μρ]. (3.8)

The restriction α|ρ here is well-defined by the piecewise smooth property. If T is a
δ-form, then αT is also a δ-form since the balancing condition (3.1) is PS-linear. For
example, the δ-preforms from [9, Sect. 2] are precisely the sums of products αT where
α ∈ A(Rn) is smooth and T ∈ B0,0,r a tropical cycle.

We end this section by providing three ways to compute ∂ ′T . The case of ∂ ′′ is
the same by symmetry; it merely requires paying attention to the difference in signs
of (2.19) and (2.21). Throughout, we assume that T ∈ B p,q,r , say with presentation
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T = ∑
σ∈T r ασ ∧ [σ,μσ ] for a subordinate weighted polyhedral complex T . The

proof of Theorem 3.3 shows that ∂ ′T = ∑
τ∈T r+1 βτ ∧ [τ, μτ ] for certain βτ which

we would like to determine.
(1) Implicit in the proof of Theorem 3.3 is the following formula. Fix τ and write

∑

τ⊂σ a facet

ασ |τ ⊗ nσ,τ =
∑

i∈I
βi ⊗ vi , βi ∈ A(τ ), vi ∈ Nτ

as in (3.4). Then (3.3), together with (3.5) and (3.6), implies

βτ =
∑

i∈I
(βi , v

′′
i ) −

∑

τ⊂σ

(ασ , n′′
σ,τ )|τ . (3.9)

(2) The next formula for βτ is more in line with formulation (3.2) of the balancing
condition. We use the definition ∂ ′ := d ′

P − d ′ for all polyhedral currents in the
following. Pick any affine linear map f : Rn → R

dim τ+1 such that f |σ is injective
for every τ ⊂ σ ∈ T r . Let C = ⋃

τ⊂σ σ be the polyhedral set formed by all
σ ∈ T r containing τ . Denote by Z its boundary in the topological space

⋃
σ∈T r σ .

The current S = ∑
τ⊂σ ασ ∧ [σ,μσ ] has support contained in C and is a δ-form

away from Z . Since f |C has finite fibers, Supp S is relatively compact overRm , so the
push-forward f∗S is defined. It is a δ-form away from f (Z). Moreover f∗(d ′

P S) =
d ′
P ( f∗S) because f |S has finite fibers. It follows that f∗(∂ ′S) = ∂ ′ f∗(S). Writing

∂ ′ f∗(S) = γ ∧ [ f (τ ), f (μτ )] away from f (Z) shows

βτ = f ∗γ.

Now note that ( f∗S)|Rdim τ+1\ f (Z) lies in B p,q,0(Rdim τ+1\ f (Z)), i.e. f∗S is given by a
piecewise smooth form away from f (Z) by Lemma 3.7. This makes the determination
of γ very simple: f∗S is described near f (τ ) \ f (Z) by smooth forms ωi ∈ Ap,q(ρi )

on two (dim τ +1)-dimensional polyhedra ρ1, ρ2 with ρ1 ∩ρ2 = f (τ ). These satisfy
ω1| f (τ ) = ω2| f (τ ). Picking the normal vectors in the above (3.9) as n := nρ1, f (τ ) =
−nρ2, f (τ ) eliminates the first sum in (3.9) and shows

γ = (ω2, n
′′) − (ω1, n

′′). (3.10)

(3) For the third and final formula, choose a tuple of coordinate functions
x1, . . . , xn−r−1 : Rn → R that restrict to a basis of Mτ . For each σ containing τ ,
choose a non-constant affine linear function zσ : σ → R such that zσ |τ is constant.
(For example, one may choose an affine linear z : Rn → R such that z|τ is constant
but zσ = z|σ non-constant for every σ ⊃ τ .) Then every ασ can be uniquely expressed
as

ασ = α(1)
σ + d ′zσ ∧ α(2)

σ + d ′′zσ ∧ α(3)
σ + d ′zσ ∧ d ′′zσ ∧ α(4)

σ
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with the α
( j)
σ all C∞(σ )-linear combination of d ′xI ∧ d ′′xJ . Our claim is that

βτ = −
∑

τ⊂σ a facet

∂zσ
∂nσ,τ

α(3)
σ |τ . (3.11)

Note that already the individual summands are independent of the chosen zσ .

Proof (Proof of the claim.) In light of (3.3), we need to show that the following identity
holds for all smooth forms η ∈ An−p−r−1,n−q−r (Rn) of complementary degree:

∑

τ⊂σ a facet

(ασ ∧ η, n′′
σ,τ )|τ =

∑

τ⊂σ a facet

∂zσ
∂nσ,τ

α(3)
σ ∧ η|τ . (3.12)

Since d ′zσ |τ = d ′′zσ |τ = 0, it is immediately clear that

(ασ ∧ η, n′′
σ,τ )|τ = (α(1)

σ ∧ η, n′′
σ,τ )|τ + ∂zσ

∂nσ,τ

α(3)
σ ∧ η|τ .

Our task is thus to show

∑

τ⊂σ a facet

(α(1)
σ ∧ η, n′′

σ,τ )|τ = 0. (3.13)

Pick coordinate functions y1, . . . , yr+1 : Rn → R that extend x1, . . . , xn−r−1 to a
basis and that are constant along τ . Then d ′yi |τ = d ′′yi |τ = 0. So if η is of the form
d ′yi ∧η̃, then already (α

(1)
σ ∧η, n′′

σ,τ )|τ = 0. Similarly, if η is aC∞-linear combination

of monomials d ′xI ∧ d ′′xJ , then already α
(1)
σ ∧ η = 0 because this form is of degree

(n − r − 1, n − r).
It is thus left to show (3.13) for forms η = d ′′yi ∧ η̃. We obtain that

∑
τ⊂σ a facet(α

(1)
σ ∧ d ′′yi ∧ η̃, n′′

σ,τ )|τ = (−1)p+q ∑
τ⊂σ a facet

∂ yi
∂nσ,τ

α
(1)
σ ∧ η̃|τ

= (−1)p+q ∑
τ⊂σ a facet

∂ yi
∂nσ,τ

ασ ∧ η̃|τ .
(3.14)

The last expression vanishes by the balancing condition (3.2). ��

4 Intersection theory

4.1 Main result

The definition of the ∧-product of δ-forms is based on two specific constructions. The
first is the product of piecewise smooth and δ-forms from Example 3.8: By Lemma



17 Page 18 of 33 A. Mihatsch

3.7, every δ-form of tridegree (p, q, 0) is of the form α ∧ [Rn, μstd] for a (unique)
piecewise smooth (p, q)-form α. We write α by abuse of notation and define

α ∧ T := αT , α ∈ B•,•,0, T ∈ B. (4.1)

The second construction is the exterior product of currents, cf. [4, Sect. I.2], defined as
follows. Given homogeneous currents T1 ∈ D(Rn) and T2 ∈ D(Rm), it is the unique
current T1 � T2 ∈ D(Rn × R

m) such that

(T1 � T2)(p
∗
1η1 ∧ p∗

2η2) = (−1)deg T1 deg T2T1(η1) · T2(η2).
In particular,

d(T1 � T2) = dT1 � T2 + (−1)deg T1T1 � dT2, d ∈ {d ′, d ′′}. (4.2)

The exterior product preserves polyhedral currents which follows from the identity

(α1 ∧ [σ1, μ1]) � (α2 ∧ [σ2, μ2]) = α1 ∧ α2 ∧ [σ1 × σ2, μ1 ∧ μ2]. (4.3)

Relation (4.2) then implies that the exterior product of δ-forms is a δ-form again.
Moreover, one sees that if Ti is of polyhedral tridegree (pi , qi , ri ), then T1 � T2 has
tridegree (p1 + p2, q1 + q2, r1 + r2). Separating (4.2) by tridegree provides

dP (T1 � T2) = dPT1 � T2 + (−1)deg T1T1 � dPT2, dP ∈ {d ′
P , d ′′

P },
∂(T1 � T2) = ∂T1 � T2 + (−1)deg T1T1 � ∂T2, ∂ ∈ {∂ ′, ∂ ′′}. (4.4)

We simply write T1 × T2 instead of T1 � T2 for δ-forms T1 and T2.
In the following, � = (id, id)∗[Rn, μstd] ∈ B0,0,n(Rn ×R

n) denotes the diagonal
viewed as δ-form.

Theorem 4.1 There is a unique way to define an associative product ∧: B × B → B
that satisfies the Leibniz rules with respect to d ′ and d ′′, extends definition (4.1), and
can be computed by restriction to the diagonal, meaning

S ∧ T = p1,∗(� ∧ (S × T )). (4.5)

This product has the following additional properties.

(1) It is graded commutative and trihomogeneous in the sense B p,q,r ∧ Bs,t,u ⊆
B p+s,q+t,r+u. In particular, it satisfies the Leibniz rule with respect to the opera-
tors ∂ ′, d ′

P , ∂
′′ and d ′′

P .
(2) It commutes with pull-back: If f : Rn → R

m is a surjective affine linear map and
if S, T ∈ B(Rm) are δ-forms, then f ∗(T ∧ S) = f ∗T ∧ f ∗S.

(3) It satisfies the projection formula: If f : Rn → R
m is a surjective affine linear

map, S ∈ B(Rm) a δ-form, and T ∈ B(Rn) a δ-form with compact support over
R
m, then

f∗(T ∧ f ∗S) = f∗T ∧ S. (4.6)
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(4) It coincides with the tropical intersection products from [1, 5, 9] on
⊕

r B
0,0,r

whenever they are defined.

The idea of characterizing and constructing the tropical intersection product through
divisor intersections and restriction to the diagonal is due to Allermann–Rau [1].

Proof (Proof of the uniqueness assertion.) If a∧-product exists as claimed, the Leibniz
rule implies for piecewise smooth α that

d ′d ′′(αT ) = d ′d ′′α ∧ T + α ∧ d ′d ′′T + (−1)degα(d ′α ∧ d ′′T − d ′′α ∧ d ′T ).

(4.7)

In case of a piecewise linear function ϕ, the δ-forms d ′ϕ resp. d ′′ϕ agree with d ′
Pϕ

resp. d ′′
Pϕ and are again piecewise smooth, because the contractions in (3.9) vanish

for degree reasons. (This applies more generally to piecewise smooth functions.) It
follows that

d ′d ′′ϕ ∧ T = d ′d ′′(ϕT ) − ϕ ∧ d ′d ′′T + d ′′ϕ ∧ d ′T − d ′ϕ ∧ d ′′T (4.8)

is uniquely determined by the Leibniz rule and the piecewise smooth case. Denote
by x1, . . . , xn and y1, . . . , yn the coordinate functions on R

n × R
n and define ϕi :=

max{xi , yi }. Then, by [1, Remark 9.2], the diagonal � is the product

� = d ′d ′′ϕ1 ∧ . . . ∧ d ′d ′′ϕn,

where the right hand side is a successive application of (4.8). Again by (4.8) as well
as the associativity of the ∧-product, �∧ (S× T ) is now uniquely determined. Hence
S ∧ T = p1,∗(� ∧ (S × T )) is uniquely characterized by the stated conditions. ��

The existence statement will be shown in the next section. Here, we give an appli-
cation of Theorem 4.1 to the definition of a pull-back for all affine linear maps, not
just surjective ones. It is specific to δ-forms, meaning it does not extend to polyhedral
currents. Its construction is well-known for tropical cycles, cf. [9, Remark 1.4 (v)] for
example.

Proposition/Definition 4.2 Let f : Rn → R
m be an affine linear map and S ∈ B(Rm)

a δ-form. There is a unique δ-form f ∗(S) ∈ B(Rn), called the pull-back of S along
f , that satisfies the projection formula

f∗(T ∧ f ∗S) = f∗T ∧ S (4.9)

for all T ∈ B(Rn) of relatively compact support with respect to f . This pull-back is
functorial in f and commutes with ∧-products as well as with the six operators d ′,
d ′′, d ′

P , d
′′
P , ∂

′ and ∂ ′′.
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Proof Identity (4.9) determines f ∗S uniquely because it determines all its values on
test forms η by

( f ∗S)(η) =
∫

Rn
f ∗S ∧ η

=
∫

Rm
f∗( f ∗S ∧ η) =

∫

Rm
S ∧ f∗(η).

Just from this uniqueness, one may deduce all further properties. For example, for
d ∈ {d ′, d ′′} and for all homogeneous δ-forms T of relatively compact support with
respect to f ,

f∗(T ∧ d( f ∗S)) = (−1)deg T f∗
(
d(T ∧ f ∗S) − dT ∧ f ∗S

)

= (−1)deg T
(
d( f∗(T ∧ f ∗S)) − f∗(dT ∧ f ∗S)

)

= (−1)deg T
(
d( f∗T ∧ S) − f∗(dT ) ∧ S

) = f∗T ∧ dS.

So necessarily d( f ∗S) = f ∗(dS). For commutativity with ∧-products, we compute

f∗(T ∧ f ∗S1 ∧ f ∗S2) = f∗(T ∧ f ∗S1) ∧ S2
= f∗T ∧ S1 ∧ S2

and then deduce f ∗S1∧ f ∗S2 = f ∗(S1∧S2).We omit the verification of the remaining
properties which are shown similarly.

To show existence of f ∗, we consider the graph � f = (id, f )∗[Rn, μstd] as a
δ-form on R

n × R
m . We claim that the following definition satisfies (4.9):

f ∗S := p1,∗(� f ∧ p∗
2S).

The next succession of identities verifies that claim. The first four equalities come
either by definition or from the projection formula (4.6). The last equality will be
explained below.

f∗(T ∧ f ∗S) = f∗(T ∧ p1,∗(� f ∧ p∗
2S))

= f∗(p1,∗(p∗
1T ∧ � f ∧ p∗

2S))

= p2,∗(p∗
1T ∧ � f ∧ p∗

2S)

= p2,∗(p∗
1T ∧ � f ) ∧ S

= f∗T ∧ S.

(4.10)

The last equality comes from the identity p2,∗(p∗
1T ∧ � f ) = f∗T which may be

seen as follows. The form p∗
1T ∧ � f has support contained in Supp� f and has the

property p1,∗(p∗
1T ∧ � f ) = T ∧ p1,∗� f = T by the projection formula (4.6). As

Supp� f → R
n is bijective, this means p∗

1T ∧ � f = (id, f )∗(T ). It is then merely
left to note that p2 ◦ (id, f ) = f and the proof is complete. ��
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Example 4.3 Every affine linear map f : Rn → R
m can be factored as f = h ◦ g,

where g : Rn → R
k is surjective and h : Rk → R

m injective. Functoriality gives
f ∗ = g∗ ◦ h∗ where g∗ is the pull-back of currents from Sect. 2.1.
Put L = h∗[Rk, μstd] ∈ B0,0,m−k(Rm). Then (4.9) with T = 1 (constant function)

comes out as

h∗h∗S = h∗(1 ∧ h∗S) = L ∧ S.

Especially interesting here is the property of h∗ to commute with ∧-products, cf.
Proposition 4.2. It specializes to

(L ∧ S1) ∧L (L ∧ S2) = L ∧ S1 ∧ S2,

where ∧L denotes the wedge product on L .

4.2 Existence of the∧-product

This section proves the existence of the ∧-product. We begin with some Leibniz rule
properties of the product with piecewise smooth forms in (4.1).

Lemma 4.4 Let T be a δ-form.

(1) For every homogeneous piecewise smooth form α and each polyhedral derivative
dP ∈ {d ′

P , d ′′
P },

dP (α ∧ T ) = dPα ∧ T + (−1)degαα ∧ dPT .

(2) For every homogeneous piecewise smooth form α ∈ B p,0,0,

∂ ′(α ∧ T ) = (−1)degαα ∧ ∂ ′T

and hence

d ′(α ∧ T ) = d ′α ∧ T + (−1)degαα ∧ d ′T .

(3) Analogously, for every homogeneous piecewise smooth form α ∈ B0,q,0,

∂ ′′(α ∧ T ) = (−1)degαα ∧ ∂ ′′T

and hence

d ′′(α ∧ T ) = d ′′α ∧ T + (−1)degαα ∧ d ′′T .

Proof Identity (1) may be checked polyhedron by polyhedron and, in this way, reduces
to the Leibniz rule for smooth forms. Identities (2) and (3) follow from the observation
that the contractions in (3.9) are linear (up to the sign (−1)degα) with respect to
multiplication by piecewise smooth functions in the stated degrees. ��
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By a divisor we mean a d ′-closed and d ′′-closed δ-form of tridegree (0, 0, 1).
These are the tropical cycles with constant coefficients of codimension 1 in classical
terminology.

Lemma 4.5 Let D be a divisor on Rn. Then there exists a piecewise linear function ϕ

such that D = d ′d ′′ϕ. It is unique up to addition of affine linear functions.

Proof This is entirely due to Lagerberg, cf. [11, Proposition 5.3], we merely give the
straightforward reduction to his results. Let U1 ⊂ U2 ⊂ . . . be a covering of Rn by
convex relatively compact opens. By definition, D is a locally finite sum of currents
m · [σ,μ] with m ∈ R. So for each i ≥ 1, there is a finite linear combination Hi

of weighted hyperplanes such that (D + Hi )|Ui is positive in the sense that all its
coefficients are ≥ 0. By [11, Proposition 2.4 and Proposition 2.6], there is then a
convex function ϕ′

i on Ui such that (D + Hi )|Ui = d ′d ′′ϕ′
i . The lemma is easily seen

to hold for hyperplanes and hence the Hi , so we obtain for each i the existence of a
convex function ϕi with D|Ui = d ′d ′′ϕi . Then ϕi is necessarily piecewise linear, cf.
[11, Proof of Proposition 5.3]. A piecewise linear function ϕ is affine linear if and only
if d ′d ′′ϕ = 0, so the ϕi are determined up to addition of affine linear functions. They
may then be chosen compatibly, i.e. such that they satisfy ϕi+1|Ui = ϕi , proving the
lemma. ��
For affine linear ϕ and every current T we have by (2.9) the relation

d ′d ′′(ϕT ) = ϕ ∧ d ′d ′′T − d ′′ϕ ∧ d ′T + d ′ϕ ∧ d ′′T . (4.11)

Definition 4.6 Let D be a divisor and T a δ-form. Choose a piecewise linear function
ϕ with D = d ′d ′′ϕ as in Lemma 4.5 and define

D · T := d ′d ′′(ϕ ∧ T ) − ϕ ∧ d ′d ′′T + d ′′ϕ ∧ d ′T − d ′ϕ ∧ d ′′T . (4.12)

The definition does not depend on the choice of ϕ by (4.11). The resulting D · T is
again a δ-form.

Remark 4.7 The definition collapses to D ·T = d ′d ′′(ϕT )whenever d ′T = d ′′T = 0.
This identity is well-known in Bedford–Taylor theory, cf. [2] and [3, Sect. 5].

Lemma 4.8 Let D, T and ϕ be as above. The following two identities hold:

D · T = d ′(d ′′ϕ ∧ T ) + d ′′ϕ ∧ d ′T
= −∂ ′(d ′′ϕ ∧ T ) − d ′′ϕ ∧ ∂ ′T .

(4.13)

Proof Part (3) of Lemma 4.4 shows that

d ′′(ϕ ∧ T ) = d ′′ϕ ∧ T + ϕ ∧ d ′′T .

Substituting this in (4.12) and using part (2) of Lemma 4.4 leads to the first equality
of (4.13).
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Part (1) of Lemma 4.4 together with the observation d ′
Pd

′′ϕ = 0 implies that

d ′
P (d ′′ϕ ∧ T ) = −d ′′ϕ ∧ d ′

PT .

Substituting this in the first line of (4.13) gives the second equality. ��
We remark that identity (4.13) collapses to the definition of the corner locus [9, Def-
inition 1.10] if T is a tropical cycle. Also, if ϕ is affine linear, then d ′′ϕ is a smooth
form and sign-commutes with ∂ ′ by Lemma 4.4. Then (4.13) gives d ′d ′′ϕ · T = 0
as expected. The identity also shows that if T is of tridegree (p, q, r), then D · T
is of tridegree (p, q, r + 1). Its most important consequence for us, however, is the
following simple description of D · T .
Lemma 4.9 Let ϕ be a piecewise linear function and T a δ-form of tridegree (p, q, r).
Let further T be a weighted polyhedral complex subordinate to both ϕ and T , say
T = ∑

σ∈T r ασ ∧ [σ,μσ ]. Then

d ′d ′′ϕ · T =
∑

τ∈T r+1

βτ ∧ [τ, μτ ]

with

βτ =
∑

τ⊂σ a facet

∂(ϕ − ϕτ )

∂nσ,τ

ασ |τ , (4.14)

where ϕτ is any choice of affine linear function with (ϕ − ϕτ )|τ constant.

Proof It is clear that T is also subordinate to d ′d ′′ϕ ·T , our task is merely to determine
the βτ . They may be computed locally near every inner point of any given τ . Having
some τ fixed,wemay replaceϕ byϕ−ϕτ becaused ′d ′′ϕτ = 0. Thend ′′(ϕ−ϕτ )|τ = 0,
so the term d ′′(ϕ − ϕτ ) ∧ ∂ ′T in (4.13) vanishes and we are left to find the coefficient
of τ in −∂ ′(d ′′(ϕ − ϕτ ) ∧ T ).

Assume first that (ϕ − ϕτ )|σ is non-constant for every σ ∈ T r containing τ . Then
we can put zσ = (ϕ − ϕτ )|σ to obtain (4.14) from a literal application of (3.11).

The general case follows since the right hand side of (4.14) is a priori independent
of the choice ϕτ by the balancing condition (3.2). ��

From here on, many ideas belong to Allermann–Rau [1] and we merely extend
them to δ-forms. We will provide references to their paper for comparison.

Lemma 4.10 (Compare [1, Proposition 6.7]) Given divisors D1, D2 and a δ-form T ,

D1 · (D2 · T ) = D2 · (D1 · T ).

Proof Let ϕi be a piecewise linear function with Di = d ′d ′′ϕi . Assume T of tridegree
(p, q, r) and let T be a weighted polyhedral complex that is subordinate to ϕ1, ϕ2
and T ; write T = ∑

σ∈T r ασ ∧ [σ,μσ ]. Fix some ρ ∈ T r+2 and assume both
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ϕ1|ρ and ϕ2|ρ to vanish. Each σ ∈ T r with ρ ⊂ σ has precisely two facets τ, τ ′
containing ρ and we write σ = τ + τ ′ if this relation holds. Define a constant χ(σ)

through μσ = χ(σ)nτ,ρ ∧ nτ ′,ρ ∧ μρ in this case. In other words, one may pick
nσ,τ = χ(σ)nτ ′,ρ whenever σ = τ + τ ′. Pick an auxiliary affine linear function z
with z|ρ = 0 and z|τ �= 0 for all ρ ⊂ τ ∈ T r+1. Define the constants

xτ := ∂ϕ1|τ
∂nτ,ρ

, yτ := ∂ϕ2|τ
∂nτ,ρ

, λτ := ∂z

∂nτ,ρ

, τ ∈ T r+1, ρ ⊂ τ.

Then ϕ2 − (yτ /λτ )z vanishes on τ and may be used in formula (4.14) to compute the
τ -contribution βτ ∧ [τ, μτ ] to D2 · T ,

βτ =
∑

τ⊂σ a facet

∂(ϕ2 − (yτ /λτ )z)

∂nσ,τ

ασ |τ (4.15)

=
∑

τ⊂σ a facet

χ(σ)(yτ ′ − yτ λτ ′/λτ )ασ |τ . (4.16)

The ρ-contribution γρ ∧ [ρ,μρ] to D1 · (D2 · T ) is then, again using (4.14),

γρ =
∑

(τ,τ ′), σ=τ+τ ′∈T r

χ(σ)(xτ (yτ ′ − yτ λτ ′/λτ ))ασ |ρ (4.17)

=
∑

{τ,τ ′}, σ=τ+τ ′∈T r

χ(σ)(xτ yτ ′ + xτ ′ yτ − xτ yτ λτ ′/λτ − xτ ′ yτ ′λτ /λτ ′)ασ |ρ.

(4.18)

The last expression is symmetric with respect to exchange of x and y, proving the
lemma. ��
Lemma 4.11 Let f : Rn → R

m be a surjective affine linear map, T a δ-form on R
n

with compact support over Rm and D a divisor on R
m. Then the projection formula

holds,

D · f∗T = f∗( f ∗D · T ).

Proof Write D = d ′d ′′ϕ for a piecewise linear function ϕ as in Lemma 4.5. Push-
forward commutes with both d ′ and d ′′ whilemultiplicationwith the piecewise smooth
forms ϕ, d ′ϕ and d ′′ϕ on R

m in the sense of Example 3.8 obviously satisfies the
projection formula. The claim now follows directly from Definition 4.6. ��
Lemma 4.12 (Compare [1, Lemma 9.4]) Let T be a δ-form onRc ×R

m and denote by
Di = p∗

12(d
′d ′′ max{xi , yi }) the divisor on Rc ×R

c ×R
m where the i-th coordinates

of the first two factors agree, i = 1, . . . , c. Let g(x, z) := (x, x, z) be the partial
diagonal Rc × R

m → R
c × R

c × R
m. Then

D1 · · · Dc · (Rc × T ) = g∗T .
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Proof By a recursive argument, it is enough to treat the case c = 1. Let T be a
polyhedral complex onR×R

m that is subordinate to T , say T = ∑
σ∈T ασ ∧[σ,μσ ].

Assume without loss of generality that
⋃

σ∈T σ = R × R
m and define, for each σ ,

σ̃? = {(x, y, z) ∈ R × σ | x ? y}, ? ∈ {≥,≤}.
Let x and y denote the coordinates on the first two factors ofR×R×R

m . A polyhedral
complex structure on R×R×R

m that is subordinate to both R× T and the function
ϕ = max{0, x − y} is then, for example,

S =
⋃

σ∈T
{̃σ≥, g(σ ), σ̃≤}.

It becomes a weighted complex by endowing σ̃≥ and σ̃≤ with weight μstd ∧ μσ and
g(σ ) with g(μσ ). The support of d ′d ′′ϕ · (R × T ) is contained in ϕ’s locus of non-
linearity {x = y} = ⋃

σ∈T g(σ ). Given a polyhedron g(σ ) ∈ S, it is the facet of
precisely the polyhedra σ̃≥, σ̃≤ and all g(ρ) such that σ ⊂ ρ is a facet. Normal
vectors in these cases are (1, 0, 0), (−1, 0, 0) and g(nρ,σ ), respectively. Using that
ϕ|{x=y} = 0, the contribution βσ ∧ [g(σ ), g(μσ )] of g(σ ) to d ′d ′′ϕ · (R × T ) is by
Lemma 4.9

βσ =
(

∂ϕ|x≥y

∂(1, 0, 0)
+ ∂ϕ|x≤y

∂(−1, 0, 0)

)

g∗ασ +
∑

σ⊂ρ a facet

∂ϕ|g(ρ)

∂g(nρ,σ )
g∗(αρ |σ ).

Since ϕ|{x≤y} = 0, only the first term is non-zero and contributes g∗ασ as claimed. ��
Definition 4.13 (Compare [1, Definition 9.3]) Let Di = d ′d ′′(max{xi , yi }) denote
the divisor on R

n × R
n where the i-th coordinates agree. The ∧-product of δ-forms

S, T ∈ B(Rn) is defined as the δ-form

S ∧ T := p1,∗(D1 · · · Dn · (S × T )).

The notational convention (and only possibility) here is that the successive product is
evaluated from right to left. We also write � · (S × T ) instead of D1 · · · Dn · (S × T ).
Note that we have already seen that the order of the Di does not matter, but only
Corollary 4.16 below will prove the independence of the choice of {D1, . . . , Dn} to
describe the diagonal.

Lemma 4.14 The following identity holds for all δ-forms S and T ,

S × T = p∗
1S ∧ p∗

2T .

Proof Let g : Rn ×R
n → (Rn ×R

n) × (Rn ×R
n) be the diagonal. The first equality

in the following is by definition, the second is Lemma 4.12 and the third is the identity
p12 ◦ g = id.

p∗
1S ∧ p∗

2T = p12,∗(� · (S × R
n × R

n × T ))

= p12,∗g∗(S × T )

= S × T .
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��
Lemma 4.15 (Compare [1, Lemma 9.7]) Let S, T be δ-forms on R

n and C a divisor.
Then

C · (S ∧ T ) = (C · S) ∧ T .

Proof It follows from Lemma 4.9 that p∗
1C · (S × T ) = (C · S) × T . Then the claim

follows from the commutativity in Lemma 4.10 and the projection formula in Lemma
4.11:

C · p1,∗(D1 · · · Dn · (S × T )) = p1,∗(p∗
1C · D1 · · · Dn · (S × T ))

= p1,∗(D1 · · · Dn · ((C · S) × T )).

��

Successive application of Lemma 4.15 shows the following corollary.

Corollary 4.16 (Compare [1,Corollary 9.8])Let T bea δ-formonRn andC,C1, . . . ,Cl

divisors. Then

C1 · · ·Cl · T = (C1 · · ·Cl) ∧ T .

In particular,

C ∧ T = C · T , � ∧ (S × T ) = � · (S × T ).

Proof of Theorem 4.1. So far, Definition 4.13 provides a well-defined bilinear map
∧: B × B → B. It is left to verify all the properties stated in Theorem 4.1.

(a) The ∧-product is clearly trihomogeneous in the sense that it restricts to maps
B p,q,r × Bs,t,u → B p+s,q+t,r+u . It is graded-commutative in the sense that S ∧ T =
(−1)deg S deg T T ∧ S for homogeneous S and T because

s∗(S × T ) = (−1)deg S deg T T × S,

where s : Rn × R
n → R

n × R
n is the map that switches the two factors.

(b) We claim that the ∧-product satisfies the projection formula

S ∧ f∗T = f∗( f ∗S ∧ T )

for every surjective linearmap f : Rn → R
m . To check this, wemay assume n = m+c

and, after a change of coordinates, f : Rm × R
c → R

m being just the projection.
Then simply f ∗S = S × R

c. Recall that Di = d ′d ′′ max{xi , yi } on R
n × R

n and
� = D1 · · · Dn . Write �m = D1 · · · Dm and �c = Dm+1 · · · Dn . Then the following



On tropical intersection... Page 27 of 33 17

equalities hold, as will be explained below.

f∗( f ∗S ∧ T ) = p1,∗( f , f )∗(�m · �c · ( f ∗S × T ))

= p1,∗
(
δm · ( f , f )∗(�c · (S × R

c × T ))
)

= p1,∗
(
δm · ( f , f )∗(S × (�c · (Rc × T )))

)

= p1,∗
(
δm · ( f , f )∗(S × g∗T )

)

= S ∧ f∗T .

(4.19)

The first equality is the definition of the left hand side combined with the identity
f ◦ p1 = p1 ◦ ( f , f ). The second follows from the projection formula for divisor
intersection, Lemma 4.11, applied to�m = ( f , f )∗δm , where δm ⊂ R

m×R
m denotes

the diagonal. The third equality is the observation p∗
2C · (X × Y ) = X × (p∗

2C · Y )

for any divisor C and δ-forms X ,Y , applied successively to the divisor intersection
�c. The map g in the next line is the partial diagonal

g : Rm × R
c −→ R

c × R
m × R

c, (x, y) 
−→ (y, x, y)

and the identification �c · (Rc × T ) = g∗T is Lemma 4.12. The final equality then
is the observation ( f , f )∗(S × g∗T ) = S × f∗T which follows from the identity
( f , f ) ◦ (idRm , g) = (idRm , f )..

(c) The next claim is that the ∧-product is associative, S∧ (T ∧U ) = (S∧T )∧U .
Indeed, applying the projection formula (b) repeatedly, one obtains

S ∧ (T ∧U ) = p1,∗
(
� · (S × R

n × T ×U )
)

where the intersection takes place on (Rn)4 andwhere� = ∏n
i=1 p

∗
12Di ·p∗

23Di ·p∗
34Di

is the diagonal Rn ⊂ (Rn)4. In exactly the same way,

(S ∧ T ) ∧U = p1,∗
(
� · (S × T × R

n ×U )
)
.

The two expressions are seen to be equal by switching the middle factors as in Step
(a).

(d)Next,we claim thatα∧T = αT for every piecewise smoothα. This follows from
Lemma 4.12 and the fact that multiplication by piecewise smooth forms commutes
with divisor intersection. The latter is immediate from Lemma 4.9.

(e) Lemma 4.14 furthermore showed that S × T = p∗
1S ∧ p∗

2T , so the constructed∧-product is computed by intersection with the diagonal, cf. (4.5).
(f) We turn to the Leibniz rule. Let C be a divisor and T a δ-form. Our first step is

to prove the identity

d(C ∧ T ) = C ∧ dT , d ∈ {d ′, d ′′}. (4.20)

We write d = dP − ∂ , with dP ∈ {d ′
P , d ′′

P } and ∂ ∈ {∂ ′, ∂ ′′} suitable, and verify (4.20)
for dP and ∂ separately.
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Applying (4.14), the identity dP (C ∧ T ) = C ∧ dPT is immediate. Writing D as
D = d ′d ′′ϕ for a piecewise linear function ϕ as in Lemma 4.5 and using (4.13) twice,
we have

∂ ′(C ∧ T ) = −∂ ′∂ ′(d ′′ϕ ∧ T ) − ∂ ′(d ′′ϕ ∧ ∂ ′T ) = C ∧ ∂ ′T

because (∂ ′)2 = 0 by Lemma 3.5. Finally, applying Lemma 4.4 (3) and the rule
∂ ′∂ ′′ = −∂ ′′∂ ′, we also obtain

∂ ′′(C ∧ T ) = −∂ ′′∂ ′(d ′′ϕ ∧ T ) − ∂ ′′(d ′′ϕ ∧ ∂ ′T )

= −∂ ′(d ′′ϕ ∧ ∂ ′′T ) − (d ′′ϕ ∧ ∂ ′∂ ′′T ) = C ∧ ∂ ′′T .

This finishes the proof of (4.20). Successive application of the divisor case now yields

d(� ∧ (S × T )) = � ∧ d(S × T ).

The Leibniz rule (4.2) for exterior products, coupled with Definition 4.13, completes
the proof of the Leibniz rule for d in general. Separating by tridegree provides the
Leibniz rules for the other differential operators.

(g) The identity f ∗(S ∧ T ) = f ∗S ∧ f ∗T only uses the fact p∗
1D · (S × T ) =

(D · S) × T for divisor intersection. Namely assume f : Rm × R
c → R

m to be the
projection and write p12 : Rm ×R

c ×R
m ×R

c → R
m ×R

c for the projection to the
first two factors. Then, in the terminology of Step (b),

f ∗S ∧ f ∗T = p12,∗(�m · �c · (S × R
c × T × R

c))

= p12,∗(�m · (S × T )) × �c

= (S ∧ T ) × R
c = f ∗(S ∧ T ).

(4.21)

(h) Finally, the tropical intersection products of Allermann–Rau [1], its extension to
smoothly weighted rational polyhedra in [9, Remark 1.4], and the intersection product
of Esterov [5] for polynomially weighted (possibly non-rational) polyhedra can all be
expressed in terms of divisor intersection and restriction to the diagonal. In these two
specific cases, they coincide with our definition. So any two of the mentioned products
coincide whenever both are defined. ��

4.3 Fan displacement rule

Two linear subspaces N1, N2 ⊆ R
n are said to intersect transversally if N1+N2 = R

n .
(Equivalently, their intersection is transversal if their codimensions are related by
codim(N1 ∩ N2) = codim(N1) + codim(N2).) In the transversal case, there is an
exact sequence

0 → N1 ∩ N2 → N1 ⊕ N2 → R
n → 0.
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Given weights μ1 and μ2 for N1 and N2, respectively, we denote by μ1 ∩ μ2 the
weight on N1 ∩ N2 that satisfies (μ1 ∩ μ2) ∧ μstd = μ1 ∧ μ2 in the sense of (2.12).
The next lemma is easily checked.

Lemma 4.17 Let [N1, μ1], [N2, μ2] ⊆ R
n be weighted linear subspaces, viewed as

δ-forms. Assume that their intersection is transverse. Then

[N1, μ1] ∧ [N2, μ2] = [N1 ∩ N2, μ1 ∩ μ2].

Let T1 and T2 be polyhedral complexes onRn which are pure of codimension r1 and
r2, respectively. By this we mean that Ti agrees with the set of faces of all σi ∈ T ri

i .
Then T1 and T2 are said to intersect transversally if, for all pairs (σ1, σ2) ∈ T r1 ×T r2 ,
the intersection σ1 ∩σ2 is either empty or of codimension r1 + r2 and not contained in
the union of boundaries ∂σ1 ∪ ∂σ2. Note that then Nσ1 and Nσ2 intersect transversally
whenever σ1 ∩ σ2 �= ∅.

Assume the above Ti to intersect transversally and let S be the polyhedral complex
of all σ1∩σ2, σi ∈ Ti . ThenS is pure of codimension r1+r2 and every top-dimensional
τ ∈ Sr1+r2 determines a unique pair (σ1, σ2) ∈ T r1

1 × T r2
2 such that τ = σ1 ∩ σ2.

Lemma 4.18 Let T1 and T2 be transversally intersecting weighted polyhedral com-
plexes of pure codimensions r1 and r2, respectively. Let

T1 =
∑

σ∈T r1
1

ασ ∧ [σ,μσ ] and T2 =
∑

σ∈T r2
2

βσ ∧ [σ, νσ ]

be δ-forms. Then

T1 ∧ T2 =
∑

(σ1,σ2)∈T r1×T r2 , σ1∩σ2 �=∅
ασ1 ∧ βσ2 ∧ [σ1 ∩ σ2, μσ1 ∩ νσ2 ]. (4.22)

Proof Let S be the polyhedral complex generated by all σ1 ∩ σ2, σi ∈ T ri
i . Then

Supp(T1 ∧ T2) ⊆ Supp T1 ∩ Supp T2 ⊆
⋃

τ∈Sr1+r2

τ,

so T1 ∧ T2 = ∑
τ∈Sr1+r2 γτ ∧ [τ, μτ ] for certain forms γτ and weights μτ . Each γτ

is uniquely determined by its restriction to the relative interior τ ◦ ⊆ τ . Also, every
occurring τ is in a unique way the intersection σ1 ∩σ2 of top-dimensional σi ∈ Ti . On
an open neighborhood of τ ◦, the situation then agrees with a subspace intersection as
in Lemma 4.17, multiplied by ασ1 ∧βσ2 , and the claim follows from Theorem 4.1 and
Lemma 4.17. ��

Recall that a sequence (resp. net) of currents (Ti )i∈I converges weakly to a current
T if for every test form η ∈ Ac, the sequence (resp. net) Ti (η) converges to T (η).
Given a current T on Rn and a vector v ∈ R

n , we write λv(x) = x + v and denote by
v + T = λv,∗T = λ∗−vT the v-translated current.
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Proposition 4.19 Let S, T ∈ B(Rn) be δ-forms and v ∈ R
n a vector. Then there is the

weak convergence

S ∧ (εv + T ) −→ S ∧ T , ε −→ 0.

Proof Consider on R the piecewise smooth form ρε = −d ′′x ∧ [[0, ε], μstd
]
. Its

boundary ∂ ′ρε = δ0 − δε is the difference of the Dirac measures at 0 and ε. Next,
consider the map f : R × R

n → R
n, (ε, y) 
→ y − εv. The Leibniz rule yields

ωε := p∗
1(δ0 − δε) ∧ f ∗T = ∂ ′(p∗

1ρε ∧ f ∗T ) + p∗
1ρε ∧ f ∗∂ ′T . (4.23)

Note that p∗
1ρε is piecewise smooth, making the ∧-products on the right hand side

straightforward, cf. Example 3.8. Now Lemma 4.18 implies that

p∗
1δε ∧ f ∗T = {ε} × (εv + T ), ε ∈ R,

and hence

S ∧ (T − (εv + T )) = S ∧ p2,∗ωε. (4.24)

Our task is to show that this expression convergesweakly to 0 as ε → 0. The projection
formula, cf. Theorem 4.1, allows to rewrite (4.24) as

p2,∗(p∗
2S ∧ ωε).

Nowobserve that if (Xi )i∈I → X is aweakly convergent net of currents onR×R
n with

X and all Xi of compact support over Rn , then (p2,∗Xi )i∈I → p2,∗X by definition
(2.10). So it remains to show p∗

2S ∧ ωε → 0 as ε → 0.
Claim. For every polyhedral current γ ∈ P(R×R

n), there is the weak convergence
p∗
1ρε ∧ γ → 0 as ε → 0. This is straightforward: It is enough to consider the case

γ = α∧[σ,μ] inwhich case there are the two possibilities that p1(σ ) is of dimension 0
or 1. In the 0-dimensional case, p∗

1ρε|σ = 0 andweare done. In the 1-dimensional case,
a simple volume argument shows that for every compactly supported (dim σ, dim σ)-
form η,

∫

[
σ ∩ ([0, ε]×Rn), μ

] η −→ 0, ε −→ 0,

which implies the claim.
It follows that p∗

2S ∧ p∗
1ρε ∧ f ∗∂ ′T → 0 as ε → 0 and it is only left to show, cf.

(4.23), that

p∗
2S ∧ ∂ ′(p∗

1ρε ∧ f ∗T ) −→ 0, ε −→ 0. (4.25)
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Applying the Leibniz rule for ∂ ′ and using again the above claim, one is reduced to
proving

∂ ′(p∗
2S ∧ p∗

1ρε ∧ f ∗T
) −→ 0, ε −→ 0.

Now for every weakly convergent net of currents (Xi )i∈I → X , the sequence of
derivatives (d ′Xi )i∈I → d ′X converges weakly, which follows immediately from the
definition in (2.7). Using the above claim once more, it is hence enough to show

d ′
P

(
p∗
2S ∧ p∗

1ρε ∧ f ∗T
) −→ 0, ε −→ 0.

Applying the Leibniz rule for d ′
P and the vanishing d ′

Pρε = 0, this last statement
follows from yet another application of the above claim. The proof is complete. ��

Let T1 and T2 be finite polyhedral complexes on R
n , pure of codimensions r1 and

r2 respectively. A vector v ∈ R
n is called generic for T1 and T2 if there exists ε0 > 0

such that T1 and εv +T2 intersect transversally for all 0 < ε < ε0. For not necessarily
finite T1 and T2, a vector v is called generic if it is generic for all finite subcomplexes
of the same pure codimensions. Generic vectors in this sense always exist.

Construction 4.20 Let v be a generic vector for two polyhedral complexes T1 and T2
that are pure of codimensions r1 and r2, respectively. Let

T1 =
∑

σ∈T r1
1

ασ ∧ [σ,μσ ], T2 =
∑

σ∈T r2
2

βσ ∧ [σ, νσ ]

be δ-forms. Define their v-displacement product with respect to T1 and T2 as

T1 ·v T2 :=
∑

(σ1,σ2)∈T r1
1 ×T r2

2 , σ1∩(εv+σ2) �=∅ for ε↘0

ασ1 ∧ βσ2 ∧ [σ1 ∩ σ2, μσ1 ∩ νσ2 ].

(4.26)

The sum here is over all (σ1, σ2) such that σ1 ∩ (εv + σ2) �= ∅ for all sufficiently
small ε. This condition implies that also σ1 ∩ σ2 �= ∅. Since v is generic, it moreover
implies that Nσ1 and Nσ2 intersect transversally. Thus, even though σ1 and σ2 may
intersect non-transversally (i.e. in a face), σ1 ∩ σ2 is always of codimension r1 + r2.
Note that v need not be generic for subdivisions of T1 and T2 anymore, which is why
the definition depends on their choice.

Proposition 4.21 Let T1 and T2 be δ-forms with subordinate polyhedral complexes T1
and T2 as above. Assume v is generic for T1 and T2. Then the v-displacement product
(with respect to the Ti ) computes the ∧-product,

T1 ·v T2 = T1 ∧ T2. (4.27)

In particular, the v-displacement product is independent of the choices T1, T2 and v.
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Proof Both sides of (4.27) are computed locally, so we may assume T1 and T2 to be
finite by a partition of unity argument. Lemma 4.18 then shows that for all sufficiently
small ε > 0,

T1 ∧ (εv + T2) =
∑

(σ1,σ2)∈T r1
1 ×T r2

2 , σ1∩(εv+σ2) �=∅
ασ1 ∧ (εv + βσ2 ) ∧ [σ1 ∩ (εv + σ2), μσ1 ∩ νσ2 ].

The intersection σ1 ∩ (εv + σ2) being non-empty and transverse for all sufficiently
small ε implies that σ1 ∩ σ2 is non-empty and of codimension r1 + r2. Moreover in
this case,

ασ1 ∧ (εv + βσ2 ) ∧ [σ1 ∩ (εv + σ2), μσ1 ∩ νσ2 ] −→ ασ1 ∧ βσ2 ∧ [σ1 ∩ σ2, μσ1 ∩ νσ2 ]

in the weak sense. It follows that T1 ∧ (εv + T2) → T1 ·v T2 in the weak sense.
Proposition 4.19 on the other hand shows that this limit equals T1 ∧ T2, proving the
proposition. ��
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